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A new approach towards the automated solution of realistic near-optimal

aircraft trajectories is introduced and implemented in a software named

Ace. In the approach, the optimal open-loop trajectory for a three degree-

of-freedom aircraft model is first solved by using direct multiple shooting.

Then, the obtained trajectory is inverse simulated with a more sophisticated

five degree-of-freedom performance model by using an integration inverse

method based on Newton’s iteration. The trajectories are evaluated visually

and by analyzing errors between the trajectories. If the errors remain within

a suitable application-specific tolerance, the inverse simulated trajectory can

be considered a realistic near-optimal trajectory that could be flown by a real

aircraft. Otherwise, the parameters affecting the optimization and inverse

simulation are altered and the computations are repeated. The example

implementation of the approach, the Ace software, contains a graphical user

interface that provides a user-oriented way for analyzing aircraft minimum

time and missile avoidance problems. In the software, the computation

of the optimal and inverse simulated trajectories is fully automated. The

approach is demonstrated with numerical examples by using Ace.

I. Introduction

O
ff-line computation of optimal open-loop aircraft trajectories serves numerous pur-

poses in different fields of aviation including, e.g., performance analysis of aircraft and
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routing of air traffic. In military aviation, the importance of aircraft minimum time trajec-

tories is widely acknowledged.1–3 In addition, optimal missile avoidance trajectories provide

crucial information about survival in threat situations.4–7

Optimal open-loop trajectories can be solved numerically by means of optimal control

theory8 and nonlinear programming.9 For the sake of tractability, the aircraft is typically

modeled as a coarse three degree-of-freedom (3-DOF) model10 that is considered sufficiently

accurate for describing translational motion. However, since the model does not take into

account rotational dynamics, the resulting trajectories are not necessarily realistic in a sense

that they could be flown by a real aircraft. Thus, the realism of the optimal trajectories

should be evaluated. This can be carried out by inverse simulation11 where a more delicate

aircraft model is used. In the inverse simulation, controls repeating the optimal trajectory

of the aircraft as well as possible are determined. If the optimal trajectory is attained well, a

realistic near-optimal trajectory is obtained. Otherwise, the underlying optimization model

should be adjusted such that more realistic trajectories will result.

Since the formulation and solution of aircraft trajectory optimization and corresponding

inverse simulation problems require expertise in the particular fields, the procedure described

above is generally unreachable for engineers, pilots, and other relevant parties not necessarily

acquainted with the underlying mathematical disciplines. We therefore introduce a novel

approach with suitable vehicle models and solution methods for carrying out the different

phases of the procedure automatically. We also present an example software implementation

of the approach. Although several software packages for the automated solution of trajectory

optimization problems exist (see Refs. 12, 13, and 14 for comprehensive reviews), none of

them provides the assessment of the optimal trajectories.

In the optimization phase of the approach, an enhanced 3-DOF model4 is utilized where

rotational kinematics of the aircraft are taken into account by imposing limits on the angular

velocities and accelerations.4 In general, trajectory optimization problems can be solved

either by indirect or direct methods. The former methods solve a two- or multipoint boundary

value problem given by the necessary conditions for optimality, whereas the latter ones

solve a nonlinear programming problem resulting from the discretization of the original

problem.15 Due to the advantages of the direct methods in comparison to the indirect

ones such as robustness and straightforward treatment of path constraints,15,16 the direct

methods are utilized in the approach. A number of techniques exists for converting an

infinite dimensional trajectory optimization problem into a finite dimensional parameter

optimization problem, including, e.g., direct shooting,17 direct multiple shooting,15 direct

collocation,18 and differential inclusion.19 In the approach, the direct multiple shooting

method is used, since the resulting nonlinear programming problems are modest-sized for

the aircraft trajectory optimization problems at hand. Although the method is robust, an
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initial iterate of the solution is required to start the optimization. A decent initial iterate is

obtained via receding horizon control.20,21

The inverse simulation is carried out by using a 5-DOF performance model that is compa-

rable in realism to high-fidelity 6-DOF models when the fundamental dynamics are modeled

correctly.22 In general, performance models have several benefits over 6-DOF models. The

aircraft is characterized by a small set of parameters that can be estimated also for the equip-

ment with no publicly available data. In addition, performance models are computationally

less complicated than 6-DOF models. Techniques for solving inverse problems include, e.g.,

manual construction of near-optimal controls on the basis of the optimal solution,23 formu-

lation of the inverse problem as a tracking problem and solving it using receding horizon

control,24 and differentiation inverse methods.25,26 The inverse simulation scheme utilized

in the introduced approach is based on the integration inverse method presented in Refs. 27

and 11 and later successfully applied, e.g., in Refs. 28 and 29. It is robust and self-contained,

and thereby suitable for the automated solution.

In the approach, the evaluation of the trajectories consists of the visual comparison of

the optimal and inverse simulated trajectories as well as the analysis of the errors between

the trajectories. Based on the evaluation where the expertise on aeronautics is utilized, the

inverse simulated solution is either accepted as similar enough to the optimal solution, or

rejected. In the first case, a realistic near-optimal aircraft trajectory is obtained, whereas in

the latter case, the parameters affecting the optimization and inverse simulation are adjusted,

and the computations are repeated. We introduce a set of adjustable parameters intelligible

to the end user, explain their effects on the solutions, and give guidelines for adjusting

them such that the correspondence between the resulting optimal and inverse simulated

trajectories can be increased.

The approach is implemented in a software named Ace which solves various aircraft

minimum time and missile avoidance problems. Specifically, the aircraft minimum time

problems consist of the minimum time climb to a specified final altitude and velocity1 as well

as of the minimum time flight to a given final state.30 In the missile avoidance problems, the

available performance measures are the capture time, closing velocity, miss distance, gimbal

angle, tracking rate, and control effort of the missile. The feedback guidance law of the

missile can be selected from the pure pursuit, command to line-of-sight, and four variants of

proportional navigation.31

Ace provides an easy to use graphical user interface (GUI) that has been implemented

with MATLAB32 and it operates in Microsoft Windows XP. In Ace, different vehicle types

are characterized by a set of parameters given as tabular data in the vehicle type files. The

same file describes both 3-DOF and 5-DOF aircraft models. The end user of Ace only needs

to specify the type files, performance measure, guidance law of the missile, required boundary
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conditions, and adjustable parameters and start the optimization or inverse simulation. The

obtained trajectories can be studied via various graphs and a real-time 3-D animation. Since

the computational phases are fully automated, the end user is not required to be familiar

with concepts of optimal control theory, nonlinear programming, and inverse simulation.

The paper is structured as follows. In the following section, the approach for the au-

tomated solution of realistic near-optimal aircraft trajectories is introduced. The vehicle

models, optimization and inverse simulation methods, evaluation of the trajectories, and

adjustable parameters are presented and their suitability for the approach is explained. The

Ace software is introduced in Section III, followed by numerical examples demonstrating the

approach using Ace in Section IV. Finally, concluding remarks appear in Section V.

II. Automated approach

The solution of a realistic near-optimal trajectory begins by the definition of the prob-

lem. The problem is defined by choosing the performance measure, state equations of the

vehicles, control and path constraints related to the vehicle models, boundary conditions,

and performance parameters of the vehicles (see phase 2 in the flowchart presentation of the

approach in Fig. 1). Then, the optimal trajectory is solved (phases 3–7), the optimal trajec-

tory is inverse simulated (phases 8–10), and the obtained trajectories are evaluated (phase

11). Based on the evaluation, the inverse simulated trajectory is either accepted sufficiently

similar to the optimal one, or rejected (phase 12). In the first case, a realistic near-optimal

trajectory is obtained (phase 13), whereas in the latter case, the parameters affecting the

optimization and inverse simulation are adjusted, and the loop is repeated (phase 3). The

phases are explained more precisely in the following subsections.

A. Optimization

1. Vehicle models

In the optimization, the motions of the aircraft and the missile are described by using 3-DOF

vehicle models10 that are computationally tractable yet sufficiently accurate for describing

translational dynamics of the vehicles. The different vehicle types are characterized by a

set of model parameters, whereupon the state equations of the vehicles can be fixed. The

state equations of each vehicle consist of six nonlinear first-order differential equations that

describe the movement of a point-mass in three dimensions. The state of the vehicle i = a, m

denoting the aircraft and the missile, respectively, is given by xi, yi, and hi that refer to the

horizontal coordinates and altitude, respectively, and flight path angle γi, heading angle χi,

and velocity vi. The aircraft is guided by the angle of attack α ∈ [0, αmax] that controls the
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Solve a realistic near-optimal trajectory

Define the problem

• Performance measure

• State equations

• Control and path constraints

• Boundary conditions

• Vehicle parameters

Adjust optimization parameters

Compute initial iterate

• Receding horizon control

• Direct shooting

Initial iterate

Compute optimal trajectory

• Direct multiple shooting

Optimal trajectory
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Compute inverse simulated trajectory

• Integration inverse method
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Figure 1. Flowchart presentation of the automated approach.
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lift force normal to the velocity vector, bank angle µ ∈ R that directs the lift force away from

the vertical plane, and throttle setting η ∈ [0, 1] that controls the tangential acceleration.

For improved realism, rotational kinematics of the aircraft are taken into account by

imposing limits on the angle of attack rates and accelerations as well as on the roll rates and

accelerations.4 The model also includes control and path constraints that prevent stalling,

exceeding the maximum load factor and dynamic pressure limits, and violation of the mini-

mum flight altitude.

The missile is guided by the pitch and yaw acceleration commands apc and ayc, and

the dynamics of the guidance system are modeled as two independent first-order systems for

each guidance channel. The acceleration commands are limited in order to prevent structural

damage and stall. The missile has a boost-sustain propulsion system. The vehicle models

are presented in detail in Ref. 4.

2. Optimization method

Basically, trajectory optimization problems can be solved using indirect or direct methods.15

The indirect methods solve a two- or multipoint boundary value problem given by the nec-

essary conditions for optimality.8 Although these methods provide accurate solutions, they

suffer several disadvantages that make them unappealing for an automated solution proce-

dure. First, they require the derivation of the necessary conditions, which is inconvenient for

the complicated nonlinear dynamics at hand. Second, for problems with path constraints,

the number and sequence of constrained and unconstrained arcs must be predetermined. Fi-

nally, indirect methods have typically small convergence domains, whereupon a good initial

iterate of the solution including also an adjoint trajectory with no physical interpretation

should be available.16

With the direct methods, the above preparations are unnecessary. In addition, the direct

methods are less sensitive to the initial iterate needed to start the optimization than the

indirect ones.15 These features make the direct methods suitable for the automated approach.

In the direct methods, the trajectory optimization problem is converted into a nonlinear

programming (NLP) problem which is solved using an NLP algorithm. The conversion is

carried out by discretizing the time domain, and evaluating the control and state variables

at the discrete instants. The state equations are approximated by a suitable discretization

scheme. The control and path constraints as well as the performance measure are evaluated

at the discrete instants.17

In the automated approach, the optimal open-loop trajectories are solved using the direct

multiple shooting method (phase 6 in Fig. 1). The method is robust also with a large number

of discrete instants, which makes it suitable for solving the aircraft trajectory optimization

problems at hand. The resulting NLP problems are solved using sequential quadratic pro-
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gramming9 (SQP), which is the most prominent method for solving discretized trajectory

optimization problems.33 In addition, gradients utilized by the SQP algorithm are eval-

uated numerically by using finite difference approximations. It is worth noting that the

derivation of analytic gradients would be insurmountable due to the interpolated vehicle pa-

rameters and the utilized discretization methods. Moreover, on the basis of computational

experience, numerically evaluated gradients appear to be sufficiently accurate. The initial

iterate required by the direct multiple shooting method is computed with the receding hori-

zon control (RHC) scheme (phase 4 in Fig. 1) introduced in Ref. 4 which has proven to

provide competent suboptimal solutions for various missile avoidance problems. Although

global optimality cannot be assured for open-loop solutions computed by the direct multiple

shooting method, converged solutions are likely in the vicinity of the global optimum due to

near-optimal initial iterates, see Ref. 4.

In RHC, the control at the current state and instant ti = i∆t is obtained by solving

the optimal control history of the aircraft over a limited planning horizon T . Above, ∆t

denoting the interval between two instants is hereafter referred to as the receding horizon

step size. The optimization is performed with respect to the original performance measure

over the planning horizon added by a suitable cost-to-go approximation over the remaining

portion of the trajectory. Then, the state of the system is updated by implementing the

resulting optimal control at the current state and time for the interval ∆t. Starting from the

initial state x0 and time t0, the computation is repeated at each instant, until the terminal

boundary condition is satisfied. The final time is then given by tf = N∆t, where N equals

the number of intervals in the obtained suboptimal solution.

The optimal controls from the instant ti over the planning horizon T are solved numeri-

cally by the direct shooting method17 which is robust and fast when the number of instants

remains small. The trajectory optimization problem over the interval T is converted into an

NLP problem by discretizing the time ti+j = ti + j∆t, j = 0, . . . , M , where M is selected

such that M∆t = T , and evaluating the controls of the aircraft uj ≡ u(ti+j) at the instants.

The resulting NLP problem consists of the objective function

F (u0,u1, . . . ,uM) =
M−1
∑

j=0

∆t

2
[L(xj+1,uj+1, ti+j+1) + L(xj ,uj, ti+j)] + V (xM , ti+M) (1)

to be minimized/maximized subject to the control and path constraints

g(xj ,uj) ≤ 0, j = 0, . . . , M (2)
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The state of the system at ti+j+1, denoted by xj+1 ≡ x(ti+j+1), is calculated as

xj+1 = xj +

∫ ti+j+1

ti+j

f(x(t),uj , t)dt (3)

where f refers to the state equations and x0 equals the state of the system at ti. In (3), the

integral is evaluated by using an explicit integration scheme. In (1), L and V denote the

integrand of the performance measure and the cost-to-go approximation function, respec-

tively. The RHC scheme produces a discrete suboptimal solution over the time domain of

the problem ti = i∆t, i = 0, 1, . . . , N .

The solution provided by the RHC scheme is used as an initial iterate in the direct

multiple shooting method utilized in the open-loop optimization over the time domain of the

problem. Here, the performance measure is similar to (1) except for that the summation is

performed over the instants ti, i = 0, 1, . . . , N , and the cost-to-go approximation function V is

excluded. Since the final time tN is typically free in aircraft trajectory optimization problems,

the uniform step size utilized in the open-loop optimization given by ∆T = (tN − t0)/N and

hereafter referred to as the multiple shooting step size, does not necessarily coincide with

the receding horizon step size ∆t.

In the direct multiple shooting method, the time domain is broken into N/k segments

[t0, tk], [tk, t2k], . . . , [tN−k, tN ], each of them containing k time intervals. The method requires

the introduction of NLP variables for the states at the boundary instants of the segments

tjk, denoted by xjk ≡ x(tjk). The shooting method described above is then applied within

each segment j from the initial state x(j−1)k. The continuity of the state trajectory over the

segment boundaries is asserted by the equality constraints xjk −xjk = 0, j = 1, . . . , N/k−1.

B. Inverse simulation

1. Vehicle models

In the inverse simulation, the dynamics of the aircraft are modeled using a 5-DOF perfor-

mance model.22 Compared to 6-DOF calculations that require a large amount of data for the

model, only a small set of parameters describing the maximum attainable agility of the air-

craft is required in performance model simulations. Since the parameters can be estimated

on the basis of the external behavior of the aircraft, the construction of different aircraft

types is straightforward.22 In addition, the 5-DOF model is computationally less expensive

than the 6-DOF model. The above aspects make the 5-DOF performance model particularly

appealing considering the introduced approach.

In the 5-DOF performance model, translational dynamics are described by using the

standard 6-DOF equations of motion without the moment equations over an inertial flat
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earth. Although the moment equations are omitted, the angular velocities and accelerations

are bounded to maintain the realism. Due to the limitations in the Euler angle presentation,

the model has additional features for attitude handling at upright positions.

The responses in aircraft pitch and roll are modeled as first-order systems with suitable

time constants and maximum angular velocities. The angle of sideslip is assumed as zero.

The aircraft is controlled by the commanded load factor nc ∈ [nc,min, nc,max], commanded roll

rate Pc ∈ [Pc,min, Pc,max] deg/s, and commanded throttle setting ηc ∈ [0, 1].

Rotational dynamics of the missile are considered negligible since they are faster than

that of the aircraft, so 3-DOF modeling is regarded appropriate here. Hence, the missile

model utilized in the inverse simulation is the same as in the optimization. However, since

the integration step size is always smaller in the inverse simulation than in the optimization,

the dynamics of the guidance system are modeled more accurately. In the inverse simulation,

the missile tracks the inverse simulated state of the aircraft.

2. Inverse simulation method

Considering the automated approach, it is important that the inverse simulation method is

robust and requires as little user interference as possible. The major disadvantage of the

differentiation inverse methods25,26 is the sensitivity to the required initial iterate of the

solution, whereas the approach based on the manual construction of near-optimal controls

presented in Ref. 23 requires intensive user interference and expertise. On the other hand, the

integration inverse method11,27 has proven to be robust, self-contained, and computationally

efficient, see Refs. 28 and 29.

The inverse simulation is therefore performed by an integration inverse method (phase

9 in Fig. 1) in which the controls of the 5-DOF performance model that nullifies the error

between the desired output vector of the 3-DOF aircraft model and the achieved output

vector of the 5-DOF model are solved and implemented at each instant ti = i∆T , where ∆T

refers to the multiple shooting step size. In general, the components of the output vector

are some parameters that determine the trajectory of the aircraft. The inverse simulation is

continued until the final time of the optimal trajectory is achieved, or the terminal boundary

condition is satisfed. If there are more than one condition, a set of conditions considered

the most important is defined at first. The simulation is stopped, if a condition belonging

to this set is satisfied.

Here, the desired output vector is chosen as

yD =
[

va na µ
]T

(4)

where va, na, and µ denote the velocity, load factor, and bank angle of the 3-DOF aircraft
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model, respectively. The first two components are reasonable choices since the controls of

the 5-DOF performance model affect them in a direct relationship. The last component is

justified by the computational experience, according to which the optimal state trajectory of

the aircraft is followed better by trying to attain the bank angle instead of the roll rate as in

Ref. 28. This is due to approximating the roll rates by finite differences in the optimization,

whereupon the resulting roll rate history is not precisely accurate.

The error vector at the instant ti+1 is defined as

ε (u(ti)) = W [b (u(ti)) − yD(ti+1)] (5)

where

u(ti) =
[

ηc(ti) nc(ti) Pc(ti)
]T

(6)

is the vector of commanded controls and b denotes a mapping function from the controls

to the achieved output vector. Specifically, the mapping b is computed by integrating the

state equations of the 5-DOF performance model over the interval ∆T with u(ti) and the

simulation step size ∆τ ≪ ∆T . The components of the error vector are scaled to an equal

magnitude by a diagonal matrix of scale weights W.

At each instant ti, the controls u(ti) that drive the error vector (5) to zero are solved by

Newton’s iteration.34 A competent initial iterate is obtained from the throttle setting, load

factor, and roll rate of the optimal solution at ti+1. In the iteration round n, a new iterate

is computed as

u(n+1)(ti) = u(n)(ti) + αp(n) (7)

where p(n) denotes the search direction and α is the step length in that direction. If a

particular control limit is exceeded, the control is retained at the respective limit. The

search direction is given by

p(n) = −J
(

u(n)(ti)
)−1

ε

(

u(n)(ti)
)

(8)

where the elements of the Jacobian matrix J are approximated by using finite difference

approximations. The step length α in the search direction p(n) is computed by the Goldstein-

Armijo rule16 that approximately minimizes a merit function

M(u(n)(ti) + αp(n)) =
1

2
ε

T (u(n)(ti) + αp(n))ε(u(n)(ti) + αp) (9)

The iteration is continued until the magnitude of the error |ε
(

u(n)(ti)
)

| goes under the

desired tolerance ǫ or the number of iterations n exceeds a given limit Nmax.
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C. Evaluation of trajectories

After the optimization and inverse simulation, the obtained trajectories are evaluated vi-

sually and by analyzing errors between the trajectories. The visual evaluation consists of

comparison of the optimal and inverse simulated state and control histories with special

attention to the elements of the desired output vector, that is, the velocity, load factor, and

bank angle. In addition, the average and maximum absolute errors between the velocity, load

factor, and bank angle histories as well as the values of the terminal boundary conditions in

the inverse simulated solution are evaluated.

Comparison of the values of the performance measure provides an insight about the

accuracy of the optimal solution, that is, how well the state equations are satisfied. If the

optimal trajectory is followed well and the values of the performance measure are close to

each other, the accuracy is likely sufficient. Otherwise, the integration step size in the open-

loop optimization should be decreased according to the guidelines given in the following

subsection.

Generally, a trade-off between the differences in the optimal and inverse simulated tra-

jectories and violation of the terminal boundary conditions is required. The reason is that

although the desired states were attained almost perfectly, it is possible that due to the

more accurate integration of the state equations in the inverse simulation and differences in

the aircraft models, the propagated state of the aircraft may differ that of the optimal one.

Since the difference between the optimal and attained states may increase in the course of

the inverse simulation, the given terminal boundary condition is not necessarily satisfied. On

the other hand, it is possible that the terminal boundary condition is satisfied even though

the optimal trajectory would not be followed perfectly at some intervals.

D. Adjustable parameters

The optimization and inverse simulation methods are affected by several parameters (phases

3 and 8 in Fig. 1). We next present a set of adjustable parameters whose influence on the

solutions is intelligible, explain their fundamental effects, and give guidelines for adjusting

them.

The adjustable parameters with the default values for the optimization and inverse sim-

ulation methods are shown in Table 1. In the optimization, the relevant parameters that

affect the solution are the bounds on the angle of attack and roll accelerations, receding

horizon step size, and number of intervals within the planning horizon in the RHC scheme.

In the inverse simulation, the adjustable parameters related to Newton’s iteration are the

scale weights of the different components of the error vector.

The bounds on the angle of attack and roll accelerations depend on the aircraft type
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Table 1. Adjustable parameters.

3-DOF aircraft model Default value/range

Maximum angle of attack acceleration α̈max < 50 deg/s2

Maximum roll acceleration Ṗmax < 100 deg/s2

Optimization

Receding horizon step size ∆t [0.25, 1.0] s

Number of intervals M in the RHC scheme 1, 2, . . . , 15

Inverse simulation

Velocity scale weight Wv 0.01

Load factor scale weight Wn 0.1

Bank angle scale weight Wµ 0.3183

and the flight state. The limits presented in Table 1 apply for a generic fighter aircraft and

serve as good starting values in the optimization. In general, the respective limits should be

lowered if the load factor or bank angle histories cannot be attained due to sharp corners.

It should be noted that since the angular velocities and accelerations are approximated

with finite differences, the modeling accuracy of rotational kinematics is also affected by the

receding horizon step size ∆t.

A short receding horizon step size results in a less tractable NLP problem, but on the

other hand, if the optimal trajectory can be solved, the state equations are satisfied more

accurately, and the resulting trajectory will be easier to attain by the inverse simulation.

In the RHC scheme, the length of the planning horizon is determined by the receding

horizon step size and the number of intervals M . Overall, a longer planning horizon results

in a better initial iterate for the open-loop optimization. Suitable values of these parameters

depend on the utilized performance measure. Example values for the performance measures

implemented in Ace are described in Section III.

The scale weights are chosen on the basis of typical magnitudes of the corresponding

variables. If necessary, the scale weights can be adjusted on the basis of the inverse simu-

lated solution. For example, if the optimal load factor is not properly attained, the inverse

simulation should be repeated with an increased load factor scale weight.

III. Ace software

The approach introduced in Section II has been implemented in Ace software consist-

ing of the optimization and inverse simulation methods and vehicle models programmed

in Fortran35 as well as of a GUI implemented with MATLAB’s GUIDE tool.32 The GUI

provides a user-oriented interface for defining and solving trajectory optimization problems
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and evaluating the solutions. Since the GUI has been compiled to a stand-alone application,

MATLAB is not required in order to run the software.

In the optimization method, the NLP problems are solved with SNOPT36 solver using

an SQP algorithm with numerically evaluated gradients. The parameters characterizing the

different aircraft and missile types are given as tabular data in separate type files. The same

files are used for the 3-DOF and 5-DOF models. For the purposes of the SQP and numerical

integration algorithms, the tabular data stated in the vehicle type files are automatically

interpolated within the optimization and inverse simulation programs as differentiable func-

tions using IMSL37 routines.

A. Performance measures and guidance laws

In the current version of Ace, both the aircraft minimum time and missile avoidance problems

can be analyzed. The aircraft minimum time problems consist of the minimum time climb to

the desired altitude and velocity as well as minimum time flight to the specified final state.

In the missile avoidance problems, the performance measures are the capture time, closing

velocity, miss distance, control effort, gimbal angle, and tracking rate of the missile. Except

for the miss distance maximization where the final time is fixed by the zero closing velocity

condition, the target set of the missile is defined as a given final range to the aircraft. The

performance measures and the target set conditions are clarified in the Appendix.

In the missile avoidance problems, the feedback guidance law of the missile can be selected

from the pure pursuit31 (PP), command to line-of-sight38 (CLOS), augmented proportional

navigation31,38 (APN), ideal proportional navigation39 (IPN), pure proportional navigation31

(PPN), and true proportional navigation31 (TPN). The guidance laws are also explained in

the Appendix.

B. Parameter settings

1. Fixed settings

In the optimization method, the state equations are integrated by using the fourth order

Runge-Kutta method, whereas in the inverse simulation method, the integration is performed

using Euler’s method.16 In the direct multiple shooting method, the number of intervals

within a shooting segment is set to k = 10.

The simulation step size ∆τ is about 0.01 s such that a multiple of ∆τ coincides with the

multiple shooting step size ∆T . The simulation step size is several times smaller than the

smallest system time constant which is considered an appropriate rule for finding a suitable

step length in the missile simulation.38
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In Newton’s iteration, the error tolerance is set to ǫ = 10−5. Due to the quadratic

convergence rate of Newton’s iteration,16 the desired tolerance ǫ is achieved typically with

only a few iteration steps if the initial iterate is chosen nearby the solution, hence the

maximum number of iterations is set to Nmax = 10.

2. Adjustable parameters

Except for the receding horizon step size ∆t and the number of intervals M in the RHC

scheme, the default values of the parameters given in Table 1 are used. The values of ∆t

and M given in this subsection are based on computational experience, see Ref. 4. They

are appropriate initial settings, and if necessary, they should be altered according to the

guidelines given in Section II.D.

In the missile avoidance problems, the receding horizon step size ∆t should not exceed

0.25 s in order to model the dynamics of the missile guidance system with a sufficient

accuracy. In the aircraft minimum time problems, a step size of one second is feasible.

In the minimum time climb problem, decent initial iterates are obtained even with a short

planning horizon in proportion to the time scale of the problem, and hence M = 1 is a valid

choice. In the minimum time flight problem, a longer planning horizon is usually required,

whereupon M = 5 is an appropriate starting value. In the missile avoidance problems, a

short planning horizon can be used with the capture time, closing velocity, and gimbal angle,

and hence M = 8 is a decent default value. With the rest of the performance measures, a

planning horizon over 3 s seconds is typically required, whereupon M = 10, 11, . . . , 15 are

relevant choices.

C. Graphical user interface

The GUI of Ace consists of three panels: General data, Initial values, and Solver parameters.

The vehicle type files are selected in the General data panel shown in Fig. 2. After choosing

the files, the user can study the lift and drag coefficients as well as the maximum thrust

forces of the vehicles as surface plots.

The performance measure and the guidance law of the missile are also selected in the

General data panel. In addition, the bounds on the path constraints and the terminal

boundary conditions are specified here. The user can also redefine certain values stored in

the type files such as navigation constants of the missile. The feasibility of the inputs is

validated and if necessary, they are corrected to the respective lower or upper bounds.

In the Initial values panel, the user inputs the initial states of the vehicles as well as the

initial values of the angle of attack and bank angle. Also, the bounds on the angle of attack

and roll accelerations are specified in this panel.
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Figure 2. General data panel and the lift coefficent profile of the aircraft.

In the Solver parameters panel, the user can change the values of the adjustable parameter

for the optimization and inverse simulation methods, see Fig. 3. In addition to the adjustable

parameters presented in Section II.D, the panel contains several fields for the parameters

of the SNOPT solver. However, it is generally unnecessary to change these values. The

optimization and inverse simulation methods can be executed from this panel.

The solutions are saved in ASCII format in separate files for later analysis. The solutions

obtained from the optimization and inverse simulation can be analyzed via various graphs.

With an inverse simulated solution, the corresponding optimal solution is superimposed onto

the same graph for comparison. The user may plot 3-D trajectories as well as control, state,

and other relevant histories. Likewise, with the velocity, load factor, and bank angle histo-

ries, the average and maximum absolute errors between the optimal and inverse simulated

solutions are written out. In the minimum time climb problems, the trajectory may also

be plotted on the (M, h) plane along with the contours of the energy altitude and specific

excess power as well as the limit curves of the dynamic pressure and stalling. Finally, the

evolution of the vehicle states can be studied via a realistic real-time 3-D VRML-animation

where the viewpoint can be centered either to the aircraft or the missile, or chosen freely,

see Fig. 4. After evaluating the solutions, the user can rerun the optimization and inverse
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Figure 3. Solver parameters panel with optimization and inverse simulation outputs and
altitude histories.

simulation methods with altered parameter settings, if necessary.

IV. Numerical examples

The presented approach is demonstrated with three examples by using Ace. In the first

example, the minimum time climb is considered. In the last two examples, the approach is

demonstrated with various missile avoidance problems.

Unless otherwise stated, the parameter settings given in Table 1 and Section III.B are

used. The aircraft model utilized in the examples corresponds to a generic fighter aircraft.

The maximum angle of attack, maximum angle of attack rate, and maximum angular accel-

erations of the angle of attack and bank angle are set to αmax = 32 deg, α̇max = 25 deg/s,

α̈max = 30 deg/s
2
, and Ṗmax = 80 deg/s

2
. The minimum altitude, maximum dynamic pres-

sure, and maximum load factor of the aircraft are initialized to ha,min = 100 m, qmax = 80 kPa,

and na,max = 9, respectively. The bounds of the commanded load factor and roll rate are set
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Figure 4. Screen shot from VRML-animation.

to nc,min = −10, nc,max = 12, Pc,min = −230 deg/s, and Pc,max = 230 deg/s, respectively.

A. Example 1

We first demonstrate the approach with the minimum time climb problem. The boundary

conditions are presented in Table 2. The initial angle of attack and bank angle are set to

α0 = 0 and µ0 = 0, respectively. The inverse simulation is stopped if the attained altitude

reaches the given final altitude.

Table 2. Initial and final states of the aircraft in Example 1.

x, m h, m γ, deg v, m/s

Initial state 0 500 0, 15, 30, 45 150

Final state free 10000 free 400
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The optimal open-loop trajectories and the inverse simulated trajectory for the case

γ0 = 0 are presented in Fig. 5. In all cases, the aircraft first accelerates at low altitude in

order to exploit larger available thrust. After increasing the velocity, the aircraft rapidly

climbs near to the specified terminal altitude in order to minimize the drag, see Fig. 5. The

optimality of the trajectories can be assured by inspecting them in the (M, h) plane with

the contours of the energy altitude and SEP, see Fig. 6. Since SEP is the time derivative of

the energy altitude, the optimal trajectory should be the locus of points where the tangents

of the contours coincide.1 This is apparent here, which establishes the optimality of the

trajectories.
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Figure 5. Optimal trajectories (· · · ) and inverse simulated trajectory with γ0 = 0 (—) in
Example 1.

The average and maximum absolute errors between the optimal and inverse simulated

velocity and load factor histories as well as the final times of the solutions are summarized

in Table 3. Overall, the magnitude of the errors is small in all cases.

The resulting final altitudes and velocities in the inverse simulated solutions for the

initial flight path angles γ0 = 0, 15, 30, 45 deg are hf = 9841.2, 10000.0, 10000.0, 10000.0 m

and vf = 400.0, 398.6, 392.2, 390.0 m/s, respectively. Hence, in the first case, the given

final altitude is not achieved whereas in the last two cases, the final velocity of the inverse

simulated solution falls below the desired one.

Let us study more closely the case γ0 = 0 where the final altitude falls notably below

the desired one. The velocity, load factor, angle of attack, and pitch rate histories of the

optimal and inverse simulated solutions are presented in Fig. 7. The attained velocity and

load factor appear to somewhat lag the optimal values. This results in a drift in the aircraft

altitude, whereupon the final altitude is not achieved.
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Figure 6. Optimal trajectories (· · · ) and inverse simulated trajectory with γ0 = 0 (—) in the
(M, h) plane with the contours of the energy altitude and specific excess power and the limit
curves of the dynamic pressure and stalling in Example 1.

Table 3. Final times and the average (∆) and maximum (∆)
absolute errors in Example 1.

γ0, deg t∗f , s t◦f , s ∆v, m/s ∆v, m/s ∆n ∆n

0 97.06 97.06 2.44 8.30 0.01 0.07

15 97.70 97.51 3.13 8.20 0.01 0.07

30 98.86 96.88 3.88 7.90 0.01 0.06

45 100.96 98.38 3.92 7.60 0.01 0.05

* Optimal solution
◦ Inverse simulated solution

We next improve the inverse simulated solution for the case γ0 = 0 by following the

guidelines given in Section II.D. We first reduce the receding horizon step size to ∆t = 0.15

s which should make the desired states easier to attain. We also correct the lag in the

attained altitude by increasing the scale weight of the load factor to Wn = 1. This should

drive the attained load factor closer to the optimal one, keeping the aircraft in the desired

altitude.

The resulting optimal and inverse simulated trajectories along with the velocity and load

factor histories are presented in Figs. 8 and 9. In the latter solution, the achieved terminal
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Figure 7. Optimal (· · · ) and inverse simulated (—) histories with γ0 = 0 in Example 1.

altitude and velocity are hf = 9971.5 m and vf = 400 m/s whereas the average and absolute

errors in the velocity and load factor are ∆v = 0.63 m/s, ∆v = 2.00 m/s, ∆n = 0.003, and

∆n = 0.045, respectively. The final times of the optimal and inverse simulated solutions are

t∗f = t◦f = 97.00 s. Comparison to Table 3 and Figs. 5, 7a, and 7b reveals that the errors

between the velocity and load factor histories of the optimal and inverse simulated solutions

are now smaller, and the optimal trajectory is followed more accurately. We consider the

obtained solution acceptable.

B. Example 2

The missile model utilized in the remaining two examples corresponds to a generic medium-

range air-to-air missile. The navigation constants and the maximum load factor of the missile
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Figure 8. Optimal (- -) and inverse simulated (—) trajectories with γ0 = 0, ∆T ≈ 0.15 s, and
Wn = 1 in Example 1.
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Figure 9. Optimal (- -) and inverse simulated (—) histories with γ0 = 0, ∆T ≈ 0.15 s, and
Wn = 1 in Example 1.

are set to N = 4, k1 = 50, k2 = 25, and nm,max = 40, respectively. The boost and sustain

phases of the missile last 3 s and 5 s, respectively, whereupon the mass of the missile first

decreases piecewise linearly and remains constant thereafter.

In this example, the missile is launched towards the aircraft at the range of 8000 meters

whereas the aircraft flies initially towards the launch point at the aspect angle of 45 degrees.

The initial states of the vehicles are presented in Table 4. The inverse simulation is stopped

if the missile passes the aircraft.

Let us first consider a case where the objective of the target aircraft is to maximize the
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Table 4. Initial states of the vehicles in Example 2.

x, m y, m h, m γ, deg χ, deg v, m/s a, m/s2 a, m/s2

Aircraft 0 0 5000 0 45 250 — —

Missile 8000 0 5000 0 180 250 0 0

miss distance to a closing missile guided by IPN. In order to demonstrate the necessity of

the angular acceleration constraints in the optimization, they are excluded at first. The

optimal open-loop and inverse simulated trajectories of the vehicles and relevant histories

are presented in Fig. 10 and 11. In the optimal solution, the aircraft first turns away from

the missile and then performs a high-g weave maneuver inducing a miss distance of 16.23 m

at t∗f = 11.64 s.
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Figure 10. Optimal (· · · ) and inverse simulated (—) trajectories without the angular acceler-
ation constraints in Example 2.

According to Fig. 11, the inverse simulated trajectory appears to be unsatisfactory. The

exclusion of the angular acceleration constraints results in the bank angle and load factor

histories containing sharp corners, and the trajectories cannot be attained by the inverse

simulation. Especially in the endgame, the attained load factor and bank angle lag notably

the optimal values. Also, the optimal velocity history is not properly repeated. However,

the terminal boundary condition is satisfied, and the achieved miss distance is 1.31 m at

t◦f = 11.51 s. The average and maximum errors between the optimal and inverse simulated

velocity, load factor, and bank angle trajectories are ∆v = 0.74 m/s, ∆v = 5.50 m/s,

∆n = 0.58, ∆n = 5.73, ∆µ = 11.79 deg, ∆µ = 102.42 deg, respectively.
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Figure 11. Optimal (· · · ) and inverse simulated (—) histories without the angular acceleration
constraints in Example 2.
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We next improve the attainability of the optimal trajectory by including the angu-

lar acceleration constraints where the upper bounds are set to α̈max = 20 deg/s
2

and

Ṗmax = 80 deg/s
2
. Also, the velocity scale weight is increased to Wv = 0.1 to achieve

better performance with respect to the desired velocity.

The trajectories of the vehicles are presented in Fig. 12. The miss distances in the optimal

and inverse simulated solutions are now 13.87 m and 2.47 m, being closer to each other than

at first. Here, the difference between the miss distances are due to more frequent updating of

the missile’s guidance commands in the inverse simulation, whereupon the missile is guided

towards the target more effectively in the endgame. It is however likely that the refinement

of the discretization grid in the optimization would induce only small changes to the maneu-

vering of the aircraft. According to Fig. 13, the optimal trajectory is repeated better now.

Except for the beginning and the endgame, the 5-DOF performance model attains the opti-

mal load factor history almost perfectly, see Fig. 13b. Due to the direct relation between the

load factor and the angle of attack, the optimal angle of attack and pitch rate histories are

also decently repeated, see Figs. 13c and 13d. Likewise, the optimal and inverse simulated

velocity and bank angle histories are almost identical, see Figs. 13a and 13e. The average

and maximum absolute errors between the optimal and inverse simulated trajectories for

the velocity, load factor, and bank angle are ∆v = 0.06 m/s, ∆v = 0.70 m/s, ∆n = 0.09,

∆n = 1.05, ∆µ = 2.36 deg, ∆µ = 29.39 deg, respectively. Overall, we are satisfied with the

obtained solution.
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Figure 12. Optimal (· · · ) and inverse simulated (—) trajectories with the angular acceleration
constraints in Example 2.
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Figure 13. Optimal (· · · ) and inverse simulated (—) histories with the angular acceleration
constraints in Example 2.
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C. Example 3

To establish an insight about the feasibility of the approach with considerably different

optimal open-loop trajectories, we next analyze the optimal and inverse simulated solutions

for different combinations of the performance measures and guidance laws. The initial states

of the vehicles are given in Table 4. The final distance is set to rf = 100 m except for

the miss distance maximization. At first, the optimal open-loop trajectories with respect to

each missile avoidance criterion are solved such that the guidance law of the missile is varied

from PP to TPN. Then, the optimal trajectories are inverse simulated. In case of CLOS,

the launcher is assumed to fly with a constant course and velocity determined by the launch

conditions.

The values of the performance measures in the optimal and inverse simulated solutions as

well as the average and maximum absolute errors of the velocity, load factor, and bank angle

are presented in Tables 5 and 6. Overall, the average and maximum absolute errors between

the desired states are small. The maximum errors in the load factor and bank angle occur

typically either in the beginning of the flight when large load factor levels must be attained

for accomplishing the initial turn away from the missile, or in the endgame when a high-g

roll maneuver is required. With the capture time, closing velocity, control effort, and gimbal

angle, the differences in the values of the performance measures are small, which indicates

that the modeling accuracy is sufficient in the optimization. With the miss distance and

tracking rate, the differences are larger, suggesting that the dynamics of the missile system

are not modeled accurately enough near the final time.

Although the errors are small on average, the errors for the load factor and bank angle

histories are notable in several cases, which casts the particular solutions unsatisfactory.

We choose five cases where the errors are significant and improve the obtained solutions by

following the guidelines of Section II.D. The selected cases are marked with superscripts 1–5

in Tables 5 and 6. We first shorten the receding horizon step size to ∆t = 0.20 s to increase

the general attainability of the optimal trajectories. We also decrease the upper bounds on

the angle of attack and roll accelerations to α̈max = 20 deg/s
2

and Ṗmax = 60 deg/s
2

to

smooth the load factor and bank angle histories.

The results are summarized in Table 7. Comparison to Tables 5 and 6 reveals that the

average errors are now smaller. In addition, the values of the performance measures are

closer to each other. In cases 3 and 5, the attained bank angle lags the optimal one in

the endgame. In the inverse simulated solutions, the commanded roll rate is saturated to

its upper/lower limit during this period, respectively, whereupon further improvement of

the obtained solutions is difficult for these cases. The visual evaluation of the trajectories

not presented here confirms that the inverse simulated trajectories correspond well to the

optimal ones. We therefore consider the inverse simulated trajectories satisfactory.

26 of 34



Table 5. Values of the performance measures and the average (∆) and maximum (∆)
absolute errors for combinations of performance measures and guidance laws in Example
3.

Capture time t∗f , s t◦f , s ∆v, m/s ∆v, m/s ∆n ∆n ∆µ, deg ∆µ, deg

PP 11.42 11.42 0.05 0.60 0.14 2.08 0.15 1.99
CLOS 11.25 11.20 0.47 4.30 0.16 0.92 1.56 12.84
APN 12.31 11.48 0.13 1.00 0.07 1.48 0.17 1.84
IPN 11.61 11.50 0.06 0.60 0.23 3.28 0.51 4.80
PPN1 11.58 11.43 0.08 1.00 0.23 3.29 0.64 6.83
TPN 11.58 11.44 0.10 1.20 0.23 3.30 0.65 5.41

Closing velocity v∗c , m/s v◦c , m/s ∆v, m/s ∆v, m/s ∆n ∆n ∆µ, deg ∆µ, deg

PP 0.0 298.2 0.16 1.00 0.05 1.09 0.12 0.64
CLOS 484.6 492.1 0.15 0.60 0.06 0.63 0.25 2.03
APN 480.1 595.1 0.27 1.20 0.06 0.50 0.41 2.45
IPN 569.5 568.5a 0.09 0.60 0.05 0.69 0.10 1.10
PPN 583.4 603.0 0.20 0.80 0.09 1.14 0.28 1.84
TPN 577.6 572.8b 0.07 0.50 0.07 1.04 0.16 1.07

Miss distance r∗f , m r◦f , m ∆v, m/s ∆v, m/s ∆n ∆n ∆µ, deg ∆µ, deg

PP 122.8 107.9c 0.17 1.20 0.07 1.02 0.13 1.09
CLOS 58.7 59.9d 0.10 0.60 0.08 1.64 0.47 6.54
APN 10.8 2.3 0.11 0.50 0.17 1.41 1.04 13.29
IPN2 13.9 2.7 0.06 0.70 0.14 2.12 1.68 26.56
PPN 11.0 1.5 0.08 0.70 0.13 2.36 1.09 15.48
TPN 10.7 2.0 0.10 0.50 0.15 2.32 1.23 16.07

* Optimal solution
◦ Inverse simulated solution
a–d r◦(tf ) = 116.1 m, r◦(tf ) = 138.9 m, v◦c (tf ) = 25.4 m/s, v◦(tf ) = 157.9 m/s
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Table 6. Values of the performance measures and the average (∆) and maximum (∆) absolute
errors for combinations of performance measures and guidance laws in Example 3.

Control effort
∫

a∗, m/s
∫

a◦, m/s ∆v, m/s ∆v, m/s ∆n ∆n ∆µ, deg ∆µ, deg

PP 1124.5 1115.3 0.18 0.70 0.01 0.18 0.18 1.04
CLOS 759.9 764.9a 0.18 0.80 0.10 1.20 1.47 13.60
APN3 1450.0 659.9 0.85 4.80 0.18 0.57 3.37 20.51
IPN 903.4 867.9 0.40 0.90 0.12 0.38 0.16 2.02
PPN 942.7 888.2b 0.40 1.20 0.11 0.36 0.41 2.52
TPN 899.8 809.8 0.65 3.80 0.14 0.49 2.25 18.49

Gimbal angle λ∗

f , deg λ◦

f , deg ∆v, m/s ∆v, m/s ∆n ∆n ∆µ, deg ∆µ, deg

PP4 68.3 30.0c 0.30 2.40 0.34 2.38 0.67 3.42
CLOS 55.9 55.5 0.08 0.20 0.01 0.30 0.14 1.07
APN 25.8 22.1 0.21 0.90 0.08 0.81 0.68 4.26
IPN 23.5 22.3 0.56 2.10 0.03 0.16 0.45 2.61
PPN 24.0 22.3 0.20 0.70 0.05 0.64 0.13 0.91
TPN 24.6 22.4 0.13 0.70 0.02 0.65 0.02 0.50

Tracking rate ω∗

f , deg/s ω◦

f , deg/s ∆v, m/s ∆v, m/s ∆n ∆n ∆µ, deg ∆µ, deg

PP 180.0 180.0 0.20 0.60 0.04 0.30 0.32 1.20
CLOS 180.0 180.0 0.30 1.70 0.11 0.63 1.47 12.71
APN 111.5 17.0 0.33 1.20 0.14 0.89 2.00 12.12
IPN5 119.8 21.8d 0.18 1.03 0.20 0.96 4.11 25.62
PPN 144.5 46.2 0.38 1.90 0.11 0.67 1.66 12.56
TPN 145.3 40.3e 0.41 1.90 0.13 0.65 2.04 12.62

* Optimal solution
◦ Inverse simulated solution
a–e r◦(tf ) = 102.7 m, r◦(tf ) = 178.0 m, r◦(tf ) = 110.1 m, r◦(tf ) = 112.0 m, r◦(tf ) = 106.7 m

Table 7. Values of the performance measures J and the average (∆) and maximum (∆)
errors for combinations of performance measures and guidance laws in Example 3.

Case J∗ J◦ ∆v, m/s ∆v, m/s ∆n ∆n ∆µ, deg ∆µ, deg

1 11.45 s 11.45 sa 0.04 0.60 0.10 1.81 0.27 5.34
2 8.81 m 3.16 m 0.31 1.10 0.06 0.47 1.19 12.51
3 1429.5 m/s 804.1 m/s 0.10 0.60 0.09 1.36 2.84 29.58
4 67.5 deg 43.5 deg 0.30 1.40 0.08 0.70 0.37 1.96
5 87.8 deg/s 26.4 deg/s 0.13 0.80 0.10 0.74 1.76 16.53

* Optimal solution
◦ Inverse simulated solution
a r◦(tf ) = 114.9 m
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V. Conclusion

A new approach for producing realistic near-optimal aircraft trajectories via computa-

tional optimal control and inverse simulation is introduced and implemented in a software

named Ace. The numerical results presented in the paper underpin the feasibility of the

approach. In many cases, acceptable solutions are obtained even with the default values of

the adjustable parameters affecting the optimization and inverse simulation. Also, unsatis-

factory solutions can be improved to acceptable ones by adjusting the relevant parameters,

and repeating the computations. Usually, conforming to the given guidelines is sufficient,

although there are problem instances that may require trial and error experiments with the

adjustable parameters. However, this can be performed efficiently by an experienced user.

Consequently, the enhanced 3-DOF aircraft model affords a tractable model for optimizing

the flight paths using direct multiple shooting. Likewise, the controls of a higher-fidelity air-

craft model reproducing the optimal trajectory can be solved using the integration inverse

method. Finally, the evaluation and comparison of the optimal and inverse simulated tra-

jectories provides the necessary information for the adjustment of the parameters affecting

the computations.

The example implementation of the approach, currently operated by the research team,

can be applied as an analysis tool by engineers and pilots as well as for educational pur-

poses. According to our experience, aircraft engineers without any specific knowledge about

the mathematical disciplines applied in the approach are able to use the software after a short

introduction. The software could also be made even easier to use by automating the eval-

uation and parameter adjustment phases. Moreover, the presented computational methods

and vehicle models are applicable also for the automated solution of other aircraft trajectory

optimization problems than those implemented in the current version of the Ace software.

Appendix

Performance measures

The performance measures along with the corresponding terminal boundary conditions avail-

able in Ace are presented in Table A1. In the aircraft minimum time problems, the state

equations correspond to the equations of motion of the aircraft. In the missile avoidance

problems, also the missile’s equations of motion are included in the state equations. Terminal

boundary condition defines the free final time tf .

In Table A1, the closing velocity of the missile is given by

vc = r · vc/r (A1)
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Table A1. Performance measures J and the corresponding terminal boundary conditions.

Minimum time J Terminal boundary condition

Climb time min
∫ tf

t0
dt h (x(tf )) =

[

ha(tf ) − hf va(tf) − vf

]T
= 0

Flight time min
∫ tf

t0
dt h (x(tf )) = x(tf) − xf = 0

Missile avoidance

Capture time max
∫ tf

t0
dt h (x(tf )) = r(tf) − rf = 0

Closing velocity min vc(tf) h (x(tf )) = r(tf) − rf = 0
Miss distance max r(tf) h (x(tf )) = vc(tf) = 0

Control effort max
∫ tf

t0
a(t)dt h (x(tf )) = r(tf) − rf = 0

Gimbal angle maxλ(tf) h (x(tf )) = r(tf) − rf = 0
Tracking rate maxω(tf) h (x(tf )) = r(tf) − rf = 0

where

r =
[

xT − xM yT − yM hT − hM

]T

(A2)

is the line-of-sight (LOS) vector from the missile to the target and

vc = −ṙ =
[

ẋM − ẋT ẏM − ẏT ḣM − ḣT

]T

(A3)

is the closing velocity vector. The total lateral acceleration of the missile is given by

a(t) =
√

a2
p(t) + a2

y(t) (A4)

The gimbal angle is the angle between the LOS vector and the missile centerline axis, that

is,

λ = arccos (er · ecM
) (A5)

where e(·) denotes the unit vector in the direction of the respective vector. The unit vector

in the direction of the missile centerline axis is given by

ecM
= evM

cos αt + ea sin αt (A6)

where αt is the total angle of attack of the missile. Moreover, ω(t) is the magnitude of the

angular rate vector of the LOS given by

ω =
r × (−vc)

r · r
(A7)
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Guidance laws

The commanded acceleration vectors related to the different guidance laws are presented

in Table A2. The pitch and yaw components of the commanded acceleration vector are

obtained by projecting it on the pitch and yaw axes of the missile, see Ref. 4 for the details.

Table A2. Feedback guidance laws of the missile.

Guidance law Commanded acceleration vector

PP ac = k1vM sin δ · e(vM×r)×vM

CLOS ac = k1d + k2ḋ

APN ac = N (vcω × er + 0.5a⊥)
IPN ac = Nω × vc

PPN ac = Nω × vM

TPN ac = NvMω × er

In Table A2, k1, k2, and N are navigation constants. In PP, the principal idea is to

coincide the velocity vector of the missile with the LOS vector.31 This is achieved by guiding

the missile towards the LOS vector in proportion to the angle δ between the velocity vector

of the missile and the LOS vector (see Fig. A1), where

δ = arccos (evM
· er) (A8)

r

vM

vL

vT
d

A
rA

rM

δ

Guideline

Missile, xM

Launcher, xL

Target, xT

Figure A1. Combat geometry.

In CLOS, the basic idea is to maintain the missile along the guideline directed from

the launcher to the target aircraft.31 This is accomplished by guiding the missile towards

the guideline in proportion to the magnitudes of the relative position vector d and its time

derivative. The position vector of the missile relative to the guideline is given by

d = rA − rM (A9)
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where

rA = (eG · rM) eG (A10)

is the LOS vector from the launcher to point A (see Fig. A1). Above, eG is the unit vector

in the direction of the guideline and

rM =
[

xM − xL yM − yL hM − hL

]T

(A11)

is the LOS vector from the launcher to the missile. To prevent large overshoots, the com-

manded acceleration vector is made proportional also to the rate of change of the relative

position vector

ḋ = vA⊥ − vM⊥
(A12)

where

vA⊥ = ωG × rA (A13)

and

vM⊥
= (eG × vM) × eG (A14)

are the components of velocity of point A and missile velocity vector perpendicular to the

guideline, respectively. In Eq. (A13), ωG denotes the angular rate vector of the guideline.

In the variants of PN, the fundamental idea is to keep the missile on a collision course

to the target by driving the angular rate of the LOS vector ω towards zero. In APN, the

commanded acceleration vector depends also on the target acceleration

aT =
[

ẍT ÿT ḧT

]T

(A15)

In the guidance law,

a⊥ = aT − (aT · er) er (A16)

is the component of the target acceleration vector perpendicular to the LOS vector.
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