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Abstract: Here we demonstrate how sparse
cortically constrained MEG inverse solutions
can be obtained via the hierarchical Bayesian
minimum-norm estimation approach, wherein
Gaussian priors with individual precisions (in-
verse variances) are first assumed for the dis-
tributed current amplitudes at each cortical loca-
tion. A common second-level prior (hyperprior)
of specific form is then imposed on the prior
precisions to cause most of the current ampli-
tudes to vanish, thus resulting in sparse inverse

solutions. We validated the approach using an
empirical dataset, wherein identical visual stim-
ulation experiments were carried out in MEG
and fMRI. The physiologically highly feasible
fMRI statistical parametric maps were used as
a reference for the MEG solutions. The results
show that the hierarchical Bayesian approach is
capable of producing solutions concordant with
the fMRI data in a rather automated fashion, de-
spite the characteristic complexity of the visual
evoked magnetic fields. The proposed method
of selecting the hyperprior to obtain sparsity
provides an effective and straightforward way
to regularise the solutions. We also discuss the
possibility of utilising fMRI information in the
MEG source reconstruction.



Introduction

During the past decades many different solution
strategies have been suggested to the inverse
problem in magnetoencephalography (MEG) and
electroencephalography (EEG) (for a review of
MEG/EEG and most common inverse algorithms,
see, e.g., Baillet et al., 2001). The multidipole
approach aims at explaining the observed MEG
fields by a small number of equivalent current
dipoles, whereas an estimate of the currents
throughout the brain is obtained in distributed
source modeling. Both approaches have their
virtues and limitations; in the multidipole mod-
eling, the (usually unknown) number of dipoles
plays an important role and the performance
of the algorithms usually deteriorate quickly
with increasing number of dipoles. The dis-
tributed models face the underdetermined prob-
lem of estimating thousands of unknowns based
on a few hundred measurements, necessitating
some prior assumptions on the distribution of
the currents, which then significantly constrain
the solutions typically with little neurophysio-
logical justification. Statistical formulation of
the inverse problem and Bayesian data analysis
(Kaipio and Somersalo, 2005; Bernardo and
Smith, 2000; Gelman et al., 2003) have gained
increasing popularity within both multidipole
(Schmidt et al., 1999; Bertrand et al., 2001a,b;
Jun et al., 2005, 2006; Auranen et al., 2007) and
distributed inverse analysis (Phillips et al., 2002;
Trujillo-Barreto et al., 2004; Phillips et al., 2005;
Auranen et al., 2005; Mattout et al., 2006).

The classical Minimum-Norm Estimate
(MNE) (Hämäläinen and Ilmoniemi, 1984; Dale
and Sereno, 1993) can be interpreted to arise
from a Bayesian model, where the a priori
probability distribution of the current ampli-
tudes at each location of the discretised cortex
is assumed to be a Gaussian with zero mean
and fixed variance. The prior variance param-
eter can be used to regularise the solutions,
smaller variance setting the currents closer to
zero. The virtue of this approach is that with
fixed prior variance, the maximum a posteriori
(MAP) estimate is unique, and a simple inverse
operator matrix can be constructed to calculate
the solutions. Because the symmetric spatially

homogeneous prior constrains the currents to
be of similar magnitude throughout the brain,
the resulting MNE’s are very diffuse. Conse-
quently, such solutions as obtained with multi-
dipole modeling, where few locations contain
large currents while others are set to zero, can
not arise from classical MNE model. Because
a vast number of current configurations, includ-
ing diffuse and highly dipolar, can produce an
identical set of MEG measurements, they can
all be justified and correspond to different prior
assumptions. Which one is the “true” can not be
deduced from the MEG data alone.

An interesting hierarchical Bayesian frame-
work was presented by Sato et al. (2004) for
distributed source estimation, which generalises
the basic MNE model so that Gaussians with
individual precision (inverse variance) parame-
ters are assumed for each point of the solution
space. The hierarchy then emerges from impos-
ing a common second-level prior, here called
hyperprior, on the prior precisions. The prior
precisions are often called hyperparameters as
they are parameters of the prior – in a sense, the
current amplitudes can be thought of being the
first level parameters and their prior precisions
the second level. The hierarchical approach has
the virtue that now some of the prior precisions
can have small values (large prior variance),
leading to large current amplitudes for those
source locations, while the others keep their re-
spective currents close to zero and considerably
less diffuse solutions than the MNE emerge.

The hierarchical prior has the desirable fea-
ture of being more flexible, but the joint pos-
terior of the parameters and hyperparameters is
not of tractable form. However, the currents
and their prior precisions can be estimated from
MEG data by using a Variational Bayesian (VB)
method (for an introduction to VB-methods and
graphical models, see, e.g., Ghahramani and
Beal, 2001). The VB-method is closely re-
lated to the Expectation Maximisation (EM)
algorithm and has also interesting information-
theoretic interpretations (Honkela and Valpola,
2004). Close relatives of the hierarchical prior
model studied here have been used to perform
Automatic Relevance Determination (ARD) for
artificial neural network input selection (Neal,
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1996) and sparse Bayesian learning (SBL) (Tip-
ping, 2001).

The VB-estimated values of the currents de-
pend directly on their corresponding estimated
prior precisions, as is apparent from the VB-
algorithm (summarised in the Materials and meth-
ods section). Furthermore, our previous results
(Nummenmaa et al., 2007a,b) show that the
estimates of the prior precisions depend in turn
strongly on their prior distribution, the hyper-
prior (assumed to be a Gamma-distribution).
For instance, the ARD-approach of Tipping
(2001) to Bayesian regression involves many of
the prior precisions being driven to infinity using
a noninformative hyperprior, thus eliminating
these variables from the model and leading to
a sparse representation of the data. The sparsity
assumption follows, loosely speaking, the logic
of Occam’s razor preferring a model which has
the smallest (effective) number of parameters
needed to explain the observed data. This is
also our motivation here – if few locations with
large currents can explain the observed fields,
we prefer this a priori to the more diffuse MNE.

With the severely underdetermined MEG
inverse problem, the ARD-prior in fact does
not automatically lead to sparse solutions even
when the noninformative Jeffrey’s hyperprior
is used (this improper hyperprior has the ad-
ditional disadvantage of leading also to an im-
proper posterior, Nummenmaa et al., 2007a,b).
Here we provide a detailed analysis of how
to obtain sparse solutions to the MEG inverse
problem within the ARD-framework, based on
the VB-EM algorithm with a suitable choice of
the hyperprior. The flexibility of the hierarchical
framework is utilised in forcing most of the
currents to extremely small values, while still
enabling some of the currents to have large
values. The sparsity assumption also provides a
clearcut resolution to the thresholding problem
of the solutions raised in (Nummenmaa et al.,
2007b), as the locations of the large currents
can be robustly separated from the (effectively)
vanishing ones.

Here, to obtain a realistic view on the prop-
erties of the sparse solutions, we used an empir-
ical dataset for evaluation of the method. Visual
evoked MEG responses provide a good test

bench for an automatic inverse algorithm, as the
responses are generated by several physiologi-
cally a priori relatively well known sources with
adjacent locations and temporally overlapping
activation patterns, which gives rise to lots of
manual work when the inverse modeling is done
using traditional dipole-fitting methods (Vanni
et al., 2004b,a). Three subjects participated in
identical experiments carried out in MEG and
fMRI, with a drifting grating visual stimulus.
The fMRI data provide a qualitative reference
for the locations of the MEG sources. We
also briefly discuss the possibility of utilising
the fMRI information in the hierarchical MEG
inverse estimation.

Materials and methods

The dataset

The same dataset has been previously analysed
by Auranen et al. (2007) with a multidipole
approach. Here we present only a synopsis of
the experimental design and the data analysis.

Three male subjects with normal or corrected-
to-normal vision participated in the study. The
study was approved by the Ethics committee of
the Hospital District of Helsinki and Uusimaa.
A local drifting grating activated retinotopic
visual areas, and visual motion sensitive area
V5. To confirm the functional identification
of the active areas, the borders of retinotopic
areas were mapped with multifocal fMRI (Vanni
et al., 2005). The stimuli are shown in Fig. 1
and a multifocal mapping based retinotopy ver-
ification of drifting grating activation is demon-
strated in Fig. 2.

The grating was located in the middle of the
lower left quadrant of the visual field with 2-7
degree eccentricity covering a 60 degree polar
sector (spatial frequency of 1.3 cycles/degree
at 4.5 degree eccentricity). Movement of one
cycle was presented as four consecutive im-
ages. Due to different refreshment rates of data
projectors at MEG and fMRI, the respective
stimulus durations were 134 ms and 107 ms,
corresponding drifting speeds being 7.46 and
9.35 cycles/second. Stimuli were presented with
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(A) (B)

Figure 1. (A): Example frames of the multifocal
design. Contrast reversing checkerboard pattern
activated the vertical and horizontal meridians,
mapping the borders of the low-level retinotopic
areas. (B): Drifting grating stimulus for the MEG
and fMRI experiment.

a varying ISI of 0.8-1.2 seconds in a block
design, alternating with rest in period of 50
seconds. Task was to fixate at the (marked)
center of the images and to passively view the
stimuli.

We aimed to good signal-to-noise -ratio in
both fMRI and MEG to minimize any ambiguity
in signal location. A total of 308 functional
volumes were collected in three separate runs,
one volume consisting of 27 slices with slice
thickness 3.0 mm, the stack aligned perpendicu-
lar to the parieto-occipital sulcus. Parameters of
the EPI sequence were TR=2000 ms, TE=30 ms,
flip angle=60 deg, FOV=19 cm, matrix size 64
× 64. The data of the identical MEG experiment
was recorded at 600 Hz sampling frequency,
downsampled to 300 Hz, notch-filtered to re-
move 50-Hz noise, and high-pass filtered (But-
terworth, corner frequency 0.2 Hz) to remove
slow drifts. Over 800 artefact free trials were
used to calculate the average evoked fields.

The general linear model of FSL was used
to analyse the fMRI data (Smith et al., 2004).
As an exception to the standard analysis setup,
neither spatial smoothing nor intensity normali-
sation was applied in order to project the data to
the FreeSurfer-reconstructed (Dale et al., 1999;
Fischl et al., 1999) cortical surfaces with max-
imal resolution. The resulting Z-statistic maps
were thresholded by Z > 5 and clusterwise sig-
nificance level of p = 0.05. The evoked MEG
fields and fMRI statistical parametric maps
(SPM) are shown in Figs. 3 and 4.

18.4

3
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Figure 2. FMRI activation for the drifting grating
stimulus for Subject 3. The area borders for V1, V2,
and V3/VP were mapped with the multifocal design.
The black lines bound V1, and then both in dorsal
and ventral directions V2 is bounded by the black
and blue and V3/VP by the blue and green lines.
The colourbar shows the scale of the thresholded Z-
statistic SPM (for details, see text).

Considerable intersubject variability in both
MEG and fMRI data is evident. Subject 1
has the best signal to noise ratio (SNR) for the
MEG data, and Subject 3 the worst. On the
contrary, Subject 3 has the largest Z-scores in
the SPM’s and Subject 1 the smallest. As the
final projection of the voxel fMRI SPM to the
cortical surface involves smoothing, leading to
diminished Z-scores, the threshold was lowered
to value 3 for the surface visualisation.

Forward model
FreeSurfer based model was used to constrain
the possible locations and orientations of the
sources according to individual cortical geom-
etry. The number of discretisation points in the
reduced surface used in the inverse estimation
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Subject 1

MEG evoked fields

Figure 3. The MEG data of Subject 1 is plotted on top of the sensor grid, nose pointing up. The two planar
gradiometers are shown, with red and blue lines.

was approximately 8000. One-layer boundary
element method was used in the forward compu-
tations (see, e.g., Mosher et al., 1999), resulting
in the linear equation relating the current ampli-
tudes J(t) to the observed MEG fields B(t):

B(t) = G J(t)+ N(t), t = 1, . . . , T, (1)

where G is the gain matrix, T is the number
of timepoints (151), and the measurement noise
N(t) is assumed to be independent of time and
to have a Gaussian distribution with zero mean
and inverse covariance 6G:

N(t) ∼ N(0,6−1
G ). (2)

Here we deviate from (Sato et al., 2004)
and (Nummenmaa et al., 2007a,b) in assuming

that the estimated inverse noise covariance 6̂G
is not subject to any uncertainty; hence the
previously used scale parameter β quantifying
this is set to be equal to unity. This simplifies
the analyses and can be justified with the large
number of trials available for calculating the
average evoked response.

The hierarchical prior

Gaussian prior with individual precision (in-
verse variance) parameter is imposed on the
currents at location i of the source space:

J(t)i ∼ N(0, α−1
i ),

or with vector notation
J(t) ∼ N(0, A−1). (3)
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Figure 4. The columns 1-3 show the MEG data and fMRI statistical parametric (Z) maps for the
corresponding subjects. Note the different scales in the fMRI activation images. Sensor timecourses of all
MEG channels are collapsed on a single plot for each subject to facilitate comparison with those calculated
from the inverse solutions.

A common Gamma-distribution hyperprior is
then imposed on the hyperparameters αi

αi ∼ Gamma(α0, γ0), (4)

where the Gamma-distribution is parameterised
as

Gamma(αi |α0, γ0) =

1
αi

(

αiγ0

α0

)γ0

0(γ0)
−1 exp

(

−
αiγ0

α0

)

, (5)

and 0(·) being the Euler Gamma function.

Estimating the currents and the hy-
perparameters

If the hyperparameters αi were known or fixed
to values α̂i , the maximum a posteriori (MAP)
estimate for the currents would be the linear
MNE:

Ĵ(t) = Â
−1

G′
6̂B B(t), (6)

where 6̂
−1
B = G Â

−1
G′ + 6̂

−1
G .

Typically this is not the case, but the αi ’s are
unknown and thus preferably estimated from the
data as well. The joint posterior of the currents
and their precisions is not of tractable form,
and hence the VB-method is developed in (Sato
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et al., 2004) to obtain an approximate factored
posterior. Operationally, this leads to an EM-
type update for re-estimating the precision pa-
rameters αi based on the previously computed
MNE:

α̂new
i =

γ0 + T
2

γ0
α0

+ 1
2
∑T

t=1 Ĵ(t)2i + T
2

(

Â
−1
(I − Â

−1
G′
6̂B G)

)

i i

.

(7)

The equations (6) and (7) are iterated until
convergence. Along with the number of time-
points T available for inferring the values of
the hyperparameters αi , the updated estimates
depend also on the parameters of their prior,
α0 and γ0. In practice these must be manually
fixed to some reasonable values (Nummenmaa
et al., 2007b). The resulting estimates depend
strongly on the selection of these parameters
– for instance, from equation (7) one can see
that by setting α0 = 10 and γ0 = 1010, the
hyperprior will dominate the hyperparameter
estimation process resulting in αi ≈ α0 for
all i and a very classical MNE-like solution
(Nummenmaa et al., 2007b).

Regularisation, initialisation, sparsity
and thresholding
The parameters α0, γ0 describe the mean and the
degrees of freedom (or shape) of the Gamma-
hyperprior, respectively. These both have a
regularising effect, the α0 setting the overall
magnitude of the precisions and γ0 how much
the precisions can vary from their mean a pri-
ori. The variance of the Gamma-distribution is
α2

0/γ0. Thus, the lower the value of γ0, the more
the precisions can deviate from α0, and the less
“informative” the hyperprior is. Lower values
of γ0 also cause the convergence of the VB-
algorithm to slow down. In the limit γ0 → 0,
the Gamma-distribution becomes the improper
Jeffrey’s prior, leading to the posterior becom-
ing also improper and consequently to some
theoretical and practical difficulties. The re-
sulting estimates are found to be more sensitive
to the specific value of γ0 (Nummenmaa et al.,

2007a). The general impact of the hyperprior,
like all priors, is to bias the estimates while
reducing variance. Making the hyperprior more
informative or strict (choosing large values for
γ0 and/or α0) puts more weight to the prior
over the likelihood. As we are solving an ill-
posed, underdetermined problem, introducing
some bias is most likely necessary to obtain
robust estimates with empirical data.

The estimates also depend on the initialisa-
tion of the algorithm (the hyperparameters αi ),
and the true joint posterior of the parameters and
hyperparameters is thus multimodal (Nummen-
maa et al., 2007a). However, let us assume that
all of the αi ’s are initialised to a common value
αs . At the first iteration of the VB-algorithm, the
current estimate is a MNE with regularisation
parameter αs . The larger the (at this stage
common) precision parameter αs is, the more
regularised MNE the VB-algorithm begins and
also most likely ends with. To obtain estimates
with an intermediate regularisation also in this
aspect, we initialise the algorithm in the region
of the hyperparameter space where the hyper-
prior is relatively flat. We also study the utility
of initialising the algorithm with fMRI data; in
this case at the first iteration the current estimate
is an fMRI-weighted MNE (for fMRI-weighted
MNE, see, e.g., Liu et al., 2002).

Effective sparsity can be realised by setting
α0 to a large value to make the average value of
currents very small, and γ0 to a sufficiently large
value to obtain a suitable regularising effect and
robust convergence of the algorithm. We speak
of “effective” sparsity, since the currents are not
set to exactly zero but to very small values.

In the previous study, we raised the question
of thresholding the MNE-type inverse estimates.
Usually, the thresholding is done for better visu-
alization of the “real” activations and the small
current ripples are set to zero. In principle, this
causes problems for models such as the basic
MNE, where the prior variance is assumed to
be uniform throughout the source space, each
location consequently explaining roughly equal
proportions of the data (Nummenmaa et al.,
2007b). The small subthreshold currents may
actually be responsible for explaining a larger
part of the variability in the data than the actual

7
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VB-iteration

(B)

Histogram of α̂i ’s

(C)

(D)

Meas. vs. pred. fields

(E)
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(F)

Figure 5. (A): The gamma-hyperprior with parameters γ0 = 100, α0 = 1010. (B): Trends of the prior
precisions in the course of the VB-algorithm. (C): Histogram of the estimated prior precisions, showing
that most of the precicions end up close to α0, and hence the solutions are effectively sparse. The blue
line indicates that the histogram continues beyond the plotted range. (D): The cluster of the small prior
precisions visualised on the cortical surface. The shown values are deviation quantities (inverse square roots
of the precisions). (E): The forward computed fields and the empirical data shown as a scatterplot. The
black broken line shows the case of “perfect fit”. (F): The forward computed fields with only the large
currents (thresholded) and with all currents shown as a scatterplot, demonstrating that small currents have a
vanishing effect on the predicted fields.

visualised activations. Within the hierarchical
framework, if the parameter α0 is set to a suffi-
ciently large value, the contributions of the small
currents to the data fit can be ensured to vanish,
thus circumventing the thresholding issue.

Figure 5 illustrates how the sparse solutions
emerge from the hierarchical model, by using
the data of Subject 2. The hyperprior with
parameters γ0 = 100, α0 = 1010 is shown
in (A), and it is seen that most of the prior
probability mass of the αi concentrated around
α0. As the VB-algorithm proceeds, most of
the hyperprior estimates α̂i are driven close to
α0. The histogram of the α̂i is then shown in
(C), which illustrates that there are two clearly
separated clusters, those with small estimated
prior precision (large variance, inside the yellow
circle), and those for which the prior precisions
are extremely large. The locations with the

small prior precisions can be plotted on the
inflated cortical surface, which is shown in (D).
The forward calculated measurements versus
the actual observed MEG fields are then shown
in (E) as a scatterplot. To ensure that the small
currents do not actually contribute anything to
the forward-calculated fields, the calculations
were made with and without the contributions
of these, the scatterplot of (F) showing the high
degree of similarity of the two cases.

Incorporating fMRI information

There are several ways in which fMRI statistical
maps can be incorporated to the hierarchical
inverse estimation. We could, for instance,
choose different hyperprior parameters α0 f , γ0 f
to locations which are likely activated based on
fMRI information, resulting in a rather “soft”

8
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Selection of γ0
γ0 =0.0001 γ0 =50 γ0 =100

Histogram of α̂i ’s
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Subject 2
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Figure 6. The two upmost rows demonstrate the emergence of sparse solutions and the regularising effect of
γ0, respectively. Below, the solutions (estimated prior deviations) corresponding to different initialisations
of the VB-algorithm are depicted. Again, the blue line indicates that the histogram continues beyond the
plotted range.

constraint. Or, we could directly scale the
αi ’s according to some fMRI weights. It turns
out, that the above procedures are easily either
too soft or too hard, producing little effect
or leading to very biased estimates completely
determined by the fMRI prior. This behaviour is
not surprising, as the central idea of the method
is that the prior variances are estimated from the
MEG data. Since the prior precision parameters
are assumed not to change in time, there are T
datapoints (number of timepoints in the sensor
data) from which these are estimated. As more
data means less weight for the prior (see, Eq.
(7)), the fMRI component of the prior would
have to be rather sharp. Since the sparsity as-
sumption is already quite strong, the priors can
consequently also be conflicting. The initiali-

sation, on the other hand, has clearly an effect
to which the solutions are not overly sensitive,
and here we study the utility of incorporating
the fMRI information into this aspect. As stated
before, initialising with spatially homogeneous
prior variance corresponds to the first iteration
being an MNE, initialising with fMRI leads to
an fMRI-weighted MNE at the first VB-step.

Results

Regularisation: Selection of γ0 and
initialisation

For studying the regularising effect of the hyper-
parameter γ0 we set α0 = 1010 and ran the VB-

9
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Figure 7. The columns 1-3 show the forward computed MEG sensor timecourses and the cortical locations
containing large currents for the corresponding subjects.

algorithm with γ0 = 0.0001, 50 and 100, with
initialisation α̂i = 1. The value γ0 = 50 was
chosen for investigating the estimates obtained
by different initialisations, which were chosen
to be α̂i = 0.1, 1 and 10. The data of Subject 2
were used and the results are shown in Figure 6.

In the case of very low value of γ0 and
noninformative hyperprior, the data fit corre-
sponding to the estimate is very good, indicating
little bias. From the histogram of estimated
α̂i ’s we see that the estimate is not sparse and
no obvious criterion/scale for thresholding or
sparsifying the estimate is evident. The so-
lutions corresponding to very small γ0 may
also visually look “overfitted” (Nummenmaa
et al., 2007b). With increasing γ0 the data fit
diminishes, as the hyperprior constrains most of
the currents close to zero, which can also be seen
from the corresponding histogram. Providing
a sufficient degree of regularisation and quick
convergence of the VB-algorithm, the value of

γ0 = 50 is used for the rest of the analyses
and for all subjects. The lower part of Figure
6 shows the estimated prior deviations (σ̂i =

α̂
−1/2
i ) obtained with different initialisations. It

is apparent that (with the rather informative
hyperprior) the algorithm is not too sensitive for
the initialisation, and we select the intermediate
value of 1 for this purpose in what follows.

Localisation with MEG only
The hierarchical VB-estimation was done with
hyperprior parameters α0 = 1010, γ0 = 50
and initialisation α̂i,ini t = 1 for all subjects,
based on the analysis of previous section. The
localisation results and the forward computed
fields are shown in Figure 7.

The number of locations which were esti-
mated to contain large currents were 11, 14, and
5 for Subjects 1,2, and 3, respectively. This
is roughly in line with the different SNR’s of
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the datasets. Estimates for Subjects 1 and 2,
whose data have significantly higher SNR’s,
contain also significantly more sources, as all
estimates are calculated with same degrees of
regularisation. The forward computed fields
are in satisfactory agreement with the actual
measured fields (see, Figure 4). For all subjects,
the overall amplitude is somewhat smaller, and
the sensor timecourses are altered in places,
due to the regularisation. The locations of the
estimated MEG sources show close resemblance
to the fMRI activation maps. For Subject 1, the
cluster of sources close to the primary visual
areas V1-V3, seems to be slightly too poste-
rior. For Subject 2, there is a “unoccupied”
space between clusters containing supposedly
the sources of the primary visual areas, caused
by some of the sources being perhaps localised
to other bank of a more appropriate sulcus. For
Subject 3, the cluster of the primary sources is a
bit too superficial in comparison with the fMRI
activations. For all subjects, the activation of
motion sensitive area (V5) of the right hemi-
sphere seems to be quite accurately localised
(for Subject 2 there are actually two nearby
sources). On the left hemisphere, no sources
are estimated for Subject 3 most likely due
to the poor SNR, while for Subjects 1 and 2
the locations are reasonable in comparison with
each other and with fMRI data, which shows
contralateral activity only at the level of V5.
All subjects also have an MEG source in the
posterior parietal cortex not clearly visible in the
fMRI, indicating the possible activation of also
higher levels of the dorsal visual stream.

The timecourses of the sources are shown
in Figure 8. As expected from properties of
the basic MNE, largest current amplitudes are
estimated for sources which are most super-
ficial. The earliest activation onset latencies
do not show any clear visual processing hier-
archy (such as V1 → V2 → V3) which is
observed, e.g., by Vanni et al. (2004b,a). Also,
in the present dataset, the first onset latencies
which can be safely distinguished from noise
are slightly before 100 ms, whereas the earliest
onset latencies of V1 activations seen in (Vanni
et al., 2004a) are already at about 50 ms. These
differences could be explained by the different
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Figure 8. The columns 1-3 show the timecourses of
the sources for the corresponding subjects. Colours
of the plots refer to the source locations in the Fig. 7.

stimuli used in these experiments (the drifting
grating versus checkerboard reversals). In a
recent EEG study by Delon-Martin et al. (2006)
activity patterns elicited by different types of
visual motion stimuli were compared, and their
earliest onset latencies and ERP waveforms re-
semble those of the present MEG data. This is
especially true for the rotation stimulus, being
closest in nature to the drifting grating.

All in all, the locations and the timecourses
of the sources seem to be plausible given the
type of stimuli used. Many peculiarities and
intersubject differences also emerge. For ex-
ample, the two nearby V5 sources of Subject 2
have rather similar waveforms, the more ante-
rior source being slightly ahead. Whether these
are really two different sources or a modeling
artefact remains an open question because of the
limited number of subjects.
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Initialising with fMRI
We examine the possibility of utilising the fMRI
information in the source localisation. The
α̂i ’s of the “fMRI-active” locations above the
threshold Z > 3 are assumed to have value 0.25.
The α̂i ’s of the remaining locations are set to 1
(recall that smaller prior precisions correspond
to larger estimated currents). Same hyperprior
parameter values α0 = 1010, γ0 = 50 are
assumed for the VB-estimation. The initial
fMRI-derived prior precisions and the resulting
inverse estimates are shown in Figure 9.

Comparing to the estimates obtained with
the MEG data alone (Figure 7), the initialisation
has some influence on the source locations.
Most notably, the posterior parietal source is
missing for Subject 2, as there is no correspond-
ing activation in the fMRI (a potential “fMRI
false negative”). On the other hand, the “fMRI
false positives” surviving the thresholding for
Subject 1 have no drastic effects on the solu-
tions. Overall, there are minor differences in
the locations and number of sources, but the
general characteristics of the solutions remain
the same. This is to be expected, since the
estimation of the currents and their prior preci-
sions is done based on the MEG data, and the
sparsity assumption and implementation with
the hyperprior is rather strong as such.

Discussion
We proposed an algorithm to produce effec-
tively sparse solutions to the distributed MEG
source reconstruction problem, by using the hi-
erarchical VB-method introduced by Sato et al.
(2004) and subsequently further analysed by
Nummenmaa et al. (2007a,b). Experiments
with identical visual stimuli were carried out
in MEG and fMRI, the activity maps of which
were used for validation of the inverse method.
The locations of the estimated sources showed
considerable agreement with the fMRI data. We
also studied the possibility of using the fMRI
information in the inverse estimation.

Our method bears similarities to the FO-
CUSS algorithm (Gorodnitsky et al., 1995) which
is also based on recursive minimum-norm esti-
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initialisations for each subject. The right column
shows the resulting inverse estimates.

mation. In our approach, both the sparsity (or
focality) and the regularisation come through
the Bayesian hierarchical model hyperprior struc-
ture. In a recent article, Wipf et al. (2007)
present an interesting theoretical analysis of
ARD-based models and hyperparameter esti-
mation for the MEG inversion. A speed-up
strategy relative to that of Tipping (2001) is also
presented for estimating the prior precisions.
It will be interesting to see how these differ-
ent estimation methods behave and perform in
empirical data analysis. One virtue of our
approach is also the guaranteed convergence, as
the basic VB-EM estimation is used, in contrast
to the heuristic speed-ups. From a practical
point of view, the hyperprior selection (and
the hyperparameter γ0) regularises the estimates
quite explicitly, simply and effectively. The
estimates are not too sensitive to the initialisa-
tion of the algorithm and the thresholding issue
is conveniently circumvented by the sparsity
assumption.

There are also limitations. Firstly, the true
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joint posterior distribution of the current ampli-
tudes and their prior precisions is multimodal
meaning that different initialisations of the VB-
algorithm may lead to different inverse solu-
tions. The presently ad hoc selection of the
hyperprior parameters may have a significant
effect on the posterior mass proportions, which
can be in principle estimated with the VB-
method (Nummenmaa et al., 2007b). It can
be questioned how Bayesian the inverse solu-
tions actually are, as the uncertainties involved
in these estimates are not properly quantified.
Secondly, typically such priors or regularisation
methods which somehow constrain magnitudes
of the currents also produce bias towards those
source locations which produce larger gain to
the sensors based on their physical location
and orientation (for MEG, these are usually the
superficial and/or tangential). This bias has
been sometimes compensated by using “depth
weighting” (for the effect of this on MNE, see,
e.g. Lin et al., 2006). From viewpoint of gen-
eral statistical inference, it is not obvious how
meaningful this compensation is. The depth
weighting corresponds to a prior assumption
that deeper/weakly visible sources are larger
in amplitude and/or extent, which indeed they
must be for producing comparable MEG fields
above the noise level. Now the problem is that
if good data fits are also obtained by placing
smaller sources to the well-visible locations,
based on what information the deeper and larger
sources should be favoured? With a “minimum-
something” based prior source model, it is most
likely necessary to somehow enforce the sources
deeper. In order not to confuse the model with
conflicting priors, the superficial counterparts
of the deep sources (i.e., superficial sources or
combinations of such, which produce similar
field patterns to the deep sources) should pos-
sibly be somehow eliminated from the space of
possible sources to render the estimates reliable.

Because there evidently is a correspondence
with hemodynamic and electromagnetic mea-
sures of brain activity Logothetis et al. (2001),
one might very well want to favour some cor-
tical locations as generators of the MEG/EEG
data if corresponding fMRI data is available.
We incorporated the spatial fMRI information

to the estimates as initialisation of the prior
precisions. The manner in which this was done
is still somewhat crude, and the results showed
little improvement in quality. Kilner et al.
(2005) classify attempts to combine fMRI with
MEG/EEG as integration through 1) prediction
2) constraints 3) fusion (forward models). Our
approach is tangential to the integration through
constraints, but more of an fMRI “guide” (Ahl-
fors and Simpson, 2004; Auranen et al., 2007).
It seems that only integration through the for-
ward models would properly oblige the inverse
method to explain missing MEG sources and/or
deeper source locations. The way in which such
aspects could be encoded to the hierarchical
Bayesian scheme studied here remains a chal-
lenging research problem.

The presented method is quite automatic,
as only the parameter γ0 needs to be tuned
for suitable regularisation (generic initialisation
such as α̂i = 1 should be expected to work
reasonably well with various datasets). It would
be also interesting to see how the hierarchical
method performs in a real user test similar to the
one done by Stenbacka et al. (2002). Simulated
data are typically too simple to reveal the real
utility of a model, and more empirical data must
be collected. For example, suitable retinotopic
stimuli could be used to obtain MEG mea-
surements from sources with varying depth and
extent for studying what type of assumptions
and constraints are needed to correctly estimate
these aspects.
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