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In this paper we study the properties of two-qubit gates. We review the most common
parameterizations for the local equivalence classes of two-qubit gates and the connections
between them. We then introduce a new discrete local invariant, namely the number of
local degrees of freedom that a gate can bind. The value of this invariant is calculated
analytically for all the local equivalence classes of two-qubit gates. We find that almost
all two-qubit gates can bind the full six local degrees of freedom and are in this sense
more effective than the controlled-NOT gate which only can bind four local degrees of
freedom.
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1 Introduction

Quantum computation is a novel information processing method in which classical information
is encoded into a quantum-mechanical system [1], called the quantum register. In most
quantum computers the quantum register is a collection of two-level systems, termed qubits.
The computation is performed by the unitary temporal evolution of the register, followed by
a measurement. In order to execute a quantum algorithm, one has to be able to generate the
required unitary propagators that are usually referred to as quantum gates.

It has been shown that almost any fixed two-qubit gate together with arbitrary single-qubit
gates is universal [2, 3], i.e., any n-qubit gate may be constructed using only a finite number of
these gates. Conventionally, the elementary gate library is chosen to consist of the single-qubit
rotations R, R,, R, and the controlled-NOT gate (CNOT). However, in many realizations,
the CNOT is not the natural choice for the entangling two-qubit gate. Recently, an optimal
construction of an arbitrary two-qubit gate using three CNOTs and 15 single-qubit rotations
has been introduced [4]. In addition, constructions for the double-CNOT (DCNOT) [5], the
controlled-unitary gates [5] and the so-called super controlled gates [6] have been published.
A construction using only two applications of the B gate has been introduced in Ref. [7], and
in Ref. [8] it is shown that no other construction using only two applications of a fixed two-
qubit gate exists. Extensions to the n-qubit case are mainly uninvestigated. However, several
CNOT-based constructions with O(4™) asymptotic behaviour exist, the best of which [9, 10]
have CNOT counts of twice the highest known lower bound [4].
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In many of the proposed realizations for quantum computers the individual qubits are
fully controllable, whereas the interqubit interactions are often fixed. In addition, single-
qubit operations tend to be considerably faster to implement than multiqubit operations.
This is why it often makes sense to study the local equivalence classes of multiqubit gates
instead of the gates themselves. Two gates are considered equivalent if they can be converted
to each other using only local operations, i.e., tensor products of single-qubit gates. The
equivalence classes are characterized by local invariants, which are quantities that are not
affected by local operations.

In this paper we briefly review the currently used parameterizations for the local equiv-
alence classes of two-qubit gates and point out their equivalence. We then introduce a new
discrete local invariant which describes the number of local degrees of freedom a gate can
bind. Finally, we calculate the value of this invariant for all the local equivalence classes of
two-qubit gates.

2 Local equivalence classes of two-qubit gates

An n-qubit quantum gate k is said to be local iff it consists solely of single-qubit rotations:
k € SU(2)®™ =: L,,. Two n-qubit gates Uy, Us € SU(2") are said to be locally equivalent iff
Us = kU ko, where ky,ks € L,,. This constitutes an equivalence relation, which we denote
by U1 ~ Uz.

Using the theory of Lie groups [11] it can be shown [12, 13] that any two-qubit gate
U € SU(4) can be decomposed using the Cartan decomposition as

U = kiAky = k1 exp (%(claz ® 0y + 20y @ 0y + c30, ® az)> ko, (1)

where o; denote the Pauli matrices, k1, ks € s and ¢y, co, c3 € R. The matrix A is a member of
the Cartan subgroup of the decomposition and carries all the nonlocal properties of the gate U.
Hence the local equivalence classes of two-qubit gates can be parameterized by the three
scalars [c1, c2, 3], known as canonical parameters. This is a minimal set of parameters since
the group SU(4) is 15-dimensional and the local rotations eliminate 2 x dim(SU(2)®?) = 12
degrees of freedom thereof. The canonical parameterization is visualized in Fig. 1. The
tetrahedron O A; A5 A3 in the figure is called a Weyl chamber. It is defined by the inequalities
m>c > cy>c3 > 0,m—c1 > cy. The Weyl chamber contains all the local equivalence classes
of two-qubit gates exactly once, excepting the fact that the triangles LA; As and LOA; are
equivalent.
The matrix

1 0 0 1

1 0 — — 0
@=7%lo 1 10 (2)

— 0 0 =2

is the transformation from the standard basis of states {|00), |01), |10), |11}} into the Bell
basis, also known as the magic basis [14]. We use the lower index B to denote the change
of basis: Up := QUQT. The magic basis has the special property that local gates expressed
in it are orthogonal. In other words, conjugation by @ is a group isomorphism between
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Ay=[n/2, w2, m/2]

C,

A A= [7/2, /2, 0]

¢
Fig. 1. Weyl chamber. Points O and A; correspond to the identity gate I, A3 to the SWAP gate,
L to the controlled-NOT gate (CNOT) and Az to the double controlled-NOT gate (DCNOT) [13].

SU(2) ® SU(2) and SO(4). Furthermore, it renders our chosen Cartan subgroup (generated
by (0, ® 0g), 2(0y ® o) and %(o, ® 0,)) diagonal. These two properties enable us to
calculate the canonical parameters of any given SU(4) gate U = k; Aky. The parameters are
obtained from the spectrum of the matrix M (U) := ULUp which is given by

)\ (M(U)) — {ei(01+62763), ei(01702+63), ei(701+62+03), e*i(61+82+63)} . (3)

Ref. [15] presents an algorithm for extracting the canonical parameters ¢; from this spectrum
in a convenient way although it uses a slightly different notation. The equivalence of the
methods becomes apparent using the equality Q7 Q = —0o, ® o, since

AMU)) = A ((QURNHTQUQT) = A((oy ® 0)'U” (0 ® 0,)U)
=\ (U(oy ® 0 )UT (0, ® 7)) = ANUT). (4)

Ref. [4] presents another system of invariants, namely the characteristic polynomials x[y2(U)],
where v2(U) = U(oy ® 0,)UT (04 ® 0yy). They are completely equivalent to the canonical
parameters since the characteristic polynomial x|y (U)] carries exactly the same information
as A (M(U)) = A(r2(U)).

Another useful parameterization for the two-qubit local equivalence classes is provided by
the Makhlin invariants Gy and G [14]. For a gate U € U(4), they are defined as

o - Te2 M(U) - T’ M(U) - Tr M(U)? %)
' 16detU > 4detU ‘

The Makhlin invariants are by far the easiest ones to calculate. They, too, provide the same
information as the previous invariants since A (M (U)) is fully determined by them. G; may
be complex but Gs is always a real number, which leads to three real-valued invariants. If U



L. Koponen, V. Bergholm, and M.M. Salomaa 61

Table 1. Values of the canonical and Makhlin invariants for some common two-qubit gates. A;(U)
denotes a controlled-unitary gate and SPE a special perfect entangler [16, 6].

Gate c1 C c3 g1 go gs

I 0 0 O 1 0 3

SWAP O S T 3

CNOT 3 0 0 0 0 1

DCNOT | Z = 0| 0 0 1
SWAP |l 1oF 0 3 0
SWAP | = x| o .1 0

B T 0| 0 0 0

N (U) a 0 0 |cos?(a) 0 2cos?(a)+1

SPE 5 a 0 0 0 cos(2a)

is represented as in Eq. (1), the Makhlin invariants reduce to [13]

g1 :=ReGy = cos? c1 cos? Co cos? c3 — sin? c1 sin? Co sin? cs3,

1
go :=ImG; = 1 sin 2¢y sin 2¢ sin 2c¢g,
— _ 2 2 2 .2 .2 .2
g3 := G = 4cos” ¢; cos” ¢ cos” c3 — 4sin” ¢; sin” ¢o sin” ¢3 — cos 2¢1 cos 2¢5 cos 2¢3. (6)

Example values of the invariants of different gates are given in Table 1. The set of all the
two-qubit gate equivalence classes in the Makhlin parameter space is presented in Fig. 2. The
surface and the inside of the object correspond to the surface and the inside of the Weyl
chamber, respectively. On the surface of the set the canonical parameters have the form
[s,t,t], where s € [0,7], t € [0,7/2]. The surface is thus given by the equations

g1 = cos? scos* t — sin” ssin* ¢
1
92 = sin(2s) sin”(2t)
g3 = 4g1 — cos(2s) cos*(2t). (7)
3 The local invariant 7
Let us use
3n
Lk (a,0) := exp Zaj( )X; |, LF(a,0) €L, VO eRF, (8)
j=1

where j runs over the 3n local generators of SU(2"), to denote a k-parameter family of n-
qubit local gates. It is defined by the continuous function a : R¥ — R3". The generators
X; € su(2") are normalized such that they are orthonormal with respect to the inner product
(X,Y) := Tr (X'Y). We also arrange our basis B of su(2") such that the local generators
precede the nonlocal ones.

A gate U € SU(2") is said to leak k local degrees of freedom iff there exist injections a
and b such that

—

ULE(a,0) = LE(b,0)U V6 € R*. (9)
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9, 9,
Fig. 2. Volume in the space of Makhlin invariants corresponding to the Weyl chamber. The surface
of the set is given by Eq. (7).

A gate binds the local degrees of freedom that it does not leak. We define a function 7 :
SU(2™) — N to indicate the number of local degrees of freedom that an n-qubit gate U binds.
We always have maxn < 3n, i.e., at most three degrees of freedom for each qubit.

We now introduce a matrix representation for the adjoint representation of U in the
basis B:

Wi = (Xi, Ad(U)X;) = (X;, UX;U) = Tr (XJUX]-UT) . AU)X; =Y XaWi;. (10)

Equation (9) is seen to be equivalent to

3n 3n 3n
U exp Zaj(g)Xj Ul =exp Zaj(g) Ad(U)X,; | =exp <Z bk(g)Xk> V0 € R*.
j=1 j=1 k=1
(11)
This is fulfilled if
3n 3n 3n
Zaj(é?) Ad(U)X] = ZZXiWijaj(G) = Zbk(Q)Xk (12)
j=1 j=1 i k=1
Taking sidewise inner products with X;, we obtain in matrix form
~  (Wir\ .z _ (b(6) 5k
a® (it )o@ - (°F)) voew, (13)

where Wi, € R¥%3% Wy € R4"—1-37)x3n and the indices L and N stand for local and
nonlocal, respectively. From Eq. (13) we must have a(f) € ker Wy, for all values of 6. Using
the rank-nullity theorem we finally obtain

n(U) = 3n — dim(ker Wxp). (14)
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It still remains to be shown that 7 is a local invariant. Assume that the functions a and b
satisfy Eq. (9) for the gate U. For a gate V = k1Uk,, where k;, k2 € L, we obtain

— —

1 [k;Lﬁ(a, 0)k2] = kyUky k3 LE (a, 0)ky = ki LE (b, 8) Uk = [le,’g(b,é')kﬂ V. (1)

We also have

3n 3n
kr LE (b, 0)k] = exp | > b;(0) Ad(k1)X; | =exp | Y _b;(6)X; | = LE(b,0), (16)
j=1 j=1

since Ad(g) is a linear bijection and k; is a local gate [13]. If b is an injection then so is b. A
similar argument holds for kL% (a,§)ky, which yields VL* (a,0) = Lk (b,0)V and completes
our proof.

4 17 for two-qubit gates

For the set of two-qubit gates U € SU(4), maxn < 6. It is obvious that n(I) = 0 and
n(SWAP) = 0 since all local gates and hence all local degrees of freedom may be commuted
through these gates. It is also known that n(CNOT) = 4 and n(DCNOT) = 4. The result
for CNOT is obtained by combining the commutation properties of CNOT with the Euler
rotations R, and R, and the fact that an arbitrary two-qubit gate may be implemented
using at most three CNOTs [4, 17, 18, 19]. Similar arguments for the DCNOT are presented
in Ref. [5], including the explicit implementation of an arbitrary two-qubit gate using three
DCNOTSs. Also, from the construction of Ref. [7], it is clear that n(B) > 5. Apart from such
observations, no explicit calculations for n have been presented in the literature so far.

We will now proceed to derive an analytical expression for 7 for an arbitrary two-qubit
gate. Because 7 is a local invariant, it is enough to consider gates of the type

)
A =exp (5(01% ® 0y + 20y ® 0y + €30, ® az))

C3 0 0 C1 —C2
_ 1 0 —C3 c1 + c2 0
- xXp (2 0 c1 +¢C2 —C3 0 ) (17)
C1 — Co 0 0 C3

which represent all the nonlocal equivalence classes. The calculation of the elements of W,
and Wy is straightforward. Calculating the matrix exponential and simplifying the expres-
sion using elementary trigonometric identities results in

0 0 0 0 0 0
0 0 nil 0 0 niz
0 "%,1 0 0 "%,2 0
0 0 ng’l 0 0 ngyz
Wne=1] 0 0 0 0 0 0o 1, (18)
nil 0 0 nh 0 0
0 n%vl 0 0 "%,2 0
n%’l 0 0 "%,2 0 0
0 0 0 0 0 0
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Table 2. n, or the number of local degrees of freedom bound, for the local equivalence classes of
two-qubit gates.

[e1, c2, c3] Set in the Weyl chamber 7
[0,0,0] = [r,0,0] 0,4, 0
[7/2,7/2,7/2] As 0
[z,z,z],2 # 0,2 # 7/2 OAs\ {0, A3} 3
[ —z,z,z],z # 0,z £ 7/2 A1 As\ {A1, A3} 3
[,0,0] £ [r — 2,0,0],z # 0 0A;\ {0, A1} 4
[r/2,7/2,2],2 # 7/2 Ax A3\ {As} 4
[xaxay]ax#yv$#ﬁ/2 OAIAS\{OA3,A1A3} 5
[mayay]ax#yvx+y7&ﬂay¢0 OA2A3\{OA3’A2A3} 5
[T —z,2,y,,x #y,x #7/2 A1 AxA3\ {A1A3,A2A3} b
{All other points} {All other points} 6

where the non-zero elements are

1 1 . .
N1 <n%’1 n%g) B ( sincycoscz  — cos ca sin 03)
= . . ,
ny1 My —coscgsincg  sincg cos cg
N2 e (nil n1,z) B ( sinc; coscs  cosc sincs )
- 2 2 — . . )
N3 Mo coscysincg —sinep coscs
N3 ”?,1 niz _ sinci cosca  —coscy sincy (19)
nd, ni, —coscysincy  sincy coscy
; ;

From Egs. (18)—(19) it is seen that Eq. (13) decomposes into six separate equations:

i a; _ 0 .
w(2)=(0), imrns -

Each block N* produces a two-dimensional null space iff all the elements of N* equal zero,
and a one-dimensional null space iff det N® = (—1)**!sin(c; + cx)sin(c; — ck) = 0, where
€ijk = 1, but NZ 7& 0.

In the two-qubit case we have n = 6 —dim(ker Wy ). The results for all the possible values
of [e1, ¢a, c3] are collected in Table 2. One notices that everywhere inside the Weyl chamber n
reaches its maximum value of 6. At the vertices O = A; and A3z n = 0, on the edges between
them 1 = 3, on the edges OA;, A2 A3 n = 4 and on the faces OA; A3,0A3A3, A1 Az A3 n = 5.

The number of local degrees of freedom that the gate U leaks is obtained as the number
of pairs of equal eigenvalues ); in the spectrum of the matrix M (U), presented in Eq. (3).
In other words, any n-fold eigenvalue of M (U) indicates n(n — 1)/2 local degrees of free-
dom that pass through the gate U. Translated to the language of the Weyl chamber, each
Weyl symmetry plane the point [e1, ¢, c3] touches causes the gate to leak one local degree of
freedom.

5 Conclusion

In this paper we have introduced a local invariant n for quantum gates, indicating the number
of local degrees of freedom a gate can bind. Furthermore, we have analytically calculated the
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value of this invariant for all two-qubit gates. We have found that almost all two-qubit gates
can bind the full six local degrees of freedom. However, most of the commonly occurring gates
such as CNOT or vSWAP are exceptions to the rule, performing worse in this sense.

The meaning of 7 is illustrated by considering the lower bounds on gate counts for a generic
n-qubit circuit. Let the gate library consist of all one-qubit gates and a fixed two-qubit gate
U. Then almost all n-qubit gates cannot be accurately simulated with a circuit consisting of
fewer than

(21)

4" —3n—1
NU:[*}

n(U)

applications of the two-qubit gate. This result is a straightforward generalization of Proposi-
tion III.1 in Ref. [4]. The most efficient building blocks for multiqubit gates are thus expected
to belong to the set of gates binding the full six degrees of freedom. Hence, using CNOT as
the entangling two-qubit gate in generic n-qubit circuit decompositions is probably not the
optimal choice. For example, the B gate, lying at the point of high symmetry in the Weyl
chamber, seems a good candidate instead.
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