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Equivalent qubit dynamics under classical and quantum noise
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We study the dynamics of quantum systems under classical and quantum noise, focusing on decoherence in
qubit systems. Classical noise is described by a random process leading to a stochastic temporal evolution of
a closed quantum system, whereas quantum noise originates from the coupling of the microscopic quantum
system to its macroscopic environment. We derive deterministic master equations describing the average
evolution of the quantum system under classical continuous-time Markovian noise and two sets of master
equations under quantum noise. Strikingly, these three equations of motion are shown to be equivalent in the
case of classical random telegraph noise and proper quantum environments. Hence fully quantum-mechanical
models within the Born approximation can be mapped to a quantum system under classical noise. Furthermore,
we apply the derived equations together with pulse optimization techniques to achieve high-fidelity one-qubit
operations under random telegraph noise, and hence fight decoherence in these systems of great practical
interest.
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I. INTRODUCTION

A quantum computer is an emerging computational device
superior to its classical counterpart in certain tasks of great
practical significance, e.g., factorization of large integers �1�,
unsorted database search �2�, and the simulation of quantum
systems �3,4�. The main concern in building a working large-
scale quantum computer is the undesired coupling of quan-
tum bits, qubits, to their environment. This coupling results
in errors and loss of purity, a phenomenon generally referred
to as decoherence. However, an important branch of quan-
tum information science, fault tolerant quantum computing
�5�, states that if the qubit operations can be achieved with an
error probability below a certain constant threshold, the total
computational error can actually be rendered arbitrarily
small. Thus studies on the effects of noise and decoherence
on the qubit dynamics and especially direct suppression of
the induced errors in qubit operations are of great interest.

Recently, dynamical decoupling of quantum systems from
their environments has been under active research. In the
original scenario �6�, hard, infinitely fast control pulses were
applied to the qubit to effectively turn off the coupling to its
environment, and hence to preserve its state by suppressing
decoherence. It has been shown that it is also possible to
generate qubit operations without disturbing the decoupling
process �7� and that fast soft pulses suffice for the control �8�.
Furthermore, the effectiveness of dynamical decoupling has
been improved by introducing randomness to the control
�9,10�. On the other hand, a direct pulse optimization method
to obtain high-fidelity qubit operations in the presence of
classical random telegraph noise �RTN� in the qubit energy
splitting was reported in Ref. �11�.

In this paper, we derive deterministic master equations for
the average temporal evolution of a quantum system under
classical continuous-time Markovian noise. In the case of a

qubit under RTN, our equations reduce to two coupled one-
qubit master equations. This formulation allows for great
speed-up in dynamical decoupling as well as direct pulse
optimization schemes for high-fidelity quantum gates com-
pared with averaging over many noise realizations as was
done in Ref. �11�. Since the master equations are not stochas-
tic, they are also well suited for algebraic manipulations.

For quantum noise, we study the dynamics of a system
coupled to a macroscopic quantum environment within the
standard Born approximation. In addition, we present an-
other set of master equations for a system under noise due to
coupling to an impurity which is furthermore coupled to a
Markovian environment. The latter case has been extensively
studied, for example, in Refs. �12–14� for suppression of
random telegraph and 1/ f noise in solid state qubits. Even
though the obtained master equations for quantum noise are
already known, we demonstrate an interesting connection be-
tween the different approaches—the master equations for
classical noise are equivalent to those obtained in the case of
quantum noise for certain couplings of the system to the
environment. This result shows how classical noise can arise
from coupling to a quantum bath, and that in some cases
classical noise can accurately model quantum noise. We
stress that our master equations yield the complete dynamics
of the quantum system under noise in the Born approxima-
tion, not only for example damping rates studied in Ref. �15�.

II. CLOSED QUANTUM SYSTEM UNDER CLASSICAL
MARKOVIAN NOISE

We begin by considering a quantum system influenced by
classical continuous-time Markovian noise with N discrete
states, each corresponding to a different system Hamiltonian.
The average outcome of any measurement applied to the
system is obtained from ��t�, the density operator averaged
over all possible noise trajectories. Although each noise tra-
jectory alone corresponds to unitary evolution, the averaged
evolution can be nonunitary.*Electronic address: ops@fyslab.hut.fi
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The Markovian assumption implies that the noise has no
memory, i.e., at time t the state of the noise process is fully
described by the probabilities Pk�t� of the noise states, and
the probability flow is governed by the transition rate matrix
�= ��kj� as

�t Pk�t� = �
j=1

N

�kjPj�t� , �1�

where �kPk�t�=1. We define the operator �k�t� as the density
operator averaged over all noise trajectories occupying the
state k at time instant t, and normalized such that Tr��k�t��
= Pk�t�. The total state operator of the system is obtained as

��t� = �
k=1

N

�k�t� . �2�

The evolution of each �k�t� under an infinitesimal time inter-
val is given by the sum of all possible quantum evolutions
weighted by their probabilities. Thus we obtain a closed set
of ordinary master equations for the conditional density op-
erators �k�t�,

�t �k�t� =
1

i�
�Hk�t�,�k�t�� + �

j=1

N

�kj� j�t� , �3�

where Hk�t� is the system Hamiltonian corresponding to the
kth noise state. One can verify the consistency of Eqs. �1�
and �3� by taking a trace of Eq. �3�, which results in Eq. �1�.
We point out that the conditional density operators �k�t� are
introduced only for calculational purposes to obtain the av-
erage density operator ��t� according to Eq. �2�. For RTN,
i.e., a single bistable fluctuator, Eq. �3� reduces to

�t �±�t� =
1

i�
�H±�t�,�±�t�� ±

1

�c
��− − �+� , �4�

where the correlation time of the noise is denoted by �c.
Classical RTN similar to Eq. �4� has been previously studied,
for example, in the case of macroscopic quantum tunneling
in Josephson devices �16�. We apply Eq. �4� to finite-
dimensional qubit systems in Sec. V.

III. OPEN QUANTUM SYSTEM IN THE BORN
APPROXIMATION

Let us turn our attention to quantum noise by studying a
quantum system coupled to its environment. The temporal
evolution of the total density operator �t is governed by the
Hamiltonian

�5�

where the pure system and environmental Hamiltonians are
denoted by Hs and He, respectively, and the interaction of
the system with the environment is described by Hint. With-
out loss of generality, we can assume that the expectation
value of the operator E over the environmental degrees of
freedom vanishes. To obtain the lowest-order corrections in

the coupling strength g to the temporal evolution of the sys-
tem, we write the master equation for �t in the interaction

picture with respect to H0 as �t �̃t=
1
i� �H̃int , �̃t�, where

�̃tªU0
†�t��tU0�t� and H̃intªU0

†�t�HintU0�t�. The evolution
operator U0�t� is expressed using the time ordering operator
T as

U0�t� = Te�1/i���0
t H0�s�ds.

The master equation can be expressed equivalently in an in-
tegrodifferential form as �17�

�t �̃t =
1

i�
�H̃int�t�, �̃t�0�� +

1

�i��2	
0

t

†H̃int�t�,�H̃int�s�, �̃t�s��‡ds .

�6�

We proceed by assuming that the coupling of the system to
the environment is sufficiently weak for the Born approxi-
mation to be valid, i.e., �t
�s � �e. Thus the first term on the
right-hand side of Eq. �6�, containing operator E only to the
first order, vanishes in taking the trace over the environmen-
tal degrees of freedom. The remaining part of the equation
yields

�t �̃s =
g2

�i��2	
0

t

��K̃�t�,K̃�s��̃s�s��C�t − s,0�

+ �K̃�t�,− �̃s�s�K̃�s��C�0,t − s��ds , �7�

where the forward and backward autocorrelation functions

are defined as C�t−s ,0�=Tr�Ẽ�t−s�Ẽ�0��e� and C�0, t−s�
=Tr�Ẽ�0�Ẽ�t−s��e�.

Since the operators Ẽ at different instants of time do
not necessarily commute, Eq. �7� cannot in general be
simplified. However, for environments at high enough
temperatures T, the Kubo-Martin-Schwinger boundary
condition C�t−s ,0�=C(0, t−s+ i� / �kBT�) yields C�t−s ,0�

C�0, t−s�ªCe�t−s�, and hence Eq. �7� reduces to

�t �̃s =
g2

�i��2	
0

t

Ce�t − s�†K̃�t�,�K̃�s�, �̃s�s��‡ds . �8�

For example, quantum noise arising from a trapping center
hybridized with the Fermi sea in a superconductor at tem-
peratures much higher than the linewidth of the trap results
in RTN �18� with the autocorrelation function Ce�t−s�
=e−2��s−t�/�c�. Surprisingly, insertion of this correlation func-
tion into Eq. �8� results in the same temporal evolution of the
average density operator as the master equations �4� for clas-
sical RTN. This equality can be formally verified by showing
that if Eq. �8� holds,

�± =
1

2
�̃s ±

g

2i�
	

0

t

e−2��t−s�/�c��K̃�s�, �̃s�s��ds �9�

is a solution to Eq. �4� with H±= ±gK̃, and that �++�−= �̃s.
Thus we have shown that quantum noise arising from a re-
alistic environment can be accurately modeled with classical
noise within the Born approximation. We note that although
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Eq. �8� seemingly includes memory effects, i.e., the time
derivative of the density matrix at time instant t depends on
the density matrix at earlier times, the above proved equiva-
lence shows that no memory is required in the case of RTN if
the dimension of the differential equation system is doubled.

The above approach can also be employed when the in-
fluence of the environment is modeled classically by includ-
ing a stochastic noise term in the system Hamiltonian. A
stochastic system Hamiltonian analogous to the Hamiltonian
in Eq. �5� reads H=Hs+g��t�K, where ��t� is determined
from some stochastic process. The resulting equations are
similar to those presented above, except that each expecta-
tion value over the environmental degrees of freedom is to
be replaced with an ensemble average over noise trajectories.
In particular, Eq. �8� retains its form.

IV. OPEN QUANTUM SYSTEM WITH LINDBLAD
DAMPING

Above, we have shown that a classical noise source can
be used as an effective description of a decoherence process
arising from the microscopic dynamics of a many-body
quantum system within the Born approximation. Below, we
consider a physically relevant decoherence source of a super-
conducting qubit—a defect coupled to a Markovian environ-
ment �12–14�, and show by tracing out the environmental
degrees of freedom how this model is also mapped analyti-
cally to Eq. �4� describing the average system dynamics un-
der RTN. This central result motivates and further justifies
the use of classical noise in master equations of quantum
dynamics. The reduction of the complicated many-body dy-
namics to the form presented above allows significant con-
ceptual and practical simplification of the problem.

Decoherence mediated by fermionic vacancies in a Mar-
kovian environment has been studied in Refs. �12–14� as a
possible source of RTN and 1/ f noise in Josephson qubits. In
addition, an equivalent defect has been shown to result in the
RTN spectrum �19�. Motivated by these results, we consider
a microscopic quantum system coupled to a defect through
the projection operators on the eigenbasis of the defect.
Without loss of generality, the total Hamiltonian of this sys-
tem and an electron band coupled to the defect can be ex-
pressed as

Hdsb = �Id � Hs +
�

2
�zd � Is + �zd � Ks � Ib + Hb + Hdb,

�10�

where the operator Ks of the microscopic quantum system is
responsible for the coupling to the defect, �zd is the Pauli z
matrix operating in the eigenbasis of the defect, � is the
energy splitting of the defect, and Hdb couples the defect to
an electron band represented by the Hamiltonian Hb. The
defect is essentially a bistable quantum fluctuator which can
also be represented by a fermionic vacancy with a population
varying between 0 and 1 as electrons tunnel into and out of
the band. By eliminating the band electrons from the dynam-
ics of the defect in the Born-Markov approximation, we

obtain effective terms operating on the defect part of the
density operator space represented by the Lindblad operator

Ld��d� =
�1

2
�2�−�d�+ − �+�−�d − �d�+�−�

+
�2

2
�2�+�d�− − �−�+�d − �d�−�+� . �11�

The first three terms describe the process of electron tunnel-
ing out of the defect with rate �1 and the last three terms
describe the inverse process with rate �2. The rates obey the
detailed balance condition �1 /�2=exp�� / �kBT��, where T is
the temperature of the electron band. The equation of motion
for the density operator �ds of the microscopic system and
the defect can be written as

�t �ds =
1

i�
�Id � Hs +

�

2
�zd � Is + �zd � Ks,�ds�

+ �Ld � Is���ds� . �12�

By expressing the density operator �ds in the form

�ds = ��++ �+−

�−+ �−−
 , �13�

and inserting it into Eq. �12�, we obtain

�t �ds =
1

i�
��Hs,�++� �Hs,�+−�

�Hs,�−+� �Hs,�−−�
 +

�c

2i�
�0 2�+−

− 2�−+ 0


+
1

i�
��Ks,�++� �Ks,�+−�

− �Ks,�−+� − �Ks,�−−�
 +

�1

2
�− 2�++ − �+−

− �−+ 2�++


+
�2

2
�2�−− − �+−

− �−+ − 2�−−
 . �14�

Equation �14� shows that the diagonal blocks of �ds decouple
from the off-diagonal ones. The diagonal blocks are of pri-
mary importance since the density operator of the system can
be expressed as �s=Trd��ds�=�+++�−−, and hence its dynam-
ics are completely determined by the two coupled master
equations with the same dimension as �s. In fact, the dynam-
ics of �ds in the high temperature limit corresponds to Eq.
�4�, which is observed by denoting �±ª�±±, 1 /�cª�1=�2,
and H±ªHs±Ks. Thus we have shown that the decoherence
arising from the coupling of the system to the defect can be
modeled with classical RTN. For finite temperatures, Eq.
�14� can be recast into the form of Eq. �3� showing that the
equivalence of classical and quantum dynamics does not
necessarily arise due to the infinite temperature limit.

V. HIGH-FIDELITY ONE-QUBIT NOT GATES

To demonstrate the computational effectiveness of the de-
rived master equations, we implement high-fidelity quantum
gates for a qubit under RTN as in Ref. �11�. We assume that
the qubit dynamics can be controlled in the �x direction and
that the noise acts in the �z direction with the strength 	, i.e.,
H±= �a�t��x±	�z� /2 in Eq. �4�. The strength of the control
field a�t� is assumed to be bounded by amax.
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Eq. �8� seemingly includes memory effects, i.e., the time
derivative of the density matrix at time instant t depends on
the density matrix at earlier times, the above proved equiva-
lence shows that no memory is required in the case of RTN if
the dimension of the differential equation system is doubled.

The above approach can also be employed when the in-
fluence of the environment is modeled classically by includ-
ing a stochastic noise term in the system Hamiltonian. A
stochastic system Hamiltonian analogous to the Hamiltonian
in Eq. �5� reads H=Hs+g��t�K, where ��t� is determined
from some stochastic process. The resulting equations are
similar to those presented above, except that each expecta-
tion value over the environmental degrees of freedom is to
be replaced with an ensemble average over noise trajectories.
In particular, Eq. �8� retains its form.

IV. OPEN QUANTUM SYSTEM WITH LINDBLAD
DAMPING

Above, we have shown that a classical noise source can
be used as an effective description of a decoherence process
arising from the microscopic dynamics of a many-body
quantum system within the Born approximation. Below, we
consider a physically relevant decoherence source of a super-
conducting qubit—a defect coupled to a Markovian environ-
ment �12–14�, and show by tracing out the environmental
degrees of freedom how this model is also mapped analyti-
cally to Eq. �4� describing the average system dynamics un-
der RTN. This central result motivates and further justifies
the use of classical noise in master equations of quantum
dynamics. The reduction of the complicated many-body dy-
namics to the form presented above allows significant con-
ceptual and practical simplification of the problem.

Decoherence mediated by fermionic vacancies in a Mar-
kovian environment has been studied in Refs. �12–14� as a
possible source of RTN and 1/ f noise in Josephson qubits. In
addition, an equivalent defect has been shown to result in the
RTN spectrum �19�. Motivated by these results, we consider
a microscopic quantum system coupled to a defect through
the projection operators on the eigenbasis of the defect.
Without loss of generality, the total Hamiltonian of this sys-
tem and an electron band coupled to the defect can be ex-
pressed as

Hdsb = �Id � Hs +
�

2
�zd � Is + �zd � Ks � Ib + Hb + Hdb,

�10�

where the operator Ks of the microscopic quantum system is
responsible for the coupling to the defect, �zd is the Pauli z
matrix operating in the eigenbasis of the defect, � is the
energy splitting of the defect, and Hdb couples the defect to
an electron band represented by the Hamiltonian Hb. The
defect is essentially a bistable quantum fluctuator which can
also be represented by a fermionic vacancy with a population
varying between 0 and 1 as electrons tunnel into and out of
the band. By eliminating the band electrons from the dynam-
ics of the defect in the Born-Markov approximation, we

obtain effective terms operating on the defect part of the
density operator space represented by the Lindblad operator

Ld��d� =
�1

2
�2�−�d�+ − �+�−�d − �d�+�−�

+
�2

2
�2�+�d�− − �−�+�d − �d�−�+� . �11�

The first three terms describe the process of electron tunnel-
ing out of the defect with rate �1 and the last three terms
describe the inverse process with rate �2. The rates obey the
detailed balance condition �1 /�2=exp�� / �kBT��, where T is
the temperature of the electron band. The equation of motion
for the density operator �ds of the microscopic system and
the defect can be written as

�t �ds =
1

i�
�Id � Hs +

�

2
�zd � Is + �zd � Ks,�ds�

+ �Ld � Is���ds� . �12�

By expressing the density operator �ds in the form

�ds = ��++ �+−

�−+ �−−
 , �13�

and inserting it into Eq. �12�, we obtain

�t �ds =
1

i�
��Hs,�++� �Hs,�+−�

�Hs,�−+� �Hs,�−−�
 +

�c

2i�
�0 2�+−

− 2�−+ 0


+
1

i�
��Ks,�++� �Ks,�+−�

− �Ks,�−+� − �Ks,�−−�
 +

�1

2
�− 2�++ − �+−

− �−+ 2�++


+
�2

2
�2�−− − �+−

− �−+ − 2�−−
 . �14�

Equation �14� shows that the diagonal blocks of �ds decouple
from the off-diagonal ones. The diagonal blocks are of pri-
mary importance since the density operator of the system can
be expressed as �s=Trd��ds�=�+++�−−, and hence its dynam-
ics are completely determined by the two coupled master
equations with the same dimension as �s. In fact, the dynam-
ics of �ds in the high temperature limit corresponds to Eq.
�4�, which is observed by denoting �±ª�±±, 1 /�cª�1=�2,
and H±ªHs±Ks. Thus we have shown that the decoherence
arising from the coupling of the system to the defect can be
modeled with classical RTN. For finite temperatures, Eq.
�14� can be recast into the form of Eq. �3� showing that the
equivalence of classical and quantum dynamics does not
necessarily arise due to the infinite temperature limit.

V. HIGH-FIDELITY ONE-QUBIT NOT GATES

To demonstrate the computational effectiveness of the de-
rived master equations, we implement high-fidelity quantum
gates for a qubit under RTN as in Ref. �11�. We assume that
the qubit dynamics can be controlled in the �x direction and
that the noise acts in the �z direction with the strength 	, i.e.,
H±= �a�t��x±	�z� /2 in Eq. �4�. The strength of the control
field a�t� is assumed to be bounded by amax.
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Figure 1 shows gate fidelities 
 for the NOT gate, i.e.,
the unitary operator �x, as functions of the noise correla-
tion time, obtained using composite pulse sequences:
�-pulse, compensation of off resonance with a pulse
sequence �CORPSE�, and short CORPSE �20,21�. To achieve
optimized gate fidelity, we employed a variant of the gradient
ascent pulse engineering method �22� of a piecewise constant
function a�t�. Figure 2 shows optimized pulse sequences
for different correlation times of the RTN fluctuator. We
observe that for short correlation times the optimized se-
quence is very close to a �-pulse and for long correlation
times the pulse sequence assumes a shape similar to short
CORPSE.

In contrast to similar results presented in Ref. �11� for 	
=0.125amax, the curves in Fig. 1 do not show the statistical
errors arising from the finite sampling of the noise. One of
the conclusions in Ref. �11� was that the gradient optimiza-
tion yields only a marginal improvement to the gate fidelity
over the most efficient composite pulse sequence, see Fig.
1�a�. However, we find that this conclusion is valid only for
very weak noise, and for example, the noise strength 	
=0.25amax employed in Fig. 1�b� suffices to render gradient
optimization clearly the most efficient method considered to
fight the decoherence in this system.

VI. CONCLUSION

We have shown how classical random telegraph noise can
arise directly from coupling of a quantum system to a mac-
roscopic quantum environment or indirectly through an im-
purity coupled to a Markovian environment. The average
dynamics of the quantum systems were found to coincide
under classical and quantum noise within the Born approxi-
mation. Our observations justify the utilization of classical
noise as a model for quantum noise for certain systems. Fur-
thermore, the results presented in this paper introduce a pos-
sibility of high-performance pulse optimization for qubits in
noisy environments, and offer an interesting point of view
for studies on the effect of noise on quantum systems in
general. In the future, we concentrate on the optimization of
multiqubit operations under noise, study the effects of differ-
ent quantum baths on the qubit dynamics, and aim to gener-
alize the obtained equations for continuous and more com-
plicated noise models. The obtained results for the average
quantum dynamics under noise are not restricted to qubits or
their multilevel equivalents, qudits, and hence can be em-
ployed in studying, e.g., dilute Bose-Einstein condensates in
the noninteracting limit.
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FIG. 1. Fidelities for the NOT gate as functions of the correlation
time �c for a �-pulse �dotted line�, CORPSE �dashed-dotted line�,
short CORPSE �dashed line�, and gradient optimization �solid line�.
The RTN strength 	 is set to �a� 0.125amax and �b� 0.25amax. The
gate fidelity for a gate U is defined as �Tr�U�0U†���, where the
average is calculated over all pure initial states �0, see Ref. �11�.

FIG. 2. Optimized pulse sequences yielding the highest gate
fidelities for correlation times �a� 5� /amax, �b� 20� /amax, and �c�
50� /amax. The strength of the noise is chosen to be 	=0.125amax

corresponding to Fig. 1�a�.
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