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Magnetoencephalography (MEG) provides millisecond-scale temporal
resolution for noninvasive mapping of human brain functions, but the
problem of reconstructing the underlying source currents from the
extracranial data has no unique solution. Several distributed source
estimation methods based on different prior assumptions have been
suggested for the resolution of this inverse problem. Recently, a
hierarchical Bayesian generalization of the traditional minimum norm
estimate (MNE) was proposed, in which the variance of distributed
current at each cortical location is considered as a random variable and
estimated from the data using the variational Bayesian (VB) frame-
work. Here, we introduce an alternative scheme for performing
Bayesian inference in the context of this hierarchical model by using
Markov chain Monte Carlo (MCMC) strategies. In principle, the
MCMCmethod is capable of numerically representing the true posterior
distribution of the currents whereas the VB approach is inherently
approximative. We point out some potential problems related to
hyperprior selection in the previous work and study some possible
solutions. A hyperprior sensitivity analysis is then performed, and the
structure of the posterior distribution as revealed by theMCMCmethod
is investigated. We show that the structure of the true posterior is rather
complex with multiple modes corresponding to different possible
solutions to the source reconstruction problem. We compare the results
from the VB algorithm to those obtained from the MCMC simulation
under different hyperparameter settings. The difficulties in using a
unimodal variational distribution as a proxy for a truly multimodal
distribution are also discussed. Simulated MEG data with realistic
sensor and source geometries are used in performing the analyses.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

MEG allows monitoring of brain activity noninvasively with
temporal resolution in the millisecond range (for a review, see, e.g.,
Hämäläinen et al., 1993). The spatial localization of the source
currents generating the measured signals necessitates solving the
electromagnetic inverse problem, which is known to be ill posed
(von Helmholtz, 1853). However, by imposing some additional
constraints on the currents, reasonable estimates for the locations of
the sources can be obtained. The most common approaches assume
either a small number of equivalent current dipoles (ECDs) (Mosher
et al., 1992) or a continuous distribution which has some minimum
norm (Hämäläinen and Ilmoniemi, 1984; Matsuura and Okabe,
1995) or maximal smoothness (Pascual-Marqui, 2002) properties.

The additional constraints are most naturally interpreted in the
framework of Bayesian inference (Bernardo and Smith, 1994) as a
priori probabilities reflecting the data analyst’s prior beliefs and
knowledge on the nature of the possible source configurations.
This prior probability distribution is then combined with an
observation model (a likelihood function) for obtaining the
posterior probability distribution of the currents, to which statistical
inferences about the sources are based on. In literature, various
kinds of priors based on anatomical, physiological, and temporal
information have been suggested (Dale and Sereno, 1993; Baillet
and Garnero, 1997; Phillips et al., 2002). In most cases, some point
estimate, such as the maximum a posteriori probability (MAP)
estimate, has been taken to represent the solution to the inverse
problem. For simple enough models, the entire posterior distribu-
tion of possible solutions to the inverse problem has been
numerically investigated by using Monte Carlo methods (Schmidt
et al., 1999; Bertrand et al., 2001a,b; Kincses et al., 2003).

Among the growing body of different approaches, the
minimum norm estimate (MNE) has been further developed by
utilizing magnetic resonance imaging (MRI)-based anatomical
constraints on the locations and orientations of the currents (Dale
and Sereno, 1993) and noise sensitivity normalization (Dale et al.,
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2000). Depth weighting has been used to compensate MNE’s well-
known bias towards superficial solutions (Köhler et al., 1996),
whereas functional magnetic resonance imaging (fMRI) spatial
information has been incorporated by fMRI-weighted and -guided
versions of the MNE (Dale and Sereno, 1993; Liu et al., 1998;
Ahlfors and Simpson, 2004). The virtues of MNE are its
computational convenience, as an explicit inverse operator is
available to compute the MAP estimate, and the generic nature of
the prior assumptions from which it can be derived (for several
different derivations, see Liu et al., 2002). With a Bayesian
interpretation, MNE amounts to assuming that a priori the currents
at each location of the discretized brain have a Gaussian
distribution with zero mean and a fixed variance across the
sources without any correlations among them. However, such prior
makes solutions with high amplitudes in few locations and close to
zero elsewhere extremely improbable. Hence, MNE produces
rather diffuse solutions also for focal sources. The Gaussian prior
model corresponding to MNE is a member of a more general
family of ℓp-norm priors including also the Bayesian analogue of
the ℓ1 minimum-current estimate (MCE) (Uutela et al., 1999). The
properties of the inverse estimates under the ℓp-norm prior were
investigated in more detail by Auranen et al. (2005).

Sato et al. (2004) propose a hierarchical generalization of the
Gaussian prior corresponding to the MNE. In the hierarchical
approach, individual prior variances are assumed for the currents at
each cortical location, and these variances are estimated from the
data using automatic relevance determination (ARD) prior (Neal,
1996). The method can naturally incorporate additional prior
information from both functional and anatomical MRI. The results
show in general decreased localization error and increased spatial
resolution in comparison with the traditional MNE.

For the hierarchical case, the estimation problem becomes
nonlinear, and an analytic solution is no more available. A
variational Bayesian (VB) method is developed in Sato et al.
(2004) to obtain an analytical approximate for the true posterior
distribution of the model parameters. The VB method assumes that
the source currents and their variances are independent, which
results via an iterative algorithm in a closed-form factorized
distribution used as a proxy for the true posterior. Generally, it is
rather difficult to assess how crude such a factorization assumption
is for a given model, since correlations and other dependencies
among the variables assumed independent are not readily estimated.

To cast some light on these issues, we propose an alternative
strategy for performing Bayesian inference with the hierarchical
model introduced by Sato et al. (2004). Here, we construct an
MCMC scheme for obtaining a numerical representation of the
posterior distribution and compare the results with those obtained
with the VB approach using simulated MEG data. We also reveal
some potential problems in the posterior analysis related to the
hyperpriors selected in Sato et al. (2004) and discuss some possible
solutions. Consequently, we do not compare the results of the
hierarchical model to those of the MNE and its relatives, since this
is already done in Sato et al. (2004). Furthermore, we do not give a
single numerical quantity indicating which method is “better”, as
both of the methods have their own virtues and limitations. Our
aim is rather to provide a complementary view on various sides of
this interesting MEG inverse model.

From the viewpoint of a practical neuroscientist, this paper
might be a rather technical one as various modeling aspects are
explicitly addressed in detail. These aspects, such as the hyperprior
selection, are important for having insight in how the model and the
estimation algorithms work. Also, understanding the multimodal
nature of the posterior distribution is crucial for proper interpreta-
tion of the resulting inverse estimates. We have tried to describe the
central results visually, so that an amenable reader can appreciate
these even if he or she is not interested in the mathematical
subtleties per se.

Methods

Bayesian methods and inference

The starting point of Bayesian data analysis (Gelman et al.,
2003) is to consider both the data D and the model parameters θ as
random variables and set up a probability model P(D, θ|M) based
on knowledge about the hypothesized mechanism which generates
the data. The joint probability of parameters and data explicitly
expresses the fact that it is always conditioned on some set of
assumptions M made by the data analyst.

The statistical inference is based on the posterior probability of
the model parameters given the data obtained by using Bayes'
formula:

P qjD; Mð Þ ¼ PðD;qjMÞ
PðDjMÞ ¼ PðDjq; MÞP0ðqjMÞ

PðDjMÞ : ð1Þ

The term P(D|θ,M) is called likelihood as it gives the
probability of the data given the parameter values (and modeling
assumptions), whereas P0(θ|M) is called prior since it reflects the
probabilities of different parameter values when no data has
arrived. The normalizing constant in the 4 denominator is termed
the evidence for the model M and takes care that the posterior
probabilities over all parameter values sum to unity:

PðDjMÞ ¼
Z

PðDjq; MÞP0ðqjMÞdq: ð2Þ

Typically the dimension of the parameter space is large, and the
posterior distribution is difficult to handle, as one would like to
compute some summary quantities such as posterior expectation
value and standard deviation of the parameter θ or compute
marginal distributions of some parameters of interest. This requires
the evaluation of multidimensional integrals which are not usually
analytically tractable. One possible solution to this problem is to
construct a Markov chain which has the posterior distribution as its
stationary distribution. The chain can then be utilized in generating
a large set of numerical samples from the joint posterior
distribution, and thus implicitly performing the required integra-
tions (see, e.g., Gilks et al., 1996; Robert and Casella, 2004). With
faster computers equipped with large amounts of memory and
software development, this approach has gained considerable
popularity in the Bayesian statistics community (see, e.g., the
BUGS project, http://www.mrcbsu.cam.ac.uk/bugs/). The sampling
approach has naturally its own drawbacks, such as difficulties in
establishing the convergence of the chain and slow mixing of the
sampler caused by correlated variables, which decreases the number
of independent samples.

The normalizing constant of the posterior distribution can
usually be ignored when performing posterior inferences with fixed
data D and modeling assumptions M. Since the process of
constructing a statistical model itself is subject to some ad hoc
assumptions and uncertainties, we might as well have two or more
candidate models M1, M2,…, Mm. In order to perform model
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averaging or model comparison via the Bayes factor, we would
have to compute the evidence or marginal likelihood P(DjMi) for
all models (see, Eq. (2); for a recent application of Bayesian model
averaging in MEG/EEG imaging, see, Trujillo-Barreto et al.
(2004)). The evidence is not usually tractable to compute
analytically and difficult to compute numerically (for some
possible Monte Carlo strategies, see Gelman and Meng (1998);
Neal (2001)).

The variational Bayesian method starts from a different
viewpoint (for a review on probabilistic graphical models and
VB methods, see, e.g., Ghahramani and Beal, 2001). The
evaluation of (the logarithm of) the marginal likelihood is
formulated as maximization of a free energy functional over the
space of probability distributions. In order to make the maximiza-
tion procedure feasible, the distribution is usually assumed to
factorize over some subsets of variables. As a result of the
maximization of the free energy, one obtains a lower bound for the
marginal likelihood, and an analytical approximate for the true
posterior. The maximization of the free energy is equivalent of
minimizing the asymmetric Kullback–Leibler divergence (KL
divergence) between the true and the variational posterior. In a
sense, the VB algorithm hence finds a tractable distribution which
is as close as possible to the original (for discussion on the concept
of closeness, see, Appendix A).

Our aim is to compare the results obtained by the two
techniques, and we thus employ both MCMC sampling and the
VB approach for the posterior inference. The VB method is
inherently approximative, whereas the MCMC sampling can in
principle give a numerical representation of the true posterior
distribution and thereby obtain a more thorough picture of its
structure. Because MCMC inverse solutions are based on a finite
number of samples, they are in this respect also only approximate
numerical estimates. However, no independency assumptions for
the currents and their variances have to be made, and our results
show that (for reasonable hyperparameter values) the sampler
converges quickly and has rather good mixing properties. For the
sake of completeness, we review the variational Bayesian
estimation process in Appendix A. For the posterior simulation
we utilize Gibbs sampling as almost all of the conditional
distributions are of standard form. To sample from the conditional
distributions of nonstandard form, we use the method of slice
sampling (Neal, 2003); details of the sampling scheme are
presented in Appendix B.

The forward model

The locations of possible sources were assumed to be cortically
constrained (Dale and Sereno, 1993) to the boundary of grey and
white matter segmented from a subjects structural MRI using
FreeSurfer software (Dale et al., 1999; Fischl et al., 1999). The
orientations of the current dipoles at the vertices of the segmented
surface were assumed to be perpendicular to the cortical mantle.
This resulted in a linear model for the MEG measurements at a
single timepoint (Hämäläinen et al., 1993):

BðtÞ ¼ GJðtÞ þ NðtÞ: ð3Þ
where G is the gain matrix (each column comprises of the
magnetic signals produced by unit dipole placed at a given
location), J(t) is the vector of dipole amplitudes, and N(t) is the
measurement noise vector. Neuromag Vectorview (Neuromag Ltd.,
Finland) sensor geometry and a single compartment boundary
element model was used in the forward model computations.
Assuming that the noise distribution is a multivariate Gaussian and
independent of time, the observation model (3) leads to a
likelihood function

P B1:T jJ1:T ; bAGð Þ ¼ 1
2p

� �MT=2

jbAGjT=2exp � 1
2
A
T

t¼1
B tð Þð

�

� GJ tð ÞÞV bRGð Þ B tð Þ � GJ tð Þð Þ
�
; ð4Þ

where (βAG)
−1 is the noise covariance matrix. That is, we assume

that the inverse noise covariance is known up to a scale factor β. N is
the number of possible source locations, M is the number of MEG
channels, and T is the number of timepoints. B1:T = {B(t)|t = 1:T}
and J1:T = {J(t)|t = 1:T} represent all of the observed MEG data and
the modeled currents, respectively.
The minimum norm estimate

Let us assume a Gaussian prior with zero mean and precision
(inverse variance) α = 1/σ2 for dipole amplitudes at all N locations
of the discretized grey–white matter boundary:

P0 J tð Þjað Þ ¼ a
2p

� �N=2
exp �a

2
J tð ÞVJ tð Þ

� �
;

P0 J1:T jað Þ ¼
YT
t¼1

P0 J tð Þjað Þ: ð5Þ

Combining likelihood (4) and prior (5) to a posterior via Bayes'
rule, and maximizing with respect to J(t) results in the minimum
norm (MAP) estimate

ĴMNEðtÞ ¼ Lða;bÞBðtÞ; ð6Þ
where the inverse operator L(α, β) is

L a;bð Þ ¼ GV bSGð ÞG þaIð Þ�1GV bSGð Þ

¼ 1
a
GV

 
1
a
GGVþ 1

b

X�1

G

!�1

; ð7Þ

assuming that all necessary matrix inverses exist (see, e.g.,
appendix of Liu et al., 2002). It is immediately seen that this
depends only on the ratio α/β, which is in the literature often
referred to as the regularization parameter.
Hierarchical approach: the model

In the hierarchical generalization of Sato et al. (2004), it is
assumed that each of the currents has a Gaussian prior distribution
with an individual precision parameter αi:

P0 J tð Þjα;bð Þ ¼ 1
2p

� �N=2

jbAj1=2exp � b
2
J tð ÞVAJ tð Þ

� �
; ð8Þ

P0ðJ1:T jα;bÞ ¼
YT
t¼1

P0ðJðtÞjα;bÞ; ð9Þ

where α = (α1 = αN) is a vector comprising of the precision
parameters, and A = diag(α) is the corresponding diagonal matrix.
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Following Sato et al. (2004), we have included the parameter β also
to the prior precision matrix to facilitate the VB-estimation. We also
assume the noninformative prior on β

P0ðbÞ ¼ 1=b; ð10Þ
and impose the ARD-prior (Neal, 1996) on the precision parameters
αi,

P0ðaija0i;g0iÞ ¼ Gammaðaija0i;g0iÞ; ð11Þ

Gamma aija0i;g0ið Þ
¼ 1

ai

aig0i
a0i

� �g0i

Gðg0iÞ�1exp �aig0i
a0i

� �
; ð12Þ

P0ðαjα0;γ0Þ ¼ j
N

i¼1
Pðaija0i; g0iÞ; ð13Þ

where Γ (·) is the Euler Gamma function and α0 = (α01,…, α0N),
γ0 = (γ01 = γ0N). In order to complete the model specification,
some values for the hyperprior parameters α0i, γ0i must be
assumed. In Sato et al. (2004), this is solved by imposing a
noninformative prior by setting γ0i = 0 for all i. This leads to the
prior

P0 aið Þ ¼ 1
ai

; ð14Þ

as is immediately seen from the Eq. (12). This is an improper
(unnormalizable) probability distribution meaning that its
integral over the domain of the random variable is not finite.
Improper priors are often used, but in this case, the improper
prior also leads to an improper posterior distribution. This is
discussed in Gelman (2005) and Gelman et al. (2003, pp.
136, 390), where it is stated that imposing a standard
noninformative distribution for the prior deviation parameters
σi,

P0 logrið Þ~1; or P0 rið Þ ¼ 1
ri
; ai ¼ 1

r2i
; ð15Þ

produces an improper posterior. By the rule for transformation
of a random variable, it is readily computed that the
noninformative prior (14) on the precision parameters αi
corresponds to prior

P0 rið Þ ¼
����� dai

dri

�����P0 ai rið Þð Þ ¼
������2

r3i

�����r2i ¼ 2
ri

ð16Þ

for σi, which is essentially the same as (15). Since a detailed
proof of the improperness of the posterior distribution under
these circumstances is omitted in Gelman et al. (2003), we
demonstrate this in Appendix C.

To avoid this unpleasant situation, one possibility is to assume
some ad hoc nonzero values for these hyperparameters or impose a
further prior for α0i, γ0i and try to estimate their posterior
distribution from the data as well. We perform a sensitivity analysis
on the model by comparing the estimates obtained with different
hyperparameter settings. The possibility of introducing these
parameters as truly random variables is also studied. More
specifically, we consider the case α0i = α0, γ0i = fixed ≠ 0 for all
i, and assuming a uniform prior for α0:

P0ða0Þ~1: ð17Þ
In summary, in the most general case the joint probability of
data, parameters and hyperparameters is

PðB1:T ; J 1:T ; b; α; α0;γ0Þ
¼ PðB1:T jJ1:T ; bÞP0ðJ1:T jb; αÞP0ðαjα0; γ0ÞP0ðα0; γ0ÞP0ðbÞ;

ð18Þ

and the corresponding posterior distribution is

PðJ1:T ; b; α; α0; γ0jB1:T Þ
¼ PðB1:T ; J 1:T ; b; α; α0; γ0Þ=PðB1:T Þ ð19Þ

~PðB1:T jJ1:T ;bÞP0ðJ1:T jb; αÞP0ðαjα0; γ0ÞP0ðα0; γ0ÞP0ðbÞ:
ð20Þ

Often it is convenient to use the negative natural logarithm of the
posterior probability in numerical computations, which is termed
the posterior energy:

EðJ1:T ; b; α; α0; γ0jB1:T Þ
¼ �ln PðJ 1:T ; b; α; α0; γ0jB1:T Þ
¼ �ln PðB1:T ; J1:T ; b; α; α0; γ0Þ þ ln PðB1:T Þ
¼ �ln PðB1:T ; J1:T ; b; α; α0; γ0Þ þ constant: ð21Þ

Sato et al. (2004) introduce also a spatial smoothness prior on
the current. Because of the increased computational burden, the
model with the spatial prior is applied only after estimating the
model with no spatial prior as described above and localizing the
areas containing large current amplitudes based on this. A finer
discretization grid is used in the estimation of the spatial model,
and the areas showing no large current amplitudes in the nonspatial
model are assumed to contain no sources. Our analysis is restricted
to the nonspatial model at this stage, since this is the cornerstone of
the hierarchical approach.

The simulated data

We used simulated data to study the structure of the hierarchical
model. Two typical cortical patches were generated to the
triangulated cortical surface by selecting a center point and adding
its nearest and second nearest neighbors consecutively to obtain
sources with some spatial extent. Irrespective of the patch area, a
total amount of 80 nAm of source current was assigned to each
cortical patch. The time courses of the sources were assumed to be
identical (Fig. 1).

The number of timepoints was 51, and the simulated
measurements were computed using Eq. (3). To avoid the most
obvious kind of an inverse crime, a much denser realization of the
gain matrix G (~306 × 90,000) was used in the data generation than
in the inverse estimation. Inverse crime is a collective term for all
those elements which are fixed in the data generation model and
later assumed to be exactly known in the inverse model. The most
important and common of these is using the same discretization of
the model for both generating the simulated data and performing
the inverse estimation, which always produces overoptimistic
results (see, e.g., Kaipio and Somersalo, 2005).

Finally, Gaussian noise was added to the simulated fields so
that the signal-to-noise ratio (SNR) defined by

SNR ¼ BsVBs

Nsr2s
; ð22Þ



Fig. 1. (A) Locations of the simulated source patches (gyri are depicted as green and sulci as red). (B) The source amplitude time courses at the two locations. (C)
and (D) The corresponding simulated gradiometer and magnetometer measurements plotted on the sensor grid with a closer view of the sensor enclosed by the
black box.
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where Ns is the number of sensors and σs
2 is the noise variance, was

5 for magnetometers and 10 for gradiometers at the peak value of
the simulated data.

Results

The following conventions are adopted in the figures through-
out the results section: The unit of current amplitude is nAm. The
gyri are depicted as white and sulci as grey. Negative amplitude
values mean source orientation pointing to the inside of the brain
and positive pointing to the outside, with direction perpendicular to
the cortical surface. In addition, for some figures the color map
range does not contain the whole range of the plotted current
values in order to make visual comparison easier. When displaying
the VB or MCMC trends of the currents or the prior current
precisions, a colorcode is used to indicate the corresponding source
point index. In every case, the distributed currents were estimated
for all timepoints, even though the results are shown only for some
of these.

Behavior of the model with the noninformative hyperprior

Here, we present briefly the effects of using the noninformative
hyperprior (see, Eq. (14)). As is demonstrated in Appendix C, in
this case, the posterior distribution is in fact improper. For an
improper posterior distribution the concepts of Markov chain
theory (see, e.g., Gilks et al., 1996, Chapter 4) such as convergence
become meaningless as the posterior is no longer a probability
distribution. Nevertheless, as the MCMC method operates on
unnormalized distributions (bound to be proper) and the VB
algorithm also runs without any apparent problems, we applied
both approaches to the simulated dataset. For the initialization, we



Fig. 2. In the upper row the trends of the MCMC run are shown for J(t = 25), β, α and E, respectively. The lower row displays the VB algorithm time courses of
the corresponding quantities of the variational posterior Ĵ(t = 25), β̂, α̂, and F (see also Appendix A). Note that only 150 samples of α are plotted for the sake of
better visualization of the divergence.
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set the prior variances to value αi = 10, for all i, and for the MCMC
chain we also set β = 1. For this case, we use a rather sparse grid
(~700 points) for the source reconstruction, in order to ease the
computational burden. The VB algorithm was run for 500
iterations and 1500 samples were obtained from the joint posterior
distribution. The results are shown in Fig. 2.

At the level of visual inspection, the trends of the currents
J(t = 25) and β pose no immediate problem for either of themethods.
The apparent convergence of the algorithms is rapid and robust
enough. On the other hand, the behavior of the second level para-
meters αi reveals the cause of the improperness the posterior: there is
an infinite amount of probability mass in the tails of the posterior
distribution in the direction of the αi’s. Interestingly, we see from the
rightmost column of Fig. 2, that the posterior energy does not really
converge but the free energy does or is growing at least extremely
slow. In fact, the relative change of the free energy at iteration k

DF k ¼ jF k � F k�1

F k�1
j ð23Þ

is of the order of magnitude 10−6 at the end of the run. The reason
for this is probably that the variational posterior is always a proper
distribution, and that the free energy has a well defined limit as
γ0i → 0 for all i (see Appendix A). Still, the current parameters also
change after 450 iterations of the VB algorithm, although one
might have stopped the algorithm after 50 iterations after the free
energy had converged. For the remainder of this paper, we use only
proper distributions in the computations.1

Estimating the hyperparameters α0 and γ0 from the data

Next, we consider the possibility of including the hyperpara-
meters α0 and γ0 also as true random variables and estimating their
1 The uniform prior for α0 can be restricted to some finite interval, say
0 < α0 ≤ 106, to guarantee that all distributions remain proper.
posterior distributions. We begin with fixing γ0 = 2 and trying to
estimate the posterior distribution of α0. The variational update rule
for updating α0 is presented in Appendix A, whereas the conditional
distribution of α0 given the rest of the parameters is shown in
Appendix B. Both of the algorithms were initialized at αi = α0 = 10
for all i; for theMCMC scheme, we also set initially β = 1. Some 500
VB iterations were performed, whereas 30,000 samples were
obtained from the joint posterior of which only every 20th was
saved due to memory limitations. The grid size was the same as
previously (˜700 points). Qualitatively, the source parameters J(t)
and the parameter β behave quite similarly to the previous case with
the noninformative hyperprior, so we concentrate on the αi’s and α0.
The trends of these parameters are shown in Fig. 3.

By looking at the trends, it is obvious, that introducing the
parameter α0 as a random variable causes problems to both of the
methods. Firstly, the MCMC methods starts to suffer from serious
autocorrelations rendering the sampling approach very inefficient.
In fact, the integrated autocorrelation time for the parameter α0 in
the thinned chain is about 100, reducing the number of
independent samples to 15 from the original 30,000 samples.
Also, looking at the posterior energy, it is not at all clear whether
the chain has actually converged. Finally, the posterior distribution
of α0 appears to be quite diffuse, indicating that the data do not
contain much information about it.

Similar problems arise in the VB framework. The α0 has not
settled into any specific value in the 500 iterations but keeps
growing slowly and also drags the αi’s with it. The free energy, on
the other hand, seems to have reached a plateau value, implying
that it is very flat in the direction of increasing α0 (and the
consequently increasing αi’s). It is evident that the data are not
specifically informative on the prior mean of the αi’s, and this
causes a serious slowing down of both posterior inference schemes.

In principle, one could treat γ0 as a random variable and derive
the VB update equations and necessary conditional distributions
for the MC approach. However, this is likely only to accentuate the



Fig. 3. In the upper row, the MCMC trends are shown for α, α0 and E, respectively, when attempting to estimate α0 from the data. The lower row illustrates the
evolution of the corresponding variational quantities in the VB algorithm (α̂, α̂0 and F ).
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problems described above. Also, since at the limit γ0 → 0 the
marginal likelihood of the data becomes infinite, the most likely
scenario is that γ0 will slowly drift towards that value. It is as well
likely that using a more realistic reconstruction grid, say of 3000
source space points, will also make the estimation of α0 and γ0 all
the more difficult and, above all, slow. In conclusion, it seems that
with these methods the estimation of the parameters α0 and γ0 is
not feasible in practice. Consequently, we assume fixed and
nonzero values for these parameters in all subsequent analyses.

Sensitivity of the model on the choice of the γ0

Next, we study the effect of tuning the hyperparameter γ0. The
prior (12) can be thought of incorporating the information that we
have 2γ0 observations of the prior precisions αi with average
precision α0. Three values for γ0 were assumed: 10, 1 and 0.1. We
set α0 = 10, which was used also for the initialization, along with
β = 1 for the MCMC algorithm. Grid size of ˜1500 was chosen for
this analysis. The results were qualitatively similar for both VB and
MCMC methods, and we focus on the output of the former
approach. The results are shown in Fig. 4.

The inverse solutions in the first column of Fig. 4 given as the
variational posterior expectation value of the current show, that the
inference procedure is somewhat sensitive on the value chosen for
γ0. This is quite natural recalling the fact that lowering the value of
γ0 takes the true posterior closer to the improper case. The second
column of Fig. 4 shows how the variational posterior expected
values of αi’s become more dispersed as the prior on αi’s becomes
less informative with decreasing γ0. Also, with smaller γ0 the
parameterwise convergence of the VB algorithm becomes slower,
with γ0 = 0.1 not even quite getting there. The plateau value which
the free energy reaches seems to somewhat increase with decreasing
γ0. This is not a surprise, since the free energy lower bounds the
marginal likelihood, which becomes infinite as γ0 → 0 (still, the
free energy itself has a finite limit, see Appendix A). Extrapolating
these results a bit, this model appears to be a case in which
performing hyperparameter (model) selection based on marginal
likelihood or evidence maximization leads to difficulties by
suggesting to choose a model with an improper posterior density
(γ0 = 0). So, by practical considerations again, we set γ0 to some
reasonable value like 10 to speed up the convergence of the
algorithms in what follows.

Sensitivity of the model on the choice of the α0

Here, we consider briefly the influence of different values of α0
on the inverse estimates obtained from the MCMC and VB
algorithms. We set γ0 = 10 and use values α0 = 10, 1 and 0.1 for
inference. As before, the algorithms were initialized with αi = α0
for all i, and for the MCMC also β = 1. The grid size was ~1500 as
in the previous analysis. The results are shown in Fig. 5.

Fig. 5(A) shows the behavior of the algorithms for the case
γ0 = 10, α0 = 1. The convergence is fast for both of the methods,
and the mixing of the Markov chain is also quite rapid allowing
robust estimation of posterior expectations. The fast mixing is
evident from the absence of slow trends in the time series of the
parameters (compare to Fig. 3). The inverse estimates as given by
the posterior expectation values seem to be rather similar, at least
qualitatively for case α0 = 10 and also quantitatively for α0 = 1, as
can be seen from the two uppermost rows of Fig. 5(B). For the
value α0 = 0.1 the MCMC estimate deviates quite significantly
from the VB estimate, which still resembles the estimates obtained
by different settings of α0. This behavior could be expected, since
the variational posterior is an approximation and is likely to vary in
accuracy within a model with manually controllable parameters.
We observed that free energy is increasing slightly with increasing



Fig. 4. The leftmost column shows VB-expected values of J(t = 25) plotted on the inflated brain obtained by using different values of γ0. Similarly, the middle
and rightmost columns display the VB trends of αi's and F, respectively.
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α0, which is in unison with the previous results from trying to
estimate α0 from the data. All in all, it seems that the model is not
so sensitive to the choice of α0 as it is for γ0; this is especially true
for the VB approach.

Structure of the posterior distribution with fixed γ0 and α0

Finally, we investigate the structure of the posterior distribution
by fixing the hyperparameters γ0 and α0 to the value 10 and
initializing both of the algorithms by setting αi = 1, αi = 10 or
drawing the αi’s uniformly from interval [1/α0, α0]. Again, the
value β = 1 was also used for the initialization of the MCMC chain.
This time, the reconstruction grid was assumed to consist of ˜3000
discretization points.

The results for the MCMC-scheme are shown in Fig. 6. Here,
we can observe clearly the multimodality of the posterior
distribution even with fixed α0 and γ0; the Markov chains sample
from different regions of the parameter space depending on the
starting point. Each of these modes represents a possible solution
to the source reconstruction problem. With fixed γ0 and α0, we
can compare the relative posterior energies of the different
solutions displayed in the last column of Fig. 6. It seems that the
posterior energies of the different modes are of the same order of
magnitude. However, the relative posterior probabilities of the
uppermost and lowermost solutions are about exp(1.7 × 105–
1.6 × 105) = exp(10,000), which renders the relative probability of
the latter solution to practically zero. On the other hand, it is not
feasible to directly calculate the amount of probability mass
contained in the vicinity of the different modes by using samples
from the separate MCMC simulation runs. In very high-
dimensional cases such as this, the posterior probability ratios of
different modes tend to be huge, but the mass proportions may
still be comparable. The second column shows the posterior
expectation values of the prior current deviation parameters
σi = αi

−1/2, which reflect those source points that are estimated to
be active at some stage (the prior precisions are assumed to be
same for all timepoints). Since the sources do not move spatially,
the very close resemblance of the expected values of the current
prior deviations and the currents themselves at the timepoint of
maximal signal should be expected.

The corresponding quantities for the VB algorithm can be seen
in Fig. 7. We observe that the output of the VB algorithm is far less
sensitive to the initialization, even though there are slight
differences in the obtained variational distributions. This is most
likely due to the fact that the factorization assumption acts as an
extra regularization term smoothing the solutions. While the
variational posterior itself is always unimodal and the process of
minimizing the KL divergence takes into account the probability
mass proportions of the modes of the true posterior, it is possible
for the VB algorithm to get stuck in a narrow local mode. Since the
height of the modes of the true posterior were of the same order of
magnitude, and the variational posterior finds its way close to the
uppermost mode in Fig. 7, one might speculate that this is the most
“significant” mode containing most of the posterior probability



Fig. 5. (A) The MCMC and VB trends for the case α0 = 1, γ0 = 10. (B) The leftmost and middle columns show respectively the MCMC- and VB-expected values
of Ĵ (t = 25) plotted on the inflated brain obtained by using different values of α0. Rightmost column shows the VB and MCMC solutions as a scatterplot for the
same hyperparameter values. Note the very close resemblance of the estimates for the case α0 = 1, γ0 = 10.
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mass. But we initialized the algorithm by choosing three arbitrary
starting points, and there might be many more yet unseen modes. A
more systematical analysis of the number and properties of
different modes of the posterior under different source and noise
conditions is beyond the scope of the present study. From both
practical and theoretical point of view, it can be dangerous to use a



Fig. 6. The leftmost and the middle columns show respectively the MCMC-expected value of the currents J(t = 25) and the prior deviations σi plotted on the
inflated brain, obtained by using different initializations of the algorithm (R refers to the random initialization, see text). The rightmost column displays the
corresponding MCMC trends of the posterior energy E.
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unimodal distribution as an approximate for a truly multimodal
distribution.

Fig. 8 displays the time courses of the VB and MCMC
solutions corresponding to the case where αi’s were initialized to
value α0 = 10. Both algorithms produce very similar results, where
mostly the amplitude varies in the course of time as the simulated
sources do not move spatially. The temporal profiles of the largest
currents in the estimates follow closely those of the original
sources but are somewhat less smooth; this is due to noise and the
fact that consecutive data points are modeled as independent.

Discussion

We have studied the recently proposed hierarchical Bayesian
approach for solving the MEG inverse problem (Sato et al., 2004).
We introduced an alternative posterior inference strategy by using
Markov chain Monte Carlo methods, and compared the results to
the variational Bayesian approach. We pointed out some potential
problems related to imposing a noninformative hyperprior for the
current precisions and studied the possibility of circumventing this
choice by a fully Bayesian treatment which turned out to be
computationally too inefficient for practical purposes. The
sensitivity of the estimates to different hyperparameter settings
was studied, as well as the differences between the “true” posterior
(as represented by the numerical samples) and the variational
posterior which makes a factorization assumption about the
currents and their variances.

Our results clearly show that the choice of the parameters for
the hyperprior is a nontrivial issue. In comparison with the
traditional MNE, this choice is not perhaps as crucial, since the
parameters which are manually fixed are the parameters of the
prior of the prior precisions, not the prior precisions themselves.
The solutions produced by the hierarchical model are close in
nature to those obtained by multidipole models. This is most likely
linked to multimodality of the posterior distribution as several
source combinations can produce similar measurements. The
hierarchical prior is very flexible, and in fact, integration over the
prior variances results in an effective Student t-distribution prior
for the currents (see, e.g., Gelman et al., 2003, pp. 303–305),
which is heavy tailed and hence favors focal solutions. There
appears to be a natural trade-off between choosing a method
providing smoother but unique solution, and the hierarchical
approach with better spatial resolution and a multitude of candidate
solutions. The inclusion of the spatial prior to the hierarchical
methods may possibly remedy the situation but not completely, as
Sato et al. (2004) use the model without the spatial prior to find the
peak values of the current in a coarser grid, around which the finer
analysis with the spatial prior is to be carried out. Therefore, the
uncertainty about the current distribution is not perhaps completely
represented in the final variational posterior. Furthermore, the true
posterior might still contain many modes even when equipped with
the spatial smoothness prior.

Qualitatively, and in some circumstances also quantitatively, the
VB and MCMC methods produce very similar results. The true
posterior as revealed by the MCMC scheme seems to contain many
modes, whereas the VB estimates show much more resemblance.
This could be due to the fact that one of the modes of the posterior
distribution contains most of the posterior probability mass, since



Fig. 7. The leftmost and middle columns display respectively the VB-expected value of the currents J(t = 25) and the prior deviations σI plotted on the inflated
brain, obtained by using different initializations of the algorithm (R refers to the random initialization, see text). The rightmost figure shows the evolution of the
free energy F in the corresponding cases.
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the VB algorithm has a tendency to gravitate towards such modes.
On the other hand, the Gibbs sampler is not likely to move between
the different modes (the currents are updated conditional on the
other parameter values, see, Appendix B), and so it is not possible
to say directly whether one of the modes is more prominent than
the others. Moreover, only a few different initializations were used,
and it could be that the rather high-dimensional parameter space
contains a vast number of regions with significant proportions of
posterior probability mass. At this stage all this is just speculation,
and the issue needs to be looked at in more detail and also by using
real data. In any case, for reasonable values of α0 and γ0, the
variational posterior models the marginal distributions of the
parameters locally very well, perhaps even surprisingly well taken
into account the complexity of the underlying model. As noted
before, it still might be dangerous to use the unimodal variational
posterior as a proxy for a truly multimodal posterior distribution. In
summary, the possible presence of several modes with equal
amounts of posterior probability mass may give rise to over-
interpretation of the results and poses a challenge for both of the
estimation methods.

As a curiosity, we note that the free energy values that the VB
algorithm reaches seem to decrease with increasing grid size. Since
the free energy provides a lower bound to the (logarithm of the)
evidence of the data, which should be maximized at the model
selection process, we should then use as sparse grid as possible. By
visual inspection of the solutions, we see that quite obviously the
quality of the solutions is the best for the most dense grid. This
apparent conflict is due to the underdetermined nature of the
inverse problem (i.e., the parameters outnumber the data), which
results in that the data is always very accurately explained. The
automatic Occam’s razor arising from the marginalization over all
parameters in the evaluation of the evidence suggests then using
the most parsimonious model which can explain the data.

In practice, the most dense grid of 3000 points used also in the
original approach seems to be suitable in many aspects: increasing
the grid size causes slowing down of the algorithms and violates
the assumption of a priori independent currents, whereas using a
more sparse grid com-promises the accuracy of the source
localization and the meaningfulness of the cortical orientation
constraint. When using a sparse grid, it is of course straightforward
to drop the orientation constraint completely or introduce a loose
orientation constraint (Lin et al., 2006). With empirical data, the
estimation on the sparse grid is most likely used only as a
prelocalization method for the final analysis on the dense grid, and
the exact locations of the current peaks on the coarse grid are
perhaps not so decisive.

Possible topics for future work include combining the VB and
the MCMC approach in order to utilize the rapid deterministic
convergence of the VB algorithm and the possibility of performing
inferences based on the unfactored posterior offered by the
computationally more intensive MCMC method. The performance
of the hierarchical model has to be also evaluated with real data.
Since the model tries to explain the data with few localized
activations, it could be rather sensitive to artefacts and the
correctness of the noise model. The authors' concluding view is
that the hierarchical Bayesian approach offers an interesting and



Fig. 8. The left column shows the MCMC inverse solution given as the
posterior expected value of the currents when starting the algorithm from
αi,start = 10, displayed at timepoints 10, 20, 30, 40 and 50. Similarly, the left
column displays the VB inverse solution given as the variational posterior
expected value of the currents when starting the algorithm from αi,start = 10,
displayed at timepoints 10, 20, 30, 40 and 50.
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novel methodology for modeling the distributed currents under-
lying magnetic measurements of neural activity.
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Appendix A. The VB algorithm

For the sake of self-sufficiency of the presentation, we begin by
reviewing the basis of the VB procedure, following Sato et al.
(2004). Then we recapitulate the variational update equations in
subsections A.1. and A.2. and present an explicit formula for the
free energy in subsection A.3. The variational update rule for α0 is
derived in subsection A.4.

Let us define the free energy functional of a trial distribution Q
(J1:T, β, α) (we have assumed α0 and γ0 fixed)

F Qð Þ ¼
Z

dJ1:T db daQ J1:T ; b; að Þlog PðB1:T ; J1:T ; b; aÞ
QðJ 1:T ; b; aÞ

� �
ð24Þ
By using Eq. (19), it can be seen immediately that

FðQÞ ¼ logðPðB1:T ÞÞ
� KL½QðJ1:T ; b; aÞjjPðJ 1:T ; b; ajB1:T Þ�; ð25Þ

where the asymmetric Kullback–Leibler divergence (distance)
from Q to P is defined as

KL QJ 1:T ; b; a½ ÞtP J1:T ; b; ajB1:Tð Þ�
¼
Z

dJ1:Tdb daQ J 1:T ; b; að Þlog QðJ1:T ; b; aÞ
PðJ1:T ; b; ajB1:T Þ
� �

ð26Þ

Hence, maximizing the free energy with respect to Q corresponds
to minimizing the KL divergence from the trial distribution Q to
the posterior distribution P. Since the KL divergence is always
nonnegative, and because the KL divergence from the posterior
distribution to itself is zero, we conclude that the maximum of the
free energy over all trial distributions equals to the logarithm of
the marginal likelihood P(B1:T). However, the VB approach
usually proceeds by constraining the space of possible trial
distributions in order to make the maximization procedure
tractable; in that case one obtains only a lower bound on the
log-marginal likelihood. Even though the variational approach is
very intuitive, there are some theoretical issues which we discuss
briefly in the following.

As noted before, the KL divergence is asymmetric, that is in
general KL[QOP] ≠ KL[POQ]. If we adopt a logarithmic score
function (a “generalized least squares” cost), the quantity KL
[QOP] can be interpreted as expected loss of utility in using the
probability density P when the actual probability density is Q
(Bernardo and Smith, 1994, pp. 154–155). Thinking in these
terms, it would be more consistent to minimize KL[POQ], that is
the loss of expected utility in using the approximate posterior Q
instead of the true posterior P (rather than vice versa). Of course,
the main reason why KL[POQ] is not actually used is that
expectation values with respect to P are not tractable to compute,
which is the motive for developing an approximative inference
scheme in the first place. Even if the KL divergence was
computable both ways, it is not clear which one gives more
useful approximations for a specific problem. Assume for
instance, that we were to approximate a multimodal distribution
with a unimodal one. Minimizing KL[QOP] with respect to Q
would then result in the variational distribution Q being close to
P near one of its modes while neglecting the others. Reversing Q
and P and minimizing KL[POQ] with respect to Q would yield
a very wide approximative distribution Q, which tries to cover all
of the modes of P. In the former case, the true uncertainty is
underestimated by neglecting most of the modes, whereas in the
second case the approximative posterior Q gives rise to large
probabilities also in between the modes of P where the actual
posterior probability is close to zero. These different projections
of the true posterior to the subspace of factorizable distributions
can be also interpreted naturally in the more general framework
of information geometry (see, e.g., Tanaka, 2001). In this case,
the standard VB approach is followed with factorization

QðJ1:T ; b; aÞ ¼ QJ ;bðJ 1:T ;bÞQaðaÞ: ð27Þ
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Plugging this into the free energy (24) one arrives after slight
rearrangement at

FðQÞ ¼ hhlogðPðB1:T ; J1:T ; b; aÞÞiJ ;bia
� hlogQJ ;bðJ 1:T ; bÞiJ ;b � hlogQaðaÞia ð28Þ

¼ hlog PðB1:T jJ1:T ; bÞiJ ;b
� KL½QJ ;bðJ1:T ; bÞQaðaÞjjP0ðJ 1:T jb; aÞP0ðaÞ�; ð29Þ

where <·>J,β,<·> denote expectation value with respect to QJ,β

and Qα, respectively. The factorization is utilized in maximizing
the free energy by alternately maximizing it with respect to QJ,β

and Qα while keeping the other distribution fixed. Computing the
variational derivatives of the free energy, from Eq. (28) for
instance, one finds that the extremizing distributions are

QJ ;bðJ 1:T ; bÞ~exp½hlog PðB1:T ; J1:T ; b;aÞia�; ð30Þ

QaðaÞ~exp½hlog PðB1:T ; J 1:T ; b; aÞiJ ;b�: ð31Þ

These equations are coupled, and cannot be solved directly. The
VB algorithm operates by starting with an initial guess for Qα(α),
then computes QJ,β(J1:T, β) using Eq. (30), obtains a new Qα(α)
using Eq. (31) and so on, until a fixed point is found. This is by
construction a local method, and is guaranteed to arrive only at a
local maximum of the free energy.

From Eqs. (30) and (31) one can derive the VB update
equations by straightforward computations. We use subscripts
“old” and “new” to differentiate between parameters of the
variational distributions at successive iterations of the VB
algorithm (one iteration consisting of both J, β-step and α-
step). Furthermore, we use hat to differentiate the parameters of
the variational distributions from the corresponding random
variables (the notation is admittedly rather heavy but perhaps
less ambiguous).
2 Here our notation differs slightly from that of Sato et al. (2004) as we
use Σx to denote an inverse covariance matrix exclusively.
A.1. The J, β-step

Without further approximation, the variational posterior of J1:T,
β can be decomposed as

QJ ;bðJ 1:T ; bÞ ¼ QJ jbðJ 1:T jbÞQbðbÞ; ð32Þ

QbðbÞ ¼
Z

dJ 1:TQJ ;bðJ1:T ; bÞ: ð33Þ

The conditional posterior of the currents QJ |β (J1:T |β) is a product
of T Gaussians, with each having the same inverse covariance
matrix, but different mean:

QJ jbðJ 1:T jbÞ ¼
YT
T¼1

N JðtÞjĴnewðtÞ;ðbÂ JnewÞ�1
� �

: ð34Þ

ÂJnew ¼ GVAGG þ Âold; Âold ¼ diagðâl old ; N ; âN old
Þ; ð35Þ

Ĵ newðtÞ ¼ Â
�1

Jnew
GVAGBðtÞ: ð36Þ
The inversion of the N × N matrix ÂJnew can be avoided by using
the matrix identity (sometimes referred to as the matrix inversion
lemma),

ðGVAGG þ AÞ�1GVAG ¼ A�1GVðGA�1GVþ A�1
G Þ�1; ð37Þ

which can be proved by direct matrix manipulations (see, e.g., the
Appendix of Liu et al. (2002)). This leads to update2

ĴnewðtÞ ¼ Â�1
oldGVÂBnewBðtÞ; ð38Þ

Â
�1

Bnew
¼ GÂ

�1
oldGVþ A�1

G ; ð39Þ

which requires only inversion of M × M matrix ÂBnew

− 1
.

The marginal variational posterior Qβ(β) is obtained by
integrating over J1:T in the joint variational posterior QJ,β(J1:T, β)
and performing some matrix algebra. This results in a Gamma
distribution with parameters

ĝbnew
¼ MT=2; ð40Þ

ĝbnew
=b̂new ¼ 1

2

XT
t¼1

�
ðBðtÞ � GĴnewðtÞÞVAGðBðtÞ

� GĴ newðtÞÞ þ ĴnewðtÞVÂold ĴnewðtÞ
�
: ð41Þ

We point out that in Sato et al. (2004), where the equations were
originally presented, the first equation was γ̂ βnew = NT/2, due to a
typographical error. Note also that the degrees-of-freedom
parameter does not change in the course of the VB algorithm.

A.2. The α-step

The variational posterior for α is a product of N Gamma-
distributions

QaðaÞ ¼
YN
i¼1

Gammaðaij âinew ; ĉainewÞ; ð42Þ

with parameters

ĝa inew
¼ g0i þ T=2; ð43Þ

ĝa inew
= âinew¼

g0i
a0i

þ b̂new

2

XT
t¼1

Ĵ newðtÞ2i þ
T
2

Â
�1

Jnew

� �
ii
; ð44Þ

which are the update equations of the α-step.
The explicit computation of the ÂJnew

−1 can be circumvented by
using Eqs. (35), (37) and (39)resulting in the following parameter
updates:

ĝa inew
¼ g0i þ T=2; ð45Þ

ĝa inew
= â inew ¼ g0i

a0i
þ b̂new

2

XT
t¼1

Ĵ newðtÞ2i

þ T
2

Â�1
old I�Â�1

oldGVÂBnewG
��

ii
ð46Þ

��
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Again, the degrees of freedom parameter are in fact constant. At
the end of the α-step, one sets αinew → αiold for all i, and continues
with the next J, β-step.

A.3. the free energy function

With given variational distributions QJ,β(J1:T, β) and Qα(α) one
can evaluate the free energy by Eq. (28) for instance. The integrals
needed in the evaluation of the free energy are not always tractable,
even if one is able to derive the VB update rules, but in this case the
free energy can be computed in a closed form. It depends on the
parameters of the variational distributions QJ,β and Qα (i.e., Ĵ(t), ÂJ,
β̂ , γ̂β and α̂ i, γ̂αi), as well as the hyperparameters α0, γ0 and the
fixed part of the inverse noise covariance AG. The following
expectation values are needed in the evaluation of the free energy
(see, Eq. (18)); the necessary formulae for computing Gaussian
integrals of quadratic forms can be found in, e.g., Harville (1999,
Chapter 15) whereas the expectation of a logarithm of a Gamma-
distributed random variable can be found in e.g., Johnson et al. (1994,
Chapter 17). The digamma function is defined by w xð Þ ¼ d

dx logG xð Þ

1.

hhlog P B1:T jJ 1:T ;bð ÞiJ ;bia ¼ MT
2

log
1
2p

� �
þ T

2
logjAGj

þMT
2

w ĝb
� �� log

ĝb

b̂

� �� �

� b̂
2

XT
t¼1

B tð Þ � GĴ tð Þ
� �

VAG B tð Þð
�

� Ĵ tð Þ��� T
2
Tr GVAGG Â�1

J

h i
: ð47Þ

2.

hhlog P0 J 1:T jb; að ÞiJ ;bia ¼ NT
2

log
1
2p

� �

þ NT
2

�
w ĝb
� �� log

ĝb

b̂

� ��

þ T
2

XN
i¼1

�
w ĝaið Þ � log

ĝai
âi

� ��

� b̂
2

XT
t¼1

XN
i¼1

ˆJðtÞ2i âi

� T
2

XN
i¼1

âi Â
�1

J

� �
ii
: ð48Þ

3.

hhlogP0 aja0;γγ0ð ÞiJ ;bia¼
XN
i¼1

	
� w ĝaið Þ þ log

ĝai
âi

� �

þg0i



log

g0i
a0i

� �
þ
�
w ĝaið Þ

�log
ĝai
âi

� ����
þ
XN
i¼1

�logG g0i
� ��g0i

a0i
âi

� �
:

4.

hhlog P0 bð ÞiJ ;bia ¼ � w ĝb
� �� log

ĝb

b̂

 ! !
ð50Þ
5.

�hlog QJ ;b J1:T ; bð ÞiJ ;b ¼ NT
2

log 2pð Þ þ T
2
logjAˆ �1

J j

� NT
2

w ĝb
� �� log

ĝb

b̂

 ! !

þ log G ĝb
� �� log

ĝb

b̂

 !

þ 1� ĝb
� �

w gb
� �þ ĝb: ð51Þ

6.

�hlog Qa að Þia
¼
XN
i¼1

log G ĝai
� �� log

ĝai
âi

� �
þ 1� ĝai
� �

w ĝai
� �þ ĝai

� �
:

ð52Þ

FðAG; ĴðtÞ; ÂJ ;b̂;ĝb;ĝai ; âi;a0;γγ0Þ ¼ 1:þ 2:þ 3:þ 4:þ 5:þ 6:

ð53Þ

It is easy to show by direct computation, that the VB update
equations are reproduced by computing the derivatives of F with
respect to Ĵ(t), ÂJ, β̂ and α̂ i and setting them to zero, that is
maximizing F . Once again, it is possible to avoid the computation
of ÂJ

−1 by utilizing Eqs. (35), (37), (39) and performing some
elementary matrix manipulations.

A.4. The α0 update rule

If we assume that α0i = α0 for all i and treat α0 as a random
variable, the update equation for α0 can be derived by maximizing
F with respect to it, or equivalently solving the equation

AF
Aa0

¼ 0: ð54Þ

This leads to the following, very natural update rule for α0:

â0new ¼ 1
N

XN
i ¼ 1

âinew : ð55Þ

Assuming a uniform prior for α0 (say, on interval (0, 106]) adds
a constant term to the free energy, but since it does not affect the
update equations, it is omitted.
Appendix B. The MCMC scenario

The conditional distributions used in the MCMC simulation are
given below. These are readily derived from the full probability of
the data, parameters and hyperparameters:

P B1:T ; J 1:T ; b; a; a0; γγ0ð Þ ¼ 1=2pÞMT=2bMT=2jAGjT=2exp
�

� � b
2

XT
t¼1

B tð Þ � GJ tð Þð ÞVAG B tð Þ � GJ tð Þð Þ
 !

� 1=2pÞNT=2bNT=2jAjT=2exp � b
2

XT
t¼1

J tð ÞVAJ tð Þ
 ! 

� j
N

i¼1
Gammaðaija0i;γγ0iÞP0ða0;γγ0Þð1=bÞ: ð56Þ
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In the sampling scheme, we assume that for all i, α0i = α0,
γ0i = γ0, and that these are either fixed, or γ0 is fixed and α0 has a
uniform prior. Samples from the joint posterior are obtained by
sampling in turn from each of the conditional distributions, given
the previous values of the other parameters.

1. The conditional posterior distribution of the source currents
J(t) given all other parameters and hyperparameters is a multi-
variate Gaussian with mean mJ(t) and covariance (βΣJ)

−1, where

mJ ðtÞ ¼ A�1
J GVAGBðtÞ; ð57Þ

AJ ¼ GVAGG þ A: ð58Þ

By using Eq. (37) and similar matrix identities (see, e.g.,
Kaipio and Somersalo, 2005, p. 78), the direct inversion of AJ can

be avoided even though the covariance matrix
1
b
A
J

�1
is explicitly

needed in sampling from the conditional (Gaussian) distribution of

J(t).
2. For β, the conditional posterior is of Gamma-form, with

parameters β̄ and γ̄β :

ḡb ¼ ðM þ NÞT=2: ð59Þ

ḡb=b̄ ¼ 1
2

XT
t¼1

B tð Þ � GJ tð Þð ÞVAG B tð Þ � GJ tð Þð Þ þ J tð ÞVAJ tð Þð Þ:

ð60Þ

3. The αi’s have also conditional distributions of Gamma-form,
with parameters ᾱi, γ̄α:

ḡa ¼ g0 þ T=2; ð61Þ

ḡa=āi ¼
g0
a0

þ b
2

XT
t¼1

J tÞ2i :
�

ð62Þ

4. Finally, the parameter α0, if assumed a random variable, has
conditional posterior

P a0jB1:T ; J1:T ; b; a; g0ð Þ~j
N

i¼1

aig0
a0

� �g0

G g0Þ�1exp � aig0
a0

� �
:

�
ð63Þ

Gibbs sampling can be utilized in simulating from all of the
above distributions except for the last one; methods for drawing
numerical samples from standard distributions can be found for
instance in Appendix A of Gelman et al. (2003). In the case of the
conditional distribution of α0 slice sampling (Neal, 2003) is used
instead.

When using Gibbs sampling, the parameters are usually
updated in blocks as above, variables in one block being
conditioned on the others. Consequently, the Markov chain can
not move in all directions of the parameter space at a given step
(only to those directions which are being currently updated). This
results in that the Gibbs sampler may move between different
modes of the posterior with extremely small probability (if at all,
see Gilks et al., 1996, p. 53, for a simple example of such
behavior). The sampler will thereby get stuck in some of the
posterior modes depending on the starting point and only a local
picture of the posterior distribution is obtained. In more
mathematical terms, the chain is reducible at least for practical
computation times, and it can not be said to have converged to the
desired distribution globally. Sampling from a multimodal
distribution is a very difficult problem, especially if the dimensio-
nality of the parameter space is large (for some possible strategies,
see, Liu, 2001, Chapters 10–11).

Appendix C. Improperness of the posterior with the
noninformative hyperprior

Here, we demonstrate the improperness of the posterior
distribution, in a very hand-waving way, when the noninformative
prior is assumed for the precision parameters αi.

By definition

PðB1:T Þ ¼
Z

dJ1:T db da PðB1:T ; J 1:T ; b; aÞ

¼
Z
dJ1:T db da PðB1:T jJ1:T ; bÞP0ðJ1:T jb; aÞP0ðaÞP0ðbÞ;

ð64Þ

where now

P0 að Þ ¼ j
N

i¼1

1
ai

� �
¼ jAj�1; P0 bð Þ ¼ 1

b
; ð65Þ

since A = diag(α).
First we perform the integral over J1:T:

PðB1:T ; b;aÞ ¼
Z

dJ1:TPðB1:T ; J1:T ; b;aÞ ð66Þ

¼ P0ðaÞP0ðbÞ
Z

dJ 1:TPðB1:T jJ1:T ; bÞP0ðJ1:T jb;aÞ ð67Þ

¼ P0ðaÞP0ðbÞ ð68Þ
Z

� dJ1:T ð1=2pÞMT=2bMT=2jAGjT=2

� exp � b
2

XT
t¼1

B tð Þ � GJ tð Þð ÞVAG B tð Þ � GJ tð Þð Þ
 !

ð69Þ

� ð1=2pÞNT=2bNT=2jAjT=2exp � b
2

XT
t¼1

J tð ÞVAJ tð Þ
 !

: ð70Þ

By combining the terms in the exponentials, and completing the
square with respect to J(t) we get

P B1:T ; b;að Þ~P0 að ÞP0 bð ÞbðMþNÞT=2jAjT=2

� exp � b
2

XT
t¼1

B tð ÞVAGB tð Þ � mJ tð ÞVAJmJ tð Þ½ �
 !

�
Z

dJ1:Texp � b
2

XT
t¼1

ð J tð Þ � mJ tð Þð ÞVAJ J tð Þ � mJ tð Þð Þ
 !

:

ð71Þ
where we have left out numerical constants and (again)

AJ ¼ GVAGG þ A: ð72Þ

mJ ðtÞ ¼ A�1
J GVAGBðtÞ: ð73Þ
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The integral over J1:T gives just the product of inverse
normalizing factors of T Gaussian distributions with inverse
covariance βΣJ, and we obtain

PðB1:T ; b; aÞ~P0ðaÞP0ðbÞbðMþNÞT=2jAjT=2 ð74Þ

� exp � b
2

XT
t¼1

B tð ÞVAGB tð Þ � mJ tð ÞVAJmJ tð Þ½ �
 !

jbAJ j�T=2;

ð75Þ
which gives by substituting the prior of β and slight rearrangement

PðB1:T ; b; aÞ~P0ðaÞjAjT=2jAJ j�T=2b�1bMT=2 ð76Þ

� exp � b
2

XT
t¼1

B tð ÞVAGB tð Þ � mJ tð ÞVAJmJ tð Þ½ �
 !

: ð77Þ

From this expression, we see that with fixed B1:T and α the
part depending on β is proportional to a Gamma distribution with
parameters

g̃b ¼ MT=2; ð78Þ

g̃b=b̃ ¼ 1
2

XT
t¼1

B tð ÞVAGB tð Þ � mJ tð ÞVAJmJ tð Þ½ �: ð79Þ

Therefore, the integral over β gives just the inverse normalizing
factor of this Gamma distribution. Being interested in the behavior
of this function as a function of the αi’s, we use Eq. (72) and
express the α- dependence of μJ(t) explicitly. Performing the
integral over β, this yields

P B1:T ;að Þ~P0 að ÞjAjT=2jAJ j�T=2

� 1
2

XT
t¼1

B tð ÞVAGB tð Þ � B tð ÞVAGGA
�1
J GVAGB tð Þ

h i !�MT=2

:

ð80Þ
Let us look at the form of this function at the limit A → ∞ (that

is αi → ∞, for all i):

jAjT=2jAJ j�T=2 ¼ jAA�1
J jT=2 ¼ jAðGVAGG þ AÞ�1jT=2

¼ jðGVAGGA
�1 þ IÞ�1jT=2Y1; as AYl: ð81Þ

On the other hand

A�1
J ¼ ðGVAGG þ AÞ�1

¼ A�1ðGVAGGA�1 þ IÞ�1Y0; as AYl; ð82Þ
which implies

1
2

XT
t¼1

B tð ÞVAGB tð Þ � B tð ÞVAGGA
�1
J GVAGB tð Þ

h i !�MT=2

Y
1
2

XT
t¼1

B tð ÞVAGB tð Þ½ �
 !�MT=2

; as A Yl: ð83Þ

All in all, we have

PðB1:T ;aÞ ¼ Cd Gða;B1:T ÞP0ðaÞ; ð84Þ
where C is a numerical nonzero constant, and

0 < lim
aYl

Gða; B1:T Þ < l; for all B1:T : ð85Þ

Thus, if we choose P0(α) as in Eq. (65) we see that the integral
of P(B1:T, α) over α diverges logarithmically rendering P(B1:T)
infinite.
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