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Abstract. Quality of measurements is an important factor affecting the
reliability of analyses in environmental sciences. In this paper we combine
foliar measurement data from Finland and results of multiple measure-
ment quality tests from different sources in order to study the effect
of measurement quality on the reliability of foliar nutrient analysis. In
particular, we study the use of weighted linear regression models in de-
tecting trends in foliar time series data and show that the development
of measurement quality has a clear effect on the significance of results.

1 Introduction

Analyzing chemical characteristics in samples collected from different compo-
nents of ecosystems (e.g. biological samples, soil, water, etc.) are key methods
in environmental monitoring. Chemical analyses are, however, prone to many
errors which has brought up concern about the reliability of the analyses. Great
improvements in laboratory quality have been achieved in the past two decades
due to, for example, use of international reference material and interlaboratory
comparisons (so-called ring tests). Despite the general improvement in labora-
tory quality some of the latest ring tests still reveal problems in quality [1].

The aim of this paper is to study how large of an impact laboratory qual-
ity has on detecting changes in environment. We use data from the ring tests,
where laboratories analyzing foliar samples have been surveyed (see e.g. [1]).
Further we link the data of conifer foliar concentrations measured in samples
collected from 36 Finnish ICP Forests Level I plots (International Co-operative
Programme on Assessment and Monitoring of Air Pollution Effects on Forests,
see http://www.icp-forests.org/) and the results obtained by the Finnish labo-
ratory in internal quality tests and the above mentioned ring tests.

Both theoretical computations and real-world data were used to study the
effect of changing data quality on trend detection. Foliar nutrient data from
Finland were analyzed using weighted regression. In our previous research the



use of sparse linear models for finding other linear dependencies in the data have
been briefly discussed in [6].

2 Data

2.1 Foliar Nutrient Data

Annual nutrient concentration data of conifer needles (Norway spruce [Picea
abies (L.) Karsten] and Scots pine [Pinus sylvestris L.]) collected from 36 Finnish
ICP Forests Level I stands were available for years 1987–2002. Foliage from 20
pine stands and 16 spruce stands around the country were collected yearly in
October or November. Concentrations of 12 elements were measured from the
needles, but in this study we focus on two elements: nitrogen (N) and sulfur (S).
For details concerning the sampling procedure, see [5]. A more comprehensive
characterization of the data using nutrition profiles is presented in [3].

2.2 Laboratory Quality Data

The quality of measurements of the laboratory analyzing ICP Forests foliar sam-
ples in Finland was studied in national calibration tests and international in-
terlaboratory tests. The test data can be used to estimate the accuracy and
precision of the nutrient measurement data. Between 1987 and 1994 the quality
of measurements was surveyed in laboratory comparisons arranged by IUFRO
(International Union of Forest Research Organizations). Since 1993 the measure-
ment quality was tested in seven ICP Forests biennial ring tests (see e.g. [1]). In
addition to interlaboratory tests, starting from 1995 the quality of the Finnish
laboratory was measured in repeated measurements of certified reference sam-
ples (CRM 101). Before 1995 the methods were more varied. The quality control
of the laboratory is discussed in more detail in [3].

3 Methods

3.1 Weighted Regression

If the precision of the observations is not constant, fitting an ordinary least
squares linear regression model in order to analyze the data is not well justified,
because homoscedasticity1 is one of the basic assumptions of the model. Instead,
weighted regression [4] is an effective method with heteroscedastic data. The
regression model with heteroscedastic data can be expressed as follows:

Yi = β0 + β1Xi + ǫi, i = 1, . . . , n (1)

where β0 and β1 are regression coefficients (β = [β0 β1]
T ), Xi are known con-

stants and error terms ǫi are independent N(0, σ2

i ). If Xi denote time steps, the
model assumes that there is a linear trend in the time series data.

1 Homoscedasticity = property of having equal variances.



The weight wi is defined as the inverse of the noise variance and thus, the
method gives weights to observations according to their uncertainty

wi =
1

σ2

i

. (2)

For example, completely uncertain (σi = ∞) measurements are eliminated from
the model. Y and X the dependent and independent variables expressed in
vector and matrix terms and W is a diagonal matrix containing the weights wi
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The maximum likelihood estimators of the regression coefficients are

β̂ = (XT WX)−1XT WY. (4)

The statistical significance of β̂j 6= 0 can be evaluated using the F-test [2].

3.2 Parameter Estimation

The error in the measurement of laboratory j in year i is assumed to be normally
distributed with standard deviation (precision) σij and mean (accuracy) µij .
The ICP Forests ring tests and a part of the IUFRO tests contained repeated
measurements of the same sample. This makes it possible to estimate both the
accuracy and precision of a tested laboratory. The estimated accuracy is the
average deviation of nij repetitions from the average of all laboratories

µ̂ij =
1

nij

nij
∑

k=1

Zijk − µ̂i, (5)

where Zijk is the value of kth repetitive measurement and

µ̂i =

∑mi

j=1

∑nij

k=1
Zijk

∑mi

j=1
nij

. (6)

Above, mi is the number of laboratories with acceptable results (i.e. laboratories
fulfilling the quality requirements set by ICP Forests [1]). The estimate of the
precision of a laboratory is the unbiased estimate for the standard deviation

σ̂ij =

√

√

√

√

1

nij − 1

nij
∑

k=1

(Zijk − µ̂ij)2. (7)



In case there are no repetitions, i.e. nij = 1, the precision is estimated to be the
standard deviation of all acceptable laboratories

σ̂ij =

√

√

√

√

1

mi − 1

mi
∑

j=1

(Zij1 − µ̂i)2. (8)

The minimum relative standard deviation (RSD) of the methods was deter-
mined to be 0.7% for N and 1.5% for S between 1987 and 2000. The precision
estimated using Equation 7 may be lower than these minimum values, because
nij is too small to make reliable estimates. If this is the case, the minimum RSD
is used instead of the estimated value.

4 Experiments

4.1 Theoretical Computations

The effect of measurement quality (i.e. accuracy and precision of measurements)
on trend detection was studied. Here we assume that there is a linear trend (see
Equation 1) in the time series data (e.g. decreasing foliar sulfur concentrations
in the course of time) and that this trend will also continue in the future.

The development of quality in different laboratories was visually inspected.
According to that two simple scenarios roughly corresponding to typical develop-
ment of real measurement precision were constructed. Either the precision does
not change with time or the precision changes linearly from initial precision level
c in a time steps to level b and then stays constant

σi =

{

b−c
a

Xi + c if Xi ≤ a

b if Xi > a
(9)

Trend detection with weighted regression was studied using the scenarios
explained above. The hypothesis H1 that there exists either an increasing or a
decreasing trend in the data was tested against the null hypothesis H0 that there
is no trend. That is, H0: β1 = 0, H1: β1 6= 0. The different parameter values, i.e.
a, b, c, β1, and n were varied and the p-value was calculated using the F-test.
Significance level 0.05 was used to reject the null hypothesis.

The results for linearly changing precision are shown in Figure 1. The time
needed to detect a trend with improvement in precision (b < c) can be seen
in Figure 1 above the diagonals of the subfigures. The initial precision c, final
precision b, and parameter a notably affect the time needed for detecting a trend.
For example, when we look at the subfigure in the second column and top row
in Figure 1, we can see (in the center of the subfigure) that the time needed to
detect a trend with slope β1 = 0.1 is greater than 10, if the precision is constant
0.5. However, if the final precision b is improved to 0.25 or 0.05 in two time
steps (a = 2), the time n needed to detect the trend decreases to 8 < n ≤ 10 or
4 < n ≤ 6, respectively. We also studied the effect of an exponential change in
precision, and found that the results are very similar to linear change in precision.
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Fig. 1. Trend detection for linearly changing precision with different parameter values.
The colors indicate the length n of time series that is needed to detect a trend with
significance level 0.05. Black: n ≤ 4, dark gray: 4 < n ≤ 6, medium gray: 6 < n ≤ 8,
light gray: 8 < n ≤ 10, white: n > 10. In a subfigure the abscissa represents the
final precision b and ordinate the initial precision c. Different columns of subfigures
(β1 = 0.05, . . . , 0.25) represent the slope of the trend. Different rows of subfigures
(a = 2, . . . , 10) represent the speed of change in measurement precision.

4.2 Trends in Measurement Data

Quality data from all different sources was combined and the accuracy and preci-
sion of the Finnish laboratory was estimated for years 1988–2003 using methods
described in Section 3.2. Measuring of the needles is done the year after the
sample collection and therefore, quality data of year t + 1 was used for needles
of year t. Because weighted regression requires that the noise in the measure-
ments has zero mean, the accuracies µij were subtracted from the measurements.

First, the average N and S foliar concentration data of pine between 1987–
2002 were studied. Using weighted regression, a significant (p < 0.05) decreasing
trend was found in S concentration and an insignificant (p ≥ 0.05) weakly in-
creasing trend in N concentration. The trend in average N concentration would
become significant in three years if the data quality stays the same as in year



2003. The trend could be detected the following year, if the precision would be
improved to b = 0.06.

It was also studied if there are significant trends in N and S concentrations
in pine needles collected from the 20 individual pine stands between years 1987
and 2000. Out of 20 time series in 3 a significant trend was found in the N data
and in 7 in the S data. In both cases there were three time series, where too
many missing values made fitting a regression model unsubstantial.

We also experimented how long we would have to continue measuring in
the stands, where a significant trend was not found, assuming that the trend
continues, to be able to tell that the trend is significant. If the precision of mea-
surements stays the same as in year 2001, the trends would become significant
in 1–146 years depending on the estimated slope and number of measurements.
However, if the precision of measurements is improved to approximately 0.5%
RSD, the time needed decreases clearly. If the standard deviation of N measure-
ments decreases linearly in a = 3 years to value b = 0.06, the time needed to
detect a trend decreases on average 46%. Similarly, if the standard deviation of
S measurements decreases linearly in a = 3 years to value b = 0.005, the time
needed to detect a trend decreases on average 15%.

5 Conclusions

The results show that measurement precision strongly affects trend detection.
Improving data quality can decrease clearly the time needed for finding statis-
tically significant trends in environmental monitoring. Even though the Finnish
laboratory analyzing the foliar samples has always fulfilled the quality demanded
by the ICP Forests programme for both nitrogen (less than 10% deviation from
the mean values of all labs) and sulfur (less than 20% deviation) it can still take
many years to detect a possible ongoing trend with this measurement precision.
For a laboratory not meeting the criteria set by ICP Forest programme (e.g.
showing deviation greater than 20% in case of sulfur) it can take years or even
decades to detect possible ongoing changes in the state of the environment. In all
our results from theoretical computations and real world data clearly highlight
the importance of quality in laboratory analyses.

Acknowledgements

We would like to thank Dr. Sebastiaan Luyssaert for collaboration in setting the
objectives of the research and valuable discussions in early phase of the work.

References

1. Alfred Fürst. 7th needle/leaf interlaboratory comparison test 2004/2005. Technical
report, United Nations Economic Commission for Europe, European Union, 2005.

2. Bent Jørgensen. The theory of linear models. Chapman & Hall, 1993.



3. Sebastiaan Luyssaert, Mika Sulkava, Hannu Raitio, and Jaakko Hollmén. Evaluation
of forest nutrition based on large-scale foliar surveys: are nutrition profiles the way
of the future? Journal of Environmental Monitoring, 6(2):160–167, February 2004.

4. John Neter, Michael H. Kutner, Christopher J. Nachtsheim, and William Wasser-
man. Applied Linear Statistical Models. McGraw-Hill, 4th edition, 1996.

5. Klaus Stefan, Alfred Fürst, Robert Hacker, and Ulrich Bartels. Forest foliar con-
dition in Europe - results of large-scale foliar chemistry surveys 1995. Technical
report, European Commission, United Nations Economic Commission for Europe,
Brussels, Geneva, 1997.

6. Mika Sulkava, Jarkko Tikka, and Jaakko Hollmén. Sparse regression for analyz-
ing the development of foliar nutrient concentrations in coniferous trees. In Sašo
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