
Hao  Wang,  Kongqiao  Wang,  Affective  interaction  based  on  person­independent
facial expression space, Neurocomputing, Special Issue for Vision Research, Vol. 71,
No. 10­12, pp. 1889­1901, 2008, Elsevier, ISSN 0925­2312.

© 2008 by authors and © 2008 Elsevier Science

Preprinted with permission from Elsevier.



 

 

___________________________________________________________________________________________________________________________ 

Abstract 
 
This paper proposes a Person-Independent Facial Expression Space (PIFES) to analyze and synthesize facial 

expressions based on Supervised Locality Preserving Projections (SLPP), which aligns different subjects and different 
intensities of facial expressions on one generalized expression manifold. Interactive curves of different patterns are 
generated according to the input facial expression image sequence, and target responsive expression images are 
synthesized for different emotions.  In order to synthesize arbitrary expressions for a new person with natural details, a 
novel approach based on local geometry preserving between the input face image and the target expression image is 
proposed. Experimental results clearly demonstrate the efficiency of the proposed algorithm. 
 
Keywords: Facial expression analysis; Facial expression synthesis; SLPP; Affective interaction.  
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1. Introduction 

There exist a number of applications for Human-
Computer Interaction (HCI) that make use of automatic 
facial expression analysis. The main motivating principle 
for such applications is to allow the computers to adapt to 
the people’s natural abilities rather than vice versa [23].  
Facial expressions can indeed be considered as expressing 
communicative signals of intent, or expressing emotional 
inner states, or even as emotion activators. It would be 
interesting that if the computer is given a natural human 
face with synthesized facial expressions corresponding to 
the user’s facial expressions. Users can react to the 
computer’s face and this co-feedback leads to a novel 
affective interaction. In this paper, we present a system 
that realizes such interaction between human and 
computer via automatic analysis of input facial 
expressions of the user and synthesis of the computer’s 
facial expressions.  

Development of an automatic facial expression analyzer 
has attracted great attention in these decades, and the 
reader is referred to [12] for an excellent survey.  

Tian et al. developed an Automatic Face Analysis 
(AFA) system to analyze facial expressions based on both 
permanent facial features (brows, eyes, mouth) and 
transient facial features (deepening of facial furrows) in a 
nearly frontal-view face image sequence. The AFA system 
recognizes fine-grained changes in facial expression and 

turns them into action units (AUs) of the Facial Action 
Coding System (FACS), instead of a few prototypic 
expressions. However, the AFA system requires accurate 
locations of the facial features, and further efforts are 
demanded to implement a corresponding model-driven 
facial expression synthesis system under the framework of 
AFA. Chandrasiri et al. proposed Personal Facial 
Expression Space (PFES) to recognize person-specific, 
primary facial expression image sequences [11]. On 
PFES, facial expression parameters compatible with 
MPEG-4 high level Facial Animation Parameters (FAP) 
can be extracted from a user’s face image and they are 
processed to synthesize an expressional face image by 
using a generic wireframe face model. The key limitation 
of PFES is that it can not process an unknown face that is 
not included in the trained person-specific space. In [13] 
Yeasin et al. used a subjective measurement of the 
intensity of basic expressions by associating a coefficient 
for the intensity with the relative image number in the 
expression image sequence. Though simple and effective 
for their application, this method does not align expression 
intensities of different levels.  

In recent years theories of manifold learning have been 
developed in a variety of applications [28, 29, 30, 31, 32]. 
Manifold learning methods were also used for facial 
expression analysis [5, 6, 7], which are based on the fact 
that variations of face images can be represented as low 
dimensional manifolds embedded in the high dimensional 
image space. Chang et al. [7] made first attempt to apply 
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two types of embedding, Locally Linear Embedding 
(LLE) and Lipschitz embedding, to learn the structure of 
the expression manifold. In [6], they proposed an 
approach for facial expression tracking and recognition 
based on Isomap embedding. One problem of these 
methods is that they learned the expression manifold in 
the feature space described by a large set of landmarks, 
e.g., using ASM [19], which requires complex extracting 
or tracking scheme and is not easy to be obtained 
accurately, additionally, the number of such landmark 
points is far beyond the number of fiducial points used in 
expression synthesis stage. Another potential risk is that 
the research was conducted on data sets containing only 
several subjects, the efficiency on a large number of 
subjects was not verified. Shan et al. [5] first investigated 
an appearance manifold of facial expression based on a 
novel alignment method to keep the semantic similarity of 
facial expression from different subjects on one 
generalized manifold. In this paper, we make an attempt to 
further enhance the resolution of the intensity of 
expressions from different subjects.   

The other component of the proposed affective 
interaction system is realistic facial expression synthesis. 
There has been extensive research in this area, and 
expression mapping had become a popular method for 
generating facial animations.  As pointed out in [14], this 
method is a kind of warping-based approaches, which 
requires accurate labeling of feature positions of a 
subject’s neutral face and another face of the same person 
with target expression. Because it considers shape changes 
only, the texture variations on the face are ignored, 
consequently it does not generate expression details such 
as wrinkles due to skin deformations. An alternative 
approach uses a large amount of sample views and applies 
morphing between them. The drawback of this method is 
that it is difficult to generate expressions for a new person 
who is not included in the training set.   

Wang and Ahuja proposed an approach for facial 
expression decomposition with Higher-Order Singular 
Value Decomposition (HOSVD) that can model the 
mapping between persons and expressions, used for facial 
expression synthesis for a new person [9]. The drawback 
of their approach is that the global linearity assumption of 
expression variations introduces some artifacts and 
blurring while synthesizing expressions for persons not 
contained in the training set. Du and Lin used PCA and 
linear mapping based on relative parameters as emotional 
function [15]. They encountered the similar problem as 
using HOSVD that large amount of training samples are 
demanded to well represent the variations of expressions 
for different subjects. Recently Tao et al. proposed 
general tensor discriminant analysis (GTDA) as a 
preprocessing step for conventional classifiers to reduce 
undersample problem [33, 34]. How to use this method in 

facial expression synthesis is still an open question. 
Kouzani reported a Quadtree PCA (QPCA) to implement 
a global-local decomposition for approx-imating face 
images using a limited set of examples [22]. Computation 
complexity is certainly increased by using QPCA, and the 
results are not appropriate for human observation. Zhang 
et al. developed a geometry-driven facial expression 
synthesis system [14]. They subdivide the face into a 
number of subregions in order to deal with the limited 
space of all possible convex combinations of expression 
examples. The synthesis results look realistic and 
desirable. However, the blending along the subregion 
boundaries requires processing efforts to avoid image 
discontinuities, and the registration of the large amount of 
feature points is a challenging task. Although it can be 
expanded to generate expressions for a new person, the 
system presented was person-specific.   

Generally, a system that is intended to design facial 
expression synthesis should be capable to fulfill the 
following tasks. First, it is required to obtain realistic 
visual effects rather than only generate cartoon-like 
animations. Secondly, the system must be able to 
synthesize facial appearance for a new person, not limited 
to particular subjects within the training set. Finally, an 
efficient method is needed to synthesize arbitrary facial 
expressions with any desired intensities. The last task 
requires that facial expression synthesis and recognition 
should be performed under a unified framework with 
expression intensity alignment.  

The work of this paper is to establish a generalized 
framework for interactive facial expression analysis and 
synthesis. A Person-Independent Facial Expression Space 
(PIFES) based on manifold learning is introduced and a 
concrete example of its application which realizes an 
affective interaction between the computer and the user is 
proposed.  In the affective interaction, the computer can 
recognize the user’s facial expression; meanwhile the 
expression of the computer will change accordingly based 
on some patterns pre-defined by emotional modes. This 
interaction endows the computer with certain ability to 
adapt to the user’s feedback. And the expressional face of 
the computer can play the role of emotion activators, 
which makes the interaction more natural and interesting.     

The paper is organized as follows. In Section 2, facial 
expression analysis based on PIFES is presented. Section 
3 describes the principle of the expression synthesis 
approach. In Section 4 the experiments that have been 
conducted are presented and discussed. Finally, 
conclusions and future research directions are presented in 
Section 5.  

 
2. Expression analysis in PIFES 

The main objective of this work is to realize an interactive  



 

 

system that is working reliably and realistically in real-
time interaction between the user and the computer. It 
should be able to analyze facial expressions of any new 
person, meanwhile to synthesize the expressional face of 
the computer.  

Prototypic facial expressions typically recognized by 
psychologists are happiness, anger, fear, disgust, sadness 
and surprise. For convenience, ‘neutral’ is considered to 
be a seventh basic expression in this paper. This section 
presents the algorithm to recognize the type of basic facial 
expressions based on the generalized expression manifold, 
so called Person-Independent Facial Expression Space  
(PIFES), where Supervised Locality Preserving 
Projections (SLPP) is used to align different subjects and 
different intensities of facial expressions. Since there are 
many common action units shared by different prototypic 
facial expressions, the dependence among those basic 

expressions will be utilized to generate mixed expressions 
on PIFES, as it can be seen below.    

2.1. Supervised LPP  
LPP is a linear approximation of Laplacian Eigenmap. 

It seeks a transformation P to project high-dimensional 
input data ],...,,[ 21 nxxx=X  into a low-dimensional 
subspace ],...,,[ 21 nyyy=Y  in which the local structure of 
the input data is be preserved. The linear transformation P 
can be obtained by minimizing the following objective 
function:  

∑
=

−
n
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ijji Wyy
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2
min

P
,           (1) 

where ii xy TP= , the weight matrix W is constructed 
through the adjacency graph with k nearest neighbors or ε-
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Figure 1. 3D visualization of the generalized manifold of facial expressions (PIFES) trained with 82 subjects. Different 
expressions are represented by different colors: red-anger, green-disgust, blue-fear, yellow-happiness, magenta-sadness, cyan-
surprise, black-neutral. Two pseudo-interactive curves are illustrated with sample images corresponding to the nodes on the 
curves respectively.  
 



 

 

neighborhoods. The minimization problem can be 
converted to solving a generalized eigenvalue problem as 

 PXDXPXLX TT λ= ,           (2) 
where ∑=

j ijii WD  is a diagonal matrix, and WDL −= .  

When class information is available, LPP can be 
performed in a supervised manner [3, 4, 5]. The basic idea 
is to encode class information in the embedding when 
constructing the neighborhood graph, so that the local 
neighborhood of a sample xi from class c should be 
composed of samples belonging to class c only. This can 
be achieved by increasing the distances between samples 
belonging to different classes, as in [3] and [5], the 
following definition is used 

  
ijijij MSup δα+∆=∆     ]1,0[∈α ,      (3) 

where 
ij∆  denotes the distance between xi and xj, ijSup∆  

denotes the distance after incorporating class information, 
and 

ijjiM ∆= ,max , 0=ijδ  if xi and xj belong to the same 
class, and 1 otherwise. The parameter α  represents the 
degree of supervision. When 0=α , one obtains 
unsupervised LPP; when 1=α , the result is fully 
supervised LPP.  

By applying SLPP to the data set of image sequences of 
basic expressions, a subspace is derived, in which 
different expression classes are well clustered and 
separated [5]. However, there are two issues to be 
considered further. First, neutral faces are not processed 
separately, which introduced noise in their recognition. 
Secondly, intensity of expressions is not taken into 
account in formula (3).  

Absolute definition or measurement of facial expression 
intensity is difficult to obtain. On the contrary, it is easy to 
compare the expression intensities of the same subject in 
an image sequence. The subjective measurement of the 
intensity of basic expressions introduced in [13] is to 
associate a coefficient for the intensity with the relative 
image number in the expression image sequence. 
However, this method can not be extended to different 
subjects. Since our purpose is to utilize the intensity 
information so as to achieve better synthesis result, an 
intuitive solution is to increase the distances between 
samples belonging to the same subject but with different 
intensities. Figure 2 presents an illustration of the 
neighborhood graph construction when the intensity 
information is considered. Normally images of facial 
expressions of an individual will be mapped to a curve 
that begins from neutral and extends in a direction with 
intensity increasing by LPP, and images of same 
expression type will be mapped close when supervised 
learning is applied by using SLPP. However, if intensity 
factor is not taken into account, neighborhoods might 
mainly come from the same subject in construction of the 
adjacency graph as shown in figure 2a with the dashed 

circle, which should be punished because in the 
expression synthesis stage, samples of different subjects 
are preferred as the reconstruction reference set. We 
suppose that in an image sequence of an individual with a 
certain expression type, the intensity level can be directly 
measured by the distance between any two images in the 
sequence. More accurately, if the neutral face of this 
individual is identified, the intensity value of any image of 
the sequence is the distance between the image and the 
neutral face. If we enlarge the distance with a significant 
factor, the neighborhoods of the adjacency graph will 
include more samples with similar intensity level but from 
different subjects, as shown in figure 2b.          
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(a) Original (b) Introduction of intensity factor  
Figure 2. Illustration of the neighborhood graph construction 
with introduction of intensity factor (S1, S2, and S3 stand for the 
image sequences of different subjects with a certain expression 
type).  

 
In this paper an extended definition of the incorporated 

distance is proposed as 
 )')1(( ijijijijij MSup δβδβα ∆−++∆=∆ ,    (4) 

where ),1[],1,0[ +∞∈∈ βα .            
 The proposed principle is to construct the neighborhood 
graph to enable that expressions with similar intensity but 
from different subjects are closer than those of different 
intensities but from the same subject, thus the local 
neighborhood of a sample xi with intensity i from class c 
should be composed of samples belonging to class c, and 
with similar intensity i from different subjects. This is 
achieved by introducing a within-class distance 
component ')1( ijijδβ ∆− : 1' =ijδ  if xi and xj belong to the 
same subject within an expression class (excluding 
neutral), and 0 otherwise. Parameter β  controls the scale 
of intensity resolution, and 1=β  will regress to (3). The 
within-class distance component is not applied for neutral 
expression so that the neutral class can be clustered more 



 

 

closely. In this way, the boundary between neutral face 
and the expression of a sequence will be clearer.  

2.2. Person-Independent Facial Expression Space  
 Figure 1 illustrates the 3D visualization of the 

generalized manifold of facial expressions trained with 
image sequences from 82 subjects. By using SLPP 
presented above, the basic expressions are well mapped to 
separated regions with intensity aligned and the neutral 
faces are clustered within a hyper-sphere, where 
expressions with low intensities of each type tend to 
converge. The aligned manifold constructs PIFES, in 
which any new input facial expression images from an 
unknown person can be mapped to their reference sub-
regions, and facial expression analysis and synthesis can 
be performed in the generalized framework.  

Though PIFES is constructed with prototypic 
expressions, it can be seen that the samples near the 
hyper-plane between any two prototypic expressions will 
have the mixed-characteristics of both expressions. Using 
a simple non-parametric method, e.g., Nearest Neighbor 
approach, an input face can be easily labeled with joint-
type expression and corresponding operations can be 
carried out.  

To implement an affective interaction based on PIFES, 
input facial expression images are first mapped to a curve 
in PIFES using the trained transformation matrix P. Figure 
1 gives a pseudo example of such interaction: let us 
suppose that curve2 is generated by the input facial 
expression sequence which represents emotional changes 
of the user from anger, minor disgust to fear-surprise; 
based on psychological principle of human-human 
interaction, a possible interactive curve of how the 
computer will react with the user’s emotions can be drawn 
in PIFES, i.e., curve1, from sadness to happiness. The 
underlying psychological principle defines the interactive 
manners responding to any input possibilities. And the 
selection of the emotional modes that the computer 
presents can be pre-defined based on the use cases.  

In order to achieve good generalization, large amount 
of training samples are required. It is also preferred to 
have real mixed expression samples that do not belong to 
any prototypic expression types, which can fill up the gaps 
among the regions of basic expressions. The bootstrap 
method is applied to the training set to determine the 
optimal parameter numbers and some mixed expression 
samples are also adapted to a ‘semi-supervised’ learning 
that uses 5.0=α  for those samples.       

2.3. Prototypic facial expression recognition 
To test the efficiency of PIFES in the use of facial 

expression analysis, a direct way is to perform prototypic 
expression recognition.  

Following [5] and [7], a k Nearest Neighbor method is 
applied to classify the basic expressions on the aligned 
expression manifold. For intensity identification of an 
input sample x, the mean of its nearest neighbors from the 
same expression class c on the aligned manifold is 
computed, and the intensity scale is normalized by the 
maximum intensity value of this class, as following 

  max/ DDi xx = ,              (5) 
where xi  denotes the intensity of sample x, which ranges 
between [0,1]. xD  represents the distance between the 
center of the neutral expression class and the mean of 
nearest neighbors of sample x.  
 
3. Interactive expression synthesis 

As described above, the interactive curves of different 
patterns corresponding to different emotional modes are 
used to synthesize the facial expressions of the computer. 
To make the system more concrete, it is desirable to 
change the face of the computer as the user wants, rather 
than fix the computer with a permanent face. Thus a 
generalized interactive expression synthesis framework is 
required to synthesize facial expressions for different 
subjects with any expression type and any intensity. In 
this section the framework of expression synthesis is 
introduced first, and the principle of expression 
transformation is presented.  Then the method of utilizing 
the interactive curves to generate corresponding sequence 
of facial expressions is proposed.  

Let IP represent a face image, and IE be an expression 
image of this face. The procedure of expression synthesis 
is equivalent to setting up a mapping relation M between a 
face and its expression, )( PE IMI = , where M is supposed 
to be a complex nonlinear mapping. In this paper, a local 
geometry preserving based nonlinear method is proposed 
to approximate the mapping function M. This method is 
inspired by Locally Linear Embedding (LLE) [1]. It is 
assumed that small image patches in the face image and 
the expression image form manifold with similar local 
geometry in two different image spaces, and expression 
synthesis can be performed by giving training face-
expression pair samples based on local nearest neighbors 
reconstruction.  

Facial expressions of a new person can be synthesized 
under the assumption that similar persons have similar 
expression appearance and shape [9]. However, all PCA 
based methods further assume that expression synthesis 
can be approximated by a linear combination of training 
face-expression pair samples. Due to the complexity of 
face structure, adopting this globally-linear assumption is 
not accurate when training samples are limited or there are 
big shape deformations of expressions.  



 

 

Promising manifold learning methods such as LLE 
provide hints on this problem. The principle of LLE is to 
compute neighbor-preserving mapping between an 
original high-dimensional data space and a low-
dimensional feature space, based on the simple geometric 
intuition that each data point and its neighbors lie on or 
close to a locally linear patch of the manifold [1]. It is 
reasonable to adopt a local geometry preserving scheme to 
compute the mapping between the original face image 
space and the expression image space. To solve the 
problem of limited samples and deformable expression 
structure, a patch-based strategy is applied as in [8, 16, 
18].  

3.1. Framework of expression synthesis 
The affective interaction requires facial expression 

synthesis in the following way: at first the input sequence 
of facial expressions are analyzed and mapped to a curve 
in PIFES, then an interactive curve is automatically drawn 
based on some pre-defined patterns; the target is to 
synthesize the face of the computer (which can be selected 
randomly beforehand or even input by the user using any 
desired photo of whom the user wants the computer to be) 
with a series of expressions defined by the interactive 
curve. To make specification clear, basic expression 
synthesis by giving a neutral face is presented at first, then 
the method is extended to generate arbitrary expressions 
with any intensities.  

To take different geometrical shapes of faces into 
account, an average shape of faces is created from all 
training samples of each basic facial expression, as called 
mean shape. In the training stage, all the samples are 
aligned by warping the face images to the mean shape of 
the corresponding expression category using affine 
interpolation based on a set of triangles. At runtime, the 
expression synthesis can be implemented using following 
steps, as shown in Figure 3:  

 For a given face P, locate all the fiducial points on the 
face graph model to extract shape information.  
 Apply geometric transformation by warping the face 

image to a mean shape derived from the training set to 
separate the texture IP and shape SP: 

))(),(()','( PP SGIGSI = .  
 Employ expression transformation to obtain texture 

IE’and shape SE’ for the expression.  
 Compute the final expression image IE from the inverse 

geometric transformation: )'(1
EE IGI −= . 

3.2. Expression transformation 
The adoption of a patch-based strategy is driven by two 

factors. First, the probability distribution of a pixel and its 
neighbors in an image is assumed to be independent of the 
rest of the image. Secondly, the linear assumption of face 
reconstruction is more likely to be satisfied for small areas 
rather than the entire image especially when training 
samples are limited. Thus with the principle of local 
geometry preserving, the global non-linear variations of 
facial expressions can be approximated by locally-linear 
combination.    

In this paper, both of the input face image and the target 
expression image are divided into N small overlapping 
image patches in the same way.  Let j

np  and j
ep  

( Nj ,...,2,1= ) denote the image patches of the input face 
image and the output expression image respectively, 
corresponding input and output image patches form 
manifolds with similar local geometry in two different 
image spaces. Each image patch j

np  is fitted with its K 
nearest neighbors from training samples j

nT , and the 
reconstruction weights are calculated. Then its 
corresponding expression image patch j

ep  can be 
approximated from training samples j

eT  by preserving the 
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Figure 3: Framework of the expression synthesis system. 



 

 

local geometry. The expression transformation algorithm 
is summarized as follows:  

1) For an image patch j
np , Nj ,...,2,1= , find its K 

nearest neighbors Kkp j
n

j
kn ,...,2,1,ˆ , =∈ T .  

2) Compute the reconstruction weights of the 
neighbors, Kkw j

kn ,...,2,1,, = .  
3) Based on local geometry preserving, composite its 

expression image patch j
ep  using the corresponding exp-

ression image patches j
e

j
kep T∈,ˆ  of the K nearest neighbors 

j
knp ,ˆ  and the reconstruction weights Kkw j

kn ,...,2,1,, = :  

∑
=

=
K

k

j
ke

j
kn

j
e pwp

1
,, ˆ              (6) 

In step 1, local search with small search window is 
employed to find the best match between two image 
patches in order to deal with slight geometrical mis-
alignments that may exist even after warping the images to 
the mean shape. In step 2, the reconstruction weights can 
be achieved by minimizing  
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Subject to:  Kkww j
kn

K

k

j
kn ,...,2,1,0,1 ,

1
, =≥=∑

=

. 

This is a constrained least square problem and the 
close-form solution can be obtained. Here another simpler 
method is applied to compute the reconstruction weights 
of the neighbors, called Heat Kernel that is inspired by 
LPP [2], as follows:  

  Kkew t

pp
j

kn

j
kn

j
n

,...,2,1,~
2

,ˆ

, ==
−

− ,        (8) 
where the final weights are normalized as  

Kkwww
K

k

j
kn

j
kn

j
kn ,...,2,1,~/~

1
,,, == ∑

=

.       (9)  

To avoid image discontinuities along the boundaries of 
image patches, a simple averaging process is adopted for 
overlapped regions in the final reconstructed expression 
image. The parameter selection can be referred to [24].   

   
       (a)                (b)                (c)  

 
Figure 4. Comparison of synthesis with proposed method and 
eigentransformation: (a) original face, (b) proposed method 
without shape alignment, (c) eigentransformation without shape 
alignment. 
 

Figure 4 shows the advantage of the proposed method 
comparing with eigentransformation [17] regarding face 

image reconstruction. Sometimes the fiducial feature 
points on the face can not be obtained accurately so that 
the shape alignment is unavailable. In these cases, the 
reconstructed face image using eigentransformation will 
have some artifacts and often look unlike the original face 
because it approximated the face using a global-linear 
process. The proposed method achieves better result even 
without shape alignment. The reason is that the ‘double 
locality preserving’ scheme - both locality with image 
patches in the spatial domain and locality with geometrical 
structure of manifold - is capable to approximate the 
global-nonlinear structure more efficiently.     

3.3. Mixed expressions synthesis with arbitrary 
intensity  

3.3.1 Basic expression synthesis with arbitrary input 
face image 

After facial expression recognition and intensity 
identification, an input face image can be labeled with 
expression type c and intensity value i. To synthesize a 
face image of target expression ct with target intensity it, 
an intuitive way is to apply corresponding training subsets 
during the expression transformation. Let ),( icT  denotes 
the training subset with expression type c and intensity 
range ),( εε +− ii , which contains M samples from 
different subjects, and the corresponding subset ),( tt icT  
contains M samples of expression type ct and intensity 
range ),( ξξ +− tt ii , from different subjects. The 
expression transformation can be performed by using 

),( icT  to compute the reconstructing weights of image 
patches, and using ),( tt icT  to reconstruct the target 
expression image.  

In other words, we can easily find a subset which 
contains samples with the same expression type and 
similar intensities of the input face, but from different 
subjects (denoted by {Sci}) in the expression manifold 
generated by SLPP. In that sense, we could simply point 
out the target subset as the basis of the expression 
synthesis in the same manifold, i.e., the samples selected 
from the same subject set {Sci} and with the target 
expression type and intensity level. The expression 
transformation algorithm, which is based on local 
geometry preserving, is then used to reconstruct the target 
expression image by using the correspondence between 
the two subsets in the expression manifold. In order to get 
more accurate result, a patch-based scheme is adopted, 
and the reconstruction weights of each small image patch 
is based on the Heat Kernel, which is also inspired by 
LPP.  

The advantage of this implementation comes from two 
aspects: the correspondence between the two subsets in 
the expression manifold ensures that only necessary 



 

 

samples will be used for expression transformation so that 
the basic expression synthesis with any input face image 
and with any basic expression type is supported in a well-
controlled manner; meanwhile the ‘double locality 
preserving’ scheme used in the expression transformation 
enables a realistic synthesis even if the subject set {Sci} in 
the expression manifold is relatively small.  

 
3.3.2 Interactive curve-based synthesis 

By giving the interactive curve responding to the input 
facial expression sequence of the user, the target 
expressions to be synthesized are located as the nodes 
along the interactive curve (see figure 1 as reference). A k 
Nearest Neighbor method is applied to select the reference 
set for expression reconstruction. Since the computer’s 
face has been selected beforehand (with reference 
expression type, for simplicity, taking neutral as example), 
the reconstructing weights can be calculated based on the 
above method.  

For example, K nearest neighbors of each node on the 
interactive curve are selected. The corresponding neutral 
faces of these K samples are used to calculate the 
reconstructing weights, then the target expression for each 
node is synthesized using the weights of the K nearest 
neighbors. It should be noted that if the K nearest 
neighbors include different expression types, the target 
expression image needs to be composed in a mixed 
manner, as described below.     

 
3.3.3 Mixed expression 

Synthesis of mixed expressions needs to be considered 
so that any natural expressions can be generated rather 
than only creating a few basic expressions. Due to the 
inter-dependence among basic expressions, the current 
framework is extended by dividing the face into several 
relative-independent sub-regions, consequently the 
reconstructions in each sub-region can be performed by 
the approach presented above without changes, and spatial 
combinations of the sub-regions will produce mixed 
effects of any possible expressions.  

Figure 5a shows the template of sub-region division for 
mixed expression synthesis. The weight map for blending 
along the sub-region boundaries is illustrated with thick 
gray-black lines. Given a pixel in the blending region, let 
b denote the value of the blending weight, and i1 and i2 be 
the indices of the two sub-regions. Then the pixel’s 
blended intensity is  

21 )
255

1(
255

ii IbIbI ⋅−+⋅= .       (10) 

In the case that there is a natural color discontinuity, 
such as the boundary of the eyes and the outer boundary 
of the lips, blending will not be performed according to 
the template.  

There is one question remained for the mixed 

expression synthesis: in each sub-region, which type of 
basic expression should be selected for the final mixed 
expression. According to FACS definition of action units, 
any mixed expressions can be taken granted as a 
combination of upper AUs and lower AUs [10]. After 
analysis of the spatial dominance of each prototypic 
expression, several possible combinations are identified. 
Figure 5b demonstrates the combination of anger-sadness, 
where ‘a’ represents that the sub-region is indexed with 
anger, and ‘s’ stands for sadness respectively.  
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Figure 5. Template of sub-region division and blending: (a) sub-
regions and blending map; (b) combination of anger-sadness.     

 
4. Experiments 

According to [5], the optimal data set for expression 
manifold learning should contain O(102) subjects, and 
each subject has O(103) images that cover basic 
expressions. However, there is no such database available 
until now. In this paper, experiments are conducted on the 
Cohn-Kanade database [20] which consists of 96 subjects 
and each of them has several tens frames of basic 
expressions. Both in expression synthesis and recognition, 
82 subjects are used for training and the rests for testing.  

4.1. Facial expression analysis 
In the experiments, 379 image sequences consisting of 

totally 4,643 images of the seven basic expressions were 
selected from the database. All of them came from 82 
subjects. Raw image data is used as the appearance 
feature. For computational efficiency, the face images are 
down-sampled to 60×80 pixels with calibration of the eyes 
locations. The 3-D visualization of the aligned manifold of 
3 subjects is shown in Figure 6. It is observed that neutral 
faces are clustered within a super-sphere, and every 
expression sequence is mapped to a curve on the manifold 
that begins near the neutral face and extends in distinctive 
direction with varying intensity of expression. Expression 
images from different subjects but with similar intensity 
are mapped closely, which well represents the intensity 
resolution of the generalized manifold. It is noted that 
each curve is not strictly aligned along a linear direction, 
basically because the adopted appearance feature does not 
remove the variations of illumination and pose changes, 
and the basic expressions are not fully independent.   
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Figure 6. 3D visualization of the aligned manifold of 3 subjects 
with intensity resolution.  

 
To test the performance of facial expression 

recognition, 35 image sequences from the remaining 14 
subjects are selected for the experiment. Unlike just using 
peak frames of each sequence in [21], images of 
expressions with weak intensity are also included in the 
testing set. The overall rate is 86.7% for 7-class 
recognition. The confusion matrix shown in Table 1 
confirms that some expressions are harder to differentiate 
than others, partially because there are inter-dependences 
existing among the basic expressions and it is difficult to 
collect pure expression samples even in the stage of 
database creation. Most confusion occurs among anger, 
sadness, and neutral, however, these mistakes will not 
affect much for the facial expression synthesis because 
they have low intensity and can be approximated with 
neutral without losing necessary accuracy.  

 
TABLE 1. CONFUSION MATRIX OF 7-CLASS EXPRESSION RECOGNITION  

 Ang. Dis. Fear Hap. Sad. Sur. Neu. 
Ang. 71.4 0 7.1 0 0 0 21.5 
Dis. 16.1 83.9 0 0 0 0 0 
Fear 0 1.7 89.6 1.7 0 1.7 5.3 
Hap. 0.9 0 4.3 92.2 0.9 0 1.7 
Sad. 8.8 1.5 0 0 75.0 2.9 11.8 
Sur. 0.9 0 1.9 3.8 1.9 90.6 0.9 
Neu. 2.1 0 4.3 6.4 2.1 0 85.1 
 
In order to reduce the effects of illumination changes, 

geometric variation and redundant facial details, Local 
Binary Patterns (LBP) [25][26] and BoostLBP [27] are 
also introduced as appearance features in the experiment. 
LBP was originally proposed for texture analysis, and 
recently also used as an effective feature for facial object 
analysis. Facial images are divided into 48 sub-regions, 
and the 59-bin 2

2,8
uLBP  operator is applied to each sub-

region; so each image is represented by a LBP histogram 

with length of 2,832(59x48). Because different sub-
regions should have different contribution to the facial 
expression analysis, e.g., furrows around the nose might 
be more important than the smooth area of the cheek, a 
weighted LBP (wLBP) is adopted that important sub-
regions will be assigned with higher weights. BoostLBP 
features take the priorities of different regions into 
account in a more structural manner. By shifting and 
scaling a sub-window, 5,760 LBP histograms in total are 
extracted from each face image, JSBoost is applied on the 
positive sample set of 7,672 intra-expression image pairs 
and the negative sample set of 23,906 extra-expression 
image pairs. The most discriminating and effective 
features that maximize the JS-divergence are selected for 
building the final BoostLBP histogram of each image. The 
first four sub-windows learned, from which the LBP 
histograms are extracted, are shown in Figure 7.  

        
Figure 7. The first four sub-window from which the LBP 
features are obtained 

 
Table 2 gives  the 7-class recognition results of using 

wLBP and BoostLBP for the entire set of  expression 
sequences including images with weak intensity. 
BoostLBP gets the highest recognition rate of 91.1%, 
wLBP is slightly higher than just using row images 
(comparing with Table 1).  

TABLE 2. 7-CLASS EXPRESSION RECOGNITION  
(w: wLBP, B: BoostLBP) 

 Ang. Dis. Fear Hap. Sad. Sur. Neu. 
w. 78.6 80.6 90.2 91.3 77.9 92.4 83.0 
B. 82.1 87.1 91.0 93.9 87.2 93.3 87.2 

 
In order to compare with the previous work, e.g.., the 

best result of 92.0% in 7-class recognition [21], peak 
images in each sequence are selected and tested. It can be 
seen from Table 3 that the introduction of within-class 
component for intensity alignment in SLPP possibly has 
slight incremental contribution to the expression 
recognition (the average recognition rate with BoostLBP 
is 92.7%). It can be understood that the SLPP without 
intensity alignment has utilized the 7-class information in 
generating the expression manifold, thus there could not 
be space for obvious improvement by just introducing an 
intensity factor. However, the intensity factor does affect 
the expression recognition with weak intensities. Table 4 
shows the average recognition rate of expressional faces 
with low intensities (selected from each image sequence 
with smaller frame index). Using intensity alignment 
achieves better result partially because it makes the 



 

 

within-class distribution of samples in the expression 
manifold more uniform.     
 

TABLE 3. 7-CLASS EXPRESSION RECOGNITION FOR PEAK IMAGES 
(Img: raw image, w: wLBP, B: BoostLBP) 

 Ang. Dis. Fear Hap. Sad. Sur. Neu. 
Img. 83.3 87.5 90.3 93.3 82.4 93.7 88.8 
w. 86.1 83.3 91.1 95.0 80.7 95.8 91.7 
B. 91.7 91.7 92.3 96.7 88.5 97.9 94.4 

 
TABLE 4. THE AVERAGE RECOGNITION RESULT OF 7-CLASS  

EXPRESSION RECOGNITION FOR WEAK IMAGES 
(Img: raw image, w: wLBP, B: BoostLBP, IA: intensity alignment,  

N: without intensity alignment) 
 Img. w. B. 

IA. 78.2 76.0 84.3 
N. 69.1 70.3 81.0 

 
 

4.2. Facial expression synthesis and interaction 
Figure 8 shows the synthesis results of a new person 

who is not included in the training set and comparison 
with the results obtained by the eigentransformation 
method and direct warping. Though improved by 
separating shape and texture, the eigentransformation 
tends to reconstruct the faces that do not look very much 
alike to the original face of the same person, basically 
because it regards the mapping between neutral and 
expressions as a linear process. Direct warping fails to 
generate natural expressions, e.g., the artificial warping 
can not produce an open mouth if the mouth is closed in 
the original face image. Obviously the proposed algorithm 
obtains better results than the other methods. And as 
illustrated in Section 3, the proposed algorithm is not 
sensitive to the accuracy of the locations of fiducial points 
on the face graph model, which enhances the robustness 
for variant use cases. Because not all the subjects in the 
training set has samples of all basic expressions, the 
numbers of image samples for basic expression synthesis 
are 82, 36, 34, 47, 72, 52, and 48 for neutral, anger, 
disgust, fear, happiness, sadness, and surprise 
respectively. It can be seen that the effects of synthesis do 
not highly depend on the number of training samples to be 
used.  In another word, the proposed method effectively 
saves the number of training samples, which is very 
desirable in real applications.  

Figure 9 gives an example of synthesizing an 
expression with different intensities for a new person by 
the proposed method. As described above, direct warping-
based method can not produce the details that are not 
present in the input face image, whereas the proposed 
method achieves good results by intensity alignment of the 
training set.  

Figure 10 exhibits the capability of the proposed 
method to synthesize different expressions with diverse 
input-output modes. The input face image contains 
arbitrary expression with unknown intensity for a new 
person, and the output image is for any target expression 
with any target intensity. The experimental results further 
prove the effectiveness of the unified framework of the 
proposed algorithm.  

              

       

       

       

Figure 8.  Synthesized facial expression images of a new person 
(from left to right: neutral, anger, disgust, fear, happiness, 
sadness, surprise). First row: original sample face. Second row: 
proposed method. Third row: eigentransformation with shape 
alignment. Fourth row: direct warping of the original face. 

     
Figure 9. Synthesis of happiness with increasing intensities. 

 

        
       (a1)              (a2)                   (b1)              (b2) 

        
       (c1)              (c2)                   (d1)              (d2)  

Figure 10. Synthesis results of arbitrary input-output pairs. 
(a1)(b1)(c1)(d1): input face images with sadness, anger, fear, 
and happiness respectively; (a2)(b2)(c2)(d2): synthesized 
expression images with happiness, disgust, anger, and surprise.  



 

 

 
Mixed expression synthesis is presented in figure 11 

based on the pre-defined combination template and 
blending map of the boundaries between sub-regions, 
possible mixing of prototypic expressions can be 
generated.  

 

       
          (a)              (b)                 (c)                   (d)  

Figure 11. Example of mixed expression synthesis: (a) anger-
disgust, (b) happiness-surprise, (c) anger-sadness, (d) fear-
surprise.  
 

Figure 12 illustrates an example of affective interaction. 
PIFES is mapped to a 2D plane where the center of each 
basic expression class is drawn as reference. A series of 
input expression images are mapped to curve1 in PIFES, 
which mainly lies on the path of happiness – surprise – 
happiness. And the responsive curve2 is drawn based on 
pre-defined emotional patterns. In this example, an 
anger/sadness – sadness – surprise/happiness – happiness 
response is performed by the computer.  
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Figure 12. Example of affective interaction.  
 

To simulate the real cases of human-human interaction, 
the responsive time of the computer is set as several frame 
delays, which make the user feel more natural to 
communicate with the computer rather than getting the 
response too fast or too strong.  

4.3. Subjective evaluation of expression synthesis 
To evaluate the performance of facial expression 

synthesis, a subjective measurement is introduced and 15 
volunteers were invited to the test. There are four stages 
that require the participants to do different tasks according 
to the instructions.  

The first stage is called ‘double-blind face recognition’. 
Every participant is given 12 ‘synthesized expressional 
face images’ of different persons, and asked to recognize 
who is who from 20 candidates of the original faces. 
Actually there are real samples of facial expression images 
mixed into the ‘synthesized images’ randomly, and the 
participants do not know about that. All the participants 
complain the difficulty of this task. It might be because 
that the ability of recognizing new faces is not well 
developed for most common people, and it is even harder 
to make judgment only depending on the deformed 
expressional faces. The recognition rate of the synthesized 
expression images is 79.6%, and the recognition rate of 
the real samples of expression images is 80.2%. On the 
other hand, this result shows that the quality of the 
synthesized facial expression images is almost at the same 
level of real samples.  

Then the second stage is ‘person verification’ : 
participants are required to give a side-by-side comparison 
of a series of synthesized expressional face images with 
‘ground truth’ images whether each pair of images come 
from the same person. Every participant feels that it is 
much easier than the first task, and the correct verification 
rate is much higher than face recognition.    

The third step is ‘expression identification’: by giving 
the real samples of expressions as reference, every 
participant is required to identify the prototypic expression 
type of the synthesized images. Because there are only 
seven basic expression types to be identified, the 
identification rate is also very desirable. The only 
difficulty comes from the inner-variance of the prototypic 
expressions that some participants do not fully agree with 
the common sense.  

TABLE 4. SUBJECTIVE EVALUATION RESULT  
Face recognition (synthesis): 
79.6% 

Face recognition (real sample): 
80.2% 

Person verification:  
95.6% 

Expression identification:  
98.1% 

Score 5 4 3 2 1 
Perc. 54% 38% 7% 1% 0% 

Overall performance factor: 4.56 
 



 

 

Finally each participant gives an overall score of the 
synthesis quality of each image, i.e., 5 for very easy 
identification and very realistic effects, 4 for relatively 
good effects and easy to identify the expressions, 3 for fair 
results, 2 for poor looking and 1 for ugly. The results of 
this evaluation are given in Table 4. The achieved overall 
performance factor of 4.56 is remarkable from subjective 
observation.  

We must add that the evaluation of the affective 
interaction is relatively random. Because the underlying 
psychological principle of how the interactive curves are 
generated is out of the scope of this work, quantitative 
evaluation of the interaction has not been available yet. 
However, most participants show strong interests in the 
affective way of interacting with the computer, and some 
of them even point out that the ability to show happiness, 
satisfaction, surprise and confusion does make sense in 
real use cases, e.g., when the computer plays the role of a 
coach who will monitor a user’s learning progress.  
 
5. Conclusion 

In this paper, a novel affective interaction is proposed 
under a general framework of automatic facial expression 
analysis and synthesis. With intensity alignment, 
automatic facial expression analysis and intensity 
identification are performed by using Supervised Locality 
Preserving Projections (SLPP), which constructs a Person-
Independent Facial Expression Space (PIFES), and facial 
expression synthesis is implemented based on local 
geometry preserving. Extensive experiments on the Cohn-
Kanade database illustrate the effectiveness of the 
proposed method.  

Future work may address the following aspects. The 
first extension is to create an objective evaluation of the 
facial expression synthesis. A Gradient Mean Square 
Error (GMSE) is introduced [9] to evaluate the 
synthesized face image, however, the criteria is not in 
accord with the subjective human observation, and will be 
failed if the real expression image is not available. 
Another focus is to explore a semantic representation of 
natural facial expressions other than a few prototypic 
expressions in order to make the interaction smoother.   
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