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saattaa olla fysiikassa, kemiassa ja biotieteissä esiintyvien monihiukkaskvanttisysteemien tarkka simulaatio.

Tämä väitöskirja käsittelee kvanttimekaanisten systeemien kontrollointia informaation käsittelemiseksi. Ongelmaa
lähestytään teoreettisesta ja simulationaalisesta näkökulmasta tavoilla, jotka kattavat useita eri abstraktiotasoja. Aluksi
käsittelemme abstraktien moniqubittiporttien hajottamista jonoksi elementaariportteja. Seuraavaksi tutkimme
kaksiqubittiporttien lokaaleja kommutatiivisia ominaisuuksia käyttäen apuna lokaaleja portti-invariantteja. Lopulta
kehitämme menetelmiä elementaariporttien toteuttamiseksi kontrolloimalla kvanttisysteemejä, joissa saattaa myös
esiintyä kohinaa tai dekoherenssia.

Esittelemme uuden, lähes optimaalisenn:n qubitin porttihajotelman, joka perustuu kosini-sini -hajotelmaan ja
hyödyntää niinikään uutta tasaisesti kontrolloiduksi portiksi kutsumaamme keskitason kvanttipiirirakennetta.
Näytämme myös kuinka näiden porttien avulla voidaan muodostaa yleinen tilamuunnospiiri. Kumpikin
edellämainituista piireistä voidaan implementoida tehokkaasti käyttäen ainoastaan vierekkäisiin qubitteihin operoivia
elementaariportteja, mikä tekee niiden fysikaalisesta realisaatiosta yksinkertaisempaa. Johdamme uuden lokaalin
portti-invariantin, jonka avulla voi arvioida kaksiqubittiporttien soveltuvuutta elementaariporttikirjastojenlomittavaksi
portiksi. Lisäksi kehitämme numeerisia optimointimenetelmiä miltei optimaalisten yksi- ja
kaksiqubittikontrollisekvenssien muodostamiseksi sekäsuljetuissa kvanttisysteemeissä että markovisen kohinan
vaikutuksen alla.
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1

1 Introduction

An algorithm is a concept that is easy to understand intuitively but difficult to

rigorously define. Loosely speaking, an algorithm is a finite list of simple instructions

that enables one to solve a specific type of a problem. The process of applying an

algorithm is called a computation. Algorithms can vary greatly in complexity and

generality; for example, the algorithm to divide an angle into two equal parts using a

compass and a straightedge can be written down in a few lines of English, whereas the

algorithm for winning a game of chess (or forcing it into a stalemate), even though

it theoretically must exist, would be extremely complicated and totally infeasible to

derive using present-day means.

Due to its intuitive nature, algorithm is by no means a new concept. Detailed de-

scriptions of algorithms for solving various nontrivial mathematical and geometrical

problems can be found in preserved works from antiquity. A well known example is

the Euclidean algorithm, a method for finding the greatest common divisor of two

integers. It appears in Euclid’s Elements [1], written around 300 BCE, but most

likely predates it by a hundred years or more.

The rapid development of computability theory in the 1930s, through the work of

Alonzo Church [2, 3, 4], Stephen C. Kleene [5, 6], Alan Turing [7] and others, brought

about the first rigorous mathematical definitions of the concept of algorithm. It was

understood that algorithms need to be defined in the context of a specific model of

computation. During this era, many superficially different models were presented,

but none of them turned out to be fundamentally more powerful than the others.

Instead, it was found out that they all could simulate each other perfectly. This

observation was condensed into the Church-Turing thesis, which gives the current

definition of algorithmic computability using the Turing machine (TM) model of

computation as a basis.

Church-Turing thesis

Any problem that is computable can be solved using a Turing machine.
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A TM is a hypothetical device designed to run a single algorithm, or solve a given

class of problems. It consists of an infinite one-dimensional memory tape and a

moving read/write head that is a finite state machine controlled by an action table.

The tape consists of cells, each containing a symbol from a finite alphabet. The

choice of the tape alphabet, the set of states, and the contents of the action table

define a TM. At the beginning of the computation, the memory is initialized to the

finite-sized input for the algorithm, and the read/write head sits at memory cell

zero in its startup state. The computation consists of a series of steps. During each

step, the head finds an entry in the action table corresponding to its current state

and the symbol read from the currently addressed memory cell and then, following

the directions in the entry, writes a symbol in the current cell, moves one step right

or left, and changes its state. When the head reaches a special halting state, the

computation is finished and the result can be read from the memory.

This model of computation seems a bit limited in the sense that each TM can only

run a single algorithm. However, it has been proven that there exists a universal

Turing machine (UTM), which is capable of simulating any other Turing machine.

For a UTM, the input consists of a series of symbols defining the TM to be simulated,

followed by the actual input data for the algorithm. The concept is very similar to

modern programmable computers. Given sufficient memory and time, in the sense

of the Church-Turing thesis, such a device is capable of solving any computational

problem that can be solved. There is a catch, however; the Church-Turing thesis

does not say anything about the efficiency of the computation, i.e. the resources of

memory space and computation time it requires.

In computational complexity theory, a problem is said to be tractable or efficiently

solvable if it has an algorithm with a running time that is at most polynomial in the

size of the problem. Problems that are not efficiently solvable in this sense are called

hard. From this convention stems the notion of polynomial equivalence: two models

of computation are considered equally efficient if they can simulate each other with

an overhead that is at most polynomial. Several new models of computation have

been developed since the 1930s, but none of them have been found fundamentally

2

A TM is a hypothetical device designed to run a single algorithm, or solve a given

class of problems. It consists of an infinite one-dimensional memory tape and a

moving read/write head that is a finite state machine controlled by an action table.

The tape consists of cells, each containing a symbol from a finite alphabet. The

choice of the tape alphabet, the set of states, and the contents of the action table

define a TM. At the beginning of the computation, the memory is initialized to the

finite-sized input for the algorithm, and the read/write head sits at memory cell

zero in its startup state. The computation consists of a series of steps. During each

step, the head finds an entry in the action table corresponding to its current state

and the symbol read from the currently addressed memory cell and then, following

the directions in the entry, writes a symbol in the current cell, moves one step right

or left, and changes its state. When the head reaches a special halting state, the

computation is finished and the result can be read from the memory.

This model of computation seems a bit limited in the sense that each TM can only

run a single algorithm. However, it has been proven that there exists a universal

Turing machine (UTM), which is capable of simulating any other Turing machine.

For a UTM, the input consists of a series of symbols defining the TM to be simulated,

followed by the actual input data for the algorithm. The concept is very similar to

modern programmable computers. Given sufficient memory and time, in the sense

of the Church-Turing thesis, such a device is capable of solving any computational

problem that can be solved. There is a catch, however; the Church-Turing thesis

does not say anything about the efficiency of the computation, i.e. the resources of

memory space and computation time it requires.

In computational complexity theory, a problem is said to be tractable or efficiently

solvable if it has an algorithm with a running time that is at most polynomial in the

size of the problem. Problems that are not efficiently solvable in this sense are called

hard. From this convention stems the notion of polynomial equivalence: two models

of computation are considered equally efficient if they can simulate each other with

an overhead that is at most polynomial. Several new models of computation have

been developed since the 1930s, but none of them have been found fundamentally



3

more efficient than the probabilistic Turing machine model, which is simply a TM

with a random number generator. This has led to the formulation of the strong

Church-Turing thesis, which is actually an unverifiable hypothesis.

Strong Church-Turing thesis

Any algorithmic process can be simulated using a probabilistic Turing

machine at a polynomial overhead.

The group or complexity class of algorithms that are considered efficient within this

hypothesis is known as BPP (Bounded error, Probabilistic resources, Polynomial

time).

During the 1980s, it was realized that all the computational models proposed thus

far either intentionally or accidentally made the implicit assumption that the com-

putation had to follow the rules of classical physics. This had made sense, since

one of the goals of computation theory is to design machines for performing com-

putation for us using technology mostly based on classical physics. However, since

the beginning of the 20th century it had been known that classical physics could

not accurately describe the small-scale workings of our Universe. Beyond a certain

limit, quantum mechanics had to be used instead. Moore’s Law [8], the well-known

observation that the number of transistors on an integrated circuit of a given price

doubles roughly every two years, has held remarkably true since its inception in

1965. If this process continues unabated, in the near future the size of a single tran-

sistor will reach the scale where quantum mechanical effects dominate its behaviour.

Since quantum mechanics will eventually intrude into the field of classical computing

anyway, why not try to take advantage of it?

In 1980 Paul Benioff introduced the concept of a quantum Turing machine (QTM) [9].

It is basically a Turing machine where the position of the read/write head, its inter-

nal state and the states of the memory cells are all quantum mechanical observables,

and the action table is replaced by a fixed local unitary propagator. This idea was

further developed by David Deutsch [10] into a new model of computation. The
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QTM is by no means the only possible computational model utilizing quantum

mechanics. The quantum circuit model (QCM) [11], for example, is much more

accessible and useful, and has been proven equivalent to the QTM [12]. All the

computational models equivalent to the QTM are collectively known as models of

quantum computing.

The new model of computation necessitated the introduction of a host of new com-

plexity classes, most importantly BQP (Bounded error, Quantum resources, Polyno-

mial time) [13]. Colloquially speaking it is the class of efficient quantum algorithms.

Considering that classical physics can be obtained as a limiting case of quantum

mechanics, it is not surprising that quantum computers were determined to be able

to simulate all classical probabilistic algorithms with a polynomial overhead. In the

language of complexity classes, this fact is stated as BPP ⊂ BQP. Also, classical

computers can simulate quantum algoritms with an exponential overhead, so from

a computability theory perspective quantum computing is fundamentally no more

powerful than classical computing. However, quantum computing may yet turn out

to be a far more efficient model, capable of solving certain types of problems much

faster than its classical counterpart.

The first example that quantum computing is capable of doing something that classi-

cal computing cannot was the discovery of the Deutsch-Jozsa algorithm in 1992 [14].

It can determine with full certainty whether a given binary function with n-bit input

is constant or balanced by evaluating it only once. It has no practical importance

as there is a classical probabilistic algorithm with comparable performance, but it

served as an inspiration for things to come. In 1994, Peter Shor published efficient

quantum algorithms for factoring integers and computing discrete logarithms [15].

What makes these algorithms important is the fact that many common public

key cryptographic algorithms such as the Diffie-Hellman [16] and Rivest-Shamir-

Adleman [17] key exchange protocols, as well as their elliptic curve variants, rely on

the assumed hardness of one of these problems. As these protocols underlie most

popular cryptosystems such as RSA, DSA, and ElGamal [18], the Shor algorithms

could conceivably be used to break them all if the proper hardware was available.
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This success was continued in 1996 when Lov Grover published a quantum algorithm

for unsorted database search [19]. The best possible classical algorithm for this task

requires O(n) oracle queries, but the Grover algorithm manages to complete the

task in O(
√
n) queries. Even though this is only a polynomial improvement, the

database search is such an ubiquitous problem that the Grover algorithm may prove

to be extremely valuable.

Despite these attractive applications, the practical viability of quantum computing

was in doubt, since there was no known way to perform error correction in a quantum

computer. Simple redundancy could not be used because quantum information

cannot be cloned [20, 21]. The situation was remedied in 1995 when Peter Shor [22]

and Andrew Steane [23] presented the first quantum error correcting codes. In 1996

it was shown that the entire process of quantum computing can be made fault-

tolerant [24] if the error probability of a single operation can be made low enough.

So, is quantum computing fundamentally more efficient than classical computing

or, in terms of complexity classes, is BPP 6= BQP? Presently, we do not know.

However, considering how important a tool automated computing has become to

our civilization, this question certainly merits an answer.

Be this as it may, the use of the rules of quantum mechanics to process informa-

tion has also other important uses besides computing. In a communication context

quantum information processing (QIP) presents many unintuitive and even startling

results, many of which have something to do with a phenomenon known as quantum

entanglement. For example, two parties sharing an entangled quantum state may

use a protocol known as superdense coding [25] to communicate two bits of infor-

mation by transmitting only a single bit on a classical channel, the entanglement

taking care of the rest. Even more importantly, a shared entangled state and a clas-

sical communication channel can be used to faithfully transfer an arbitrary quantum

state from one party to the other, a process known as quantum teleportation [26].

Quantum communication protocols can even offset the damage done to the world

of applied cryptography by the Shor algorithms. If a quantum channel exists be-
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tween two parties, there are key distribution protocols such as the BB84 [27] which

ensure full security against eavesdropping and thus make public key cryptography

unnecessary.

Yet another application of QIP is the simulation of quantum systems, as suggested

by Richard Feynman in 1981 [28]. Running a quantum simulation in a classical

computer is inherently ineffective due to the exponential scaling of the memory

and time requirements with respect to the size of the problem. With a quantum

computer, the computational power scales in principle just as quickly. Feynman’s

conjecture was proven by Seth Lloyd in 1996: A quantum computer can efficiently

simulate all local quantum systems of corresponding size [29]. As the availability of

efficient large-scale quantum simulations would be of immense value to many fields

of science and technology such as physics, chemistry, and life sciences, this may yet

be the most important contribution to humanity QIP has to offer.

This thesis investigates the problem of controlling quantum systems in order to

perform quantum information processing tasks. The overview is organized as follows.

Chapter 2 presents the fundamentals of quantum mechanics from the viewpoint

of quantum information science. Chapter 3 is a brief introduction to the field of

quantum computing. Chapter 4 is devoted to a discussion of quantum circuits.

The concepts of quantum gates and gate decompositions, which are the main topics

of publications I–III, are introduced. The subject of local gate invariants is also

approached as we review the contents of publication IV. Chapter 5 examines the

subject matter of publications V and VI, namely the problem of controlling quantum

systems both in the presence and in the absence of noise. Finally, Chapter 6 contains

a summary of the main results of this thesis.
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2 Quantum mechanics

Those who are not shocked when they first come across quantum

mechanics cannot possibly have understood it.

Niels Bohr

Quantum mechanics [30, 31] is in its most basic form a mathematical framework

for constructing physical theories. Unlike most previous fundamental theories of

physics, theories based on quantum mechanics are inherently non-deterministic in

nature, and many find them quite counterintuitive. Despite this, they have been

profoundly successful in explaining the small-scale structure of the universe. This

chapter consist of a brief presentation of quantum mechanics, and discussion of

some of its more curious and important features from the viewpoint of quantum

computing.

2.1 Fundamentals

I do not like it, and I am sorry I ever had anything to do with it.

Erwin Schrödinger

With every physical system, one can associate a complex Hilbert space H, called

the state space. All the possible pure states of the system correspond to normalized

vectors |ψ〉 or kets in this space (disregarding the unimportant global phase), and

vice versa. The time evolution of the state is given by the Schrödinger equation:

i~
∂

∂t
|ψ〉 = H |ψ〉 . (2.1)

Here H is a Hermitian operator called the Hamiltonian which, in conjunction with

the space H, contains the entire physics of the system. One may also place additional

demands on the form of the theory, such as causality or symmetries.
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The solution of the Schrödinger equation may be written as

|ψ(t1)〉 = U(t1, t0) |ψ(t0)〉 , (2.2)

where U(t1, t0) is the unitary propagator of the system from t0 to t1, obtained as

the time-ordered integral of H(t):

U(t1, t0) = T exp

(
1

i~

∫ t1

t0

H(t) dt

)

. (2.3)

A linear combination of two state vectors, properly normalized, is again a valid state

of the system. This is known as the superposition principle. In addition to pure

states, there are mixed states which represent classical ensembles of pure states with

known probabilities. A mixed state is described by a state operator ρ ∈ End(H) 1:

ρ =
∑

i

pi |ψi〉 〈ψi| , with
∑

i

pi = 1, (2.4)

where pi is the classical probability of the state |ψi〉. By construction, a state op-

erator is always Hermitian, semipositive and has trace one. A pure state |ψ〉 can

thus also be represented by the state operator ρ = |ψ〉 〈ψ|. However, the decompo-

sition of the state operator into a convex combination of pure states is not unique,

and thus one can have different classical interpretations for a single mixed quantum

state. The time evolution of the state operator is described by the quantum Liouville

equation,

i~
∂ρ

∂t
= [H, ρ] , (2.5)

which can be immediately obtained from the Schrödinger equation.

Additionally, the rules of quantum mechanics postulate the existence of measure-

ments. A measurement M is defined by a set of operators {Mi}, where i indexes all

possible results of the measurement. Assuming the system is in the state |ψ〉, the

probability of obtaining the result i is

p(i) = 〈ψ|M †
i Mi |ψ〉 = Tr

(

MiρM
†
i

)

(2.6)

1End(V ) is the set of endomorphisms of the set V . If V is a vector space, this corresponds to
the set of all linear operators A : V → V .
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and the state of the system, after obtaining the result i, is |ψ′〉 ∝ Mi |ψ〉 or equiva-

lently ρ′ ∝MiρM
†
i . In order for the probabilities to sum up to unity, the the set of

the measurement operators must be complete:
∑

iM
†
i Mi = I.

There are specific types of measurements that hold particular interest. A projective

measurement of a real scalar quantity is defined by a Hermitian operator A on H
having the spectral decomposition A =

∑

i aiPi. The measurement operators are

set to be equal to the orthogonal projection operators of the decomposition, Mi =

Pi, whereas the corresponding spectral values ai define the measurement results.

Calculating the expectation value of the projective measurement, we obtain

〈A〉 =
∑

i

aip(i) =
∑

i

ai Tr
(

PiρP
†
i

)

=
∑

i

ai Tr (Piρ) = Tr (Aρ) . (2.7)

All physical observables of the system are represented by Hermitian operators such asA.

Individual quantum systems can be combined to form a larger one by taking a tensor

product of their respective Hilbert spaces: H = H1 ⊗ . . .⊗HN . The resulting state

vectors describe the combined state of all the constituent degrees of freedom. If we

are interested in only a part of the full system, we may take a partial trace over the

uninteresting parts of H to obtain a reduced state operator,

ρA = TrB (ρ) , i.e. (ρA)ij =
∑

k

(〈i| ⊗ 〈k|) ρ (|j〉 ⊗ |k〉) , (2.8)

which functions otherwise exactly like a full state operator, except that its time

evolution is not necessarily unitary.

There is a convenient mathematical formalism called the operator sum representation

for describing any possible evolution or quantum operation E in a quantum system

or part thereof, including both discrete and infinitesimal time evolutions as well

as measurements. In this formalism, a quantum operation is defined by a set of

operators {Ei} 2 such that
∑

iE
†
iEi ≤ I. The result of the quantum operation is

given by the mapping

E (ρ) =
∑

i

EiρE
†
i . (2.9)

2The Ei are often called Kraus operators.
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The probability of the operation taking place is given by Tr (E (ρ)) and may be less

than unity.

2.2 Entanglement and decoherence

Two photons, close-coupled at start,

Flew several parsecs apart.

Said one, in distress,

“What you’re forced to express

Removes any choice on my part.”

“Einstein, Podolsky and Rosen” by David Halliday

When I hear of Schrödinger’s cat, I reach for my gun.

Stephen Hawking

Entanglement is the property of quantum systems which enables them to have non-

local correlations that cannot be explained classically. It was originally used as an

argument against the completeness of quantum mechanics as a physical theory in

the famous Einstein-Podolsky-Rosen “paradox” [32]. Since then it has been shown

that not only is quantum mechanics incompatible with local realism [33, 34, 35], but

so is Nature itself [36, 37] 3.

The pure state of a multipart quantum system is entangled if it cannot be expressed

as a tensor product of the states of the parts. A state that is not entangled is called

separable. It is not simple to turn this qualitative idea into a rigorous quantitative

definition. To make this task easier, the concept of Local Operations and Classi-

cal Communication (LOCC) is usually employed. Since entanglement is a nonlocal

3It should be noted that experiments on local realism are notoriously hard to make entirely
foolproof, and hence the matter is not entirely settled yet.
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phenomenon, one should not be able to generate it through local quantum opera-

tions, i.e. by operating only on the individual parts of the multipart system, even

if the measured result of one operation is allowed to affect another. With these

requirements in mind we may now define what we mean by entanglement.

A function E : End(H) → R is a scalar measure of entanglement or an entanglement

monotone if and only if it fulfills the following properties: Given a division of H to

two or more “local” parts,

P1 E(ρ) ≥ 0, and E(ρ) = 0 if and only if ρ is separable. Furthermore, the

entanglement monotone is usually normalized by demanding that if ρ is a

Bell state, E(ρ) = 1. (For a definition of the Bell states, see Eq. (3.4).)

P2 E is on the average not increased by LOCC. As a corollary, invertible local

operations cannot decrease it either.

P3 E is convex under the loss of information about the state:
∑

i piE(ρi) ≥ E (
∑

i piρi).

For bipartite states, the simplest measure of entanglement is the von Neumann

entropy of either of the parts:

E(ρ) = −Tr(ρA log2 ρA) = −Tr(ρB log2 ρB). (2.10)

Entanglement is an essential ingredient for many quantum information processing

tasks such as superdense coding [25], quantum teleportation [26], and most quan-

tum algorithms. However, it is also responsible for one of the greatest challenges

for quantum computing. A quantum system which is isolated from its environment

is said to be closed and exhibits strictly unitary behavior. This is, of course, an

idealization. In reality, all quantum systems interact with their environment and

hence are open to a greater or lesser degree. The nonunitary behavior of an open

system, caused by the entanglement of the system with the environment, is called

decoherence. If the environment is much larger than the system, as is usually the
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case, decoherence becomes an irreversible process that destroys the quantum infor-

mation contained in the system through the decay of the offdiagonal elements of the

state operator.
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3 Quantum computing

Nothing shocks me. I’m a scientist.

Henry Jones Jr.

In this chapter the theoretical basis of quantum computing is presented, followed by

a short discussion of some of the suggested physical implementations.

3.1 Basics

Young man, in mathematics you don’t understand things. You just

get used to them.

John von Neumann

Quantum computing is an umbrella term for a number of computational models

utilizing the properties of quantum mechanics [38]. Even though there are many

different models and implementations of quantum computing, there are certain con-

cepts which appear frequently throughout the field.

A qubit [39] is a quantum two-state system. It is the simplest nontrivial quantum

system and, much like the classical bit, turns out to be sufficient for any kind of

quantum information processing task. Spin-1
2 particles can be regarded as “natural”

qubits, but a qubit need not be ideal. If, for example, the two lowest energy states of

a discrete energy spectrum are sufficiently well separated from the rest, the system

can be used to emulate a qubit. Qubits can be either stationary or flying. A

stationary qubit must stay in place, whereas a flying qubit may (or, with some

implementations such as photons, indeed must) move relative to the laboratory in

some controlled fashion and can thus be used to transmit quantum information

between spatially separated locations.
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A logical qubit is a two-dimensional subspace within the larger Hilbert space of a

physical system. The choice of the subspace that stores the quantum information is

called an encoding or a quantum code. It is possible to use redundancy to enhance

the resistance of the quantum information against decoherence and noise, essentially

by storing a single logical qubit in multiple physical qubits using an encoding which

enables one to actively detect and correct noise-induced errors through the periodic

measurement of ancilla qubits followed by corrective operations. These encodings are

collectively called quantum error correcting codes [40, 41, 42, 43]. Alternatively one

can choose a passive error avoidance strategy by encoding the logical qubits into a

decoherence-free subspace (DFS) [44, 45, 46], which is protected against decoherence

for symmetry reasons.

Within the state space of the logical qubit, we define a computational basis, labeling

the orthogonal, normalized basis vectors as |0〉 and |1〉. Disregarding the nonphysical

global phase and normalization, all pure states of a qubit can be represented in the

form

|ψ〉 = cos

(
θ

2

)

|0〉 + eiφ sin

(
θ

2

)

|1〉 , (3.1)

where θ and φ are real parameters. When they are interpreted as polar coordinates,

we obtain the Bloch sphere representation of the qubit where the pure states of the

qubit are mapped on the surface of the unit sphere in three dimensions, as shown

in Fig. 3.1. In the state operator representation, this is equivalent to

ρ = |ψ〉 〈ψ| =
1

2
(I + sin θ cosφ σx + sin θ sinφ σy + cos θ σz) =

1

2
(I + ~a · ~σ) , (3.2)

where |~a| = 1 and {σi} are the Pauli matrices (see Eq. (A.1)). Since all the states

of the system are obtained as the convex hull of the set of pure states in the state

operator representation, we find that the nonpure one-qubit states must lie inside

the Bloch sphere.

In a system consisting of n qubits, commonly called an n-qubit quantum register, the

computational basis of the register is obtained as a tensor product of the single-qubit

basis vectors, i.e.

|xn−1xn−2 . . . x0〉 := |xn−1〉 ⊗ |xn−2〉 ⊗ . . .⊗ |x0〉 . (3.3)
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Figure 3.1: Bloch sphere representation of a qubit.

For the purposes of the computation, the labels are usually interpreted as binary

numbers.

An EPR pair is essentially any fully entangled bipartite quantum state. However,

in the context of quantum computing it usually refers to one of the four two-qubit

Bell states:

∣
∣Φ+

〉
=

1√
2
(|00〉 + |11〉)

∣
∣Φ−〉

=
i√
2
(|00〉 − |11〉)

∣
∣Ψ+

〉
=

i√
2
(|01〉 + |10〉)

∣
∣Ψ−〉

=
1√
2
(|01〉 − |10〉), (3.4)

most typically the singlet state |Ψ−〉. The Bell states form a basis for two-qubit

states, not surprisingly called the Bell basis. They are also used in Bell measure-

ments, which are simply projective measurements of two qubits in this basis. Since

the Bell states are entangled, a Bell measurement is necessarily a nonlocal entangling

operation.
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3.2 Quantum algorithms

Deutsch’s Law: Every problem that is interesting is also soluble.

David Deutsch

For quantum computing to be interesting, there must be something that it can do

better than classical computing. The currently known quantum algorithms can be

divided into three families: hidden subgroup problem, amplitude amplification and

quantum simulation.

The hidden subgroup problem (HSP) family contains the most successful quantum

algorithms known to date, including the Deutsch-Jozsa [14], Simon [47], and the Shor

algorithms for solving the discrete logarithm and integer factorization problems [15].

The HSP can be stated as follows. Given a group G, a finite set X and a function

f : G → X that separates the cosets of an unknown subgroup H < G, find the

generating set of H. Many important instances of the HSP have no known efficient

classical solution, whereas an efficient quantum solution has been found. More

generally, a quantum algorithm for solving the HSP has been derived for all finitely

generated Abelian groups [48]. The “holy grail” of quantum algorithm design, a

general algorithm for the non-Abelian HSP, still evades us and indeed may not exist

at all.

The amplitude amplification [49] family contains quantum algorithms which do not

provide a superpolynomial speedup, but still outperform their classical counterparts.

This family includes i.a. the Grover search algorithm [19] and the quantum counting

algorithm [50]. The primary application area of these algorithms seems to be in

solving hard problems from the complexity class NP (Non-deterministic, Polynomial

time) through an exhaustive search of all the possible solutions.

Finally, a quantum computer can efficiently simulate all local quantum systems of

corresponding size, a task which is impossible for a classical computer. This was first

suggested by Feynman [28] and later shown to be possible by Lloyd [29]. If feasible,
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this may yet prove to be the most important application of quantum computing,

as nuclear and materials physics, nanotechnology, chemistry, and molecular biology

alike would benefit enormously from efficient and accurate molecular and solid state

simulations.

3.3 Models of quantum computing

The first principle is that you must not fool yourself—and you are the

easiest person to fool.

Richard Feynman

There are several different, polynomially equivalent models for quantum computing.

Some of them are merely abstract mathematical devices. For example the quantum

Turing machine [9, 10], much like its classical counterpart, can be useful in construct-

ing proofs, but nobody expects to actually build one. Other models, however, may

yet avail themselves to physical implementation. There is an important property

that all useful models of quantum computing must share. Namely, one must be able

to present quantum algorithms within the model in a way that is polynomial both

in time and space with respect to the size of the problem. This is what separates

an actual quantum computer from e.g. a classical computer simulating a quantum

computer.

The first and thus far predominant model with a possible physical implementation

is the quantum circuit model [11]. Here, the algorithm is encoded into a circuit of

quantum gates acting on the register, interspersed with measurements of the result-

ing state. The gates correspond to arbitrary unitary operations in the computational

basis. Consequently this model automatically incorporates classical reversible logic

(which consists of permutations within the computational basis). It is straightfor-

ward to implement, but requires rather precise control of the system Hamiltonian.

The quantum circuit model will be described in detail in the next chapter. The

publications I–IV deal almost exclusively with this model.
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If the Hamiltonian of a quantum system is changed sufficiently slowly, the differ-

ent energy eigenstates retain their respective populations, assuming that there are

no level crossings. This result is called the adiabatic theorem [51], and there are

models of quantum computing that exploit it. Holonomic quantum computing [52]

encodes the algorithm into a loop in the parameter space of the system Hamiltonian,

along which the system is adiabatically moved. The system is assumed to have a

degenerate ground state which, during the loop, experiences an unitary quantum

holonomy which corresponds to a quantum gate. The resulting holonomy, being a

geometrical effect, does not depend on the speed with which the parameter loop is

traversed, which makes this scheme somewhat easier to control than quantum cir-

cuits. Another model utilizing adiabatic evolution is the succinctly named adiabatic

quantum computing [53]. In this model the system is initialized to the ground state

of its initial Hamiltonian. Then the Hamiltonian is adiabatically changed to the final

Hamiltonian, whose ground state represents the solution to the problem at hand. If

this is possible without violating the conditions of the adiabatic theorem, we may

obtain our result by measuring the final state.

An alternative to the abovementioned models, where the computation requires pre-

cise control of the system Hamiltonian, is measurement-based quantum computing.

Here the idea is to have a source of entangled quantum states with known prop-

erties, and the algorithm is encoded into measurements performed on these states.

There are two main variants of this model. The first one, teleportation quantum

computing (TQC) [54], replaces quantum gates with pregenerated EPR pairs and

Greenberger-Horne-Zeilinger states [35] subjected to the required one-qubit oper-

ations. The register qubits are then teleported “through” these gates using only

Bell measurements and Pauli gates. The other variant, one-way quantum computing

(1WQC) [55, 56], requires a massive fully entangled state of qubits arranged in a

two-dimensional grid, called a cluster state. This state can be produced using fixed

nearest-neighbor interactions within the grid. After the preparation of the cluster

state, the interactions are turned off. The computation only requires single-qubit

measurements which disentangle the state one qubit at a time, while the entangle-
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ment propagates the result of the computation forward in the grid.

The preceding models, while involved, are rather concrete. More abstract proposals

exist as well, such as topological quantum computing [57, 58]. Here, the computation

happens by braiding the (2+1)-dimensional spacetime trajectories of anyon quasi-

particles that have a non-Abelian braid group. This approach has the advantage

that since the quantum information is encoded into nonlocalized topological degrees

of freedom, it is quite resistant against noise. However, so far there are no known

experimental realizations of non-Abelian anyons.

3.4 Proposed architectures

Quantum phenomena do not occur in a Hilbert space, they occur in a

laboratory.

Asher Peres

When designing a physical implementation for a quantum computer, many things

need to be taken into account. The DiVincenzo criteria [59] are necessary conditions

which any candidate technology should fulfill. Namely, any viable implementation

must provide [60]

1. a scalable system of well-defined qubits (usually called the register)

2. a way to initialize the register to a simple, useful quantum state

3. decoherence times for the register that are much longer than the required

operation time

4. a controllable universal set of quantum operations

5. a way to measure the state of the register in some useful basis.
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Of course, there are also further factors to be considered when designing an imple-

mentation. Instead of a single register, one may use a huge ensemble of identical

registers, which tends to make the measurement easier but introduces complications

to the initialization procedure, forcing us to use a pseudopure state [61] instead of a

pure one.

In many implementations, single qubits can at least in principle be fully controlled.

To obtain an universal set of multiqubit operations, one also needs a way to entan-

gle qubits with one another. Usually this is accomplished using interqubit interac-

tions, even though they tend to be much harder to control than single qubits. An

implementation may have fully tunable nearest-neighbor interactions, fixed nearest-

neighbor interactions that can be dynamically suppressed using single-qubit controls,

or one or more special qubits which mediate the interaction between the actual data

qubits, a design known as the quantum bus. Some designs avoid the interactions

altogether and generate the required entanglement using ancilla states and measure-

ments.

If we want our setup to allow for quantum networkability, i.e. the input/output and

transmission of quantum information, we must augment the DiVincenzo criteria by

two additional requirements:

6. a way to interconvert stationary and flying qubits

7. a way to faithfully transmit flying qubits between specified locations.

The flying qubits are usually photons, but some designs also use atoms or ions

manipulated using electromagnetic (EM) fields. A quantum state can also be trans-

ferred over a distance using teleportation, but this requires the sender and receiver

to share entanglement, for example in the form of previously transmitted members

of EPR pairs. These members can be considered flying qubits in their own right.

Different designs may have vastly different sources of error. They may stem from

unwanted interactions between the environment and the register, noisy controls or
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the measurement procedure. An important practical point to keep in mind are the

fabrication issues, such as how accurately we can specify the physical parameters of

our qubits. Especially in solid state systems it is not given that our qubits will have

identical characteristics, even if we design them that way. Hence their properties

need to be measured before accurate control sequences can be derived.

The rest of this chapter briefly presents some of the architectures proposed thus far.

This is by no means meant to be a complete, rigorous literature study but rather a

simple listing of the most popular and promising implementations. It should also be

noted that the architectures are not isolated. There are significant overlaps in the

ideas and techniques involved, and a future “winning” implementation may well be

a hybrid model incorporating several of them.

Josephson circuits

These solid-state superconducting circuits use Josephson junctions (JJs) and quan-

tum interference loops to create macroscopic quantum states that can be manipu-

lated using external currents, voltages, and magnetic fields. They are readily man-

ufactured and controlled, but suffer from high decoherence rates. Depending on

whether the information is stored in charge [62, 63] or phase eigenstates [64] or some

superposition of them [65], the design is called a Josephson charge, flux or hybrid

qubit, respectively. More involved designs employ directional superconductors [66]

or complex circuit topologies and geometries [67] to make the control easier and to

enhance resistance against noise and imperfections in the fabrication.

Trapped ions

In this design, often called the Cirac-Zoller model [68], ionized atoms are placed in

a linear Paul trap [69] and cooled to their motional ground state. The qubits are

formed either by the hyperfine levels in the ground state (hyperfine qubit) or the

ground and excited states with a weak transition (optical qubit) within the electronic
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structure of the ions. Individual ions can be manipulated by lasers, and the qubits

can be coupled through their collective motional mode which serves as a bus qubit.

A more recent variant of this design proposes to trap the ions in a semiconductor

chip microtrap [70] which gives much better scaling properties.

Quantum dots

Quantum dots are semiconductor nanostructures which generate a spatially local-

ized potential well capable of trapping and confining individual electrons. In the

Loss-DiVincenzo -model [71], the spins of the trapped electrons serve as the qubits.

The exchange interaction between the spins in neighboring dots can be controlled

by varying the tunneling barrier between them using surface electrodes, whereas the

single-qubit operations are performed using local magnetic fields. A more recent

proposal due to Levy [72] gains full control of the register using the exchange in-

teraction alone by combining two electron spins in neighboring dots into a single

logical qubit. This scheme also admits a feasible initialization and measurement

procedure [73].

Optics

Using photons as vessels for the quantum information seems attractive as they are

easily controlled and measured, and interact weakly with most matter. This is offset

by the fact that they cannot remain stationary with respect to the laboratory. Single

photons can be obtained from attenuated lasers or parametric down-conversion,

manipulated using mirrors, phase shifters, and beamsplitters, and measured with

photodetectors. Interactions between photons are produced using a nonlinear optical

element such as a Kerr medium [74] or a high-quality optical cavity containing one or

more atoms mediating the interaction [75]. Another scheme, called the linear optics

quantum computing (LOQC) [76], uses ancilla states and measurements instead of

photon-photon interactions.
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NMR

Nuclear magnetic resonance (NMR) [77] is a well-known and widely utilized phe-

nomenon, in which the nuclear spins of a material sample are aligned using a strong

external magnetic field and then coherently manipulated using radiofrequency EM

fields. In 1997 it was found that room-temperature liquid-state NMR could also be

used for quantum computing [61, 78] through the use of pseudopure states. Due

to the relative sophistication and availability of NMR technology, this approach has

provided the most powerful quantum computers to date [79].

The liquid-state NMR setup consists of a liquid sample of molecules placed in a

strong homogeneous magnetic field. Individual nuclear spins within the molecule

function as qubits. Chemical shift is used to make two otherwise identical spins with

different surroundings individually addressable. Dipole-dipole interactions between

the spins provide the entangling interaction. However, due to the pseudopure state

used in the computation, this scheme is inherently nonscalable as the output signal

amplitude is halved with each qubit added to the system.

There are also proposals for solid-state NMR quantum computing. The Kane quan-

tum computer [80] consists of individual 31P donor atoms with nuclear spin embed-

ded in a 28Si substrate. The qubits, formed by the phosphorus nuclear spins, are well

isolated and can be addressed using time-dependent radiofrequency EM fields. For

two-qubit interactions, the states of two neighboring nuclear spins are transferred

to the spins of the respective donor electrons, which are then brought close to each

other using lithographic surface electrodes so that a dipolar spin-spin interaction

can take place. Afterwards, the states are again transferred to the nuclear spins.

The donor electron spins are also used for readout.

Neutral atoms in optical lattices

An optical lattice is a periodic n-dimensional potential lattice created by n+ 1 (or

more) lasers. It can be used to trap cold neutral atoms, whose electronic states can

23

NMR

Nuclear magnetic resonance (NMR) [77] is a well-known and widely utilized phe-

nomenon, in which the nuclear spins of a material sample are aligned using a strong

external magnetic field and then coherently manipulated using radiofrequency EM

fields. In 1997 it was found that room-temperature liquid-state NMR could also be

used for quantum computing [61, 78] through the use of pseudopure states. Due

to the relative sophistication and availability of NMR technology, this approach has

provided the most powerful quantum computers to date [79].

The liquid-state NMR setup consists of a liquid sample of molecules placed in a

strong homogeneous magnetic field. Individual nuclear spins within the molecule

function as qubits. Chemical shift is used to make two otherwise identical spins with

different surroundings individually addressable. Dipole-dipole interactions between

the spins provide the entangling interaction. However, due to the pseudopure state

used in the computation, this scheme is inherently nonscalable as the output signal

amplitude is halved with each qubit added to the system.

There are also proposals for solid-state NMR quantum computing. The Kane quan-

tum computer [80] consists of individual 31P donor atoms with nuclear spin embed-

ded in a 28Si substrate. The qubits, formed by the phosphorus nuclear spins, are well

isolated and can be addressed using time-dependent radiofrequency EM fields. For

two-qubit interactions, the states of two neighboring nuclear spins are transferred

to the spins of the respective donor electrons, which are then brought close to each

other using lithographic surface electrodes so that a dipolar spin-spin interaction

can take place. Afterwards, the states are again transferred to the nuclear spins.

The donor electron spins are also used for readout.

Neutral atoms in optical lattices

An optical lattice is a periodic n-dimensional potential lattice created by n+ 1 (or

more) lasers. It can be used to trap cold neutral atoms, whose electronic states can



24

be used as qubits. The atoms can be manipulated using lasers, and the qubit-qubit

interactions are generated using either electric dipole-dipole interactions [81] or cold

atomic collisions [82]. This scheme is particularly well-suited for measurement-based

quantum computing.
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4 Quantum circuits

The quantum circuit model [11] is the currently predominant theoretical approach

to quantum computing. In this model, the computation takes place in a quantum

register which consists of n local units. Typically these local units are qubits, but

in principle they could be any kind of discrete quantum systems. They only serve

as a definition for locality. The model imposes no particular physical realization on

the register.

In the beginning of a computation, the register is initialized into a known pure state,

most often |00 . . . 0〉. The qubits are operated upon by unitary operations which,

in this context, are called quantum gates. It is understood that the gates are to

be implemented as propagators of the register. Finally, the state of the register is

measured, which concludes the quantum computation. Since the state space of an

n-qubit register is 2n-dimensional, the gates can be represented as 2n×2n unitary ma-

trices. Disregarding the unphysical global phase, together they constitute SU(2n),

the special unitary group in 2n dimensions.

4.1 Gates and circuit diagrams

The quantum circuit model allows for a rather compact and illustrative way of

describing quantum algorithms and their parts, namely quantum circuit diagrams

such as the one shown in Fig. 4.1. In the diagrams, time advances from left to right

and the individual qubits are represented by horizontal lines. When interpreted as

a binary number, the topmost qubit is usually the most significant one. In other

aspects their relative ordering is unimportant, but sometimes may be related to the

topology of the register. Rectangular boxes (perhaps connected by vertical lines)

touching one or more horizontal lines represent quantum gates acting on these qubits.

For certain common gate types specific symbols are used.

Any n-qubit quantum algorithm can be represented as one or more n-qubit gates
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Figure 4.1: Example of a quantum circuit diagram describing a four-qubit system.
The qubits are numbered 0–3. Explanation of the gate symbols: (a) one-qubit gates:
identity, σx (NOT), Hadamard, unspecified one-qubit gate U , (b) two-qubit gate
acting on qubits 1 and 2, (c) three-qubit gate acting on qubits 0, 1 and 3, (d) SWAP

gate, (e) controlled NOT (CNOT), (f) another symbol for CNOT, (g) controlled
σy with a reversed control node, (h) multiply controlled σz, (i) uniformly controlled
two-qubit gate.

interspersed with measurements. This is not an useful representation in itself, since

computing the corresponding matrices is equivalent to running the actual algorithm.

Instead, the algorithm is decomposed into a series (or circuit) of gates acting only

on a small number of qubits at a time. There is an important result which states

that two-qubit gates are universal [83]; any n-qubit gate can be decomposed into

a sequence of two-qubit gates. In fact we do not even need all two-qubit gates. A

properly chosen entangling two-qubit gate together with all one-qubit gates forms an

universal gate library of elementary gates capable of exactly synthesizing any n-qubit

gate. Usually the two-qubit gate in the library is chosen to be the controlled-NOT

(CNOT) due to its straightforward logical interpretation [84]. All efficient quantum

algorithms have a decomposition consisting of a number of gates from this library

that is polynomial in n.

Elementary one-qubit rotations about the x, y, and z axes are defined as the one-
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parameter subgroups of SU(2) generated by the Pauli matrices σx, σy, and σz:

Rx(θ) := eiσxθ/2 =




cos θ

2 i sin θ
2

i sin θ
2 cos θ

2



 (4.1)

Ry(θ) := eiσyθ/2 =




cos θ

2 sin θ
2

− sin θ
2 cos θ

2



 (4.2)

Rz(θ) := eiσzθ/2 =




eiθ/2 0

0 e−iθ/2



 . (4.3)

Together the Pauli matrices form a basis for the underlying Lie algebra su(2). More

generally we may define a rotation about the vector ~a,

R~a(θ) := ei~a·~σ θ/2 = I cos(θ/2) + i~a · ~σ sin(θ/2), (4.4)

where |~a| = 1. Other important one-qubit gates include the logical NOT gate σx,

and the Hadamard gate

H =
σx + σz√

2
=

1√
2




1 1

1 −1



 (4.5)

which is used i.a. to prepare the register to an equal superposition of all the states

in the computational basis. Since all one-qubit gates correspond to SU(2) matrices,

we may also present any such gate U using three consecutive Euler rotations about

any two perpendicular directions, usually the z and y axes:

U = Rz(α)Ry(β)Rz(γ) for some α, β, γ ∈ R. (4.6)

The SWAP gate is the conceptually most straightforward one of the two-qubit gates.

It is defined as

SWAP = |00〉 〈00| + |10〉 〈01| + |01〉 〈10| + |11〉 〈11| , (4.7)

and simply swaps the states of its target qubits:

SWAP |a〉 ⊗ |b〉 = |b〉 ⊗ |a〉 . (4.8)
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Figure 4.2: Quantum circuit implementing the four-qubit quantum Fourier trans-
form. Here Rk is shorthand for Rz(−2π/2k).

The CNOT gate is an example of a class of gates known as controlled gates. A

k-fold controlled gate Ck(U) is defined by the set of k control nodes corresponding

to the k-bit binary string c, and a target gate U . Arranging the qubits such that

the control qubits precede the target qubits, the gate is given by

Ck(U) =
∑

x 6=c

|x〉 〈x| ⊗ I + |c〉 〈c| ⊗ U, (4.9)

i.e. the gate U is applied on the target qubits if and only if the control qubits are in

the state |c〉. It is not hard to see that CNOT performs a XOR operation between

its control and target qubits, and stores the result in the target:

C(σx) |a〉 ⊗ |b〉 = |a〉 ⊗ |a⊕ b〉 . (4.10)

The uniformly controlled gates introduced in publications I and III extend this

idea by applying a different gate Ui for each possible combination ci of the control

bits, and thus are equivalent to a sequence of 2k k-fold controlled gates. However,

they require much fewer elementary gates to implement, which makes them a very

useful intermediate circuit structure e.g. in the construction of recursive gate de-

compositions. They also have other applications; publication II uses the uniformly

controlled gates to construct a circuit which transforms a given pure state into an-

other. In publication III we show how they can be implemented efficiently using

only nearest-neighbor gates, which makes their physical implementation simpler.

Figure 4.2 is an example of a quantum circuit that does something useful. This
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useful intermediate circuit structure e.g. in the construction of recursive gate de-
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Figure 4.2 is an example of a quantum circuit that does something useful. This
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Figure 4.3: Quantum circuit of the three-qubit cosine-sine decomposition from
publication III. The white boxes denote SU(2) gates, and the gate D is a diagonal
residue.

particular circuit design implements the n-qubit quantum Fourier transform (QFT)

using O(n2) elementary gates. The QFT is the quantum computing version of the

discrete Fourier transform, and an essential part of the quantum algorithms of the

HSP family. The matrix elements of the corresponding gate in the computational

basis are given by

UQFT
jk =

1√
2n
e2πijk/2n

. (4.11)

The physical implementation of the elementary gates requires that the Hamiltonian

of the register can be controlled well enough, a problem that is addressed in Ch. 5.

4.2 Gate decompositions

The problem of decomposing an arbitrary n-qubit gate into a sequence of elementary

gates was first addressed in Ref. [84], where the decomposition was based on the

QR matrix decomposition [85] expressed as a sequence of Givens rotations, each

implemented using a number of n− 1-fold controlled one-qubit gates. It results in a

circuit requiring Θ(n34n) CNOTs. This decomposition was later improved to give

an asymptotically optimal circuit requiring just O(4n) CNOTs [86]. However, the

multiplicative constant hidden by the O notation is on the order of 8, which is quite

high.

In publication I we introduce a new gate decomposition based on a recursive cosine-

sine matrix decomposition (CSD) [87]. The CSD of the SU(2n) matrix U is given
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by

U =




u11 0

0 u12








c s

−s c








u21 0

0 u22



 , (4.12)

where c2 + s2 = I and the uij are SU(2n−1) matrices. The decomposition can be

continued recursively until only n− 1-fold uniformly controlled gates are left. Using

this construction we manage to push the CNOT count down to approximately

4n gates. The new decomposition is improved in publication III where we further

halve the CNOT count by using a more compact implementation for the uniformly

controlled gates. Figure 4.3 presents the final elementary gate structure of the

improved CSD for an arbitrary three-qubit gate.

4.3 Local gate invariants

In many of the physical realizations of quantum computing, one-qubit gates are

much easier and faster to implement than two-qubit ones, due to the fact that

individual qubits are more easily controllable than the interqubit interactions. In

some implementations such as the liquid-state NMR, the difference is so great that

one-qubit operations can be regarded as essentially free. In these cases it is often

useful to consider the local equivalence classes of multiqubit gates instead of the

gates themselves. Two gates, U1 and U2, are locally equivalent if and only if they

can be transformed to each other using only local unitaries:

U1 ∼ U2 ⇔ U1 = AU2B for some A,B ∈ SU(2)⊗n. (4.13)

A local gate invariant is a quantity associated with a quantum gate that is not

affected by local unitaries. It can be shown that the local equivalence classes of two-

qubit gates can be parametrized with three real parameters. Figure 4.4 shows the set

of all equivalence classes of two-qubit gates using the Makhlin parametrization [88].

Publication IV introduces a local gate invariant η which describes the local com-

mutational properties of multiqubit gates. Roughly speaking, if a continuous k-

parameter family of local gates on one side of a multiqubit gate U can be replaced
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Figure 4.4: Set of all local equivalence classes of two-qubit gates in the Makhlin
parametrization. For the definition of the parameters g1, g2 and g3, see publica-
tion IV.

by another such family on the other side, the gate U is said to leak k local degrees of

freedom (LDOFs). The invariant η describes how many LDOFs a gate can bind, i.e.

not leak. Since one-qubit gates can be parametrized using three reals, an n-qubit

gate can bind at most 3n LDOFs.

A CNOT, for example, can bind four LDOFs. This is easily seen by placing two

one-qubit gates next to a CNOT and decomposing them into Euler rotations about

the x and z axes. As the control node of the CNOT commutes with z rotations and

the target node with x rotations, two of the six LDOFs involved can be commuted
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through the CNOT.

In publication IV we explicitly calculate the values of the binding invariant for

all two-qubit gates, and observe that almost all two-qubit gates can in principle

bind the full six LDOFs. If we want to decompose an n-qubit gate into elementary

one- and two-qubit gates using a library consisting of all the one-qubit gates and

a single two-qubit gate U , an exact general gate decomposition requires at least

⌈(4n − 3n− 1)/η(U)⌉ applications of the gate U .
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5 Control sequences

As explained in Sec. 3.4, the controllability of the system serving as our quantum

computer is likely to be far from perfect. Typically the system Hamiltonian H(~c, t)

depends on a number of external, bounded control fields {ci}, which may correspond

to voltages, currents or applied EM field amplitudes and phases in the experimental

apparatus. These control fields can be adjusted in real time which gives us a limited

ability to steer the time evolution of the system.

Let us denote the number of qubits in our system by n and the dimension of the

corresponding Hilbert space by N = 2n. The controllable Hamiltonian is capable of

generating a group of propagators G that is a subgroup of SU(N). If G = SU(N),

the system is said to be fully controllable. In a typical architecture the individual

qubits are fully controllable, but the interqubit interactions are either fixed or can

only be turned on and off. This can make the problem of steering the system towards

the required gate in an optimal fashion quite hard. If either the system is subject to

decoherence or the controls are noisy the situation becomes even more complicated

as the evolution may no longer be unitary.

5.1 Optimization

The problem we wish to address here can be stated as follows: Given a Hamilto-

nian H(~c, t), we want to derive a control sequence ~c(t) which evolves the system as

close to a given target propagator U as possible, as rapidly as possible. In the sim-

plest cases this can be done analytically, but in practice it is not feasible. Instead,

we must obtain the control sequence through some other means such as numerical

optimization.

For this purpose we need an error measure for our controlled evolution E . There

are two relevant measures to consider. The first one, squared distance between two

unitary propagators operating in an N -dimensional Hilbert space, can be used when
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the evolution is unitary, E (ρ) = V ρV † with V † = V −1. It is given by

E1(U, V ) := inf
φ∈R

∥
∥
∥U − eiφV

∥
∥
∥

2
= 2N − 2 sup

φ∈R

Re
(

eiφ Tr
(

U †V
))

= 2N − 2
∣
∣
∣Tr

(

U †V
)∣
∣
∣ = 2N − 2f(U, V ), (5.1)

since the global phase φ has no physical meaning. The expression f(U, V ) :=
∣
∣Tr

(
U †V

)∣
∣ is called the gate fidelity.

When the evolution E is not unitary, we replace the measure Eq. (5.1) with the

squared distance of an evolved state from the result of the ideal propagation by U ,

averaged over all pure states:

E2(E , U) :=

∫

ρ pure
d2(UρU †, E (ρ)) dµ(ρ). (5.2)

The squared distance between the states χ and ρ is given by

d2(χ, ρ) := ‖χ− ρ‖2 = Tr
(
χ2

)
+ Tr

(
ρ2

)
− 2 Tr (χρ) , (5.3)

where the expression F (χ, ρ) := Tr (χρ) is called the state fidelity. The integration

measure µ(ρ) is defined below. For pure states, we may replace the squared distance

between states by 1 − F (χ, ρ) and thus obtain a third error measure:

E3(E , U) := 1 −F(E , U) := 1 −
∫

ρ pure
F (UρU †, E (ρ)) dµ(ρ). (5.4)

Let us expand N -dimensional state operators using the parametrization

ρ =
IN
N

+ rkX
k, (5.5)

where the operators {Xk} along with IN√
N

form an orthonormal Hermitian basis

with respect to the Hilbert-Schmidt inner product 〈A,B〉 := Tr
(
A†B

)
, rk are real

coefficients, and the Einstein summation convention is used. In an n-qubit system we

use the tensor basis, where the basis vectors are tensor products of the single-qubit

basis vectors 1√
2
{I, σx, σy, σz}.
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Using the fact that the time evolution mapping E is linear and unital we obtain

d2(UρU †, E (ρ)) = |~r|2 + rkrl Tr
(

E
(

Xk
)

E
(

X l
))

︸ ︷︷ ︸

Bkl:=

−2rkrl Tr
(

UXkU †E
(

X l
))

︸ ︷︷ ︸

Akl:=

= |~r|2 + rk (B − 2A)kl rl, (5.6)

and correspondingly for the fidelity

F (UρU †, E (ρ)) =
1

N
+ rkA

klrl. (5.7)

The set of all pure states is obtained as the orbit of any single pure state under

the action of SU(N). The proper integration measure µ(ρ) is thus induced by the

normalized Haar measure of SU(N) [89]. In a single-qubit system, the set of pure

states is simply the surface of the Bloch sphere with the usual Euclidean measure.

In this case we obtain the average error

E2(E , U) =
1

2
+

1

12

3∑

k=1

Tr
((

E (σk) − 2UσkU
†
)

E (σk)
)

(5.8)

and the average fidelity

F(E , U) =
1

2
+

1

6

3∑

k=1

Tr
(

UσkU
†E (σk)

)

. (5.9)

Another relevant accuracy measure would be the minimum fidelity in the set of pure

states. This can be obtained from the smallest eigenvalue of A.

Having obtained an error measure to minimize, one could now proceed to apply

an optimization algorithm to the problem. However, given a control sequence ~c(t),

evaluating the corresponding E (ρ) can be very expensive. With K control fields, the

trajectory of each parametrized with M optimization parameters, a näıve gradient-

based optimization algorithm would require (KM + 1) such evaluations to estimate

the value of the gradient.

In publication V we employ an optimization algorithm called GRadient Ascent

Pulse Engineering (GRAPE) [90]. It requires the control sequences to be piecewise

constant with the piece durations fixed and sufficiently short, but can estimate the

gradient with only two evaluations of the optimized function.
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GRAPE is well suited for the optimization of complex sequences with hundreds of

pieces (and curiously enough, more often than not the optimized piecewise constant

solution is seen to approximate a smooth continuous sequence) but in some cases,

such as with a bad initial guess, it converges quite slowly. Also, like all gradient-based

optimization methods, it may get stuck in a local extremum instead of the global

one. These drawbacks can be ameliorated by using educated guesses in choosing the

initial sequence.

The convergence of the optimization can be significantly sped up if the piece dura-

tions are treated as optimization parameters as well. However, if a duration grows

too large, the approximation used in deriving GRAPE is no longer valid and the

part of the gradient for that particular piece has to be calculated using the usual

difference method. This is costly, however, and limits the number of parameters

used in the optimization. Hence this second method is better suited for shorter and

simpler control sequences, such as the ones in publication VI.

5.2 Simulation of noise

An open quantum system can be simulated in a number of different ways. The most

accurate and, unfortunately, computationally most intensive method is to explicitly

simulate the quantum degrees of freedom constituting the environment. This of

course places a limit on the size of the environment that can be simulated because

of the exponential scaling. A more frugal but less universal method is to invoke the

Born-Markov approximation which results in a Lindblad equation describing the

evolution of the system. In some cases this approach is equivalent to a semiclassical

model, in which the Hamiltonian of the system contains stochastic Markovian noise

terms.

In publication VI we present an efficient method for simulating such a system.

Assume the Hamiltonian is coupled to a continuous-time discrete Markovian process

with N states. At time t, the probability of the noise state k is given by Pk(t). The
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probabilities evolve according to

~P (t) = eΓ(t−t0) ~P (t0), (5.10)

where Γ is a Markovian transition rate matrix. Corresponding to each noise state

we have a system Hamiltonian Hk(t). Also, each noise state is associated with

a subnormalized state operator ρk(t), with Tr(ρk(t)) = Pk(t), and
∑

k Pk(t) = 1.

The conditional state operator ρk(t) represents the ensemble average over all noise

realizations that are in the state k at the time t. The total state operator of the

system is obtained as ρ(t) =
∑

k ρk(t).

The evolution of ρk(t) under a time interval dt is given by the sum of all possible

quantum evolutions weighted by their probabilities:

ρk(t+ dt) =
∑

j

∫

ηj→k

EHη (ρj(t)) dP (η), (5.11)

where the set ηj→k contains all noise trajectories that are in state j at t and in

state k at t + dt. Under an infinitesimal timestep dt the evolution effected by a

Hamiltonian H is given by

EH (ρ(t))
O(dt)
= ρ(t) +

1

i~
dt [H(t), ρ(t)] , (5.12)

which gives us

ρk(t+ dt)
O(dt)
=

∑

j

∫

ηj→k

(

ρj(t) +
1

i~
dt [Hj(t), ρj(t)]

)

dP (η). (5.13)

Under an infinitesimal timestep, we have Pk(t+ dt) = (δkj + Γkjdt)Pj(t). Hence

ρk(t+ dt)
O(dt)
=

∑

j

(

ρj(t) +
1

i~
dt [Hj(t), ρj(t)]

)

(δkj + Γkjdt)

O(dt)
= ρk(t) +

1

i~
[Hk, ρk(t)] dt+

∑

j

Γkjρj(t)dt. (5.14)

Rearranging terms, dividing by dt and taking the infinitesimal limit gives us the

dynamics of the conditional state operators ρk:

∂tρk(t) =
1
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j

Γkjρj(t). (5.15)
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probabilities evolve according to

~P (t) = eΓ(t−t0) ~P (t0), (5.10)
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To obtain the ensemble average state operator at any time t, we need only sum

together all the conditional state operators. We can thus simulate the average evo-

lution generated by the stochastic Hamiltonian using a set of deterministic linear

differential equations. The method can be expressed in a superoperator formalism

which makes it straightforward to use it with the GRAPE optimization algorithm.

In publication VI this method is used to simulate the effect of random telegraph

noise (RTN) on a qubit. RTN is the simplest nontrivial discrete noise model, in

which the noise flips randomly between two levels and the times between successive

flips are exponentially distributed. Since it has only two states, it is very light to

simulate, yet it is found to result from a realistic quantum mechanical decoherence

model consisting of a single bistable fluctuator coupled to the system under the

Born-Markov approximation.

We use this noise simulation together with the modified GRAPE optimization algo-

rithm described in Sec. 5.1 to derive simple one-qubit control sequences which can

be used to suppress the effects of the noise when performing gate operations. There

is no practical reason why this method could not be used in systems consisting of

more than one qubit, or with more complex noise models, other than the limits set

by finite computational resources.
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Publications V and VI study the implementation of quantum gates in physical

systems using external controls coupled to the Hamiltonian. In publication V we

show how numerical optimization methods can be utilized to obtain near-optimal

control sequences for two-qubit systems in the absence of noise. Using an existing

Josephson device as an example, we derive an efficient CNOT sequence, and show

how to implement it using almost-contemporary hardware.

Publication VI introduces an efficient deterministic method for simulating quantum

systems subject to Markovian classical noise, and shows how this type of noise

can arise from a genuine quantum mechanical environment under the Born-Markov

approximation. As an example application, the method is used to derive RTN-

resistant one-qubit control sequences.

In conclusion, the research within this thesis outlines a chain of methods for imple-

menting quantum algorithms and performing other quantum information processing

tasks, starting from the level of a controllable noisy Hamiltonian and finishing at ab-

stract n-qubit quantum gates. These methods operate on a rather general level and

are not limited to any specific physical realization of a quantum computer. Hence,

within the scope this work we have not considered the otherwise important problems

of state initialization and measurement. Other possible directions for future research

could include specialized polynomial gate decompositions for specific quantum algo-

rithms, more realistic, physically motivated noise models, and incorporating error

correcting codes or decoherence-free subspace encodings to the analysis.
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A–1

Appendix A Notation

A.1 Pauli matrices

Pauli matrices are the set {σx, σy, σz} of three 2 × 2 traceless Hermitian matrices,

σx =




0 1

1 0



 , σy =




0 −i
i 0



 , σz =




1 0

0 −1



 , (A.1)

which obey the following algebra:

σiσj = Iδij + iǫijkσk. (A.2)

Multiplied by the imaginary unit i they constitute a basis for the Lie algebra su(2).
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