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The availability of camera phones provides people with a mobile platform for decoding
bar codes, whereas conventional scanners lack mobility. However, using a normal cam-
era phone in such applications is challenging due to the out-of-focus problem. In this
paper, we present the research effort on the bar code reading algorithms using a VGA
camera phone, NOKIA 7650. EAN-13, a widely used 1D bar code standard, is taken as
an example to show the efficiency of the method. A wavelet-based bar code region loca-
tion and knowledge-based bar code segmentation scheme is applied to extract bar code
characters from poor-quality images. All the segmented bar code characters are input
to the recognition engine, and based on the recognition distance, the bar code character
string with the smallest total distance is output as the final recognition result of the bar
code. In order to train an efficient recognition engine, the modified Generalized Learn-
ing Vector Quantization (GLVQ) method is designed for optimizing a feature extraction
matrix and the class reference vectors. 19 584 samples segmented from more than 1000
bar code images captured by NOKIA 7650 are involved in the training process. Testing
on 292 bar code images taken by the same phone, the correct recognition rate of the
entire bar code set reaches 85.62%. We are confident that auto focus or macro modes

on camera phones will bring the presented method into real world mobile use.

Keywords: Bar code reading; camera phone; wavelet transform; morphological process-
ing; GLVQ; LDA.

1. Introduction

A conventional 1D bar code is composed of a serial number coded in black and
white bars, which encodes the identifying data for the corresponding goods being
produced and distributed around us daily. Now there are quite a lot of interna-
tional 1D bar code standards, e.g. EAN-13, ISBNCode, UPC, Code128, etc. used
in department stores, factories, mail distribution centers, etc.

After laser scanning technology came into practical use, many efforts1−9 were
paid to bar code reading through laser scanners. Till now, commercial laser bar code
readers are broadly used in many places, e.g. supermarkets. However, the biggest
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disadvantage of the laser bar code readers is their lack of mobility, because most of
the time, they can only be used together with the corresponding POS machines.

With the availability of camera devices, attention is being paid to developing bar
code reading technology on these devices.10,11 With a bar code reader integrated
in the camera phone, end-user will not only benefit from bar code information read
by the phone, but the camera phone will also provide the full mobility. However,
bar code images normally are prone to deterioration due to geometric distortion,
noise, blurring, and so on. Even though geometric distortion can be controlled,
and noise can be efficiently reduced through image preprocessing, image blurring is
sometimes a factor influencing the performance of a bar code recognition system.
It is proven that image blurring is usually inevitable in a camera-based picturing
system, especially in the case of the camera that does not have auto focus or macro
mode.

Although some high-end camera phones which integrate a high resolution and
auto focus/macro mode have been launched into markets, the low-end camera phone
user segment is still huge, especially, in emerging markets. Hence, in this paper, we
aim to provide a general 1D bar code reading solution for camera devices ranging
from low-end to high-end. As described in Fig. 1, the presented system is mainly
composed of three parts, i.e. wavelet-based bar code localization, knowledge-based
bar code segmentation, and statistical bar code recognition.

At the bar code localization stage, the bar code is localized by using the strong
directional selection competence of the wavelet subbands spaced in high frequencies.
Due to the blurring and geometric distortion of bar code image, the zero crossings
of second derivative on bar code waveform cannot always be detected. Even if
detected, not all the zero crossings can be localized accurately. The presented bar
code segmentation scheme is able to robustly segment guard bars and characters of
a bar code even when some of the zero crossings on the bar code waveform cannot
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Fig. 1. Diagram of the bar code decoding system.
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be detected. The border segmentation of some bar code characters might not be
very accurate. However, this will not usually prevent the correct recognition of the
characters, because, in the statistical recognition part, all the training character
samples are extracted with the segmentation scheme, and extended one code mod-
ule into both sides respectively before normalization. A modified GLVQ method
is designed for optimizing a feature extraction matrix and the class reference vec-
tors, which are used in the on-line bar code recognition procedure. The bar code
segmentation and recognition is performed according to the structure of EAN-13
specific code standard, and the method can be easily generalized to almost all the
other existing 1D bar code standards, e.g. Code 128, etc. .

The rest of the paper is organized as follows: The methods of bar code region
location and sampling are given in Secs. 2 and 3, respectively. Section 4 introduces
the knowledge-based bar code segmentation scheme, and the statistical recognition
and training algorithms are described in Sec. 5. Finally, the experimental results
and discussion are given in Sec. 6.

2. Bar Code Location

Any 1D bar code is composed of parallel and adjacent bars and spaces, which are
aligned horizontally. Therefore the bar code region should be obviously dominated
with vertical textures. Based on the knowledge, the wavelet-based method is pre-
sented in this section to locate the bar code region from a bar code image. However,
even though a bar code has not been captured horizontally, the method can still
work if the bar code direction can be correctly detected and rotated until it is
horizontal.

2.1. Wavelet transform

Wavelet transform can provide a compact multiresolution representation of the
image, and the wavelet subbands spaced in high frequencies have strong direc-
tional selection competence.12 With the wavelet transform, an image is divided
into four subbands (one low-frequency subband LL1 and three high-frequency sub-
bands LH1, HL1 and HH1 as shown in Fig. 2(a)). To obtain the next coarser scale
of wavelet coefficients, the subband LL1 can be further decomposed to get another
four subbands at the coarser scale (one low-frequency subband LL2 and three high-
frequency subbands LH2, HL2 and HH2 as shown in Fig. 2(b)). The low-frequency
subband is one approximation of the original image, while the three high-frequency
subband lists, i.e. LH list, HL list and HH list, reflect the horizontal, vertical and
diagonal edges of the image respectively.

From the coefficients arrangement of the wavelet image, at the same spatial
region of the image, each coefficient at a coarse scale corresponds to four neighboring
coefficients at the next finer scale (refer to Fig. 3). The pyramid data structure built
from the corresponding high-frequency coefficients is normally called a pyramid
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Fig. 2. The wavelet decomposition.
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Fig. 3. The pyramid structure of the wavelet image.

tree. The relationships of wavelet coefficients can be used for image compression
and image texture detection.

Other issues on wavelet transform to be considered are image edge extension
and the selection of wavelet filters.

2.1.1. Image edge extension

Before the image is decomposed with wavelet transform, it is necessary to extend
the edges of the image. To minimize the “ringing” artifacts of the image introduced
by wavelet transform, the symmetric extension method is selected to extend the
edges of the image before the wavelet transform on the image.
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2.1.2. The selection of wavelet filters

Regarding the computing limitation of mobile devices, Daubechies 5/3-tap sym-
metric filters12 are selected for the image wavelet decomposition. The coefficients
of the filters are given in Table 1. The advantages of the selection are obvious, firstly
all the filters have few taps, and secondly the filtering computation (convolution
computation) can be implemented only by shift and plus operators. In addition to
the advantages, the filters have good localization properties, their symmetry allows
for simple edge treatments, and they produce good results empirically.

2.2. Bar code region location

Any 1D bar code is composed of parallel and adjacent bars and spaces, which are
aligned horizontally. Therefore the bar code region should be obviously dominated
with vertical textures. In the different subbands of the wavelet image, the coeffi-
cients of HL subbands in the bar code region would be much bigger than the ones
of LH subbands or HH subbands spaced at the same region (see Fig. 4).

In order to describe the process of bar code location using the characteristics of
high-frequency wavelet subbands, the following two definitions are given:

Definition 1. A pyramid tree is composed of one coefficient on the coarsest
high-frequency subband and the corresponding coefficients from all the finer high-
frequency subbands at the same spatial region. For example, Fig. 5 shows a three-
level HL pyramid tree, which includes 21 coefficients from the HL list, i.e. one from
HL3, four from HL2, and the rest from HL1.

Table 1. The coefficients of the 5/3-tap symmetric wavelet filters.

−3 −2 −1 0 1 2 3

High Pass 0 0 −0.5 1 −0.5 0 0
Low Pass 0 −0.125 0.25 0.75 0.25 −0.125 0

(a) The original bar code image (b) The 3-level wavelet image

Fig. 4. The wavelet image of a bar code image after 3-level wavelet decomposition.
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Definition 2. The energy of a pyramid tree is the amount of the absolute
volumes of all the coefficients in the pyramid tree. In Fig. 5, it is assumed that
the energy of the coefficient(s) on the ith level of the pyramid tree is defined as
Ei,coef , i = 1, 2, 3, then the energy of the pyramid tree is Ecoef = E1,coef +E2,coef +
E3,coef

From the energy point of view, in the same pyramid tree, there is energy sim-
ilarity between different levels, in other words, if the energy at one level in the
pyramid tree is big, the energy at the other levels in the same tree is big as well,
and vice verse. From the frequency characteristics perspective, in a bar code region,
the vertical textures are always dominant. Hence, the following criteria are defined
for bar code region location:

(i) EHL1,coef > ELH1,coef and EHL1,coef > EHH1,coef

(ii) EHL1,coef + EHL2,coef > ELH1,coef + ELH2,coef and
EHL1,coef + EHL2,coef > EHH1,coef + EHH2,coef

(iii) EHL1,coef + EHL2,coef + EHL3,coef > ELH1,coef + ELH2,coef + ELH3,coef and
EHL1,coef + EHL2,coef + EHL3,coef > EHH1,coef + EHH2,coef + EHH3,coef

If we check the wavelet image on Fig. 4(b), as expected, most of coefficients in
the bar code region meet these criteria.

In order to locate the bar code region, the postprocessing on the detected result
above is necessary. The postprocessing process is composed of the morphological
processing process and the object clustering labeling process.13

The purpose of the morphological processing here is to impose the closing oper-
ation on the detected result based on the energy criteria of wavelet pyramid trees
for filling up the thin gulfs and small holes.

Closing operation:

X • B = (X ⊕ B)ΘB, (1)

HL3 

HL2 

HL1 

1st Level

2nd Level 

3rd Level 

Fig. 5. A coefficient pyramid tree.
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where X is the result to be processed and B is the morphological structure element.
As all the bar code bars are aligned horizontally, their high-frequency coefficients,
which meet the energy criteria above, are separated by the bar code spaces. In order
to connect these coefficients of the bar code bars to facilitate the bar code location,
the structure element B is defined as a horizontal vector, e.g. [1111111]. It should
be noted that the length of B could be adjusted based on the size of the bar code to
be processed. For a VGA bar code image, empirically, it is a good choice to define
the length of B as 7 if the length of a horizontal bar code is about two third of the
width of the whole image.

The object clustering labeling process13 is used to compute the size of all the
separate object regions in the morphological processing result. Generally, the max-
imum labeled region is the bar code region in a bar code-dominant image. Figure 6
shows the bar code location result of the image in Fig. 4(a).

The bar code location method described above works for any 1D bar code stan-
dard if the bar codes are captured horizontally, i.e. the bars and spaces of the bar
codes are aligned horizontally.

3. Bar Code Region Sampling

3.1. The horizontal sampling data of a bar code

In order to acquire the bar code information for decoding, a general way is to sample
the data along a horizontal scan line through the bar code. If the bar code is not
tilted, the bar code image is not heavily contaminated with noise, and there is no
distortion in geometry, the sampling data along only one scan line may be enough
to decode the bar code. But in practice, in order to acquire enough information on
the bar code, it is usually necessary to use multiple scan lines for sampling data.
The sampling data is highly correlated. Of course, due to the geometric distortion
and/or the slope of the bar code, morphing some sampling data is very beneficial
so that all the sampling data along different scan lines can be aligned.

Fig. 6. The bar code area located.
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Based on the bar code location, we sample eight groups of data along eight scan
lines for each bar code, as shown in Fig. 7(a). The eight groups of sampling data
have very similar waveforms, as shown in Fig. 7(b).

In order to weaken the influence of noise, the direct idea of computing the
target bar code sampling data is that all the sampling data except the maximum
and minimum among them are averaged to get the target sampling data on each
point of the sampling curve. It should be stressed here that the averaging process
will blur the sampling data if all the sampling data along different scan lines are not
aligned due to the geometric distortion and/or the slope of the bar code. However,
because of the robust bar code character segmentation, the blurring will not be
enough to make the whole recognition system invalid.

Assuming that Fi(j) is the jth sampling point on the ith scan line, i = 1, 2, . . . , 8,
and j = 1, 2, . . . , L (L is the width of the bar code area), then the target sampling
data on the jth point is:

F (j) =

[∑8
i=1 Fi (j)

]
− max−min

6
, (2)

where max = max{Fi(j), i = 1, 2, . . . , 8} and min = min{Fi(j), i = 1, 2, . . . , 8}. As
shown in Fig. 7(b), the last curve is the target sampling data for the bar in Fig. 7.

From the waveform profile, the target sampling data is rather similar to each of
the eight original sampling data, but the target data has less noise.

3.2. The second derivative of bar code sampling data

On the curve of the bar code sampling data, each zero crossing of second derivative
(ZC2) is corresponding to one edge from bar to space or space to bar. Hence, ZC2s
are very important information to locate the edges of bar code bars and spaces,
which are the base of segmenting the characters from the bar code.

(a) The eight scan lines (b) The sampling data

Fig. 7. The horizontal sampling data of a bar code.
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3.2.1. The second derivative of bar code sampling data

Assuming that a bar code sampling curve is F (i), then the second derivative of the
curve is:

F ′′ (i) =
∂2F (i)

∂i2
. (3)

In discrete implementation, F ′′ (i) = F (i − 1) + F (i + 1) − 2F (i), i = 1, 2, . . . , L

(L is the width of the bar code area). Figure 8 shows the second derivative of the
target curve in Fig. 7.

3.2.2. The computation of zero crossings of second derivative

On the second derivative curve F ′′ (i), a zero crossing of second derivative (ZC2) is
at zero level, and the two nearest integer points at two sides have opposite signs. As
shown in Fig. 9, between the ith and (i + 1)th integer points, there is one ZC2 on
the curve. In order to facilitate the description of the following content, we define
the property for each ZC2 (refer to Fig. 9) as:

{
i + δi, L-height, R-height, BarToSpace

}
, (4)

where i + δi means the position of the ZC2, L-height is the height of its left
extremum, while R-height is the height of the right extremum. BarToSpace is a
BOOL parameter, which defines the category of the ZC2, i.e. if the left side of the
ZC2 is a bar and the right side is a space, the parameter is TRUE, otherwise, the
left side is a space and the right side is a bar, it is FALSE.

It should be noted that i + δi might not be the actual position of the ZC2,
because it is only the result of the interpolation between i and i + 1, i.e. i + δi is
the cross of the line and the dotted horizontal line in Fig. 9, but the actual ZC2
position locates at the cross of the sampling curve and the dotted horizontal line
in Fig. 9. However, the difference will not be enough to have a big influence on the
bar code segmentation and recognition.

(a) The second derivative (b) The zero crossings

Fig. 8. The second derivative and its zero crossings for the target curve in Fig. 7.
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i i+1 

i

ZC2 

L-height

R-height

Fig. 9. Definition of ZC2.

Due to the influence of noise, there may be some noisy ZC2 points, as well
as those real ZC2 points. Normally, a noisy ZC2 point has a small L-height vol-
ume and/or a small R-height volume. Based on this obvious characteristic, we can
efficiently remove most the noisy ZC2 points. Figure 8(b) shows the computation
result of the ZC2 points on the target curve in Fig. 7. The black vertical line means
the BarToSpace of the ZC2 point is FALSE, i.e. at the left side of the ZC2 point
is a space, and at the right side is a bar, while the gray vertical line means the
BarToSpace of the ZC2 point is TRUE, i.e. at the left side of the ZC2 point is a
bar, and at the right side is a space.

4. Knowledge-Based Bar Code Segmentation

The following bar code segmentation is performed according to the structure of
EAN-13 specific code standard. However, the method can be generalized to almost
all the other existing 1D bar code standards, e.g. Code 128, etc.

4.1. The brief of EAN-13 bar code standard

EAN-13 standard14 is one of the popular international bar code standards. It
includes 13 characters, in which the first character is the check digit, and the last
character is the induced digit. Each character has seven modules, which is com-
posed of two bars and two spaces. As shown in Fig. 10, a typical EAN-13 bar code

Fig. 10. The structure of an EAN-13 bar code.
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is composed of 95 modules:

(i) A: Left-hand guard bar (3 modules, the structure is bar-space-bar);
(ii) B: Left-hand six characters of code (7 modules each character, the structure

is space-bar-space-bar);
(iii) C: Center bar (5 modules, the structure is space-bar-space-bar-space);
(iv) D: Right-hand six characters of code (7 modules each character, the structure

is bar-space-bar-space);
(v) E: Right-hand guard bar (3 modules, the structure is bar-space-bar).

4.2. Guard bar segmentation of an EAN-13 bar code

Definition 3. The left border and the right border of each component in an
EAN-13 bar code are marked with “st” and “en” respectively, for example, the left
border and right border of the left-hand guard bar (A) are Ast and Aen respectively.

Definition 4. The δ scope of a point is the set of the left δ segment combining
with the right δ segment centered to the point P , i.e. (P − δ, P + δ).

4.2.1. The left-hand guard bar A and the right-hand guard bar E
segmentation

As the left-hand and right-hand guard bar segmentations are quite similar (except in
the opposite direction), in this section just the left-hand guard bar A segmentation
is described.

Based on the located bar code region (refer to see Sec. 3.2), the bar code length
can be estimated, for example, the estimated length is BC Length esti. Hence, the
estimated width of one module is Module Length esti = BC Length esti

95 , because
each EAN-13 bar code has 95 modules.

Segmenting A from the bar code includes locating Ast and locating Aen.
As the left-hand guard bar is composed of three modules, and its structure is

bar-space-bar (the width of each element is one module), at the Ast position, there
should be a ZC2 point of which BarToSpace is FALSE. In order to separate a bar
code from its surroundings, while the bar code is printed, a rather wide background
space is normally present at the left side of Ast.

With the prior knowledge above, when we search Ast starting from the left
border of the image, if the BarToSpace of a ZC2 point is FALSE, the ZC2 point
can be considered as a candidate if the ZC2 point Ast also meets the following
conditions:

(i) The distance between the ZC2 point and its left ZC2 point or the left border
of the image (at the case, the ZC2 point is the first one) is more than 5 times
Module Length esti, e.g. W0 > 5 × Module Length esti.
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(ii) At the right side of the ZC2 point, if there exist three neighboring elements
with the width of W1, W2 and W3 respectively (drawn in Fig. 11), and each
of them is narrower than the element at the left side of the ZC2 point, i.e. W0.

The number of the Ast candidates searched may be more than one. All the
candidates need to be saved. Of course, we also could delete some candidates which
are not really obvious, for example, if there are too many ZC2 points, say more
than ten ZC2 points at the left side of the candidate, the candidate Ast could be
regarded as a false one.

For each Ast candidate, its corresponding Aen should locate in the δ scope of
the position (assumed that δ = Module Length esti

2 , and the position is P ) which
is 3 times Module Length esti far away from Ast on the right side (shown as in
Fig. 11).

In the δ scope of P , if there exists a ZC2 point with BarToSpace=TRUE, then
the ZC2 point is considered as Aen. Otherwise, the position P is directly defined
as Aen.

Each segmented left-hand guard bar will create a pair together with one seg-
mented right-hand guard bar. For example, using the search scheme above, if two
potential left-hand guard bars and two potential right-hand guard bars are searched,
then we will have four segmentation pairs (shown as in Fig. 12), in which there

The image left
border or a ZC2 
point 

W0 W1 W2 W3

3 Module_Length_esti

Fig. 11. Searching Ast : the black line means the ZC2 point with BarToSpace=FALSE, while
the gray line means the ZC2 point with BarToSpace=TRUE.

E2

A1

A2

E1

The left-hand 
guard bar
candidates

The right-hand 
guard bar
candidates 

Segmentation 
pairs 

A1  E1

A2  E1

A1  E2

A2  E2

Fig. 12. The segmentation pairs of the A bar & E bar candidates.
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may be only one right pair probably. But at the moment, we have to register all
the candidate pairs for the further filtration.

4.2.2. The center guard bar (C) segmentation

The segmentation of the center guard bar (C) is based on the corresponding A–E
pair.

For each A–E pair, the length between Aen and Est can be easily calcu-
lated, for example AE Length, the length of one module can be updated as
Module Length esti = AE Length

95−6 = AE Length
89 . The reason for subtracting 6 here

is because the length of A and E are 3 modules respectively.
Given an A-E pair, the segmentation of the corresponding center guard bar C

can be described as follows (refer to Fig. 13):

(i) Ci(i = 0, 1, 2) is a reference mid-point of the center guard bar to be segmented.
C0 is the mid-point between Aen and Est, and C1 and C2 are the left and right
points which are Module Length esti

2 far away from C0 respectively.
(ii) Referring to the reference mid-point Ci(i = 0, 1, 2), the left border Cist and

right border Cien of the corresponding center guard bar are computed.
(iii) Computing the distance Dist(Aen, Cist) between Aen and Cist, and

the distance Dist(Est, Cien) between Cien and Est, we can easily
compute the difference between the two distances, i.e. Diff(Ci) =
|Dist(Aen, Cist) − Dist(Est, Cien)|.

(iv) Considering the geometric distortion of the input bar code image, from the
three segmentation candidates, only the candidate with the smallest distance
differenceDiff(·) is selected for center guard bar segmentation.

The computing steps of the left border Cst and right border of a center guard
bar Cen are explained as follows:

(i) Based on the given reference mid-point Ci of the center guard bar to be seg-
mented, the reference left and right borders, Ci rs and Ci re, of the center guard
bar are defined respectively. Both of them are 2.5 times Module Length esti
far away from Ci.

(ii) In the δ scope of Ci rs (δ = Module Length esti
2 ), if there exists a ZC2 point

with BarToSpace =TRUE, the ZC2 point is considered as the left border Cst

Ci

AE_Length 

A E 

AenAst EenEst

Ci_rs Ci_re

Fig. 13. The segmentation of the center guard bar (C).
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of the center bar C. Otherwise, Ci rs is directly regarded as Cst. In the same
way, Cen can be computed. The only difference is that, if Cen is a ZC2 point,
the BarToSpace of the point should be FALSE.

4.3. EAN-13 bar code character segmentation

According to the definition of EAN-13 bar code standard, the following prior knowl-
edge about EAN-13 bar code characters in the B code set can be concluded.

(i) There are six characters aligned one by one between the left-hand guard bar A
and the center guard bar C. Each character includes two bars and two spaces
with the format of bar-space-bar-space.

(ii) All the characters have the same width, and each is composed of seven mod-
ules. Assumed that the distance between Aen and Cst is AC Length (refer
to Fig. 14), the estimated width of one module can be further updated to
Module Length esti = AC Length

42 .
(iii) From left to right, the left border of the first character joins with the right

border of the left-hand guard bar A, i.e. Aen, while the right border of the
sixth character joins with the left border of the center guard bar C, i.e. Cst

(iv) Due to the possible geometric distortion of the input bar code image, the width
difference between the characters at the two ends of the B code set might not
be small. But the width of any two adjacent characters would still be quite
close.

Based on the prior knowledge above, an iterative process is presented to segment
the characters in the B code set (refer to Fig. 14). The process can be easily applied
to segment the characters in the D code set after minor modification based on the
prior knowledge of the code set.

(i) Initializing. The reference length for the first character (the character at
the left end) is set as Length 1 = 7 × Module length esti. δ is starting from
Module Length esti.

(ii) Looking for the left border of each character. The left border of the
first character (i = 1) actually joins with the right border of the left-hand

A C EDB

The ith character The (i+1)th character

Ast Aen Cst Cen Est Een 

Fig. 14. The segmentation of EAN-13 bar code characters.
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guard bar A, i.e. Aen. The left border of ith character is the right border of
the (i − 1)th character (i =2, 3, . . . , 6).

(iii) Looking for the right border of each character. From left to right,
assuming the reference length of segmenting the ith character is Length i. for
example, the reference length of segmenting the first character is Length 1. If
there is a ZC2 point with the BarToSpace=TRUE, which is in the δ scope of
the point being Length i far away from the left border of the ith character
(i = 1, 2, . . . , 5), the ZC2 point is considered as the right border of the ith
character, otherwise, the point P is directly set as the right border of the ith
character.

(iv) Computing the width difference of any two adjacent characters. If the
width difference of any two adjacent characters is not more than a given thresh-
old, e.g. δ

2 , or δ < Module Length esti
4 , the segmenting process ends. Otherwise,

after δ is decreased by Module Length esti
4 , turn to (ii) for a new segmenting

process.

5. Statistical Recognition and Training Alogirithm

5.1. Statistical recognition

The structure of the EAN-13 bar code character statistical recognition block is given
in Fig. 15. Each segmentation result output from the segmentation system above
includes 12 characters, represented by 12 vectors ai, (i = 1, 2, . . . , 12). The first
six vectors ai, (i = 1, 2, . . . , 6) represent the right-hand six characters, while the
remaining six vectors ai, (i = 7, 8, . . . , 12) represent the left-hand six characters.
From the definition of EAN-13 standard, there are two decoding sets (Set A and
Set B) for decoding the left-hand six characters of code, but there is only one
decoding set (Set C) for decoding the right-hand six characters of code. Hence, three
nearest neighbor classifiers are built for decoding each input vector output from the
segmentation system, i.e. classifier A and B are used to decode ai, (i = 7, 8, . . . , 12),

Prepreocessing
Feature 

 extraction 

Classifier A 
ai,i=7,8, 12 

Postprocessing
Classifier B 

ai,i=7,8, 12 

Classifier C 
ai,i=1,2, 6

Fig. 15. The structure of the EAN-13 bar code character statistical recognition.
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and classifier C is used to decode ai, (i = 1, 2, . . . , 6). In the postprocessing part,
all the outputs from the three classifiers are combined for giving out the final
recognition result.

5.2. Preprocessing

As the length of the input vectors normally are not constant, and the values of
vector components are quite random, all the input vectors need to be normalized
before recognition. The normalization steps include:

(i) Each input vector is extended by one module on both sides. If one module
is normalized into 7 data points, then the length of an input vector will be
normalized to be 63 data points.

(ii) The average value of all the components in each input vector is normalized to
be zero.

(iii) The sum of the squared values of all the components is normalized to be 1.

5.3. Feature extraction and nearest neighbor classification

In the subspace defined with a m×n projection transformation matrix Ψ, an
m-dimensional input vector y is projected into the corresponding n-dimensional
feature vector x (m > n):

x = ΨTy. (5)

The distance between an input vector x and a reference vector class is defined as:

dj
k (x) = d(x, r j

k ) = (x − r j
k )T (x − rj

k), (6)

where rj
k is the kth reference vector, i.e. the center of the kth sub-class, of the

jth class. In order to better represent a class, several sub-classes for each class are
designed.

Therefore the distance dj (x) between the input vector x and the jth class is
defined as the smallest value of the list {dj

k |k = 1, . . . , K }, i.e.

dj (x) = min{dj
k |k = 1, . . . , K }, (7)

where K is the number of sub-classes in a class.

5.4. Postprocessing

Postprocessing is used to combine the recognition results from classifiers A, B and C,
and give out the combination with the smallest summed distance as the final recog-
nition result based on the code constraint in EAN-13 standard bar codes.
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5.5. Training algorithm

The training algorithm aims to calculate the best feature extraction matrix and
class reference vectors based on a modified generalized learning vector quantization
(GLVQ) method.

LVQ is a supervised learning method for computing optimized reference vectors
from amount of training samples. The GLVQ is a generalization of the LVQ,15 and
is able to control the learning process of the method.16 As an implementation and a
further generalization of the GLVQ method, the modified GLVQ method is to make
it feasible to deal with the case in which there are several reference vectors designed
for one class, and to optimize the feature extraction matrix simultaneously in the
optimization process of the reference vectors.

The proximity of an input vector x to its own class can be defined by

µ (x) =
dm (x) − dj (x)
dm (x) + dj (x)

, (8)

where dm is the distance between an input vector x and the nearest reference vector
rm

i of the class to which x belongs, and dj is the distance between x and the nearest
reference vector rj

k of the classes to which x does not belong. Obviously, the smaller
µ is, the higher the confidence that x belongs to the class m.

So the modified GLVQ method can be formalized as a minimization problem of
an evaluation function Q:

Q =
S∑

i=0

f (µi), (9)

where S is the number of training samples, and f (·) is a monotonously increasing
function. In the practical computing process, actually the real definition of f (·) is
not needed, it is enough to have its derivative:

∂f

∂µ
= F (µ, t) (1 − F (µ, t)) , (10)

F (µ, t) =
1

1 + e−µ(x)t
. (11)

Hence, the iteration process of the modified GLVQ method for an input vector x
can be described as

rm
i,t+1 = rm

i,t + α · ∂f

∂µ

dj

(dm + dj)2
(
x − rm

i,t

)
, (12)

rj
k,t+1 = rj

k,t − α · ∂f

∂µ

dm

(dm + dj)2
(
x − rj

k,t

)
, (13)

Ψt+1 = Ψt − β · yT · ∂f

∂µ

dj · (x − rm
i,t

) − dm · (x − rj
k,t

)

(dm + dj)2
. (14)

The initial feature extraction matrix and reference vectors are given by the linear
discriminant analysis (LDA)17 and the K-means clustering method respectively.
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6. Experiments and Discussion

In the experiment, the projection transformation matrix Ψ of the subspace is defined
as a 63×16 matrix, which projects all the input vectors from 63 dimensions to 16
dimensions before classification (refer to Eq. (5), m = 634 and n = 16.). Besides,
one class is defined for each code pattern of the three decoding sets (Set A, B and
C. Each set includes ten code patterns.), as such, there are altogether 30 classes
defined for the classification of all the input vectors. In order to better represent a
class, four sub-classes are further designed. Referring to Eq. (7), j is from 1 to 30,
and k is from 1 to 4.

6.1. Collection of bar code character samples for training

In order to build the three classifiers (refer to Fig. 15), more than 1000 EAN-13 bar
code images were taken by NOKIA 7650. The rules of capturing bar code images
satisfy:

(i) Physical bar codes are placed as “in front of” the camera as possible.
(ii) Physical bar codes are placed in the center of the camera view, and the length

of the bar code region is adjusted to about two third of the width of the whole
image, so as to avoid any bigger geometric distortion in the bar code region.

(iii) The physical size of a bar code should not be shorter than 3 cm in length, and
the capturing distance of the camera should be about 5 cm, so as to allocate
enough pixels for each bar code character.

Figure 16 illustrates the above considerations, assuming that the capture angle
of a NOKIA 7650 camera is 50◦. If the length of the bar code region is adjusted
to two thirds of the width of the whole image, the camera phone should be around
4.8 cm from the physical bar code while capturing. According to the resolution of a

Fig. 16. The relation between bar code size and the capture distance of camera.
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VGA camera, the width of the whole image is 640 pixels, so the length of the bar
code region is about 427 pixels. As each EAN-13 bar code includes 95 module, each
module is about 4.5 pixels in width.

By averaging the eight sampling scan lines across any captured bar code, at
least 12 samples are extracted as training input vectors based on the bar code
segmentation system followed by the normalization of the input vectors. As such,
we get a total of 19 584 training samples as the training database (5151 for Set A,
4641 for Set B, and 9792 for Set C respectively). As there are ten code patterns
defined in each of the three code pattern sets of EAN-13 standard, on average, there
are about 515 training samples for each code pattern in Set A, about 464 training
samples for each code pattern in Set B, and about 979 training samples for each
code pattern in Set C.

6.2. Performance testing

We captured 292 EAN-13 bar code images with NOKIA 7650 as the testbed. 24
out of the 292 bar code images are captured from the EAN-13 bar codes made
by ourselves, and the remaining bar code images are all captured from surfaces of
various products. The bar code capture conditions range from normal laboratory
environment with rather good illumination to real supermarket environment with
poor lighting and noise.

The testing results are given in Table 2. The mistakes mainly come from two
aspects. One is from the bar code segmentation stage, in which a 94.18% correct
segmentation rate is achieved. The other aspect is due to the statistical classifiers,
Classifier A, B and C, at the recognition stage.

As the focal length of a normal camera phone without auto focus or macro
modes, for example a NOKIA 7650, is about 30–50 cm, image blurring will be
inevitable while a physical bar code is captured by the camera phone at 5 cm cap-
turing distance. The blurring may result in the absence of some real zero crossings
of second derivative bar code curve and/or shift of the detected zero crossings of
second derivative waveform of a bar code. However, in the bar code segmentation
and recognition system, the issue is fully considered. The border decision of either
bar code character or guard bar is not always based on the computed zero crossings

Table 2. Bar code decoding results on the testbed.

Total No. of No. of correct bar code No. of wrong bar code Correct bar code
testing samples segmentation segmentation segmentation rate

292 275 17 94.18%

No. of correct bar code No. of wrong bar code Correct bar code
recognition recognition recognition rate

250 42 85.62
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(a) One segmenting result on one bar code (b) Two segmenting results on one bar code

Fig. 17. Two examples of EAN-13 bar code segmentation.

of second derivative waveform. In this way, we allow multiple segmentation options
for one bar code (see Fig. 17).

All the segmenting character results on one bar code output from the segmen-
tation system are directly imported to the successive statistic recognition system,
in which the recognition is not based on the accuracy of the segmenting borders
of character. If multiple segmentation options are detected for a bar code at the
segmentation stage, all the options are recognized and the corresponding recogni-
tion distances are compared. Only the character string (12 digits) with the smallest
distance amount is output as the final recognition result of the bar code.

In the recognition system, only if all the 12 characters involved in one bar
code are recognized correctly, the bar code can be considered as being recognized
correctly. On the 292 testing bar codes, 250 out of them are recognized correctly,
i.e. the correct recognition rate is 85.62%.

Supposing that the bar code recognition procedure is independent, it can be
deduced that two attempts for recognizing one bar code will bring the probability
of the correct recognition:

1 − (1 − ρ)2 = ρ (2 − ρ) = 97.93%, (15)

where ρ = 85.62% stands for the one-shoot recognition rate. The scheme on how
to select the final code string from the multiple-shoot recognition is still based on
their recognition distances. According to our experiments, the correct recognition
distance on a bar code is obviously shorter than that of any wrong recognitions on
the same bar code.

From the experimental results, and the discussion above, the following conclu-
sion is drawn: the presented method can robustly extract and recognize EAN-13
bar codes from low-quality images captured by a camera phone without auto focus
or macro modes, and multiple shots of one bar code will result in very reliable
recognition, which makes the bar code reading method practical for use on low-end
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camera phones. Although the method is intentionally developed for reading EAN-
13 standard bar codes, it can be easily generalized to read other 1D standard bar
codes as well.
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