The doctoral dissertations of the former Helsinki University of Technology (TKK) and Aalto University Schools of Technology (CHEM, ELEC, ENG, SCI) published in electronic format are available in the electronic publications archive of Aalto University - Aaltodoc.
Aalto

Stability and Inference in Discrete Diffusion Scale-Spaces

Ramūnas Girdziušas

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of the Faculty of Information and Natural Sciences for public examination and debate in Auditorium AS1 at Helsinki University of Technology (Espoo, Finland) on the 29th of February, 2008, at 12 noon.

Dissertation in PDF format (ISBN 978-951-22-9207-3)   [1549 KB]
Dissertation is also available in print (ISBN 978-951-22-9206-6)

Abstract

Taking averages of observations is the most basic method to make inferences in the presence of uncertainty. In late 1980's, this simple idea has been extended to the principle of successively average less where the change is faster, and applied to the problem of revealing a signal with jump discontinuities in additive noise.

Successive averaging results in a family of signals with progressively decreasing amount of details, which is called the scale-space and further conveniently formalized by viewing it as a solution to a certain diffusion-inspired evolutionary partial differential equation (PDE). Such a model is known as the diffusion scale-space and it possesses two long-standing problems: (i) model analysis which aims at establishing stability and guarantees that averaging does not distort important information, and (ii) model selection, such as identification of the optimal scale (diffusion stopping time) given an initial noisy signal and an incomplete model.

This thesis studies both problems in the discrete space and time. Such a setting has been strongly advocated by Lindeberg [1991] and Weickert [1996] among others. The focus of the model analysis part is on necessary and sufficient conditions which guarantee that a discrete diffusion possesses the scale-space property in the sense of sign variation diminishing. Connections with the total variation diminishing and the open problem in a multivariate case are discussed too.

Considering the model selection, the thesis unifies two optimal diffusion stopping principles: (i) the time when the Shannon entropy-based Liapunov function of Sporring and Weickert [1999] reaches its steady state, and (ii) the time when the diffusion outcome has the least correlation with the noise estimate, contributed by Mrázek and Navara [2003]. Both ideas are shown to be particular cases of the marginal likelihood inference. Moreover, the suggested formalism provides first principles behind such criteria, and removes a variety of inconsistencies. It is suggested that the outcome of the diffusion should be interpreted as a certain expectation conditioned on the initial signal of observations instead of being treated as a random sample or probabilities. This removes the need to normalize signals in the approach of Sporring and Weickert [1999], and it also better justifies application of the correlation criterion of Mrázek and Navara [2003].

Throughout this work, the emphasis is given on methods that enable to reduce the problem to that of establishing the positivity of a quadratic form. The necessary and sufficient conditions can then be approached via positivity of matrix minors. A supplementary appendix is provided which summarizes a novel method of evaluating matrix minors. Intuitive examples of difficulties with statistical inference conclude the thesis.

Keywords: smoothing, scale-space, discrete nonlinear diffusion, majorization, Rose determinant, doubly stochastic matrix, variation diminishing, total positivity, tridiagonal M-matrix, optimal scale selection, marginal likelihood inference, monotonicity, Gaussian models, Faà di Bruno formula

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

© 2008 Helsinki University of Technology


Last update 2011-05-26