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This paper introduces a receding horizon control scheme for obtaining near-optimal controls in a feedback form

for an aircraft trying to avoid a closing air-to-air missile. The vehicles are modeled as point masses. Rotation

kinematics of the aircraft are taken into account by limiting the pitch and roll rates as well as the angular

accelerations of the angle of attack and the bank angle. The missile uses proportional navigation and it has a boost-

sustain propulsion system. In the proposed scheme, the optimal controls of the aircraft over a short planning horizon

are solved online by the direct shootingmethod at each decision instant. Thereafter, the state of the system is updated

by using only the first controls in the sequence, and the process is repeated. The performance measure defining the

objective of the aircraft can be chosen freely. In this paper, six performance measures consisting of the capture time,

closing velocity, miss distance, gimbal angle, tracking rate, and control effort of the missile are considered. The

quality of the receding horizon solutions computed by the scheme is validated by comparing them to the off-line

computed optimal open-loop solutions.

I. Introduction

I N AIR combat, the avoidance of guided missiles is extremely
important for the survival. Obviously, the best way to avoid a

missile is to prevent suitable launch conditions by staying out of the
kinematic range or the firing envelope [1] of the missile. If this is not
possible, the missile may still be avoided under some conditions by
proper exploitation of the missile system weaknesses. Such
weaknesses include limited propulsion phase, aerodynamic and
structural performance limits, delay in the missile guidance system,
and limits of the missile seeker head.

Concerning the design of a guidance scheme for the missile
avoidance, it is important to acknowledge that due to many
uncertainties related to the pursuit–evasion setting, the controls of the
aircraft should be obtained in a feedback form. Near-optimal
feedback solutions can be obtained, for example, by neural networks
[2] or receding horizon control [3]. A downside of neural networks is
that for high-dimensional systems, a plethora of open-loop optimal
trajectories must be solved off-line and stored for the adjustment of
the neural network parameters. For the problem at hand, this would
be practically impossible due to the abundance of possible initial
states. In receding horizon control, the controls related to the current
state are computed online that effectively eliminates the above
disadvantage. Although applied traditionally in the process industry
[4], receding horizon control has been recently used also in the
numerical solution of various air combat related problems [5,6].

This paper introduces a new receding horizon control scheme for
solving a three-dimensional pursuit–evasion problem between a
medium range air-to-air missile and a fighter aircraft. Although the
vehicles are modeled as point masses, rotational kinematics of the
aircraft are taken into account by limiting the pitch and roll rates as
well as the angular accelerations of the angle of attack and bank

angle. Rotational dynamics of the missile are considered negligible
because they are faster than that of the aircraft. The missile is guided
by a feedback control law, proportional navigation [7], and it has a
boost–sustain propulsion system. The scheme can be applied with
various performance measures that exploit different aspects of the
missile system, enabling the selection of the most suitable evasion
strategy for a given combat state.

Probably the most common performance measure in pursuit–
evasion problems is the capture time. In a game setting [8], the
pursuer tries to minimize the time of capture whereas the evader tries
to maximize it. If the pursuer uses a feedback guidance law, the
problem reduces to a one-sided optimal control problem [9] in which
the evader maximizes the final time. Another widely studied,
undeniably the most relevant performance measure considering the
missile avoidance is the miss distance. Because of the more complex
nature of the latter problem, usually only planar [10] or otherwise
simplified dynamics [11] have been studied. Optimal open-loop
solutions for more realistic three-dimensional settings have been
solved by direct methods [12]. Efficiency of some well-known
evasion maneuvers and suboptimal feedback control laws have been
studied by simulation with three-dimensional dynamics [13].

In addition to the capture time and the miss distance, a number of
suitable performance measures are available that have received less
attention in the open literature, such as closing velocity [14], gimbal
angle [15], angular tracking rate [16], and control effort [17] of the
missile. The utilization of the first mentioned criterion is justified by
the studies of endgame analysis (see, e.g., [18]) which show that the
ability of the target to avoid the missile depends strongly on the
closing velocity of the missile. Secondly, although modern missile
seekers have relatively high gimbal angle and angular tracking rate
limits, they may be exceeded under some conditions resulting in a
missile lock-off. Finally, the missile can be driven uncontrollable by
exhausting the power supply available to the missile control system.

In receding horizon control, the controls are optimized over a short
planning horizon at each decision instant. The state of the system is
then updated by applying the optimal controls at the current state. By
repeating the computations at each decision instant, a suboptimal
state dependent feedback solution is obtained. In this paper, the
controls of the aircraft over the planning horizon are optimized by
using the direct shooting method where the control variables are
parameterized and the state equations are integrated explicitly [19].
The time domain over the planning horizon is discretized so that the
time interval is increased toward the end of the planning horizon.
This enables application of longer planning horizons with less
number of time disretization points which reduces solution times. An
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important aspect in receding horizon control is the selection of a
suitable approximation for the optimal cost to go over the remaining
flight time. The selection can be carried out by using, for example, the
problem approximation, the heuristic cost-to-go approximation, or
the rollout approach, see, for example, [20]. In this paper, the
problem approximation and the heuristic approach are applied, for
example, due to their superiority with respect to the computation
time.

The scheme is demonstrated with the six criteria discussed above.
The performance of the introduced scheme is validated by comparing
the receding horizon solutions to the optimal open-loop solution over
the entire flight time for each performance measure. The optimal
open-loop solutions are computed off-line by the direct multiple
shootingmethod [21]. The comparison is carried out for a large set of
initial states and planning horizons.

The paper is structured as follows. In the following section, the
aircraft and the missile models are presented. The pursuit–evasion
problem along with the performance measures are formulated in
Sec. III. The receding horizon control scheme is introduced in
Sec. IV, followed by numerical examples in Sec. V. The aspects and
the usability of the scheme are discussed in Sec. VI. Finally,
concluding remarks appear in Sec. VII.

II. Vehicle Models

The optimal control problem formulation of the pursuit–evasion
problem used in this paper is based on the following assumptions:

1) The aircraft and the missile receive accurate state information.
Moreover, the aircraft has complete knowledge of themissile model.

2) The vehicles are modeled as point masses. The aircraft
maneuverability is limited by the maximum pitch and roll rates as
well as themaximum angular accelerations of the angle of attack and
the bank angle.

3) The aircraft responds instantaneously to control commands.
4) The missile is guided by proportional navigation.
5) The missile has two independent guidance channels

perpendicular to each other in a plane normal to the velocity vector
of the missile.

6) The missile has a single-lag guidance system.
7) The missile has a boost–sustain propulsion system.

A. Aircraft Model

The motion of the aircraft is described by the following system of
differential equations [22]:

_x a � va cos �a cos�a (1)

_y a � va cos �a sin�a (2)

_h a � va sin �a (3)

_�a �
1

mava
f�La��; ha; va;M�ha; va��

� �Tmax�ha;M�ha; va�� sin�� cos��mag cos �ag (4)

_�a �
1

mava cos �a
�La��; ha; va;M�ha; va��

� �Tmax�ha;M�ha; va�� sin�� sin� (5)

_va �
1

ma

��Tmax�ha;M�ha; va�� cos�

�Da��; ha; va;M�ha; va��� � g sin �a (6)

where xa and ya refer to the horizontal coordinates and ha to the
altitude of the aircraft. The remaining three state variables are the

flight path angle �a, the heading angle �a, and the velocity va. The
aircraft is guided with the angle of attack �, the bank angle�, and the
throttle setting �.

The acceleration due to the gravity g and the mass of the aircraft
ma are assumed constant. Tmax��� denotes the maximum available
thrust force directed along to the centerline axis of the aircraft, La���
the lift force, Da��� the drag force, and M��� the Mach number. The
lift force is given by

La��; ha; va;M�ha; va�� � CLa
��;M�ha; va��Saq�ha; va� (7)

where CLa
��� is the lift coefficient and Sa the reference wing area of

the aircraft. The dynamic pressure is

q�ha; va� �
1
2
%�ha�v

2
a (8)

where the air density %�ha� is taken from the International Standard
Atmosphere. The drag force is of the form

Da��; ha; va;M�ha; va�� � CDa
��;M�ha; va��Saq�ha; va� (9)

whereCDa
��� denotes the total drag coefficient of the aircraft. This as

well as the lift coefficient and the maximum thrust of the aircraft is
given as tabular data and approximated with suitable continuously
differentiable functions.

The control variables are constrained as

0 	 � 	 �max; 0 	 � 	 1; �1 	 � 	 1 (10)

In addition, the pitch and the roll rates are constrained by

j _�� _�a cos�� _�a cos �a sin�j �Qmax 	 0 (11)

and

j _�j � Pmax��; ha;M�ha; va�� 	 0 (12)

respectively, where the maximum pitch rateQmax and the maximum
roll rate Pmax��� are aircraft specific values. For the derivation of
Eq. (11), see [18].Moreover, the angular accelerations of the angle of
attack and the bank angle are constrained by

j ��j � ��max 	 0 (13)

and

j ��j � _Pmax 	 0 (14)

where themaximum angular accelerations of the angle of attack ��max

and the bank angle _Pmax are assumed constant.
To avoid stall, the angle of attack must be chosen so that the lift

coefficient does not exceed an aircraft specific value CLa;max��� at a
given altitude and velocity, that is,

CLa
��;M�ha; va�� � CLa;max�M�ha; va�� 	 0 (15)

The load factor defined in the wind coordinate system as

na��; ha; va� �
La��; ha; va;M�ha; va��

mag
(16)

is limited by the structure of the aircraft. This imposes another
constraint related to the angle of attack, altitude, and velocity:

na��; ha; va� � na;max 	 0 (17)

In addition, the altitude and the dynamic pressure are constrained by

ha;min � ha 	 0 (18)

and

q�ha; va� � qmax 	 0 (19)

where ha;min and qmax refer to the minimum altitude and the
maximum dynamic pressure of the aircraft, respectively.
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B. Missile Model

The motion of the missile is described by

_x m � vm cos �m cos�m (20)

_y m � vm cos �m sin�m (21)

_h m � vm sin �m (22)

_� m �
1

vm
�ap � g cos �m� (23)

_� m �
ay

vm cos �m
(24)

_v m �
1

mm�t�
�Tm�t� �Dm�a; hm; vm;M�hm; vm��� � g sin �m (25)

_a p �
1

��hm;M�hm; vm��
�apc � ap� (26)

_a y �
1

��hm;M�hm; vm��
�ayc � ay� (27)

The interpretation of the first six state variables is similar to those
of the aircraft model. The remaining two state variables ap and ay

denote the pitch and yaw acceleration components of the missile
which are orthogonal to the velocity vector of the missile, whereas
���� is the time constant of the guidance system. The commanded
accelerations apc and ayc depend on the guidance law. The mass of
the missilemm�t� and the thrust force Tm�t� are given as tabular data.
The drag force of the missile is given by

Dm�a;hm;vm;M�hm;vm���CDm
�a;M�hm;vm��Smq�hm;vm� (28)

where the drag coefficient CDm
��� is given as a function of the total

lateral acceleration instead of the total angle of attack.
The commanded accelerations are given by

aic

�

�

aiPNminfan;max; aCL;max
g=aPN; if aPN >minfan;max; aCL;max

g

aiPN; otherwise

(29)

where

aPN �
�������������������������

a2
pPN � a2

yPN

q

(30)

and the acceleration components aiPN, i� p, y are given by
proportional navigation that tries to steer the missile so that the
angular rate of the line-of-sight vector from themissile to the target is
driven toward zero. Especially in ideal proportional navigation [23]
applied in this paper, the commanded acceleration vector is given by

a c � N0! 
 vc (31)

where N0 is the navigation constant and

! �
r 
 ��vc�

r � r
(32)

is the rotation of the line-of-sight vector due to the closing velocity

v c ��_r� � _xm � _xa _ym � _ya _hm � _ha �
T (33)

The pitch and yaw acceleration components are obtained by
projecting the commanded acceleration vector on the respective axes
as

apPN � ac � eap � g cos �m (34)

ayPN � ac � eay (35)

where the normalized pitch and yaw components of the acceleration
vector are given by

e ap
� � sin �m cos�m sin �m sin�m cos �m
� �

T (36)

and

e ay
� � sin �m cos �m 0
� �

T (37)

respectively. The last term of Eq. (34) compensates the gravity. The
commanded accelerations are limited to values not imposing
structural damage or stall, that is, the total commanded acceleration is
not allowed to exceed either of the following limits:

an;max � gnm;max (38)

where nmax is the maximal load factor permitted by the structure of
the missile and

aCLm
;max � CLm;max�hm;M�hm; vm��Smq�hm; vm�=mm�t� (39)

The stall limit CLm;max���, the drag coefficient CDm
���, and the time

constant of the guidance system ���� are given as tabular data and
approximated by suitable smooth functions.

III. Pursuit–Evasion Problem

The pursuit–evasion problem between the missile and the aircraft
is next formulated as an optimal control problem. The aircraft
minimizes/maximizes the performance measure

J�u� �

Z

tf

t0

L�x;u; t� dt� ’�xf; tf� (40)

subject to

_x� f�x;u; t�; x�t0� � x0 (41)

g �x;u; _u; �u� 	 0 (42)

h�xf� � 0 (43)

The state vector x contains the states of the aircraft and the missile, u
is the control vector of the aircraft, and x0 denotes the initial states of
the aircraft and themissile. The differential equations (41) describing
the dynamics of the vehicles refer to Eqs. (1–6) and (20–27).
Constraints (42) limiting the controls and preventing, for example,
stalling and exposure to excessive accelerations refer to Eqs. (10–
19). Terminal constraint (43) defines the free final time tf.

It should be noted that the above optimal control problem does not
necessarily have a solution for an arbitrary initial state. For example,
if the missile is launched outside its firing envelope, the missile
cannot reach an optimally outrunning aircraft. On the other hand, if
the aircraft prefers to exploit a particular aspect of the missile’s
overall system design instead of outrunning, the missile may reach
the aircraft with the same initial state. Hence, the set of feasible initial
states depend on the utilized performance measure as well as the
missile’s target set defined by Eq. (43).
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In the following, the first two performance measures result in
outrun-type solutions, whereas the rest take advantage of the
limitations of the missile system.

A. Capture Time

The capture time is defined as the time at which themissile reaches
a given distance rf to the aircraft. The performance measure to be
maximized is hence the total flight time

J�u� �

Z

tf

t0

dt� tf � t0 (44)

where the free final time is defined by the terminal condition

h�xf� � r�tf� � rf � 0 (45)

in which

r�
�������������������������������������������������������������������������������

�xa � xm�
2 � �ya � ym�

2 � �ha � hm�
2

p

(46)

is the magnitude of the line-of-sight vector from the missile to the
aircraft.

B. Closing Velocity

The closing velocity of the missile is the negative of the time
derivative of Eq. (46), that is,

vc �� _r� r � vc=r (47)

where the closing velocity vector is given by Eq. (33). The aircraft
minimizes the closing velocity at the final distance rf. The
performance measure is thus

J�u� � vc�tf� (48)

and the terminal constraint h�xf� is given by Eq. (45).

C. Miss Distance

The miss distance is the distance between the vehicles at the time
of the closest approach, that is, when the closing velocity is zero. The
performance measure to be maximized is the final distance between
the aircraft and the missile

J�u� � r�tf� (49)

where the final time is defined by

h�xf� � vc�tf� � 0 (50)

D. Control Effort

The instantaneous energy consumption of the missile control
system is proportional to the magnitude of the lateral acceleration of
the missile. Therefore, to be able to exhaust the power supply of the
missile control system, the aircraft should maximize the total control
effort of the missile

J�u� �

Z

tf

t0

a�t� dt (51)

where

a�t� �

����������������������������

a2
p�t� � a2

y�t�

q

(52)

denotes the total lateral acceleration of the missile. The terminal
constraint is again given by Eq. (45).

E. Gimbal Angle

The gimbal angle, that is, the angle between the line-of-sight
vector and the missile centerline, is calculated as

�� arccos�er � ecl� (53)

where er and ecl are unit vectors in the directions of the line-of-sight
vector from the missile to the aircraft and the centerline axis of the
missile, respectively. The latter one is given by

e cl � evm cos �t � ea sin�t (54)

Above, the total angle of attack �t is calculated by using

CLm
��t;M�hm; vm��Smq�hm; vm� �mm�t�a (55)

where CLm
��� is the lift coefficient and Sm is the reference wing area.

Because the dependence of the lift force on the total angle of attack is
approximately linear over a large portion of the lift curve, the angle of
attack is calculated here by using linear extrapolation. The unit vector
in the direction of the total lateral acceleration vector equals

e a � �ap � ay�=a (56)

where ap and ay denote the pitch and yaw components of the
acceleration vector.

The performance measure to be maximized is of the form

J�u� � ��tf� (57)

and the terminal constraint h�xf� is given by Eq. (45).
For numerical reasons, we choose to maximize the final gimbal

angle instead of its maximum norm. Obviously, it cannot be
guaranteed that the gimbal angle always attains its maximum at the
missile’s target set, whereupon several optimal control problems
with various fixed final times should be solved to obtain a globally
optimal solution. This, however, would be impractical.

F. Angular Tracking Rate

The angular tracking rate of the missile defined as the rotation of
the line-of-sight vector due to the relative velocity is given by

!�
jr 
 ��vc�j

r � r
�

vc

r

�����������������������������

1 � �er � evc�
2

q

(58)

The performance measure to be maximized is of the form

J�u� � !�tf� (59)

and the terminal constraint h�xf� is given by Eq. (45). Again, we
assume that the tracking rate attains its maximum at the missile’s
target set.

IV. Receding Horizon Control Scheme

In this section, we introduce a receding horizon control scheme for
obtaining a near-optimal solution of the problem (40–43) in a
feedback form. In the scheme, the control decisions of the aircraft are
made at discrete instants tk � k�t, where k is the stage counter and
�t is a time interval between two successive decision instants. At
state x�tk� and time tk, the optimal open-loop controls of the aircraft
u��x�tk�; t� over the interval t 2 �tk; tk � T� thatminimize/maximize
performance measure

~J k�u� �

Z

tk�T

tk

L�x;u; t� dt� V�x�tk � T�; tk � T� (60)

subject to

_x� f�x;u; t�; x�tk� � xk (61)

g �x;u; _u; �u� 	 0 (62)

are solved. Then, the state of the system is updated by implementing
the resulting optimal controls at the current state and time
u��x�tk�; tk� for the interval �t. By repeating the computation at
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each decision instant, the controls at each instant are obtained in a
feedback form.

In Eq. (60), the integral term corresponds to the accumulated value
of the performancemeasure J over the planning horizon T >�t, and
V is a cost-to-go function approximating the optimal cost to go from
state x�tk � T� at time instant tk � T to the final state xf. At each
decision instant, an estimate for the distance between the vehicles at
the end of the planning horizon is computed by using the optimal
open-loop controls obtained in the previous instant. If the missile is
expected to reach its target set at the end of the planning horizon,V is
replaced with the terminal cost function ’, the terminal constraint

h�x�tk � T�� � 0 (63)

is included, and T is set free. In addition, if the estimated time to go
exceeds a missile specific threshold, the computation is stopped.

A. Cost-to-Go Approximation

In receding horizon control, the selection of a suitable cost-to-go
function is a key issue. Ideally, the cost-to-go function would equal
the optimal cost to go commonly referred to as the value function. For
simple optimal control problems, it is obtained as the solution
of the related Hamilton–Jacobi–Bellman (HJB) partial differential
equation [9]. Unfortunately, the HJB equation is practically
impossible to solve for the problem at hand. Therefore, an
approximation must be used.

Standard approaches for the selection of the approximate cost to
go include the problem approximation, the rollout approach, and the
heuristic cost-to-go approximation [20]. In the problem approx-
imation, the cost-to-go approximation is based on a solution of a
related but simpler problem that is analytically or computationally
tractable. In the rollout approach, the cost to go is obtained as the cost
of some suboptimal control sequence referred to as base policy. In the
heuristic cost-to-go approximation, the cost to go is approximated
with a function of the current state and a set of parameters, whose
shape can be adjusted by the parameters.

For the problem at hand, efficient base policies are hard to find
without extensive simulations. We therefore apply cost-to-go
functions derived by the problem approximation and the heuristic
cost-to-go approximation that can be evaluated fast with little
computational effort. In some cases, we set the cost to go equal to the
terminal cost function ’.

1. Capture Time

The integral term of Eq. (60) is now constant T and does not affect
the optimal solution. The true cost to go is the remaining flight time,
that is, time to go, which is estimated here by dividing the distance to
the target set by the closing velocity. Thus, the performance measure
is of the form

~J k�u� � �r�tk � T� � rf�=vc�tk � T� (64)

2. Closing Velocity

Obviously, the minimization of the mere closing velocity at the
end of the planning horizon results in evasion. We therefore define
the cost-to-go function equal to Eq. (48). The eligibility of this choice
is also supported by the numerical results in Sec. V.B. The
performance measure is of the form

~J k�u� � vc�tk � T� (65)

3. Miss Distance

Two main elements affecting the performance of the missile are
the kinetic energy and the dynamic delay of the guidance channel of
the missile [24]. After the propulsive phase, the energy advantage of
themissile is, however, rapidly diminished by the aerodynamic drag.
It is therefore reasonable for the aircraft to first decrease the energy
advantage of the missile by an outrun maneuver. If the outrunning is

not sufficient, the aircraft has to take advantage of the dynamic delay
of the guidance channel.

Because the maximization of the mere relative distance at the end
of the planning horizon results in an outrun maneuver, we again
define the cost to go equal to the terminal cost function, obtaining the
performance measure

~J k�u� � r�tk � T� (66)

Application of the above performance measure results in solutions
where the aircraft tries to outrun themissile at long ranges. At shorter
ranges, the presence of the terminal constraint (50) results in a weave
maneuver that maximizes the miss distance. The validity of Eq. (66)
is again supported by the numerical results presented in Sec. V.B.

4. Control Effort

The integral term of Eq. (60) corresponds now to the value of
Eq. (51) over the planning horizon. The cost-to-go function is
approximated by integrating the instantaneous lateral acceleration at
the end of the planning horizon over the estimated time to go, that is,

~J k�u��

Z

tk�T

tk

a�t�dt�a�tk�T��r�tk�T��rf�=vc�tk�T� (67)

5. Gimbal Angle

Here, the cost-to-go function is constructed by noting that the
angular tracking rate, contributing to the gimbal angle, is primarily a
function of target acceleration. Because the acceleration of the
aircraft is typically maximized by diving [1], the trajectories
decreasing the altitude of the aircraft are preferred. Hence, in addition
to using the terminal cost function, we use a terminal penalty that
compels the aircraft to dive. The performance measure is of the form

~J k�u� � ��tk � T� � �ek�a�tk�T� � 1��1 (68)

where k > 0 defines the steepness of the dive and �a denotes theflight
path angle of the aircraft. Small values of k result in vertical nose-
down breaks whereas larger ones produce more horizontal
trajectories. Consequently, small values of k are applicable only
with relatively high initial altitudes that permit vertical dive
maneuvers.

6. Angular Tracking Rate

We again define the cost to go equal to the terminal cost, which
appears to work well especially with longer planning horizons, see
Sec. V.B. The performance measure is of the form

~J k�u� � !�tk � T� (69)

B. Numerical Solution

The optimal control problems (60–63) can be solved by any direct
method [25], where the principal idea is to convert the optimal
control problem into a parameter optimization problem that can be
solved by a nonlinear programming (NLP) solver [19]. Here, we use
the direct shooting method [19], where the conversion is carried out
by discretizing the time

tk � t0k < t1k < � � �< tNk � tk � T (70)

and parametering the controls of the aircraft u�tik� � ui, where
i� 0; . . . ; N. The state equations are then integrated explicitly by
using the parameterized controls except for the lateral accelerations
of the missile where the exact solution is used. Here, the above
conversion method results in a relatively small NLP problem since
first, the number of control variables ismuch smaller than the number
of state variables, and second, the defect constraints for the state
variables are omitted due to the explicit integration of the state
equations.
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Instead of applying uniform time steps, we define

ti�1
k � tik ��t� qi�t; i� 0; . . . ; N � 1 (71)

where q � 0 determines the growth rate of the time interval toward
the end of the planning horizon. This enables utilization of a longer
planning horizonwith less number of control variables which further
reduces the size of the resulting NLP problem.

The resulting NLP problem can be stated as minimize/maximize
the objective function

F�u0; . . . ;uN�1� �
X

N�1

i�0

L� �xi;ui; t
i
k��t

i�1
k � tik� � V� �xN; t

N
k � (72)

subject to

g � �xi;ui; _ui; �ui� 	 0; i� 0; . . . ; N (73)

h� �xN� � 0 (74)

where the state of the system at ti�1
k , denoted by �xi�1, is obtained by

integrating the state equations (61) one time step forward with a
suitable explicit numerical integration technique by applying the
control vector ui with the initial state �xi, where �x0 � xk. Constraints
(73) and (74) refer to Eqs. (62) and (63), respectively, where the
control rate and acceleration vectors denoted by _ui and �ui are
approximated by finite differences as described in the following.
Terminal constraint (74) is included only if the missile is expected to
reach its target set at the end of the planning horizon. Then, a uniform
step length is applied where the length of the interval is specified by
the free final time.

The control rate and angular acceleration constraints (11–14) are
handled approximatively as follows. The first and the second time
derivatives of the angle of attack and the bank angle are replaced by
finite difference approximations. By substituting the approximations
into Eqs. (11–14), the following constraints for consecutive values of
the angle of attack and the bank angle are obtained at time instant tik:

�i�1 � �i

ti�1
k � tik

� _��a;i cos�i � _��a;i cos ��a;i sin�i �Qmax 	 0 (75)

�
�i�1 � �i

ti�1
k � tik

� _��a;i cos�i � _��a;i cos ��a;i sin�i �Qmax 	 0 (76)

�i�1 � �i

ti�1
k � tik

� Pmax��i; �ha;i;M� �ha;i; �va;i�� 	 0 (77)

�
�i�1 � �i

ti�1
k � tik

� Pmax��i; �ha;i;M� �ha;i; �va;i�� 	 0 (78)

and

�i�1 � 2�i � �i�1

�ti�1
k � tik�

2 � ��max 	 0 (79)

�
�i�1 � 2�i � �i�1

�ti�1
k � tik�

2
� ��max 	 0 (80)

�i�1 � 2�i � �i�1

�ti�1
k � tik�

2 � _Pmax 	 0 (81)

�
�i�1 � 2�i � �i�1

�ti�1
k � tik�

2
� _Pmax 	 0 (82)

The control rate limits will be satisfied only approximatively,
because they are nonlinear with respect to the state variables. The
accuracy of the approximation can be improved by using shorter
integration time steps.

V. Numerical Examples

In this section, the receding horizon control scheme is demon-
strated with the performance measures introduced in Sec. IV. In the
first example, solutions related to each performance measure are
illustrated with the optimal open-loop trajectories. Convergence of
the receding horizon solutions toward the optimal open-loop ones is
also demonstrated. In the second example, receding horizon and
optimal open-loop solutions for a set of initial states are visualized
with level curves. In the third example, the computation times and the
quality of the receding horizon solutions are analyzed by comparing
them to the optimal open-loop ones.

The aircraft and the missile models correspond to a generic fighter
aircraft and a generic medium range air-to-air missile. The initial
values of the angle of attack, bank angle, and throttle setting are set to
�0 � 0, �0 � 0, and �0 � 1, respectively. The maximum angle of
attack, maximum pitch rate, and maximum angular accelerations of
the angle of attack and bank angle are set to �max � 32 deg,

Qmax � 25 deg s�1, ��max � 40 deg s�2, _Pmax � 120 deg s�2. The
minimum altitude, maximum dynamic pressure, and maximum load
factor of the aircraft are initialized to ha;min � 500 m, qmax�
80 kPa, and na;max � 9, respectively. The navigation constant and
maximum load factor of the missile are set to N0 � 4 and
nm;max � 40, respectively. The aircraft employs an afterburner. The
thrust force of the missile is defined as

Tm�t� �

�Tb; 0 	 t 	 3 s

Ts; 3< t 	 8 s

0; t > 8 s

(83)

Consequently, the mass of the missile mm�t� first decreases
piecewise linearly and remains thereafter constant.

We set �t� 0:25 s, q� 0:25, and N � 2, 4, 6 that according to
Eq. (71) results in the planning horizons ofT2 � 0:56 s,T4 � 1:38 s,
and T6 � 2:44 s, respectively. For a better performance, �t is
doubled in themaximization of the control effort, which also doubles
the length of the planning horizon. In Eq. (68), we set k� 100.
Except for the miss distance maximization, the final distance
between the aircraft and the missile is initialized to rf � 100 m.

In the NLP problem (72–74), the state equations are integrated
numerically with the explicit Euler’s method. At each decision
instant, the state of the system is updated by using the fourth-order
Runge–Kutta method [25] which is also applied in the solution of the
optimal open-loop solutions by the direct multiple shooting method.
In the open-loop optimization, equidistant integration steps are used.
The step size is determined by the initial iterate computed by the
receding horizon control scheme. Because the final time is free, the
step size does not necessarily coincide with the interval �t, but
remains nearby it. The NLP problems are solved with SNOPT [26]
solver that uses a sequential quadratic programming (SQP) algorithm
[27]. The computations are performed by using a desktop computer
equippedwith a 3.20GHz clock frequencyPentiumDCPUand2GB
of memory.

A. Example 1

At first, we analyze receding horizon and optimal open-loop
solutions for a single initial state. The initial altitudes and the
velocities of the aircraft and themissile are ha0

� hm0
� 6000 m and

va0 � vm0
� 250 ms�1, respectively. We also set xm0

� 10; 000 m,
xa0 � 0, ya0 � ym0

� 0, and �a0 � �m0
� 0. The initial headings of

the aircraft and the missile are set to �a0
� 45 deg and
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�m0
� 178 deg. Hence, the missile is launched toward the aircraft

with a small lead angle.
The optimal open-loop trajectories of the aircraft and the missile

for the different performance measures are presented in Fig. 1.
Figure 1a illustrates that the maximization of the capture time results
in a trajectory in which the aircraft immediately turns away from the
closing missile and tries to outrun it. Comparison to Figs. 1b and 1c
reveals that irrespective of the utilized performance measure, the
solutions are similar except for the endgame. In the minimization of
the closing velocity as well as in the maximization of the miss
distance, the aircraft starts toweave in the end,whereupon themissile
must use larger lateral acceleration. This increases the missile drag
force which in turn decreases the closing velocity. On the other hand,
a weave maneuver initiated at the proper time before the interception
maximizes the miss distance due to the dynamic lag in the missile
guidance system [7].

With the other three performancemeasures, the aircraft tends tofly
toward the closing missile instead of outrunning as illustrated in
Figs. 1d–1f. In the maximization of the control effort, the aircraft
curves toward the missile which compels the missile to attain

relatively large lateral accelerations over the duration of the flight. In
the maximization of the gimbal angle, the aircraft tries to increase its
acceleration by diving as well as to maintain the bearing
perpendicular to the missile during the flight. The missile must use
large lateral accelerations during the last second of the flight which
increases the gimbal angle in the end. The maximization of the
tracking rate results in a similar solution. In the end, the aircraft
performs a high-g roll maneuver that rapidly increases the tracking
rate.

To summarize, the aircraft dives in the optimal solutions
irrespective of the performance measure as presented in Fig. 1. This
is understandable, because the drag of the missile is increased at
lower altitudes. Because the limitations of the missile can be best
exploited with low closing velocities, the reason for decreasing the
altitude is obvious. The aircraft also avails larger thrust force at lower
altitudes which is useful considering the outrunning of the missile.
The solutions accord with usual evasive tactics performed by the
fighter pilots where a typical maneuver consists of an immediate
break turn followed by a dive maneuver and weaving during the
endgame [1].
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f) Tracking rate

Fig. 1 Optimal open-loop trajectories with different performance measures.

KARELAHTI, VIRTANEN, AND RAIVIO 1293



The receding horizon controls of the aircraft with the planning
horizons T4 and T6 as well as the optimal open-loop controls are
presented in Figs. 2–4. Figures 2–4 indicate convergence toward the
optimal open-loop solution as the planning horizon is extended. In

most cases, efficient solutions are obtained already with a short
planning horizon. However, short planning horizons do not appear to
work well in the maximization of the miss distance and the tracking
rate; see the values of the performance measures in Figs. 3a, 3b, 4a,
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Fig. 2 Control histories of the aircraft; capture time a)–c), closing velocity d)–f). The maximum levels of �, �, and � equal 32 deg, 180 deg, and 1.0.

t[s]

C
o

n
tr

o
ls

η
α

µ
0

0 4 8 12 16

a) T = T4, r(tf ) = 1.36 m

t[s]

C
o

n
tr

o
ls

η
α

µ
0

0 4 8 12 16

b) T = T6, r(t f ) = 2 .24 m

t[s]
C

o
n
tr

o
ls

η

α

µ

0

0 4 8 12 16

c) T = tf , r(t f ) =14 .60 m

t[s]

C
o

n
tr

o
ls

η
α

µ0

0 4 8 12

d) T = T4, a = 717.99 ms− 1

t[s]

C
o

n
tr

o
ls

η

α

µ

0

0 4 8 12

e) T = T6, a =933 .45 ms− 1

t[s]

C
o

n
tr

o
ls

η

α

µ

0

0 4 8 12

f) T = tf , a =1024.83 ms− 1
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and 4b. This is intuitively clear especially in the first case, where the
proper initiation and the duration of the endgame evasion maneuver
is critical. A short planning horizon alongwith the utilized cost-to-go
approximation simply do not allow long enough endgame evasion
maneuvers to achieve acceptable miss distances. It should be noted
that in the optimal solution for the miss distance maximization, the
load factor limit (17) prevents the saturation of the angle of attack to
its upper bound in the endgame.

B. Example 2

Let us next analyze solutions computed for a set of initial states
described in the following. The initial states are the same as in
Example 1 except for the distance and the headings. The missile is
launched toward the aircraft at the distances of xm0

� 2000, 3000,
. . ., 20,000 m, where the initial headings of the aircraft are set to
�a0

� 0; 15; . . . ; 180 deg for each range. Consequently, the number
of initial states equals 247. The initial headings of the missile are
given by

�m0
� 180 deg� arcsin

va sin�a0

vm
e�0:0003�xm0

�2000� (84)

where the arcsine term corresponds to the theoretical lead angle
which would lead the missile to the nominal collision point if the
aircraft and the missile continued to fly along straight-line paths at
constant velocities [7]. Here, we use va � va0 and vm � 2vm0

to
anticipate the increase in the velocity of the missile due to the boost
and sustain phases. The exponential term in Eq. (84) decreases the
lead angle as the launch distance is increased.

In Figs. 5–7, level curves of the receding horizon and optimal
open-loop solutions are presented. In the figures, the aircraft lies in
the origin and flies to the right. The missile is launched toward the
aircraft with an appropriate lead angle. The initial range and direction
of the missile are given by r and �, respectively. Since suboptimality
of the solutions would result in somewhat serrated level curves, the
computed performance levels are approximated by suitable
continuous and smooth functions. Because of the approximation,

the boundaries of the envelopes are not necessarily precisely
accurate.

Figures 5a–5c indicate that in the maximization of the capture
time, solutions of good quality are obtained with a short planning
horizon irrespective of the launch range and launch direction.
According to Fig. 5c, themaximum launch range of themissile is 11–
16 km depending on the launch direction. The launch range is largest
for a head-on launch and smallest when the missile is launched
directly behind the aircraft.

Figures 5d and 5f suggest similar results for the minimization of
the closing velocity as above. Near-optimal solutions are again
achievedwith a short planning horizon. Note that the optimal closing
velocity peaks at the launch range of about 5 km. At shorter ranges,
the duration of the encounter falls below the boost and sustain time of
the missile. Consequently, the missile does not achieve its maximal
velocity which decreases the closing velocity. Comparison of
Figs. 5c and 5f indicates that the maximization of the capture time
and the minimization of the closing velocity yield almost similar
maximum launch ranges.

In the maximization of the miss distance, the miss distances fall
notably below the optimal ones with a short planning horizon (see
Figs. 6a and 6c). This is evident especially for the front sector
launches. However, with short ranges where the speed advantage of
the missile is not yet overwhelming, miss distances near the optimal
ones are obtained alsowith a short planning horizon. As the planning
horizon is extended, the achievedmiss distances close on the optimal
open-loop ones (see Figs. 6b and 6c). Figures 6a–6c indicate that the
miss distances are smallest if the missile is launched almost head-on
at the range of 5–10 km.

A short planning horizon does not appear to yield efficient
solutions in the maximization of the control effort (see Fig. 6d).
However, extending the planning horizon again improves the
performance level as illustrated in Fig. 6e. Comparison to Fig. 6f
reveals that the gap to the open-loop optimal solutions is still notable.
Figure 6f indicates that in general, larger control efforts are achieved
for rear sector launches when the aircraft flies initially away from the
missile.
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c) Capture time, T = t f
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Fig. 5 Level curves of the optimal capture time and closing velocity. The numbers above the horizontal axis refer to the initial range r, whereas�denotes
the direction of launch.
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Figures 7a–7c suggest that in the maximization of the gimbal
angle, near-optimal solutions are again achieved with a short
planning horizon. Figures 7a–7c indicate that the maximum gimbal
angle depends mainly on the launch range.

Considering the maximization of the tracking rate, Fig. 7d
indicates that a short planning horizon provides efficient solutions for
short launch ranges, but not for longer ones. However, application of
a longer planning horizon improves the quality of the solutions also
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a) Miss distance, T = T4
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b) Miss distance, T = T 6
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c) Miss distance, T = t f
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Fig. 6 Level curves of the optimal miss distance and control effort. The numbers above the horizontal axis refer to the initial range r, whereas � denotes

the direction of launch.
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a) Gimbal angle, T = T 4
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d) Tracking rate, T = T 4
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for longer launch ranges (see Fig. 7e). Figures 7e and 7f indicate that
the limit can be best exceeded if themissile is launched from the front
sector, that is, when the closing velocity is high whereas nearby rear
sector launches are more devastating.

To summarize, near-optimal solutions are obtained even with a
short planning horizon for such performancemeasures as the capture
time, closing velocity, and gimbal angle. For the rest of the analyzed
performancemeasures, a longer planning horizon is required. In light
of the numerical results, themissile can be avoidedmost successfully
when it is launched from the rear sector. The obvious reason is that
the aircraft is then flying away from the missile. In general, the
obtained solutions appear to be realistic and converge to the optimal
open-loop ones.

C. Example 3

We next analyze the performance of the scheme with the different
planning horizons. For a performance measure J and a given initial
state, the performance loss of a receding horizon solution is defined
as

	�
jJ�u� � J�u��j

maxfJ�u��; J�u�g
(85)

whereu denotes the receding horizon solution andu� is the optimal
open-loop solution. Instead of using J�u� in the denominator of
Eq. (85), we apply maxfJ�u��; J�u�g, which makes the definition
symmetric with respect tominimization andmaximization problems,
see [28]. Consequently, the performance loss 	 obtains values
between 0 and 1 for both kinds of problems. The average
performance loss is obtained by taking the average of Eq. (85) over
the initial states defined inExample 2 forwhich themissile reaches its
target set. The average computation times per decision instant along
with the average performance losses are presented in Table 1 for the
planning horizons T2, T4, and T6.

The results presented in Table 1 support the conclusions drawn in
Example 2. For the capture time, closing velocity, and gimbal angle,
the average performance losses are small even with a short planning
horizonwhichmeans that the obtained receding horizon solutions are
near optimal on the average.With the other performance measures, a
longer planning horizon is required. Note that the average
performance losses decrease as the planning horizon is extended, so
the solutions apparently converge to the optimal open-loop ones. In
addition, the average computation times per decision instant remain
feasible considering real-time implementation of the scheme.

VI. Implementation Aspects

In practice, the introduced computation scheme could be used as
part of a guidance system of an unmanned aerial vehicle, in the
guidancemodel of a batch air combat simulator, or in a pilot advisory
system. In these settings, the scheme would provide near-optimal
feedback controls with respect to a given performance measure.
Concerning the selection of the most suitable performance measure
for a given combat state, the performance measure could be selected
by ranking the solutions according to the optimal values of the
respective performance measures and choosing the best one. For
example, if the missile is launched outside its kinematic range, the
capture time and the closing velocity would be ranked first and either

of them would hence be selected. The optimal values of the different
performancemeasures for the current combat state could be obtained
by using off-line computed launch state maps similar to those
presented inExample 2. It should be noted that in general, the optimal
value of the performancemeasure depends on the size of themissile’s
target set, which should be taken into account in the generation of the
launch state maps. This applies especially for the gimbal angle and
the tracking rate, where better values are achieved with shorter final
distances, and vice versa.

From the practical point of view, the assumption about the
accurate state information is optimistic. In reality, a radar warning
receiver usually gives a relatively good idea of the direction of the
missile that has been launched but fails to provide accurate range
information. Probably the best estimate on the range of the missile is
often obtained by a radar acquisition of the launching platform at the
moment of firing, see [1].

The detection of the platform provides information for
maneuvering according to a worst case scenario in which it is
assumed that a highly capable missile is launched toward the aircraft
at the time of acquisition, see [14]. In this scenario, the controls of the
aircraft are optimized against the presumed threat. This is continued
until more reliable information about the state of the missile is
acquired at a certain range, after which the updated missile’s state is
fed into the receding horizon control scheme. In practice, the state of
the missile could be estimated from the uncertain measurements by
using, for example, the extended Kalman filter.

On the other hand, the range and relative velocity information
received by the missile is prone to errors as well. Especially, low
altitude and look-down of the missile expose the radar of the
missile’s seeker system to ground clutter which may cause it to
totally lose a track of the target aircraft [29]. Although these aspects
are not considered in this paper, they could be taken into account in
the scheme by suitable cost-to-go approximations inducing dive
maneuvers.

It is evident that in practical settings, avoidance tactics depend
strongly on the type and the guidance law of the missile. Because of
the uncertainty regarding these issues, the assumptions about them
should be updated as the missile closes on the aircraft. For example,
the assumption about the guidance law could be represented as a
discrete probability distribution over a set of predefined guidance
laws. The probability distribution could then be updated on the basis
of different features derived from the trajectories of the vehicles
using a similar Bayesian network than in [5,6]. Suitable features
include the angle between the line-of-sight vector and the velocity
vector of the missile, and distance of the missile from the guideline
directed from the launcher to the target aircraft. Because the values of
the above features are typically distinct for different guidance laws,
they provide the basis for the updating. The Bayesian network could
also be extended to cover the uncertainty regarding the missile type
as well. Obviously, the measurement of the above features can be
challenging. The estimates for the features could be obtained from
the state measurements by using the extended Kalman filter which
could also be incorporated in the Bayesian network [30].

It should be noted that due to the computational delay, the controls
related to a particular initial time of a truncated horizon optimization
problem are outdated when the optimization is finished. Therefore,
instead of applying the first controls of the optimal control sequence,
one should implement the controls related to a particular initial time
plus the computational delay. Moreover, one could continue using
the obtained control sequence until the new one is available.

The computational delay could be possibly decreased by
constructing effective base policies, that is, predefined suboptimal
control sequences, and using them as initial iterates in the solution of
the NLP problem (72–74). For example, in the miss distance
maximization the optimal endgame maneuver is typically a weave
maneuver initiated at the proper instant. These policies could be
computed off-line for different time to go’s and closing velocities and
use them as initial iterates in the scheme. This could effectively
shorten the convergence times of the SQP algorithm, enabling the
utilization of longer planning horizons with reasonable computation
times.

Table 1 Average computation times per decision instant and average

performance losses

T2 T4 T6

Criterion �t, s �	 �t, s �	 �t, s �	

Capture time 0.044 0.030 0.096 0.022 0.219 0.009
Closing velocity 0.044 0.117 0.098 0.105 0.222 0.094
Miss distance 0.027 0.591 0.084 0.425 0.232 0.219
Control effort 0.045 0.319 0.159 0.314 0.447 0.161
Gimbal angle 0.035 0.143 0.147 0.142 0.389 0.097
Tracking rate 0.036 0.701 0.127 0.565 0.316 0.267
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It is possible that the applied cost-to-go approximations produce
locally optimal solutions. For example, in Fig. 1d, the aircraft flies
toward the missile although in general, larger control efforts are
obtained for rear sector launches (see Fig. 6f). This implies the
possibility of another local optimum where the aircraft at first turns
away from the missile. Also, in short range head-on settings, near-
optimal solutions could possibly be obtained by flying toward the
missile and performing a suitable endgame maneuver. Cost-to-go
approximations resulting in these kinds of solutions could be
constructed for different settings on the basis of the optimal open-
loop solutions. For example, turning away from the missile can be
induced, for example, by maximizing the relative distance between
the vehicles.

In this paper, the vehicle dynamics are modeled by using point-
mass models but also more complex aerodynamic models could be
applied as well. This would obviously increase the computational
burden because a short integration step is required for realistic
modeling of the rotation dynamics. It should also be pointed out that
the accuracy of the optimal open-loop solutions over the planning
horizon is not crucial, because only the first controls or the initial part
of the obtained control sequence are applied at each decision instant.

In the aircraft model applied in this paper, the angle of attack and
the roll acceleration limits are assumed constant. In principle,
rotational dynamics could be approximated by the first-order transfer
functions with suitable time constants. Consequently, at a particular
state, for example, the maximum roll acceleration would be given as
a function of the current and maximum roll rates. However, this
would result in an intractable optimization model due to the
massively increased nonlinearity of the control constraints.
Moreover, the computation scheme and the vehicle models
presented in the paper appear to produce sufficiently realistic
solutions concerning the utilization of the guidance scheme in
practice.

Finally, the missile model could be expanded by introducing a
more realistic autopilot model. For example, if the exceeding of the
gimbal angle limit is imminent, the lock-off could be tried to be
prevented by adding an intentional bias signal to the guidance
command. In addition, it is possible to append various loft schemes in
the autopilot model.

VII. Conclusions

A new computation scheme based on receding horizon control is
introduced and applied in the solution of a pursuit–evasion problem
between a medium range air-to-air missile and a fighter aircraft. As a
result, near-optimal controls of the aircraft are obtained in feedback
form. In the computation scheme, the optimal open-loop controls of
the aircraft over a truncated planning horizon are solved at each
decision instant by the direct shooting method. For short planning
horizons, the computation can be carried out in real time by a desktop
computer. The numerical results presented in the paper indicate that
application of even relatively short planning horizons results in
efficient solutions with such performance measures as the capture
time, closing velocity, and gimbal angle. For the miss distance,
tracking rate, and control effort of the missile, a planning horizon of
several seconds is required. The introduced scheme could be used,
for example, as a part of a guidance system of an unmanned aerial
vehicle as well as in the guidance model of a batch air combat
simulator, or in a pilot advisory system. In addition to air-to-air
missile avoidance, the scheme could also be applied in surface-to-air
missile encounters.
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