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In recent simulation studies, a hierarchical Variational Bayesian (VB)
method, which can be seen as a generalisation of the traditional
minimum-norm estimate (MNE), was introduced for reconstructing
distributed MEG sources. Here, we studied how nonlinearities in the
estimation process and hyperparameter selection affect the inverse
solutions, the feasibility of a full Bayesian treatment of the
hyperparameters, and multimodality of the true posterior, in an
empirical dataset wherein a male subject was presented with pure tone
and checkerboard reversal stimuli, alone and in combination. An
MRI-based cortical surface model was employed. Our results show,
with a comparison to the basic MNE, that the hierarchical VB
approach yields robust and physiologically plausible estimates of
distributed sources underlying MEG measurements, in a rather
automated fashion.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Magnetoencephalography (MEG) measures neural activity
with temporal resolution of milliseconds, but the inverse problem
of localising the source currents generating the observed
extracranial magnetic fields has no unique solution (for a detailed
exposition of MEG, see, e.g., Hämäläinen et al., 1993). Reason-
able estimates of the currents can be obtained, however, if suitable
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constraints on the sources are applied. Estimation methods can be
divided into roughly two categories, first of which tries to explain
the measurements with a small number of equivalent current
dipoles whereas the second assumes a distribution of such dipoles
throughout the brain and imposes some minimum-norm or
maximal smoothness constraints on the current distribution (for
a review of most common inverse methods, see, e.g., Baillet et al.,
2001).

The assumptions about the distributions of the currents in the
distributed source models are naturally interpreted in a Bayesian
(Bernardo and Smith, 2000) way as a priori probabilities
implied by the model when no data are yet observed. The prior
is accompanied by a likelihood function or observation model
describing how different source configurations give rise to
observed fields. The likelihood is operationally constructed by
(1) solving the forward problem, which consists of assuming a
conductor model for the head and numerically solving the
Maxwell’s equations dictating how currents in a conductor
generate electromagnetic fields (see, e.g., Mosher et al., 1999),
and (2) specifying a distribution for the measurement noise
(e.g., a multivariate Gaussian). After obtaining a set of MEG
data, the likelihood and the prior are combined via Bayes’ rule
to obtain the posterior probability distribution of the currents
given the data, which can be used to make statistical inferences
about the parameters of interest, in this case the source currents
generated by neural activity. In general, the posterior is
proportional to the product of the prior and the likelihood,
and the constant of proportionality ensures that posterior
probabilities sum up to unity. This important constant is termed
the evidence or marginal likelihood of a model, and it equals
the probability of the data when integrated (summed) over all
parameter values. It can be used as a criterion for Bayesian
model selection by choosing the model which has the largest
marginal likelihood.
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Here we examine the hierarchical generalisation of the mini-
mum-norm estimate (MNE) (Hämäläinen and Ilmoniemi, 1984;
Dale and Sereno, 1993) introduced by Sato et al. (2004). The
hierarchical method assumes a priori individual precisions
(inverse variances) for the currents, and imposes a further
Gamma-distribution hyperprior for the prior precisions. This prior
is essentially similar to the Automatic Relevance Determination
(ARD) prior used for input selection for neural networks (Neal,
1996). It allows a small number of the currents to take large
values and explain a larger proportion of the data, whilst
suppressing the others by setting them close to zero. In the
original approach of Sato et al. (2004), a Variational Bayesian
(VB) approximation was developed for posterior inference (for a
review of VB-methods, see, e.g., Ghahramani and Beal, 2001).
Usually, computing posterior summary quantities of interest, such
as the posterior expectation, requires evaluation of multidimen-
sional integrals which are not analytically tractable; the evidence
itself is often such an intractable integral. The most common
variational approach assumes some sets of variables to be
independent (in this case the currents and their precisions), and
maximises iteratively a free energy function, or equivalently
minimises the Kullback–Leibler divergence (KL-divergence)
from the factorised trial distribution to the true posterior. The
output of the algorithm is an analytical (tractable) approximate
for the true posterior distribution, and a lower bound for the
evidence.

In Nummenmaa et al. (in press), we developed an alternative
inference scheme for the ARD-prior model based on Markov
chain Monte Carlo methods (MCMC) and compared the results to
those obtained with the VB-approach. In the MCMC scheme, the
posterior is represented by a large set of numerical samples
obtained from a Markov chain with the posterior distribution as its
stationary distribution (see, e.g., Robert and Casella, 2004). In the
previous work, we raised the question related to the hyperprior
selection for the precision parameters (Nummenmaa et al., in
press). The standard choice of a noninformative hyperprior leads
to the marginal likelihood becoming unbounded, and conse-
quently the posterior becoming improper (unnormalisable). We
also briefly considered the possibility of estimating these
parameters from the data and thus performing a full Bayesian
estimation of the model, and demonstrated the multimodality of
the true posterior.

The purpose of this article is to elucidate the practical
importance of these rather theoretical considerations by using a
simple empirical dataset consisting of MEG signals evoked by
simple auditory, visual, and audiovisual stimuli. We demonstrate
that for the ARD-model, the utility of using the marginal
likelihood (or free energy) for model selection is in fact fairly
limited and that the hyperparameters must be set by hand to
some values which can potentially have a significant effect on
the solutions. However, with fixed hyperparameters and fixed
reconstruction grid size, the free energy can in principle be used
to estimate the posterior mass proportions of different modes,
which correspond in this case to “possible solutions to the
inverse problem”. We also compare the hierarchical method to
basic MNE with respect to thresholding of the estimates. As the
results are rather similar for both the MCMC and the VB-
estimation schemes, but the latter is computationally less inten-
sive than the former, we will adopt the variational framework in
this study. To the best of our knowledge this is the first article in
which real MEG data is analysed with the hierarchical method.
Materials and methods

The audiovisual dataset

We employed the same audiovisual dataset that has been
also analysed by Auranen et al. (in press) using a different
inverse method. The data consist of MEG fields evoked by
auditory tones and visual checkerboards presented separately (A,
V) or simultaneously (AV). The MEG raw data were acquired
at 600 Hz sampling frequency with Neuromag Vectorview
device, downsampled to 150 Hz, high-pass filtered (cutoff
1 Hz) to remove slow drifts and notch filtered to remove 50 Hz
noise. The frequency of the binaural auditory tones was
800 Hz, their duration 80 ms, with 5 ms linear rise/fall. The
visual stimuli were square shaped black–white checkerboards
located at the centre of the visual field with equal duration to
the auditory tones. The task was to passively listen the tones
and fixate on the centre of the screen. The inter-stimulus
interval was 4 s, and for each stimulus category we averaged
∼150 trials (trials with concurrent EOG signal exceeding
150 μV were excluded).

In order to facilitate the comparison of the results with those of
Auranen et al. (in press), we first used the multi-pair approximation
(Plis et al., 2005; Jun et al., 2005) to obtain the full spatiotemporal
noise covariance matrix. Since the present model assumes that the
noise covariance does not depend on time, we then estimated the
noise covariance matrix as the mean of the noise covariance
matrices at different time points. The spatiotemporal noise
covariance matrix was estimated from over 1500 data fragments
randomly selected from the off-stimulus periods. The averaged
MEG evoked fields are illustrated in Fig. 1.

The ARD-prior model

We employed a cortical constraint in constructing the space
of possible sources (Dale and Sereno, 1993). White–grey
matter boundary surface was segmented from the subject’s
structural MRI using FreeSurfer software (Dale et al., 1999;
Fischl et al., 1999), and the orientations of the current dipoles
were assumed to be perpendicular to this surface. As the
number of vertices in the FreeSurfer surface is rather high
(∼150,000), a decimated set of vertices is commonly used in
inverse computations. For the model description, let us define
the following:

M = Number of MEG sensors
T = Number of time points in the averaged MEG evoked field

time series
N = Number of vertices in the decimated cortical surface
G = M×N-dimensional gain matrix
ΣG = Fixed part of the M×M-dimensional inverse noise

covariance matrix
M = Collective notation for all implicit modeling assumptions

and parameters
— — — — — — — — — — — — —

B(t) = M×1-dimensional vector of averaged MEG evoked fields
at time t

B1:T = The set of all B(t)’s
β = A common scale parameter in the inverse noise

covariance and the current prior



Fig. 1. For each stimulus type A, V, and AV, the timeseries of the two planar
gradiometers (red and blue) are depicted on the sensor grid (viewed from the
top, nose pointing up). For three sensor locations (a), (b), and (c), a closer
view is also provided to facilitate comparisons between the three conditions.
A sensor location with a dotted line indicates a noisy channel excluded from
the analysis.
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J(t) = N×1-dimensional vector of distributed currents at time t
J1:T = The set of all J(t)’s
α = (α1,…, αN)=N×1-dimensional vector of prior precisions
A = diag(α)
α0, γ0 = Mean and degrees-of-freedom parameters of the gamma-

distribution prior for the αi’s

The variables above the dashed line are assumed to be fixed from
the point of view of estimating the hierarchical model. The symbol
M is introduced to remind of several more or less arbitrary
modeling assumptions, such as using the cortical constraint (G),
Gaussian noise (ΣG), choosing a specific time window and sampling
frequency of the evoked response (T) and using only gradiometer
MEG channels (M). In the following model description, all of the
variables above the dashed line along with other implicit modeling
assumptions are embedded into this important symbol M.

The hierarchical model comprises of the following blocks:
1. Observation model (likelihood). The statistical model gives

the probability of obtaining a set of observations due to a particular
realisation of noise, assuming that we know the underlying current
configuration. The model stems from the linear relationship
between the amplitudes of the currents and the measured fields:

BðtÞ ¼ GJðtÞ þ NðtÞ; ð1Þ
where the gain matrix G is computed by using one-layer boundary
element model (see, e.g., Hämäläinen et al., 1993). The measure-
ment noise N(t) is assumed to be independent of time and to have a
Gaussian distribution with zero mean and inverse covariance βΣG:

NðtÞfNð0; ðbRGÞ�1Þ: ð2Þ
The fixed part of the inverse noise covariance matrix, ΣG, is

estimated from the raw MEG data during the preprocessing stage,
whereas β is an unknown scale parameter to be estimated within
the VB-algorithm. Since the noise is assumed to be independent of
time, the likelihood of parameters at all time points is obtained by
multiplying the likelihoods associated with the single time point
measurements. We will denote these functions respectively by

PðB1:T jJ1:T ; b;MÞ and PðBðtÞjJðtÞ; b;MÞ: ð3Þ
2. Prior for J(t). The hierarchical prior assumes that current

amplitude at cortical location i at time t has a Gaussian distribution
with zero mean and precision βαi:

JðtÞifNð0; ðbaiÞ�1Þ; or in vector form JðtÞfNð0; ðbAÞ�1Þ:
ð4Þ

The parameter β has been incorporated to the prior also in order
to facilitate the VB-estimation. The prior precisions are assumed to
be time-independent, and hence the prior for J1:T is the product of
the priors for J(t) at different time points; these are respectively
denoted as

P0ðJ1:T jα; b;MÞ and P0ðJðtÞjα; b;MÞ: ð5Þ
3. Prior for β. The precision scale parameter β is assumed to

have the “noninformative” prior

P0ðbjMÞ ¼ 1= b: ð6Þ
The improper prior does not lead to improper posterior for this

parameter, an argument which is not proved here but made
intuitively plausible since the posterior of β is directly influenced
by the observed data (noise).

4. Prior for α. The ARD-prior (Neal, 1996) is imposed on the
αi’s; this prior is called a hyperprior as it is a prior for the
parameters of the prior:

aifGammaðaija0; g0Þ; ð7Þ
with the Gamma-distribution parameterised as

Gamma aija0; g0ð Þ ¼ 1
ai

aig0
a0

� �g0

Gðg0Þ�1exp � aig0
a0

� �
; ð8Þ

and Γ(·) being the Euler Gamma function.
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The joint prior of the α is obtained again by multiplying the
independent priors for the individual αi’s. We denote this by

P0ðαja0; g0;MÞ: ð9Þ
5. Prior for α0, γ0. The next step would be to continue the

hierarchy and specify a prior for the parameters of the hyperprior. At
this stage we do not specify the prior, but denote it generically as

P0ða0; g0jMÞ: ð10Þ
Collecting the pieces of the model introduced above section, the
“probability of all” (with fixed α0, γ0) becomes

PðB1:T ; J1:T ; b;αja0; g0;MÞ
¼PðB1:T jJ1:T ;b;MÞP0ðJ1:T jb;α;MÞP0ðαja0; g0;MÞP0ðbjMÞ:

ð11Þ
The joint posterior of the unknown quantities can be formally
obtained as

P J1:T ; b;αjB1:T ; a0; g0;Mð Þ
¼ PðB1:T ; J1:T ; b;α; ja0; g0;MÞ

PðB1:T ja0; g0;MÞ ; ð12Þ

which is just “probability of all” divided by the marginal
probability that the data B1:T comes from this model, given the
values of α0, γ0 and the set of other assumptions M:

PðB1:T ja0; g0;MÞ
¼

Z
PðB1:T ; J1:T ; b;αja0; g0;MÞdJ 1:Tdbdα: ð13Þ

This term is the evidence for model M and it tells how probably
the data come from this model. The integrations involved in
Fig. 2. After an initial guess for the parameters α, the algorithm proceeds by estima
the (prior/noise) scale parameter β. Given the currents J(t) and the scale parameter
free energy increases with every step by construction. The dashed arrow indicates
computing the evidence are not tractable, and hence a Variational
Bayesian method is developed in Sato et al. (2004) to perform
approximate posterior inference. In the variational approach, the
posterior is assumed to factorise in two parts, QJ,β (J1:T, β) and Qα

(α). Then, the Q-distributions which maximise the free energy
functional

FðQ; a0; g0;MÞ ¼ logPðB1:T ja0; g0;MÞ�KL½QJ ;b;ðJ 1:T ; bÞ
� QaðαÞtPðJ1:T ; b;α;jB1:T ; a0; g0;MÞ�

ð14Þ
are searched, where KL(t) is the asymmetric KL-divergence from
the first argument distribution to the second. In practice, The VB-
algorithm operates by iteratively estimating the parameters of the
approximate factor distributions until the free energy converges (to
a local or global maximum). This procedure is visually described in
Fig. 2, explicit equations can be found in Sato et al. (2004) and
Nummenmaa et al. (in press).

The VB-method yields an analytical approximate for the
posterior distribution (12), and a lower bound for the (logarithm of
the) evidence (13).

The ARD-prior has the effect that it enables some of the sources
to obtain a small prior precision (large variance), and hence large
current amplitudes, whilst suppressing the others. In this manner,
the data are explained mostly by few relevant sources, and the
resulting hierarchical estimates are more focal than the rather
diffuse traditional MNE-estimates. However, the hierarchical
framework includes the MNE-model, which is obtained by the
limit γ0→∞, when all of the prior precisions are constrained to be
essentially equal (see also, Fig. 3(B)).

Some commentary on the modeling assumptions: (1) only the
distribution of noise is assumed to be time-independent. The
inverse method could be rather straightforwardly mapped to
ting the currents by an MNE with the prior precisions α and then computing
β, the prior precisions α are re-estimated and so on, until convergence. The
several VB-steps being performed.



Fig. 3. (A) A schematic illustration of the marginal posterior for γ0 with three different priors for it. As the marginal likelihood (evidence) has a singularity at
γ0=0, the prior must be rather sharp to render the posterior regular, but then the prior and posterior are essentially equal. (B) Samples from the Gamma-
distribution hyperprior plotted on the cortical surface, showing that it controls how similar the currents are assumed to be throughout the brain. The distributions
have been scaled for better visualisation of the shape. Note also the different colour scales in the different cortical plots. (C) Results of KL-divergence
minimisation when the target is multimodal, and the approximate unimodal, which leads to two local KL-minima. When the modes of the target begin to overlap,
the KL-minima also overlap, leading to errors in mass proportion estimation. When the target modes overlap significantly, there is essentially only one KL-
minimum.
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frequency domain, where the background activity would then
form a part of the “signal”, even though here we consider only
(phase-locked) evoked responses. In the frequency domain,
analogously to the statistical independence of consecutive time
points, we would assume (as a first approximation) the uncertainty
in the estimated spectrum to be independent of frequency, if
locations of several frequency components should be simulta-
neously estimated. (2) The currents are assumed to be independent
only a priori. This does not mean that the currents could not be
correlated a posteriori, that is, the estimated posterior source
covariance can (and will) in general be nondiagonal. (3) Even
though the assumptions of a priori independent (implying also
uncorrelated) sources, stationary noise distribution, and a data-
driven characterisation of the source covariance resemble
seemingly those of beamformer techniques, the hierarchical
approach is a distributed source estimation method. That is, all
currents (and other parameters) are estimated simultaneously,
rather than resorting to some spatial filter methodology and
projecting the data to each source point separately. (4) A spatial
prior could be implemented (Sato et al., 2004), but it causes
drastic computational costs, which were relieved in the original
approach by first estimating the model with nonspatial prior,
finding the current peaks and restricting the source space for the
spatial model to the vicinity of these. For simulated data this
process can be well justified, but with empirical data the
usefulness of such approach is not so clear (see the following
section). (5) The parameter β is included to the prior of the
currents also because it enables estimation of the joint variational
posterior of J1:T and β. In practice, if we would estimate the
inverse noise covariance ΣG wrong by a factor of 1/2, the
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parameter β would take value ~2 to compensate, and the prior
precisions α would then in turn adapt to this.

Nonstatistical thresholding

Why then go beyond the basic MNE to more complex models
and estimation methods, if it brings also some challenges in
interpretation of the results and increases the computational load?
We will point out one virtue of the hierarchical approach, related to
the nonstatistical thresholding, before embarking a more detailed
analysis of the ARD-based inverse estimates.

In nonstatistical thresholding some values are set to zero before
rendering the results on a (say) segmented cortical surface. The
attribute “nonstatistical” is included to differentiate this from
(statistical) thresholding of fMRI activity maps, for instance.
Thresholding is sometimes simply motivated by practical con-
siderations as the cortical curvature information would be
impossible to display simultaneously with current value at all
vertices. More often, the small current values are omitted for the
sake of better visualisation of the “real activations”. If the
thresholding is meant to demolish only “insignificant current
ripples”, it would be rather natural to assume that the displayed
“real activity” explains also a significant proportion of the
observed data. Taking the basic MNE for example, the matter is
not so clear. In the MNE-model, assuming the prior variances to be
equal and fixed in all source locations results in the corresponding
current values being drastically shrunken towards each other.
Hence, all source locations tend to explain roughly equal
proportions of the data. On the other hand, taking the hierarchical
approach and letting few prior deviations to take large values, we
increase the amount of data explained by these source locations,
whilst setting the others close to zero yielding in a sense more
“robust” estimates. Because small currents can (and usually will)
give rise to large fields, when they suitably sum up, this effect
pertains also with the hierarchical approach, but to a considerably
smaller degree. We demonstrate this in the Results section, where
we forward-computed the MNEs and the hierarchical estimates
with different thresholds. The Root-Mean-Square-Error (RMSE) is
used to quantify the data fit and is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1

1
M

B tð Þ � Bf tð Þ� �
V B tð Þ � Bf tð Þ� �

vuut ; ð15Þ

where Bf (t)’s are the forward-computed (predicted) fields, and the
mean is hence taken over all time points and sensors.

Even though we consider here only the basic MNE, the
thresholding problem touches all distributed inverse methods in
which the prior variance is assumed to be rather constant across the
cortex, and also their somehow “standardised” versions such as
dSPM (Dale et al., 2000) and sLORETA (Pascual-Marqui, 2002).
Due to space limitations, a more complete analysis of the
thresholding problem must be left for further studies. In this paper,
the threshold is set somewhat arbitrarily either to display only X
most relevant source locations or to include sources which are
above some percentage of the largest source amplitude.
Difficulties with the marginal likelihood and model selection

Unfortunately, as is discussed in Nummenmaa et al. (in press),
for this model the conditional posterior distribution becomes
improper (and is independent of the value of α0) with the choice
γ0=0:

PðB1:T ja0 ¼ not defined; g0 ¼ 0;MÞ ¼ l: ð16Þ
This is due to the fact that the case γ0=0 corresponds to the

“noninformative” hyperprior

P0 aið Þ ¼ 1
ai
; ð17Þ

which is an improper distribution, meaning that its integral over the
domain of the random variable is not finite. Improper priors are
often used, but in this case it leads also to improper posterior and
hence to Eq. (16) (see Nummenmaa et al., in press; Gelman, 2006;
Gelman et al., 2003, pp. 136, 390). Thus, the type II maximum
likelihood (ML-II) (Berger, 1985) procedure cannot be applied to
estimate the value of γ0 as the evidence P (B1:T|α0, γ0, M) is
apparently maximised by setting γ0=0, leading to the improper
case. Whenever using improper priors, there are always potential
problems in using the evidence (Bayes factor) for model selection,
even if all posteriors would be proper (for a related discussion, see,
Bernardo and Smith, 2000, pp. 421–424).

In principle, we might pursue also the full Bayesian treatment
by imposing a further prior P0(α0, γ0|M). Then, the marginal
posterior of α0, γ0 is proportional to the evidence (marginal
likelihood) and the hyperprior (see also Eq. (13)):

P a0; g0jB1:T ;Mð Þ ¼ PðB1:T ja0; g0;MÞP0ða0; g0jMÞ
PðB1:T jMÞ ð18Þ

αPðB1:T ja0; g0;MÞP0ða0; g0jMÞ: ð19Þ

Thus, if we chose the prior to be rather flat with respect to γ0,
the posterior of these parameters would still become unbounded at
γ0=0. It follows then that we should make such a rather
informative prior for γ0, which goes sufficiently fast to zero as
γ0 goes to zero to render the posterior bounded. This is illustrated
in Fig. 3(A).

We could then superficially take into account the uncertainty
about these parameters by MCMC-sampling (Nummenmaa et al.,
in press), but in the case of a relatively flat prior, the sampler would
just bang at the smallest admitted value of γ0. With fixed γ0, it is
possible to estimate α0 from the data, but as the solutions are more
sensitive to γ0, it is probably not so beneficial taking into account
the increased computational burden (Nummenmaa et al., in press).

The ARD-model studied in this paper stems also from a well-
known scale mixture representation of the Student t-distribution
(Gelman et al., 2003; Geweke, 1993). Namely, with fixed γ0 and
α0, marginalising the αi’s from the prior yields an independent
Student t-distribution prior for the distributed current amplitude at
each source location with zero mean (exists when γ0N1/2), degrees
of freedom 2γ0, and variance

g0
a0ðg0 � 1Þ (exists when γ0N1), with

the t-distribution parameterised as in Gelman et al. (2003). The
conditions for the existence of the prior mean and variance derive
directly from the definition of the Student t-distribution, and
provide an alternative view on how the prior becomes less
restricting and well-behaving as γ0→0.

In conclusion, we have to assign some values for α0 and γ0 by
hand in practice. What this means will be explained in the
following section. Before moving to the quest of suitable values for
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the hyperparameters, we will elaborate the issue of model selection
based on the free energy a bit further.

It is often stated in the VB-literature that whatever model
selection and hyperparameter optimisation can be done by simply
maximising the free energy which lower-bounds the log-marginal
likelihood. For simple enough applications and models this
probably is the case. For the model under study, the nature of
the inverse problem brings in more challenges. Incidentally, whilst
the evidence becomes infinite when γ0→0, the free energy
remains finite (see Appendix of Nummenmaa et al., in press):

lim
g0Y0

FðQ; a0; g0;MÞbl: ð20Þ

This is due to the asymmetry of the KL-divergence, and the fact
that the variational posterior is always a proper distribution. By
running the VB-algorithm with several different values of γ0, it can
be seen that the free energy (quite naturally) increases with
decreasing γ0, suggesting consistently to choose the noninforma-
tive case γ0=0, α0=undefined. It is now important to emphasise
that by looking only at the variational posterior (always proper)
and the free energy (always finite) one would conclude that γ0=0,
α0=undefined is the correct “Bayesian choice” for the hyperpara-
meter values. Of course, when the evidence is infinite, all lower
bounds are equally good or bad as the whole construction becomes
ill defined.

As another example, let us consider the problem of deciding
how sparse or dense reconstruction grid to use. As can be verified
from Nummenmaa et al. (in press), Appendix A, the free energy is
an explicit function of the number of vertices in the source space
(=dimension of the current amplitude vector), which we have
called N. We could embark the free energy maximisation and
choose the value of N which gives the maximum:

N̂ ¼ argmax
N∊N

FðQ; a0; g0;N ;M*Þ; ð21Þ

where N is the set of natural numbers and M* emphasises that we
use now a different set of fixed modeling assumptions. As will be
seen in the Results section, the maximisation suggests to use a very
sparse grid, leading to visually intolerable inverse estimates. The
solution to this “paradox” contains at least three parts.

Firstly, computation of the model evidence embodies the
principle of Occam’s Razor. That is, due to the integrations over
model parameters, models with more parameters tend to have
smaller evidence. Adding more reconstruction points means adding
more current amplitude parameters, and if the data fits are roughly
equal in all cases, one should then use as small N as possible.

Secondly, because of the inverse problem, the observed MEG
data do not really supply much information about how dense
reconstruction grid to use. Very good data fits can be achieved with
a very modest (∼1000) number of source points. Only by using an
extremely small value of N (∼100), when the number of source
points is smaller than the number of independent MEG measure-
ments, there could be a situation in which the MEG data would not
be properly explained due to the limited number of source points.

Thirdly, makingN smaller affects the validity of the set of our fixed
assumptions M*. For example, for small enough N, the cortical
orientation constraint is surely not valid anymore. That implies that
our forward model is not adequate, which is not taken into account in
any way when computing the free energy, even though the additional
discretisation error could be compensated bymodifying the likelihood
(see Kaipio and Somersalo, 2005, pp. 181–183).
Once again, we could impose a somewhat informative prior on
N, which would reflect the fact that we must have a rather dense
grid in order to use the rigid cortical constraint. In addition, we
should include the effects of increased discretisation errors in the
forward model with more sparse grids. As the process of storing
thousands of forward matrices and respective inverse estimates is
probably too heavy for practical studies, one is most likely to
express the aforementioned prior information by arbitrarily
choosing a reconstruction grid size which is known to produce
sensible results, without any reference to marginal likelihoods or
free energies.

Hyperprior elicitation

The parameters of the prior for the αi’s define how large and
similar these prior precisions are assumed to be throughout the
brain; this naturally induces a respective constraint on the current
amplitudes themselves. As mentioned earlier, the ARD mechanism
comes through the hyperprior as it provides the sources which are
most “relevant” for explaining the data with small prior precisions
(large standard deviations), whilst suppressing the irrelevant by
setting their prior precisions to rather large values.

The parameter α0 is the prior mean value of the αi’s, whereas
the degrees of freedom parameter γ0 describes how diffusely they
are distributed around their mean α0. The γ0 quantifies in a sense
how informative prior we are imposing on the αi’s. By setting γ0 to
a very large value (∼1000), we effectively constrain all the αi’s to
value α0, which results in the MNE-solution for the J(t) (recall that
the MNE-model assumes the prior current variance to be exactly
the same throughout the brain). Choosing a very small value for
γ0, on the other hand, lets the αi vary a lot, corresponding to being
uninformative about their distribution. Of course, the completely
uninformative and improper case γ0=0 does not practically
constrain the prior precisions at all. Gamma-distribution hyper-
priors resulting from different choices of the hyperparameters
along with αi’s sampled from these are illustrated in Fig. 3(B).

How should one choose the value for these parameters? As
discussed in Nummenmaa et al. (in press), the estimates are not
very sensitive for the value of α0 as long as it is sufficiently large
to keep the overall values of the currents small enough. As a
smaller value of γ0 corresponds to a more uninformative prior
and larger evidence, we might consider setting γ0 to a very small
(but nonzero) value. This could be done, but our previous
experience with the model shows that the convergence of the
estimation algorithms (both MCMC and VB) slows down as the
posterior of the αi’s becomes more diffuse. This is due to the
inverse problem which causes all distributed source models to
have a tendency to lean on the prior. For the same reasons, even
though not explicitly demonstrated in this article, the multi-
modality of the posterior is also likely to increase when using a
more diffuse hyperprior. In conclusion we suggest to set α0 to
some reasonably large value, such as α0=10 and γ0 to a rather
small value for which the estimation algorithm still shows robust
convergence.

Multimodality of the posterior

As demonstrated by Nummenmaa et al. (in press), the true
posterior distribution is multimodal, each of the modes correspond-
ing to a more or less likely solution to the MEG source
reconstruction problem. This is manifested in the VB (or MCMC)
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algorithm getting trapped in different regions of the parameter
space depending on the starting point. This is of practical
importance because the variational posterior is always unimodal,
and hence does not represent the whole uncertainty about the
currents, which can lead to overinterpretation of the results.

While for this model the free energy is not so useful for
hyperprior optimistion, with fixed hyperprior values it can be used
to estimate how much posterior probability mass is contained in the
vicinity of different posterior modes through the following formula
(see Appendix A for a more detailed explanation):

wkc
expðFðQkÞÞPK

k¼1
expðFðQkÞÞ

: ð22Þ

In the above equation wk is the probability mass proportion of
the k:th of the K modes, and F (Qk) is the free energy value
obtained for the corresponding variational posterior Qk. For this
approximate formula to be valid, the posterior modes must be
nonoverlapping, the variational posterior must resemble the true
posterior locally accurately enough, and we must be able to find
all modes containing a significant proportion of the posterior
mass.

Because the present model is of rather high complexity, let us
look at this issue through a toy example of minimising the KL-
divergence from a single Gaussian to a (obviously multimodal)
mixture of two Gaussians (recall that this is equivalent to
maximising the free energy). As all distributions are normalised,
the free energy equals just the negative of the KL-divergence. We
may numerically minimise the KL-divergence by standard
optimisation techniques, and starting from different parameter
values we end up with a different “variational” unimodal Gaussian
approximate for the true distribution. We used three degrees of
overlap between the two components of the mixture. The true mass
proportions were 0.35 and 0.65 in all cases. Resulting distributions
and the numerical estimates for the mass proportions are shown in
Fig. 3(C) and Table 1.

For this simple example, it is easy to see whether the
aforementioned conditions hold or not. In real world applications,
the situation is far from trivial. Also, the differences in the mass
proportions tend to be huge for high dimensional distributions, as
we will see in the Results section. The hyperprior selection also has
an effect on the free energy, which tends to exacerbate the problem
for this particular model. All in all, it is important to bear in mind
the issues raised by multimodality, especially when one gets a
particularly pleasing inverse estimate by the αi=α0 initialisation of
the VB-algorithm.
Table 1
Probability mass proportions in the toy example

Case Nonoverlapping Overlapping #1 Overlapping #2

KL-min#1 0.3500 0.3334 0.5000
KL-min#2 0.6500 0.6666 0.5000

For the nonoverlapping case, numerically exact probability mass proportions
are recovered. When the mixture components begin to overlap, the
“variational” distributions overlap as well, and the estimated mass
proportions are not correct anymore. If the mixture components overlap
significantly, the minima are degenerate, and the posterior mass is equally
split between the two.
Results

Thresholding: hierarchical estimate vs. basic MNE

Here we demonstrate the thresholding problem with the A data.
We set γ0=10 to obtain a genuine hierarchical estimate, and
γ0=1000 to yield an effective MNE. The parameter α0 was set to
10 for both of the cases. We computed the “relevance”, or the VB-
estimated prior standard deviation of each source, and computed
the data fit RMSE (see Eq. (15)) of the thresholded solutions with 1
−8000 “most relevant sources” included to the estimate. The results
are shown in Fig. 4.

From the RMSE plot we see that, with the hierarchical method,
the error decreases rapidly for the three most relevant sources,
which are allowed to take large values by the ARD mechanism.
After that the data fits become steadily better (RMSE decreases) by
including smaller sources. For the MNE, each source point
contributes in roughly equal proportion to the data fit, leading to a
smooth, more linear trend in the RMSE curve. In fact, it takes 268
most relevant MNE sources to get an equal RMSE value to that
obtained by the 3 most relevant sources in the hierarchical solution.
Note also the very different scales of the hierarchical and the MNE
solutions; in the latter the relevances differ only in the third
decimal place. Furthermore, we see that, for the hierarchical
method, the RMSE curve always lies below that of MNE—the
difference will only become narrower when most of the sources are
included to the “thresholded” estimates (which part of the RMSE
graph is not plotted here).

Model selection effects

We studied the effects of grid size and hyperprior selection by
assuming three conditions: (1) a very sparse grid with noninfor-
mative hyperprior, (2) a realistic grid with a somewhat informative
hyperprior, and (3) a realistic grid with an extremely restrictive
hyperprior. In all cases the hyperparameter α0=10, and the VB-
algorithms were initialised by setting αi=α0 for all i. The analysis
was carried out for the A data only. The results are shown in Fig. 5
and Table 2.

Whereas the data fits are rather similar for all cases (both
visually and RMSE values, using the nonthresholded estimates),
the model with sparse grid (smallest N) yields a free energy value
which is an order of magnitude larger than for those with the dense,
more realistic grid. Taking exponentials would then show
overwhelming evidence in favour of this particular solution, which
is visually not too convincing. This effect is mostly due to the
automatic Occam’s Razor, as is explained in the Materials and
methods section, but the analysis does not take into account the
fact that we should have a prior for N as well, excluding
unrealistically sparse grids. Furthermore, with the realistic grid
cases, smaller γ0 gives a larger free energy, yielding also visually
the most plausible, robust estimate of active locations without
requiring careful thresholding. The case γ0=1000, N=8000 is in
fact essentially an MNE, as mentioned before, showing again the
characteristic, diffuse activation pattern associated with it. From
the histogram of VB-estimated expected prior precisions, we see
that it resembles the hyperprior itself in large proportions (see Fig.
3(B)), illustrating the relevancy of the hyperprior selection rather
clearly.

To reveal the effects of the hyperparameter selection on the
solution in more detail, we assumed five distinct values for the



Fig. 4. The left upper plot shows the timeseries of all gradiometer measurements. The right upper plot shows how the RMSE behaves for the MNE and the
hierarchical method (see text). The left black cross shows the value of the RMSE obtained by using three largest sources of the hierarchical method, and the right
black cross the number of the MNE-sources needed to obtain the same value of RMSE. The middle and lowest row show the corresponding thresholded estimates
and the forward-computed (predicted) measurements.
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parameter γ0: 0.1, 1, 5, 10, and 100. The grid size was 8000, and
VB-algorithm was initialised by using the value of α0, which was
set to 10. For this part the threshold was set to include the sources
for which the estimated prior standard deviation exceeds 5% of the
maximal value. The results are shown in Fig. 6.

The results show that there is a clear “regularising” effect
arising from the hyperprior selection. Lower values of γ0 do not
constrain the prior precisions significantly, and the solutions
display more variability in the estimated relevances. These
solutions also have the largest free energies and smallest RMSE
values, as previously explained, and shown in the right lower
corner of Fig. 6. The value γ0=100 produces already a rather
MNE-like solution (note again the different scale in the MNE-plot
of VB-estimated prior deviation vector). For γ0=10 the visual
sources end up in being estimated large and the auditory small,
leading to the latter remaining subthreshold. The value of γ0 which
produces the most plausible solution falls between the extremal
ones. As the RMSE error decreases and the free energy increases
with decreasing γ0, one should perhaps look for a predictive, cross-
validation type of criteria for selecting optimal γ0 for a more
quantitative analysis.

Nonlinearity of the VB-algorithm

To study the nonlinearity of the estimation method inmore detail,
we computed the inverse estimates for all stimulus types A, V, and
AV, with the same hyperprior γ0=10, α0=10. Since the stimuli are
such that drastic audiovisual interaction effects are not to be
expected, the MEG evoked fields add roughly linearly: A+V≈AV
(see Fig. 1). In contrast to the MNE, the hierarchical inverse
estimation is a nonlinear process, and this equality is not necessarily
preserved amongst the corresponding source estimates. For all cases
the VB-algorithm was initialised by setting αi=α0 for all i.

From Fig. 7 we see that the selected hyperprior is suitable for
recovering plausible source locations and amplitude timecourses
for the A and V stimuli. For the audiovisual case AV, the
hyperprior is too restrictive as the auditory sources are estimated to
have very small prior standard deviations and the threshold must be
rather delicately set to recover these sources. The auditory part of
the solution resembles more of a minimum-norm estimate as the
hyperprior does not allow sufficiently many sources to acquire
large prior standard deviations. This behaviour illustrates the
nonlinearity of the hierarchical estimation procedure, in that for the
solutions A+V≠AV. In order to remedy the situation for the AV
case, one should then relax the hyperprior and perform the VB-
estimation once again.

Multimodality effects

To demonstrate the multimodality effects, we continue with the
AV case and loosen the hyperprior by setting γ0=5, α0=10. We
performed 40 VB-runs with random starting points; the αi’s were
drawn from their prior Gamma(10, 5) (see also, Fig. 3). We note
that in the case of two VB-runs ending up in the same mode, their
mass proportions should be summed up when comparing different
modes (see Fig. 3(C) and Table 1), but in this particular case one



Fig. 5. The upper row shows the raw vectors of the VB-estimated expected prior standard deviations, a large standard deviation indicating high “relevance” of the
corresponding cortical location. The black horizontal dashed line indicates the threshold used in the cortical plots shown in the second and third rows. The fourth
row shows the corresponding VB-estimated prior precision vectors as histograms, demonstrating the resemblance to the shape of the hyperprior. The bottom row
displays the predicted measurements calculated using the VB-estimated expected currents versus the actual MEG measurements as a scatterplot. The black line
shows the theoretical case of a “perfect fit”.
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mode practically contains all the posterior probability mass, so this
is neglected in the analysis. The results are shown in Fig. 8.

Again, it appears that most of the solutions yield roughly
similar data fits, but one of the solutions has by far the largest
posterior mass proportion associated with it (largest free energy).
When comparing visually the “best data fit” and “maximal free
Table 2
The free energy and RMSE values for the three different model selection
conditions

Case γ0=0.01, N=1000 γ0=10, N=8000 γ0=1000, N=8000

F −2.3123×104 −2.0946×105 7.1469×105

RMSE 4.6291 3.9666 4.2734

The RMSE values are rather similar, but for the sparsest grid the free energy
value is an order of magnitude larger than those with the realistic grid.
energy” solutions, it is not actually easy to say which one is more
likely to be “the true solution”, based on our prior knowledge of
activations elicited by the type of stimuli that were used. The
reason for this is that the free energy (and the evidence) depends on
γ0; the solution which has the highest free energy fits best to the
hyperprior with γ0=5. This, on the other hand, is selected
completely ad hoc, by first trying γ0=10 and finding it too
restrictive (see previous section). What perhaps most faithfully
represents the “solution” to the inverse problem is the cluster of all
modes into which the VB-algorithm converges. This is shown in
the second row of Fig. 8. From the clustered modes we see,
interestingly, that some solutions also include a more posterior
auditory source for the left hemisphere, which is absent in both
“minimal RMSE” and “maximal F” solutions. Of course we can
compute also a “Bayesian model average” of the modes in the
spirit of Trujillo-Barreto et al. (2004) by weighting different modes



Fig. 6. The five upmost rows display the VB-estimates of the prior standard deviations both as a raw vector and a cortical plot, obtained by using different values
of γ0. The colour bar shows the range of plotted values (see text). The lowest row shows the free energies and RMSE values corresponding to different
(logarithmic) values of γ0.
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by their evidence/free energy, but because one mode in this case
contains nearly all of the posterior mass, it would be the only one
contributing something to the average.

Summary and discussion

We have recapitulated a few theoretical modeling issues
regarding the hierarchical approach introduced in Sato et al.
(2004) and demonstrated how these issues influence practical
analysis of empirical MEG data. First, we studied the problem of
thresholding the estimates and showed that the hierarchical method
“predicts” the data with a couple of sources equally well as the
classical MNE with a couple of hundred sources. Second, we
demonstrated that the free energy is somewhat sensitive to the
selection of the reconstruction grid and the hyperparameter γ0, and
that it is not thus feasible to set up these aspects of the model in a
fully Bayesian way. Third, we varied the parameter γ0 and
demonstrated the regularising effect of this hyperprior shape
parameter. Fourth, we studied the nonlinearity of the estimation
process by comparing source estimates for the MEG responses to
unisensory auditory, unisensory visual, and audiovisual stimuli, by
using the same hyperprior. Fifth, we studied the multimodality of
the posterior and pointed out the possible influence of the ad hoc
hyperprior selection on the posterior mass proportions as estimated
from the free energy values.

The first two issues can be dealt with rather lightly. One could
try several grid sizes and values of γ0 and choose those which
produce best results. In a study with many subjects, the same grid
sizes and hyperparameter values should probably be used for all
subjects to diminish the bias caused by tweaking the hyperpara-
meter values until a hypothesis-supporting inverse estimate falls
out of the analysis for each individual. Of course, different
conditions may require different hyperprior settings. In practice
one might set γ0 to as low a value as possible, with the algorithm
still showing robust convergence. Even though not explicitly
demonstrated in this paper, the multimodality is likely to increase



Fig. 7. The first row displays from left to right the raw VB-estimated expected prior standard deviations (with the applied threshold), the locations of the active
sites on the cortical surface, and the timecourses of the sources for the A data case. The colours of the amplitude timecourses correspond to those of the cortical
locations. The middle row shows the same information for the V case. The bottom row displays the VB-estimated expected prior standard deviations as a raw
vector with the used threshold for the AV condition. The black crosses indicate that the y-axis has been truncated to make the small auditory sources visible. In the
left is the same information plotted on the brain, showing again the smallness of the auditory sources, due to the restrictive hyperprior, in comparison with the
largest visual source.
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when the hyperparameter γ0 is moved to lower, more uninforma-
tive direction. This is intuitively plausible as the posterior
distribution of the prior precisions, which dictates how similar
the currents are throughout the brain, becomes increasingly diffuse
giving space for more different solution configurations.

The question of γ0’s exact role as a regularisation parameter is
nontrivial, however. Changing γ0 is not directly related for instance
to the L-curve method used with linear inverse regularisation
(Hansen, 1992). The L-curve method, incidentally, corresponds to
letting γ0→∞, so that the algorithm operates in the linear inverse
mode, and changing α0 (which constraints the overall magnitude of
the currents) to obtain a value which compromises over the ℓ2 norm
of the solution versus the data fit residual. The parameter γ0 controls
how much the current precisions (and consequently currents
themselves) can vary around γ0, that is the shape of the hyperprior.
With simulated data, one might rather safely set γ0 to a small value
because there is a true solution, consistent with the forward model,
arising from the few simulated sources. The real data, on the other
hand, can contain sources of variability not best explained by few
local sources, such as background activity and effects of signal
preprocessing (filtering), necessitating a more informative hyper-
prior to obtain robust results. As a smaller value of γ0 corresponds
to both better data fit and larger free energy (evidence), one should
perhaps look for a cross-validation type predictive measures if a
more quantitative method for selecting this parameter is desired.

The issue of multimodality calls also some attention. Since the
central aim of Bayesian analysis is to represent uncertainty about
the quantities under investigation, we might argue that choosing one
of the solutions, even the one with overwhelming evidence/free
energy, is overfitting (this is so because the free energies depend on
our very uncertain choice of γ0). Instead, one should perhaps seek
for several modes at first and try to cluster these in order to display
all the potentially activated sites. A group analysis of some sort
might then reveal some of the solutions to be more abundant in the
population, based on which one might then leave out the rest of the
candidate solutions from the final analysis. Also, to help dealing
with multiple solutions, combining fMRI data with MEG stands out
as an obvious candidate. One might think of at least three immediate
ways to utilise spatial fMRI information: fMRI weighting (Sato et
al., 2004), initialising the VB-algorithm according to the fMRI data,
or choosing the solution which best matches the fMRI activation
pattern; this is a topic currently under investigation.

Only one parameter γ0 must be manually set (apart from the
“reconstruction grid/forward model” selection); if it is possible to



Fig. 8. The left upper corner subfigure shows the posterior mass proportions estimated from the free energy for the 40 randomly initialised VB-runs. The right
upper corner displays the corresponding data fit errors. Red asterisk denotes the VB-run index with minimal data fit RMSE, blue asterisk the one with maximal
free energy. The second row shows all the sites on the cortical surface which exceed the threshold, when applied to the multitude of candidate solutions, which are
shown as raw vectors in the rightmost subfigure. The third row shows the active cortical locations and their timecourses with corresponding colours, for the
solution with maximal free energy. The fourth row displays the same information for the solution with minimal data fit RMSE.
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add some computational cost, the parameter α0 could be
estimated from the data. It means that the hierarchical method
is not much more difficult to apply than the MNE—the basic
MNE is recovered from the hierarchical model in the limit
γ0→∞. After setting α0 and γ0, the whole MEG evoked field
timeseries can be plugged into the model, and the estimates will
come out without any manual user intervention. In conclusion,
we have shown that with proper understanding of the virtues and
limitations of the hierarchical approach, it offers effective and
robust estimates of empirical MEG data in a rather automated
fashion.
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Appendix A. Free energy and probability mass proportions

Here we briefly explain how the free energies of unimodal
variational posteriors relate to probability mass proportions of a
multimodal target distribution. Let us suppose that we have a
normalised distribution P(x), such that it is a mixture of K
nonoverlapping normalised distributions Pk(x), k=1,…, K:

PðxÞ ¼
XK
k¼1

wkPkðxÞ; ð23Þ
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where the wk’s are the probability mass proportions of the mixture
components satisfying

XK
k¼1

wk ¼ 1: ð24Þ

The property that the distributions do not overlap is defined in this
informal treatment as existence of K disjoint sets I k, k=1,…, K such
that their union spans the whole domain of the random variable x, and

PðxÞcwkPkðxÞ; when xa I k : ð25Þ
Now suppose that we have a unimodal variational distribution

Qk(x), which for practical purposes vanishes outside Ik. Then
because of Eq. (25), the free energy is

FðQkÞ ¼ logðZPÞ � KL½QktP�clogðZPÞ � KL½QktwkPk � ð26Þ

¼ logðZPÞ þ logðwkÞ � KL½QktPk �; ð27Þ
where we have formally included the normalising constant of P,
ZP=1 to keep the notation similar to the case where the
normalising constant is not known.

If the variational posterior Qk is of sufficiently similar
functional form to Pk, the KL-divergence of Qk and Pk will get
close to zero during the optimisation of the free energy, in which
circumstances we get

FðQkÞclogðZPÞ þ logðwkÞ or ð28Þ

wkc
expðFðQkÞÞ

ZP
αexp F Qkð Þð Þ or ð29Þ

wkc
expðFðQkÞÞPK

k¼1
expðFðQkÞÞ

: ð30Þ

To sum up, the probability mass proportions can be computed
directly from the free energy values with reasonable precision
assuming three conditions:

1. Modes of the target distribution are not significantly overlapping.
2. Variational distribution resembles the target distribution locally

accurately enough.
3. We can find all the modes of the target distribution containing a

significant proportion of the total probability mass.

In the mixture of Gaussians toy example in the Materials and
methods section, all the above conditions can be satisfied with
large precision, in which case the mass proportions are numerically
exactly given by the above relationship. In more complex
applications, it is generally very hard to show that the three
conditions hold, but if one is to trust the variational method in the
first place they are in a sense already assumed to be valid.
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