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Chapter 1

Introduction

1.1 Introduction

Recent developments in the electric utility industry are encouraging the entry of power
generation and energy storage at the distribution level. Together, they are identified as
distributed generation units. Several new technologies are being developed and mar-
keted for distributed generation, with capacity ranges from a few kW to 100 MW. The
distributed generation includes microturbines, fuel cells, photovoltaic systems, wind en-
ergy systems, diesel engines, and gas turbines [1],[2].

1.1.1 Definition of Microgrids

The Microgrid (MG) concept assumes a cluster of loads and microsources operating as a
single controllable system that provides both power and heat to its local area. This con-
cept provides a new paradigm for defining the operation of distributed generation [3],[4].
The MG study architecture is shown in Figure 1.1. It consists of a group of radial feeders,
which could be part of a distribution system. There is a single point of connection to
the utility called point of common coupling (PCC). Feeders 1 and 2 have sensitive loads
which should be supplied during the events. The feeders also have the microsources con-
sisting of a photovoltaic (PV), a wind turbine (WT), a fuel cell (FC), a microturbine (MT),
a diesel generator (DG), and battery storage. The third feeder has only traditional loads.
The static switch (SD) is used to island feeders 1 and 2 from the utility when events hap-
pen. The fuel input is needed only for the DG, FC, and MT as the fuel for the WT and PV
comes from nature. To serve the load demand, electrical power can be produced either
directly by PV, WT, DG, MT, or FC. The diesel oil is a fuel input to a DG, whereas natural
gas is a fuel input to fuel processor to produce hydrogen for the FC. The gas is also the
input to the MT. The use of DG, or FC or MT with other fuel types can be modeled by
changing the system parameters to reflect the change in the fuel consumption character-
istics (e.g. fuel heating values, and efficiency of the engines).

Each component of the MG system is separately modeled based on its characteristics
and constraints. The characteristics of some equipment like wind turbines and diesel
generators are available from the appropriate manufacturers. Each of the local genera-
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tion unit has a local controller (LC). This is responsible for local control that corresponds
to a conventional controller (ex. automatic voltage regulator (AVR) or Governor) having
a network communication function to exchange information between other LCs and the
upper central controller to achieve an advanced control. The central controller also plays
an important role as a load dispatch control center in bulk power systems, which is in
charge of distributed generator operations installed in MG [5].

Furthermore, the central controller is the main interface between the uppergrid and
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Figure 1.1: MicroGrid Architecture.

the Microgrid. The central controller has the main responsibility for the optimization of
the Microgrid operation, or alternatively, it coordinates the actions of the local controllers
to produce the optimal outcome.

MG technologies are playing an increasingly important role in the world’s energy port-
folio. They can be used to meet baseload power, peaking power, backup power, remote
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power, power quality, and cooling and heating needs. Customers usually own small-
scale, on-site power generators, but they may be owned and operated by a third party.
If the distributed generator does not provide 100% of the customer’s energy needs at all
times, it can be used in conjunction with a distributed energy storage device or a connec-
tion with the local grid for backup power. The MG resources support and strengthen the
central-station model of electricity generation, transmission, and distribution. The dia-
gram depicted in Figure 1.1 shows how the grid looks after the addition of distributed
resources. Although the central generating plant continues to provide most of the power
to the grid, the distributed resources meet the peak demands of local distribution feeder
lines or major customers. Computerized control systems, typically operating over tele-
phone lines, make it possible to operate the distributed generators as dispatchable re-
sources that generate electricity as needed. Figure 1.2 shows a demonstration system,
which has been running successfully on the Greek island of Kythnos since April 2001 [6].

Figure 1.2: Example of MG on Kytnos Island (PV MORE and MODE projects.)

1.1.2 Reasons for Microgrids

The conventional arrangement of a modern large power system offers a number of ad-
vantages. Large generating units can be made efficient and operated with only a rela-
tively small number of personnel. The interconnected high voltage transmission network
allows the generator reserve requirement to be minimized , the most efficient generating
plant to be dispatched at any time, and bulk power to be transported large distances
with limited electrical losses. The distribution network can be designed for unidirec-
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tional flows of power and sized to accommodate customer loads only. However, over the
last few years a number of influences have combined to lead to the increased interest in
MG schemes [1] and [7]. The policy drivers encouraging MGs are:

1. Reduction in gaseous emissions (mainly CO2).

2. Energy efficiency or rational use of energy.

3. Deregulation or competition policy.

4. Diversification of energy sources.

5. National and global power requirements.

Reference [1] listed other reasons but with additional emphasis on commercial consid-
erations such as:

• Availability of modular generating plants.

• Ease of finding sites for smaller generators.

• Short construction times and lower capital costs of smaller plants.

• Generating may be sited closer to load, which may reduce transmission costs.

1.2 Motivation

Currently a lot of research is being undertaken into MGs. Some model architectures have
been proposed in the literature such as [3, 4, 5, 8, 9, 10]. Although components of the
MGs are fairly well understood, the system as a whole is not. When several sources are
connected to form a MG, the system behaviour is unpredictable. This being the case,
modelling the system and simulating it, in order to develop an appropriate management
system, is the heart of micro-grid research. Nowadays, several research groups around
the world are investigating the feasibility and benefits that the MGs may provide. Some
problems are encountered including dealing with the unbalanced loads and harmonics
associated with the system. This work does not intend to address such problems, rather
it is concerned with the modelling of the MG for management.

Modelling is an important component for power system energy management system. A
precise model helps the electric utility to make unit commitment decisions and to reduce
operating costs and emission level properly. Besides playing a key role in meeting the
load demand, it is also essential to the reliability of the MG. The central controller uses
the modelling result as a basis of off-line network analysis to determine if the system
might be costly and have high emissions. If so, corrective actions should be prepared,
such as power sales, power purchases and bringing units on line.

This thesis focuses on the modeling of MGs and discusses new management approaches
for reducing the operating costs and emission level. Although the modeling and manage-
ment techniques developed in this thesis are intended for MGs, with little modifications,
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they can be extended to many other larger distributed generation system as well, for
example, to capacity ranges up to 100 MW.

1.3 Management of Microgrid

Significant research is currently carried out regarding the operation and control of Micro-
grids [11], [12]. In this thesis, a novel management system is proposed, considering the
following objectives:

1) Optimal use of local distributed resources;
2) Feeding of local loads;
3) Reducing the operating cost;
4) Minimizing the emission level.

Important research has been conducted in the area of MGs , which may take many differ-
ent sizes and forms. Some model architectures have been proposed in the literature such
as in [4]. Communication infrastructure operating between the power sources, to solve
the optimization problem for the fuel consumption, have been proposed in [13] and a
rational method of building MGs optimized for cost and subject to reliability constraints
have been presented in [14].

Solving the environmental economic problem in the power generation has received con-
siderable attention. An excellent overview on commonly used environmental economic
algorithms can be found in [15]. The environmental economic problems have been effec-
tively solved by the goal programming method [16], the classical technique [17], fuzzy
satisfaction- maximizing approach [18], and genetic multiobjective optimization algo-
rithm [19]. However, the computing speed of these solutions is unsatisfactory for online
applications [20]. Additionally the optimization problem is treated as a single objective
optimization without considering the emissions reduction [13], [21]. In [22], the problem
is handled as multiobjective optimization problem without considering the balancing
with upper grid, operation and maintenance and start-up costs.

1.4 Optimization

In constrained optimization, the general procedure is to transform the problem into an
easier subproblem that can then be solved and used as the basis of an iterative process.
The three optimization techniques used in this study are:

1.4.1 Genetic Algorithms

Genetic algorithms are global optimization techniques, which means that they converge
to the global solution rather than to a local solution. However, this distinction becomes
unclear when working with multi-objective optimization, which usually entails a set of
solution points. Mathematically, a single global solution to a multiobjective problem does
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not exist unless the utopia point happens to be attainable [23].
Genetic algorithms loosely parallel biological evolution and are based on Darwin’s

theory of natural selection. The specific mechanics of the algorithms involve the language
of microbiology and, in developing new potential solutions, mimic genetic operations. A
population represents a group of potential solution points. A generation represents an
algorithmic iteration. A chromosome is comparable to a design point, and a gene is
comparable to a component of the design vector [23].

1.4.2 Mesh Adaptive Direct Search

MADS is a generalization of the pattern search algorithm. These methods are intended
for black box optimization problems. They are derivative- free methods in the sense that
they do not compute nor even attempt to evaluate derivatives [24]. Mesh Adaptive Di-
rect Search methods are designed to only use function values and require only a numer-
ical value of the objective; no knowledge about the internal structure of the problem is
needed. Mesh Adaptive Direct Search methods can easily and quickly adapt to nonlinear,
non-convex non-differentiable, discontinuous, or undermined at some points [24].

1.4.3 Game Theory

A multiobjective design problem may be envisioned as a game in which each objective is
a player competing to optimize his standing in a system subject to limit resources. Op-
eration researchers and economists, in studying competitive systems, have developed
theories for games which are readily applicable to engineering problems. Theories have
been used to describe the interaction of players; the noncooperative theory, based on
the concept of Nash equilibrium, and cooperative game theory, based on the concept of
Pareto minimum solution [25].

The noncooperative theory of games assumes that each player is looking out for his own
interests. Each player selects his own objective and does not care how his choice will
affect the objectives of the other player. The players then bargain with each other, ex-
changing resources, until an equilibrium is reached. The resultant solution, referred to as
Nash equilibrium, is a solution where no player may improve his objective by attaining
some different amount of resources as long as the other players maintain their resources
choices [25].

Cooperative game theory assumes that each player is a member of the team willing to
compromise his own objective to improve the solution as a whole. In the cooperative so-
lution, the team would want to allocate the resources with intent that all players should
be as optimal as possible- in other words, a Pareto optimal solution. The team then must
decide how to distribute the resources such that a gain for one player does not result in
unacceptable loss for another player. One method is to distribute the resources such that
all players are as far from their worst case as possible [26].
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1.5 Objectives and Contributions of the Thesis

The main objective of this thesis is to develop a model and a management methodology
that makes for the MG energy production low cost, environmentally friendly and highly
efficient power generation. The approach is to first form models for MG components at
steady state and study their transient responses when the inputs are changing. Based on
these a new optimization power model is constructed. It is intended that the work com-
pleted in this thesis will lay the groundwork for further model development. The long
term goal is to have a highly sophisticated and complete model of a MG, so as to allow a
full understanding of how MGs behave.

This thesis focuses on modelling and management of Microgrids and its contributions
can be classified into three main categories as follows:

1.5.1 Modelling of Microgrid

• Modelling the MG components at steady state and study their transient responses
to changing inputs. Analyzing MG requires suitable dynamic models for all com-
ponents forming the MG. Since the MG components represent new promising re-
sources of energy generation, the thesis develops models that describe their dy-
namic behaviour. A simple and flexible model for stability studies and online man-
agement purposes of the MG is developed in addition to an exhaustive nonpara-
metric model for detailed analysis of the MG. The MG components which have
been studied are the Diesel Engine, the Fuel Cell, the Microturbine, the Wind tur-
bine, and the Photovoltaic Cell.

• Modelling the Diesel Generator cost from industrial data. In order to find the
mathematical formulation describing the relation between the fuel consumption
and the power generated of a diesel generater, the diesel fuel consumption data of
a 6-kW diesel generator set (Cummins Power) model DNAC 50 Hz is used to model
the fuel cost function.

• Modelling the Wind Turbine generator from industrial data. A wind turbine
model is obtained from a mathematical relation between the wind speed and the
output power. A power curve for a wind turbine is determined from a vender’s
manual, in order to determine a mathematical relationships between the actual
power and wind speed.

1.5.2 Problem Model Formulation

• A novel optimization model is constructed. This takes into account the start-
up cost, available resources, environmental costs, operation and maintenance cost,
purchased and sold power, and constraint requirements. An optimal economic gen-
eration schedule is established based on the assumption that the MG will serve the
electric power needs of its own customers at minimum cost. A central controller
controls the scheduling and dispatching of the MG. Optimization is performed for
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each unit first. Therefore, all the generator of the MG behaviors are dependent on
each other and their functions are coordinated to meet a single economic objective.
The economic problem of a MG is a deterministic optimization problem due to the
fact that the consumption fuel rate of each generator unit is used to determine an
objective function, which forms the total cost of the generation, together with the
constraints.

• A new multiobjective optimization problem is formulated and solved. This in-
cludes minimization of the total power production cost and minimization of the
emission level. In the emission model introduced in [15] and [22] , a method is
proposed to evaluate the parameters of the model using the data available in [27].
Thus, the emissions per day for the diesel engine, fuel cell, and microturbine are
estimated, and the characteristics of each generator will be detached accordingly.

1.5.3 Management of Microgrid

• Applying Game Theory technique to a multiobjective problem of the MG. One
of the contributions in this thesis is a novel procedure to solve the MG manage-
ment problem based on Game Theory and multiobjective optimization. Two play-
ers are assumed to correspond to the two objectives; one represents the operating
cost and the other the emission level. While playing the game, each player will try
to improve his own condition (that is, to decrease the value of his own objective
function).

• Applying the Mesh Adaptive Direct Search technique to solve the single objec-
tive problem of MG. The recently developed, efficient mesh adaptive direct search
(MADS) algorithm is presented and applied. In this thesis, MADS algorithm is
used to optimize the MG operating cost function. In comparison with the previ-
ously used optimization methods (SQP), a reduction in $/Day is obtained even if
the model is more complicated.

• Propose three different Scenarios can be found in the MG. The scenarios pro-
posed are aimed to reflect the physical characteristics found in the MGs, starting
with a MG without a battery storage. In the second scenario a battery storage
is added with more constraints. Costs are considered such as start-up cost and a
number of on and off time of the generators. In the third scenario balancing with
the main grid is addressed with the same constraints as in the second scenario.

• Applying the Mesh Adaptive Direct Search technique to solve the multiobjec-
tive optimization problem of the MG (MOMADS). MOMADS technique is ap-
plied to solve the optimization problem when it becomes multiobjective. The pro-
posed method finds the optimal values taking different objectives into account, in-
cluding the best operating cost, the best emission level and the best compromise
between them, as well as the Pareto optimal set depicting the trade-off between the
objectives. However, the MOMADS method requires a significantly longer com-
puting time than with the conventional MOSQP.
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1.6 Outline of the Thesis

The work in this thesis is organized as follows. In Chapter 1, an introduction and a back-
ground of distributed generator units is presented. The main focus in Chapter 2 is on
modelling and simulation of the MG components. The MG under consideration includes
DG’s, FC’s, MT’s, WT’s, PV’s, and a battery storage. Investigation on minimizing the op-
erating costs of a MG using MADS, and its performance are discussed in Chapter 3. The
objective of Chapter 4 is to investigate the management of the MG, when it has two ob-
jective functions, namely minimizing operating costs and emission level. Two different
methods, Multiobjective Mesh Adaptive Direct Search (MOMADS) and Multiobjective
Sequential Quadratic Programming (MOSQP) are applied. Chapter 5 deals with solv-
ing the same problem as in Chapter 4 using Multiobjective Genetic Algorithm (MOGA).
Multiobjective Game Theory (MOGT) is introduced in Chapter 6 and its performance for
handling the economical and environmental problems of MG are investigated. Finally,
conclusions and future considerations are summarized in Chapter 7.





Chapter 2

System Modelling

2.1 Introduction

This chapter discusses modelling of the MG components. For understanding the MG
behaviour, each source is modelled individually and then combined together to form a
MG. The components modelled are a diesel generator, a fuel cell, a microturbine, a wind
turbine, a photovoltaic array, and a battery storage. Particularly, modelling the MG in a
steady- state condition and dynamic analysis of it are important. Each component model
is first completed individually. Then the models are combined to form a complete model
of a MG. The model described will be used for developing optimal online management
techniques of the MG.

2.2 Diesel Generator

Diesel Engines, developed more than 100 years ago, were the first among distribution
generator technologies. Both Otto (spark ignition, SI) and Diesel cycle (compression igni-
tion, CI) engines have gained widespread acceptance in almost every sector of the econ-
omy. Because of their high efficiency and reliability they are used on many scales, ranging
from small units of 1 KW to large several tens of MW power plants. Smaller engines are
primarily designed for transportation and can usually be converted to power generation
with little modification. Large engines are most frequently designed for power genera-
tion, mechanical drives, or marine propulsion. Because of sudden changes in load de-
mands by the consumers, it is important that the diesel prime mover has a fast dynamic
response and good capabilities of disturbance rejection [28].

The Diesel Engine model gives a description of the fuel consumption rate as a function
of speed and mechanical power at the output of the engine, and is usually modeled by a
simple first order model relating the fuel consumption (fuel rack position) to the engine
mechanical power [29].

The power outputs of the engine and the generator have to be varied with the changing
load in order to meet the consumer demands. The task of the governor is to adjust the
fuel flow and then regulate the inputs of the engine and generator, and hence provide the
required power to meet the change in the load.

11
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2.2.1 Modelling of Diesel Engine

There are many methods already proposed for modelling a diesel generator [5], [29],
[30], [31], [32]. From control system point of view, a diesel engine can be considered as a
speed-feedback system. After the operator gives a speed command through adjusting the
governor setting, the engine governor which is also working as a sensor, will recognize
the difference between the actual speed and the desired speed, and regulates the fuel
supply to maintain the engine speed within the range.

The model of the fuel actuator system is usually represented as a first order phase-lag
network, which is characterized by gain K2 and time constant τ2. Figure 2.1 shows the
transfer function ( 2.1) of the actuator, where K3 is current driver constant. The output of
the actuator is the fuel-flow Φ(s) and the input current is I(s).

Φ(s) =
K3K2

(1 + τ2s)
I(s) (2.1)

Figure 2.1: The transfer function of the actuator model where K3 is the current drive constant, current I(s)
the input and fuel-flow Φ(s) the output .

Fuel Flow Φ(s) is then converted into mechanical torque T (s) after a pure time delay
τ1 and engine torque constant K1. This is represented by the transfer function model of
equation ( 2.2) and shown in Figure 2.2.

T (s) = Φ(s)K1e
−τ1s (2.2)

Figure 2.2: The Engine Model.

The governor can be defined as a mechanical or electromechanical device for automat-
ically controlling the speed of an engine by relating the intake of the fuel. Several types
of governors exist such as mechanical-hydraulic, direct mechanical, electro-hydraulic,
electronic, and microprocessor based [29].

The flywheel represents the complex dynamic effects of the engine inertia, the angular
speed of a flywheel ωw , the viscous friction coefficient ρ, and the loaded alternator. Its
model is assumed to have an integrator with flywheel acceleration constant J which
serves to filter out a large proportion of the disturbance and noise effects. The noise
itself is an inherent property of all internal combustion engines. Reference [30] proposes
an integrator to be added between the reference signal r and the engine actuator. It is
necessary to eliminate the speed droop in the steady-state operation by raising the order
of the whole system as shown in Figure 2.3, where the overall transfer function model of
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the diesel engine is presented.

Figure 2.3: The Block diagram of the Diesel Engine System.

The values of K2 and K3 can be considered to be constant for a particular engine setup.
Gain K3 is a factor that determines the amount of the mechanical torque obtained per unit
of fuel flow. It depends on the operating point of the prime mover. Time constant τ2 is
dependent on the temperature of the oil flowing into the actuator. Both K2 and τ2 are
variables, but the variation is negligible in a small time interval, [30].

As seen from Figure 2.2 and from references such as [30], [32], [33] and [34], the engine
combustion system is commonly represented by the engine torque constant multiplied by
a time delay. In a real system, the dead time is mainly comprised of three components:

1. The time from the actuator signal change until fuel is injected to any cylinder. This
is called "power stroke delay".

2. The time for the fuel to burn in a cylinder and to produce a torque output, which is
similar to the characteristic "combustion delay".

3. The time for a new torque level to produce a sufficient number of cylinders assignable
to the prime-mover as a whole. This is an effect of the multi-cylinder nature of the
prime-mover.

2.2.2 System Description

From Figure 2.3, the transfer function of the actuator-engine system to be considered is:

G(s) =
T (s)
I(s)

=
K0

(1 + τ2s)
e−τ1s (2.3)
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where the actuator time constant is τ2, engine time delay τ1, and the process gain K0 =
K1K2K3. The parameters are usually unknown or time varying.

First order Pade approximation for the time delay term yields [35]:

e−τ1s ≈ 1− τ1s/2
1 + τ1s/2

(2.4)

The following simplified transfer function is now obtained from (2.3):

G′(s) =
K0

(1 + τ2s)
1− τ1s/2
1 + τ1s/2

(2.5)

2.2.3 Diesel Generator Costs

Diesel engines are the most common type of MG technology in use today. The traditional
roles of diesel generation have been the provision of stand-by power and peak shaving.
The fuel cost of a power system can be expressed mainly as a function of its real power
output and can be modeled by a quadratic polynomial [36]. The total diesel fuel con-
sumption rate L/h FDG,i can be expressed as:

FDG,i =
N∑

i=1

ai + biPDG,i + ciP
2
DG,i (2.6)

where N is the number of generators, ai, bi, and ci are the coefficients of the particu-
lar generator, PDG,i i = 1, 2, ..., N is the output power of the diesel generator i in (kW)
assumed to be known. The generator cost function is obtained from data points taken
during "heat run" tests, when input and output are measured as the unit is slowly varied
through its operation region [37].
Typically, the constants ai, bi, and ci are given by the manufacturer. For example, diesel
fuel consumption data of a 6-kW diesel generator set (Cummins Power) model DNAC
50 Hz [38] is available in L/h at 1/4, 1/2, 3/4 and full loads. From the data sheet the
parameters in (2.6) are: a1 = 0.4333, b1 = 0.2333, and c1 = 0.0074. Figure 2.4 shows the
fuel consumption as function of power of the DNAC 50 Hz diesel engine.

2.3 Fuel Cell

Fuel cells generate power through the electrochemical reaction between hydrogen and
oxygen. The conversion is highly efficient and leaves only water and heat as by-products,
which is the main motivation for the increasing interest in the technology [39]. Fuel Cells
offer lower emission and higher efficiency than Diesel Engines but are likely to be too
expensive for many applications. The first fuel cell unit was discovered and developed
by Sir William Grove 1842 [40] with the use of four primitive cells utilizing hydrogen and
oxygen. However, fuel cells were not practically used until 1960’s when NASA demon-
strated a potential fuel cell application. After such demonstrations, commercial compa-
nies became interested in this technology because of its power quality, high efficiency,
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Figure 2.4: Fuel consumption of DNAC 50 Hz diesel engine.

modularity, and environmental benefits.

A fuel cell is an electrochemical energy conversion system, where chemical energy is con-
verted directly into electrical energy and heat. The basic structure of fuel cells consists of
a pair of electrodes and an electrolyte. The fuel which is usually hydrogen, is supplied to
the anode where the fuel is oxidized, yielding electrons, which move through the exter-
nal circuit. At the cathode, the oxidant is reduced, consuming electrons from the external
circuit. Ions move through the electrolyte to balance the flow of electrons through the ex-
ternal circuit. The anode-cathode reactions and the composition and direction of flow of
the mobile ion vary with the type of fuel cell. Figure 2.5 explains the operation principle,
cathode reactions, and the mobile ion associated with most common fuel cell types. The

Electrical load

-e

Fuel in

Anode gas channel

Porous anode

+Ions

-Ions

Oxident in

Cathode gas channel

Porous
cathode

Electrolyte

Depleted fuel out
Product gas out (DMFC, MCFC,SOFC) Product gas out (PEMFC,DMFC,PAFC)

Depleted oxidant out

Figure 2.5: Operation principle, cathode reactions, and the mobile ion associated with most common fuel
cell types.
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reactions of Alkaline Fuel Cell (AFC), Proton Exchange Membrane Fuel Cell (PEMFC),
Phosphoric Acid Fuel Cell (PAFC), Molten Carbonate Fuel Cell (MCFC) and Solid Oxide
Fuel Cell (SOFC) are summarized in Table 2.1 [39].

Table 2.1: Summary of chemical reactions in different types of fuel cell.
Fuel cell type Anode reaction Mobile Cathode reaction

Ion
PEMFC and PAFC H2 → 2H+ + 2e− H+ 1/2O2 + 2H+ + 2e− → H2O
AFC H2 → 2H+ + 2e− OH− 1/2O2 + H2O + 2e− → 2OH−

MCFC H2O + CO2−
3 → H2O + CO2 + 2e− CO2−

3 1/2O2 + CO2 + 2e− → CO2−
3

SOFC H2 + O2− → H2O + 2e− O2− 1/2O2 + 2e− → O2−

where

CO2: - carbon dioxide e−: - electron H2O:- water CO2−
3 : - carbonate ion H2: - hydrogen

OH- H+:- hydroxy ion H+: - hydrogen ion O2 - oxygen O2−: - oxygen ion

2.3.1 Characteristics

There are four major fuel cell technologies with somewhat different characteristics. The
main apparent difference is the electrolyte, which also has far reaching effects on the de-
sign and operating characteristics of the fuel cell. In Table 2.2. those four technologies are
listed with some key characteristics [41] and [40].

Table 2.2: Major fuel cell technologies.
PEMFC (PEFC) PAFC MCFC SOFC

Electrolyte Protone Exchange Phosphoric Molten Solid
Membrane Acid Carbonate Oxide

Operating 80 200 650 800-1000
temperature (oC)
Electric efficiency based 30-35 35-40 45-55 45-55
on natural gas*(%)

*With hydrogen as fuel the electric efficiency is the same or even higher for low temperature fuel cells, as

this is not a Carnot process. The reason for the higher efficiency with higher temperature for natural gas (or

any reformed fuel) lies primarily in that fuel processing can be thermally integrated with the fuel cell and to

a lesser extent to lower internal electric resistances.

All fuel cells generate a direct current, the voltage depending on cell voltage and the
number of cells in series. Furthermore, the voltage varies with the load and also to some
extent with time as the fuel cell stack ages. To obtain AC current, the equipment should
have power-conditioning equipment to handle DC to AC conversion and current, volt-
age, and frequency control. Apart from supplying power to the external point of supply,
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the fuel cell also has to cover some internal power needs, e.g. pumps, fans, and control
system.

2.3.2 Fuel Cell Workings

The workings of the fuel cells are based on fundamental electrochemical principles [39].
The reaction of hydrogen gas (H2 ) and oxygen gas (O2), to form water, is the form of
reaction in the process as presented in [40]:

2H2 + O2 ⇒ 2H2O (2.7)

Fuel cells have an electrolyte between two electrodes. The process occurs naturally and
is caused by the fact that the charged particles migrate towards regions of lower electro-
chemical energy.

The charged particles of hydrogen and oxygen migrate towards each other and connect
together since the final product has a lower electrochemical energy [40]. It is essential to
separate electrons from protons and to regulate the movement of the electrons. This
can be accomplished by separating the hydrogen and oxygen by an electrolyte, which
completely insulates electrons and allows protons from the hydrogen atoms to move
through. An external path is formed from electrons using an electrical load to generate
useful electrical energy [40] as shown in Figure 2.6.

Electrical
Load

Electron

Proton

Electrolyte

Heat

2H

2O
2HO

Fuel Cell: How it works

Figure 2.6: Fuel cell. principles of operation.

2.3.3 Modelling of SOFC

Solid Oxide Fuel Cells (SOFC) are particularly attractive because they are the most effi-
cient in terms of fuel input to electricity output. The technology is best applicable in the
MG. The high operating temperature produces heat suited well to cogeneration applica-
tions. SOFC does not contain noble metals and does not utilize liquid electrolytes which
can cause problems and be expensive [42].
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The stack model is based on the following assumptions:

1. The gases are ideal.

2. The stack is fed with hydrogen and air. If natural gas instead of hydrogen is used as
fuel, the dynamics of the fuel processor must be included in the model, upstream of
the hydrogen inlet as a first order transfer function [41]. The transfer function gain
should reflect the changes in composition occurring during the process. The effect
of the fuel processor in the model will be tested in the future.

3. The channels that transport gases along the electrodes have a fixed volume, but
their lengths are small, so that it is only necessary to define one single pressure
value in their interior.

4. The exhaust of each channel is via a single orifice. The ratio of pressures between
the interior and exterior of the channel is large enough to consider that the orifice
is choked.

5. The temperature is stable at all times.

6. The only source of losses is ohmic, as the working conditions of interest are not
close to the upper and lower extremes of current.

7. The Nernst’s equation can be applied.

The change in concentration of each species that appears in the SOFC chemical reactions
can be written generally in terms of input and output flows into a control volume as well
as net generation due to the material balance equation:

(
PrV o

RgassT
)ẋ = N in

i −N0
i + N r

i (2.8)

where V o is the cell volume, N in
i ,N0

i are the flow rates (mole/s) of the ith reactant at
the cell input and output (exit), respectively, N r

i is the reaction rate (mole/s) of the ith
reactant. Pr is the cell pressure (atm), T is the cell temperature in oK , and Rgass is the gas
constant (8.31 J/mole oK).

2.3.4 Characterization of the exhaust of the channels

According to [43], an orifice that can be considered choked, when fed with a mixture of
gases of average molar mass M [kg/kmol] and similar specific heat ratios, at a constant
temperature, assumes the following form:

W

Pru
= K

√
M (2.9)

where, W is the mass flow [kg/s], K is the valve constant, mainly depending on the area
of the orifice

[√
kmol.Kg
atm.s

]
, and Pru is the pressure upstream (inside the channel) [atm].
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For the anode, the concept of fuel utilization Uf can be introduced, as the ratio between
the fuel flow that reacts and the fuel flow injected to the stack. Uf is also a way to express
the water molar fraction at the exhaust. According to this definition, equation ( 2.9) can
be written as:

Wan

Pan
= Kan

√
(1− Uf )MH2 + UfMH2O (2.10)

where Wan is the mass flow through the anode valve [kg/s], Kan is the anode valve
constant,

[√
kmol.Kg
atm.s

]
, MH2 , MH2O are the molecular masses of hydrogen and water, re-

spectively [kg/kmol], and Pan is the pressure inside the anode channel [atm].
Assuming that the molar flow of any gas through the valve is proportional to its partial

pressure inside the channel, then according to [43]:

qH2

PH2

=
Kan√
MH2

= KH2 (2.11)

qH2O

PH2O
=

Kan√
MH2O

= KH2O (2.12)

where qH2O and qH2 are the molar flows of water and hydrogen, respectively, through the
anode valve [kmol/s]. PH2O and PH2 are the partial pressures of water and hydrogen,
respectively [atm]. KH2O and KH2 are the valve molar constants for water and hydrogen,
respectively [ kmol

s.atm ].
Reference [43] introduces the following expression:

W

Pan
= Kan.

[
(1− Uf )

√
MH2 + Uf

√
MH2O

]
(2.13)

Comparison of (2.10) and (2.13) indicates that for Uf > 70% the error is less than 7%. It
is possible to redefine slightly (2.11) and (2.12) so that the percentage error is even lower.
The same study for the cathode shows that the error in that valve is even lower, because
of the similar molecular masses of oxygen and nitrogen.

2.3.5 Calculation of the partial pressures

Every individual gas will be considered separately, and the perfect gas equation will be
applied to it. We will take the hydrogen as an example:

PH2Van = nH2RgassT (2.14)

where Van is the volume of the anode, nH2 is the number of hydrogen moles in the anode
channel, Rgass is the universal gas constant [ l.atm

kmol.K ], T is the absolute temperature [K].

By isolating the pressure and taking the derivative of the previous equation, the rate of
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change of the partial pressures of hydrogen is in the form:

d

dt
PH2 =

RgassT

Van
qH2 (2.15)

where, qH2 is the time derivative of nH2 , and represents the hydrogen molar flow qH2

[kmol/s].
There are three relevant contributions to the hydrogen molar flow qH2 : input flow qin

H2
,

the flow qr
H2

that takes part in the reaction and output flow qout
H2

[43], [44]. Therefore (2.15)
can be expressed as:

d

dt
PH2 =

RgassT

Van
(qin

H2
− qout

H2
− qr

H2
) (2.16)

The molar flow of hydrogen qr
H2

that reacts can be calculated according to the basic elec-
trochemical relationship as:

qr
H2

=
N0I

r

2F
= 2KrI

r (2.17)

where N0 is a number of cells connected in series in the stack, F is the Faraday’s constant
[C/kmol], Ir is the stack current [A] ( note that r is a superscript, not power), and Kr is a
constant defined for modelling purposes [kmol

s.A ].
Substituting equation (2.17) into (2.16):

d

dt
PH2 =

RgassT

Van
(qin

H2
− qout

H2
− 2KrI

r) (2.18)

Substituting the output flow of equation (2.11) into (2.18), taking Laplace transform in
both sides, and solving for the hydrogen partial pressure results in:

sPH2 =
RgassT

Van
(qin

H2
−KH2PH2 − 2KrI

r) (2.19)

where all the variables are in s-domain. After some algebraic manipulation in (2.19)

PH2 =
1/KH2

1 + sτH2

(qin
H2
− 2KrI

r) (2.20)

where τH2 , expressed in seconds, is the time constant of the system associated with the
hydrogen flow. It is a function of temperature and has the form:

τH2 =
Van

KH2RgassT
(2.21)

For calculating the stack voltage, Nernst’s equation and Ohm’s law (to consider ohmic
losses) are applied. The stack output voltage V r can be represented by the following
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expression:

V r = N0

(
E0 +

RgassT

2F

[
ln

PH2P
0.5
O2

PH2O

])
− rlossI

r (2.22)

where E0 is the voltage associated with the reaction free energy [V]. Rgass is the gas
constant, but care should be taken with the system unit [ J

kmol.K ] [43]. rloss describes the
ohmic losses of the stack [Ω].

The above equations are provided by [43] from the basic SOFC power section dynamic
model used for performance analysis during normal operation. In [45], the SOFC power
generation is modelled by adding the control strategy of the fuel cell system, models of
fuel processor, and the power section.

Based on [43] and the above discussions, the dynamic model of the SOFC system which
is proposed in [45] is summarized in ( 2.23)-( 2.27). The block diagram of the system is
given in Figure 2.7.

dIr

dt = 1
Te

[−Ir + Iref ]
dqin

H2
dt = 1

Tf

[
−qin

H2
+ 2Kr

Uopt
Ir

]

dPH2
dt = 1

τH2

[
−PH2 + 1

KH2

[
qin
H2
− 2KrI

r
]]

dPH2O

dt = 1
τH2O

[
−PH2O + 2Kr

KH2O
Ir

]

dPO2
dt = 1

τO2

[
−PO2 + 1

KO2

[
1

rHO
qin
H2
−KrI

r
]]

(2.23)

Iref =





qin
H2

Umax
2Kr

, if Ĩ > qin
H2

Umax
2Kr

qin
H2

Umin
2Kr

, if Ĩ < qin
H2

Umin
2Kr

Ĩ = Pref/V in, otherwise
(2.24)

Ĩ =
1

Vin
(Pref −∆P ) (2.25)

V r = N0

(
E0 +

RgassT

2F

[
ln

PH2P
0.5
O2

PH2O

])
− rIr (2.26)

The active (DC) power produced by the fuel cell is then given by the following relation:

Pe = V rIr (2.27)

where Ir is the fuel cell stack current; V r is the DC voltage across the stack of the fuel
cells governed by the Nernst equation, qin

H2
stands for the hydrogen input flow; and PH2 ,

PO2 , PH2O denote the partial pressures of hydrogen, oxygen, and water, respectively.
The time constants Te, Tf , τH2 , τH2O, τO2 , designate the electrical response time of the
fuel cell, fuel processor response time, response times of hydrogen, water, and oxygen
flows, respectively. ConstantsKH2 , KH2O, and KO2 , denote the valve molar constants for
hydrogen, water, and oxygen. The auxiliary constants Uopt, Umax, and Umin stand for the
optimal, maximum, and minimum fuel utilization, respectively. Finally, Kr = N0/(4F ).
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The numerical values of the aforementioned constants can be found in [43], [45] and
appendix B.

Figure 2.7: SOFC system dynamic model.

2.3.6 Simulation Results

In this work, it is assumed that the SOFC fuel system is a stand-alone system and it is
operating with a constant rated voltage 1.0 p.u. and power demand 0.7 p.u. The other
parameters are the same as in [45]. Figure 2.8 shows a dynamic step response of a SOFC
fuel cell system, where the output power started to increase after 2 to 3 seconds. The
step increase of the demand power is related to the fast electrical response of the fuel cell.
After that, the output power increased slowly until it reached the demand power. This is
due to the slow chemical response time of the fuel processor.
Figure 2.9 illustrates the response of the fuel cell pressure difference between hydrogen
and oxygen. This difference increases to the peak value of 3.5 kPa, which is less than the
maximum safety pressure difference 8 kPa. It can return to the normal operating pressure
difference value around 0 kPa.
In Figure 2.10 the fuel utilization response is presented. Due to the increase in the power

demand, the fuel utilization increases to the maximum fuel utilization Umax in about 5 s.
After staying at Umax for about 29 s, it decreases to optimal fuel utilization Uopt. The fuel
is decreased to its value before the increase in power because of slow chemical reaction
of the fuel cell.
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2.3.7 Fuel Cost of Fuel Cell

Fuel cells operate at electrical efficiencies around 40 to 60 percent lower than the heat-
ing value (LHV) of the consumed fuel, and up to 85 percent in CHP applications. The
fuel cell’s efficiency is independent of its capacity and these units may be combined into
"stacks" to increase the power output.

The efficiency of the FC depends on the operating point. It refers to the ratio of the stack
output power to the input energy content in the natural gas. It is normally calculated as
the ratio of the actual operating voltage of a single cell to the reversible potential (1.482V)
[46]. The overall unit efficiency is the efficiency of the entire system including auxiliary
devices. Figure 2.11 shows typical efficiency curves of the Protone Exchange Membrane
(PEM) fuel cell including the cell and overall efficiencies [46] and [47].

Figure 2.11: Assumed efficiency curve for 50 kW PEMFC stack based on IFC PC-29.

Furthermore, the efficiency of any fuel cell is the ratio between the electrical power
output and the fuel input, both of which must be in the same units (W) [46], [21]:

The fuel cost for the fuel cell is calculated as follows:

CFC = Cnl

∑

J

PJ

ηJ
(2.28)

where
Cnl is the natural gas price to supply the fuel cell,
PJ is the net electrical power produced at interval J ,
ηJ is the cell efficiency at interval J .
The power required for auxiliary devices is almost constant regardless of the supplied
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power. Therefore, it is assumed as 5% of the unit maximum capacity [21]. To model the
technical performance of PEM fuel cell, a typical efficiency curve is used to develop the
cell efficiency as a function of the electrical power and used in equation (2.28) [21].

2.4 Microturbines

Microturbines (MTs) are small high-speed gas turbines powered generators ranging in
size from 25 to 500kW [48]. The operation principle of the MTs follows the same prin-
ciples of conventional gas turbine depending on Brayton (constant pressure) cycle [48],
[49]. Small gas turbine engines were initially developed by Alison in the 1960s for ground
transportation [49]. A microturbine provides input mechanical energy for the MT gener-
ator system, which is converted by the generator to electrical energy. The generator nom-
inal frequency is in the range of 1.4-4 kHz. This frequency is transformed to the desired
power frequency of 50/60 Hz by a converter. The electrical energy, passing through the
transformer, is delivered to the distribution system and the local load. The transformer
boosts the converter output voltage up to the voltage level of the distribution system.
The components of the MT generator system are described in detail in the following sub-
sections [50].

2.4.1 Construction of Microturbines

The components of a MT are shown in Figure 2.12. The main components include a gas
turbine and recuperator, electrical system, an exhaust gas heat exchanger, supervision
and control system, and a gas compressor. In [51] the basics of how microturbine works
is described. The steps are as follows: first fresh air is drawn into to the compressor. The
compressor increases the pressure of the fresh air depending on its size and construction.
Then, the high-pressure air and fuel are mixed and burnt in the combustion chamber at
a constant pressure. The very hot flue gas enters the turbine and produces mechanical
energy forcing the turbine to rotate. The flue gas expands to lower pressure and larger
volume during this procedure. The exhaust gas is released to the surroundings. It is
called an open cycle because there are mass flows in and out of the process.

 

Figure 2.12: Principle components of micro turbine unit(www.turbec.com).
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2.4.2 Microturbine Modelling

A micro turbine is a high frequency AC source the output of which need to be rectified.
The DC voltage needs to be interfaced to the network using a voltage source inverter. The
slow response requires either a DC bus or an AC system storage to insure load tracking.
Figure 2.13 illustrates the outline of a micro turbine. The micro turbine requires a power
electronic circuit for interfacing with the AC load. This interface consists of an AC to DC
rectifier, a DC bus with capacitor and a DC to AC inverter.

Control Control

Rectifier Inverter
PMG

 

3-phase AC

acV

acI
dcVFuel

DC

Figure 2.13: Outline of a micro turbine generator.

Figure 2.14 shows the equivalent circuit of the generator and rectifier which can be
modelled as a 3-phase, full wave, diode bridge rectifier with the AC source which is
assumed to be a permanent magnet generator.

Figure 2.14: The equivalent circuit.

The no load (Ideal) case is considered first. The voltage induced on the generator ter-
minal VLL can be expressed then as:

VLL = Kvω sin(ωt) = KvωIm
{
ejωt

}
(2.29)
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where Kv is the voltage constant and ω is the electrical angular frequency. Since most
microturbines use 2 pole PMG, the electrical and mechanical angular frequencies are
equal [52]. The output DC voltage is given by:

Vdc =
3
π
|VLL| − 3ωL

π
Idc (2.30)

Substituting (2.29) into (2.30) we have:

Vdc =
3
π

Kvω − 3
π

ωLIdc (2.31)

This can be written as:

3
π

Kvω = Vdc +
3
π

ωLIdc (2.32)

Define the no load DC voltage Eg by:

Eg = Keω =
3Kv

π
ω (2.33)

where Ke = 3Kv
π {V/(rad/ sec)}.

Then (2.32) can be expressed as:

Eg = Vdc + KxωIdc (2.34)

where Kx = 3L
π {Ω/(rad/ sec)}

Equation (2.32) describes the electromechanical nature of the system. Therefore, if the
system has no losses, the input power Pm can be expressed as a function of Idc :

Pm = VdcIdc (2.35)

Using equation (2.33) and (2.34) this becomes:

Pm = KeωIdc −KxωI2
dc (2.36)

The mechanical shaft torque for the no loss system Tm is expressed as:

Tm =
Pm

ω
= KeIdc −KxI2

dc (2.37)

The mechanical part of the system is represented by:

dω

dt
=

1
J

(Tm − Tt) (2.38)

where J is the inertia of the shaft, Tm is the mechanical torque, Tt is the load torque.
Additionally, the DC voltage Vdc can also be expressed as:

Vdc =
1
C

∫
(Idc − IL)dt (2.39)

The relations in equations (2.31) and (2.39) determine the load current IL and the fi-
nal output power. Finally from all of the above equations the block diagram of an MT
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generator model is described in Figure 2.15:

Figure 2.15: The micro turbine generator model.

2.4.3 Simulation Results

The turbine generator tested in simulations was a 75-kW Parallon micro-turbine made
by Honeywell [52]. The power reference signal consists of negative power steps of 15
kW lasting 30 s starting from 75 kW, stepping down to 0 kW and then stepping back up
to 75 kW, as presented in Figure 2.16. The microturbine system response to this power
command is displayed in Figures 2.17-2.20. Figure 2.17 shows the output power of the
system; Figure 2.18 the shaft speed; Figure 2.19 the DC link voltage; and Figure 2.20 the
rotor speed.
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Figure 2.16: Power command to the microturbine system.
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Figure 2.17: The output power of the microturbine P.
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Figure 2.18: Shaft speed of the microturbine model ω. The red curve gives a detailed curve between 50-100
s.

However, there are some responses which do not follow the reference trajectories, such
as the rotor speed at higher power levels and the DC link voltage steady state value for
mid-level output power. It is believed that a better tuned controller, would result in im-
proved results. More complex controllers could also be added to improve the response.
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Figure 2.19: DC link Voltage of the microturbine model VDC .
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Figure 2.20: Rotor Speed of the microturbine model.
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2.4.4 Microturbine Fuel Cost

Microturbines use a simple design with few moving parts to improve the reliability and
reduce the maintenance costs. This design is with only one shaft and attached compres-
sor, turbine, and permanent-magnet generator spinning at high rotational speed (up to
100kr/min) on air bearings. MTs can burn a variety of fuels including natural gas, gaso-
line, diesel, alcohol, and propane.

Microturbine models are similar to those of fuel cells [53], [54]. However, the parame-
ters and curves are modified to properly describe the performance of a MT unit. The
total efficiency of the microturbine can be written as:

ηl =
Pel + Pth,rec

mf ∗ LHVf
(2.40)

where
Pel is the net electrical output power,
Pth,rec is the thermal power recovered (kW),
LHVf is the fuel lower heating rate (kJ/kgf),
mf is the mass flow rate of the fuel(kg/s).

Unlike the fuel cell, the efficiency of the MT increases with the increase of the supplied
power. The MT fuel cost is as follows:

CMT = Cnl

∑

J

PJ

ηlJ
(2.41)

where
Cnl is the natural gas price to supply the MT,
PJ is the net electrical power produced at interval J ,
ηlJ is the cell efficiency at interval J .

2.5 Wind Turbine

Wind turbines are packaged systems that include a rotor, a generator, turbine blades, and
a drive or a coupling device. As wind blows through the blades, the air exerts aerody-
namic forces that cause the blades to turn the rotor. As the rotor turns, its speed is altered
to match the operating speed of the generator. Most systems have a gearbox and a gen-
erator in a single unit behind the turbine blades. As with photovoltaic (PV) systems, the
output of most wind generators is processed by an inverter that changes the electricity
from DC to AC so that the electricity can be used.
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2.5.1 Wind Turbine Generating System

The working principles of the wind turbine can be described in two processes, that are
carried out by its main components: the rotor which extracts kinetic energy from the
wind passing it and converts it into mechanical torque and the generating system, which
converts this torque into electricity. Figure 2.21 illustrates the working principles of a
wind turbine.

Rotor

Generating

System
Grid

Connection
Grid

Mechanical
Power

(Translation)

Mechanical
Power
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Electrical

Power

s
U

s
I

Figure 2.21: General working principle of wind power generation.

Basically, a wind turbine can be equipped with any type of a three phase generator.
Several generator types may be used in wind turbines [55], but here three types of wind
turbine generators are discussed:

• Squirrel cage induction generators,

• Doubly fed (wound rotor) induction generators,

• Direct drive synchronous generators.

In the next subsection the Doubly fed (wound rotor) induction generators are described:

2.5.2 Doubly Fed (Wound Rotor) Induction Generator and Direct Drive Syn-
chronous Generator

Figure 2.22 shows a direct synchronous generator and a doubly fed (wound rotor) in-
duction generator. They are used in variable speed turbines. With these it is possible
to increase the energy captured by the aerodynamic rotor by maintaining the optimum
power coefficient over a wide range of wind speeds [55]. However it is then necessary
to decouple the speed of the rotor from the frequency of the grid through some form
of power electronic converters. In the doubly fed induction generator, a back-to-back
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voltage source converter feeds the three phase rotor winding. In this way, the mechani-
cal and electrical rotor frequencies are decoupled and the electrical stator and rotor fre-
quency can be matched, independently of the mechanical rotor speed. In the direct drive
synchronous generator, the generator is completely decoupled from the grid by a power
electronics converter. The grid side of this converter is a voltage source converter, i.e.
an IGBT (Insulated Gate Bipolar Transistor) bridge. The generator side can either be a
voltage source converter or a diode rectifier. The generator is excited using either an
excitation winding or permanent magnets.

Rotor

Grid

Doubly fed
(wound rotor)

induction
generator

Convertor

Gear box

sU sI

CI
rU

rI

Rotor

GridConvertor

Direct drive
synchronous

generator

sU sI
CU CI

Figure 2.22: Generating systems used in wind turbines: direct synchronous generator (above) and doubly
fed (wound rotor) induction generator (below).

2.5.3 Wind Turbine Modelling

In this section, an overview of the developments in wind turbine modelling will be pre-
sented. The first wind turbines were based on a direct grid coupled synchronous genera-
tor with pitch controlled rotor blades to limit the mechanical power in high wind speeds.
Therefore, the first modelling efforts were devoted to this wind turbine concept [56], [55].

The directly grid coupled synchronous generator was followed by a directly grid cou-
pled asynchronous squirrel cage induction generator. This type of a generator has a more
favorable torque versus speed characteristic than the synchronous generator, thus reduc-
ing the mechanical loads and it is also cheaper. This concept is still applied nowadays by
some manufacturers. To limit the power extracted from the wind at high wind speeds,
either pitch control or stall control can be applied. Many papers on modelling of a wind
turbine with a directly grid coupled squirrel cage induction generator can be found in the
literature, both in combination with pitch control and with stall control of the mechanical
power, e.g. [56], [57],[58] and [59].
Nowadays, a more modern variable speed wind turbine with a doubly fed induction
generator has replaced the conventional constant speed wind turbine with a directly grid
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coupled squirrel cage induction generator. The manufacturers have also started to apply
a direct drive synchronous generator grid coupled through a power electronic converter
of the full generator rating. Therefore, modelling efforts have been given to these wind
turbine concepts as well. Because the variable speed wind turbines are complicated sys-
tems, most papers addressing their modelling only cover one subsystem, such as the
electromechanical conversion system , the drive train, the control of the generator cur-
rents and the DC link voltage or the rotor speed controller, e.g. [60] ,[61].

As the power developed is proportional to the cube of the wind speed it is obviously
important to locate any electricity generating turbines in areas of high mean annual wind
speed, and the available wind resource is an important factor in determining where the
wind farms are sited [1]. Often the areas of high wind speed will be away from the
habitation and the associated well-developed electrical distribution network, leading to
a requirement for careful consideration of the integration of wind turbines to relatively
weak electrical distribution networks. The difference in the density of the working fluid
(water and air) illustrates clearly why a wind turbine rotor of a given rating is much
larger in size than a hydro-turbine [1].

2.5.4 Rotor Equation

A wind turbine operates by extracting kinetic energy from the wind passing through its
rotor. The power developed by a wind turbine is given by [56]:

P = 1/2CpϑV 3
wA (2.42)

where
P power (W),
Cp power coefficient,
Vw Wind velocity (m/s),
A swept area of rotor disc(m2),
ϑ density of air (1.225 kg/m3).

The force extracted on the rotor is proportional to the square of the wind speed and
so the wind turbine must be designed to withstand large forces during storms. Most of
the modern designs are three-bladed horizontal-axis rotors as this gives a good value of
peak Cp together with an aesthetically pleasing design [1].

The power coefficient Cp is a measure of how much of energy in the wind is extracted
by the turbine. It varies with the rotor design and the relative speed of the rotor and wind
(known as the tip speed ratio) to give a maximum practical value of approximately 0.4 [1].
The power coefficient Cp is a function of the tip speed ratio λ and the pitch angle β, which
will be investigated further. The calculation of the performance coefficient requires the
use of blade element theory [62],[55]. As this needs knowledge of aerodynamics and the
computations are rather complicated, numerical approximations have been developed
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[62]. Here the following function will be used:

Cp(λ, β) = 0.5176(
116
λi

− 0.4β − 5)e
−21
λi + 0.0068λ (2.43)

where

1
λi

=
1

λ + 0.08β
− 0.035

β3 + 1
(2.44)

Figure 2.23 shows Cp(λ, θ) versus λ characteristics for various values of β. Using the
actual values of the wind and rotor speed, which determine λ, and the pitch angle, the
mechanical power extracted from the wind can be calculated from equations (2.42)-(2.44).
The maximum value of Cp (cpmax=0.48) is achieved for β = 0◦ and for λ = 8.1. This
particular value of λ is defined as the nominal value (λnom).
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Figure 2.23: Performance coefficient Cp as a function of the tip speed ratio λ with pitch angel β as a parame-
ter.

2.5.5 Generator Equation

Generator is device converting mechanical energy into electricity, so it is important to the
whole system. The equation describing the doubly fed induction machine can be found
in [60]. When modelling the doubly fed induction generator, the generator convention
will be used, which means that the currents are outputs instead of inputs and the real
power and reactive power have positive signs when they are fed into the grid. Using the
generator convention, the following set of equations is obtained [62], [56]:

vds = −Rsids − ωsψqs + dψds
dt

vqs = −Rsiqs + ωsψds + dψqs

dt

vdr = −Rridr − rsωsψqr + dψdr
dt

vqr = −Rriqr + rsωsψdr + dψqr

dt

(2.45)



36 CHAPTER 2. SYSTEM MODELLING

where
v is the voltage in [V],
i is the current in [A],
Rr, Rs are the rotor and stator resistances in [Ω] respectively,
ωs is the stator electrical frequency in [rad/s],
ψ is the flux linkage in [Vs],
rs is the rotor slip.
Subscripts d and q are direct and quadrature axis components respectively; subscripts

s and r indicate the stator and the rotor quantities. All the quantities in equation (2.45)
are functions of time. The d-q reference frame is rotating at synchronous speed with the
q- axis 90◦ ahead of the d-axis. The position of the d-axis coincides with the maximum of
the stator flux, which means that vqs equals the terminal voltage et and vds equals to zero.
The flux linkages can be calculated using the following set of equations in per unit [56].

ψds = −(Ls + Lm)ids − Lmidr

ψqs = −(Ls + Lm)iqs − Lmiqr

ψdr = −(Lr + Lm)idr − Lmids

ψqr = −(Lr + Lm)iqr − Lmiqs

(2.46)

where Lm is the mutual inductance and Ls and Lr are the stator and rotor leakage induc-
tances, respectively. In equation (2.46) the generator convention is used again. The rotor
slip is defined as [56]:

rs =
ωs − p

2ωm

ωs
(2.47)

where p is the number of poles and ωm is the mechanical frequency of the generator in
[rad/s].

From equations (2.45), (2.46), we can derive the voltage-current relationships of the
doubly fed induction generator.

Reference [56] proposes that the rotor and stator transients, represented by the last
term in equation (2.45) are to be neglected. Substituting (2.46) in to (2.45) results in:

vds = −Rsids + ωs((Ls + Lm)iqs + Lmidr)
vqs = −Rsiqs − ωs((Ls + Lm)ids + Lmidr)
vdr = −Rridr + rsωs((Lr + Lm)iqr + Lmiqs)
vqr = −Rriqr + rssωs((Lr + Lm)idr + Lmids)

(2.48)

The active power P and reactive power Q generated by the generator can be written as:

P = vdsids + vqsiqs + vdridr + vqriqr

Q = vdsids − vqsiqs + vdridr − vqriqr

(2.49)

From these equations, it can be concluded that the reactive power Q is not necessarily
equal to the generated reactive power fed into the grid. Equations (2.48) and (2.49) de-
scribe the electrical part the generator. However, also the mechanical part must be taken
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into account in the dynamical model. The following expression gives the electromechan-
ical torque developed by the generator:

T e = Ψdriqr −Ψqridr (2.50)

The changes in generator speed that result from a difference in electrical and mechani-
cal torque can be calculated using the generator equation of motion in which Hm is the
equivalent inertia constant of the generator rotor [s] and Tm is the mechanical torque
[p.u.].

dωm

dt
=

1
2Hm

(Tm − Te) (2.51)

Figure 2.24 shows the speed-power turbine curve which reflects both the aerodynamic
power and the generated power. At low wind speeds, the output power is too low to be
exploited. Normally turbines are started when the wind speed exceeds 3-4 m/s. We can
see also that the wind turbine started at 5 m/s and the output power increases with the
cube of the wind speed until the rated wind speed is reached.
At wind speeds from 12 m/s to 25 m/s the power is limited to the rated power of the
wind turbines by means of stall-regulation or pitch-control. At wind speeds over 25 m/s
wind turbines are normally stopped to avoid high mechanical loads. The wind speed at
which the wind turbines are stopped is called cut-out speed.
The power is controlled in order to follow a pre-defined power-speed characteristic,
named tracking characteristic. The tracking characteristic is defined by four points: A,
B, C and D. From zero speed to speed of point A the reference power is zero. Between
point A and point B the tracking characteristic is a straight line, the speed of point B must
be greater than the speed of point A. Between point B and point C the tracking charac-
teristic is the locus of the maximum power of the turbine (maxima of the turbine power
vs turbine speed curves). The tracking characteristic is a straight line from point C and
point D. The power at point D is one per unit (1 pu) and the speed of the point D must
be greater than the speed of point C. Beyond point D the reference power is a constant
equal to one per unit (1 pu).
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Figure 2.24: Power curve of wind turbine.
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2.5.6 Simulation Results

In this section, the behavior of the wind turbine is examined when the wind speed
changes. The speed is first constant 8 (m/s), then at time 5 seconds a ramp is introduced
lasting until 11 seconds and then constant speed of 14 (m/s) follows, as illustrated in
Figure 2.25. Figure 2.26 shows the corresponding generated active power P . This power
starts increasing smoothly (together with the turbine speed) to reach its rated value of
1.5 MW in approximately 19 s. The response of the reactive power due to a change in
the wind speed is shown in Figure 2.27. It can be seen that at nominal power, the wind
turbine absorbs 0.11 Mvar (generated Q = -0.11 Mvar).
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Figure 2.25: Wind Speed.
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Figure 2.26: Generated active power P .
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Figure 2.27: Generated reactive power Q.

Figure 2.28 shows the pitch angle response due to the change in the wind speed. In
this figure, it is clear that, initially, the pitch angle of the turbine blades is zero degrees
and the turbine operating point follows the red curve of the turbine power characteristic
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up to point D shown in Figure 2.24. Then the pitch angle is increased from 0 deg to 0.078
deg in order to limit the mechanical power. In Figure 2.29 the turbine speed is increased
when the wind speed increased from 0.8 pu to 1.21 pu.
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Figure 2.28: Pitch Angle.
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Figure 2.29: Rotor Speed.

To simulate the wind turbine responses for different values of wind speed, the initial
wind speed is below the nominal wind speed which is assumed to be 14 m/s. After 7
seconds, a wind speed ramp starts which leads to an increase in the average wind speed
in 30 seconds. After 10 seconds a wind gust with an amplitude of -3 m/s and duration
of 10 seconds occurs [63]. The results are illustrated in Figures 2.30-2.32. At 20 s, the
nominal power of the wind turbine is reached because the pitch angle controller is not
used which can prevent the rotor overspeeding.
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Figure 2.30: Generated active power due to different values of wind speed.

The next step is to simulate the responses of the wind turbine when the input is a mea-
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Figure 2.31: Pitch Angle due to different values of wind speed.
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Figure 2.32: Rotor Speed due to different values of wind speed.

sured wind sequence. Figures 2.34-2.36 show the responses of the active power, the pitch
angle, and the rotor speed due to the input measured wind speed shown in Figure 2.33.
The wind speed measurements were downloaded from "Database of Wind Characteris-
tics" [64].
By comparing the responses attained using the simulated and measured inputs, wind
speed curves have almost the same range fluctuations of the output power. The range of
the response of the rotor speed fluctuations are also similar. The behavior of the response
of the pitch angle is different because there is no pitch controller in the design model.
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Figure 2.33: Measured sequence of wind speed.
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Figure 2.34: Response of the generated active power due to the measured sequence wind speed input.
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Figure 2.35: Response of the pitch angle due to measured sequence wind speed input.
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Figure 2.36: Response of the rotor speed due to measured sequence wind speed input.
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2.5.7 Wind turbine optimization model

In the design of a wind turbine model, two important factors are considered; the avail-
ability of the wind and the power curve of the wind turbine itself. The available wind
generator output, is a function of the wind velocity. In order to model the performance of
the wind turbine, the power curve of the wind turbine must be obtained. The following
is the model used to calculate the output power generated by the wind turbine generator
[65],[66]:





PWT = 0, Vac < Vci

PWT = aV 2
ac + bVac + c, Vci 6 Vac < Vr

PWT,r = 130, Vr 6 Vac > Vco

(2.52)

where PWT,r, Vci, and Vco are the rated power, cut-in and cut-out wind speed, respec-
tively. Furthermore, Vr and Vac are the rated and actual wind speed, respectively. For
modelling the performance of a wind turbine, the mathematical equation of the power
curve of a wind turbine must be obtained.
In a typical design of a wind turbine, the turbine does not generate power after its cut-off
speed Vco. As we will use the AIR403 wind turbine model [67], it is stated in the manual
that it uses a unique rotor blade that twists the blade and stalls the rotor when the cut-off
speed is reached. According to the data from the manufacturer, the turbine output PWT,r

is roughly 130 W if the wind speed is greater than approximately 18 m/s [67], [68]. One
specific example of the generated power as a function of the wind speed is shown in Fig-
ure 2.37. In this figure, the AIR403 power curve is modeled, according to equation (2.52),
where the actual power curve is obtained from the owner’s manual. The parameters in
the model of the power curve are as follows:
a = 3.4; b = -12; c = 9.2; PWT,r = 130 watt; Vci = 3.5 m/s; Vco= 18 m/s; Vr =17.5 m/s.
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Figure 2.37: The actual and modeled power curve of AIR403.



2.6. PHOTOVOLTAIC 43

2.6 Photovoltaic

The photovoltaics (PVs) are an attractive source of renewable energy for distributed ur-
ban power generation due to their relatively small size and noiseless operation. Their
applications are expected to significantly increase all over the world. PV generating tech-
nologies have the advantage that more units can be added to meet the load increase
demand [1] and [7].

Major advantages of the photovoltaic power are [69]:

• Short lead time to design, install, and start up a new plant.

• Highly modular structure, hence the plant economy is not a strong function of size.

• Power output matches very well with peak load demands.

• Static structure with no moving parts and hence, no noise.

• High power capability per unit of weight.

• Longer life with little maintenance because no moving parts exist.

• Highly mobile and portable because of light weight.

Photovoltaic cells can be divided into four groups: crystalline cells, thin-film cells, dye-
sensitised solar cells (DYSC or Grätzel-cell) and multilayer cells. The latter can also be
considered as several layers of thin-film PV cells. The different types are described in
[70].
Figure 2.38 shows the schematic diagram of an inverter for a small PV grid connected
system. The inverter typically consists of the following items:

• Maximum power point tracking ( MPPT) circuit.

• Energy storage element, usually a capacitor.

• A DC converter to increase the voltage.

• An AC inverter stage.

• A Isolation transformer to ensure that DC is not injected into the network.

• Output filter to restrict the harmonic currents passed into the network.

PV
Module MPPT Energy

Storage
DC:DC DC:AC Isolation Output

Filter

Figure 2.38: Schematic diagram of small PV inverter for grid connected operation.
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2.6.1 Modelling

An initial understanding of the performance of a solar cell may be obtained by consider-
ing it as a diode. The light energy, which is in the form of photons with the appropriate
energy level, falls on the cell and generates electron-hole pairs. The electrons and holes
are separated by the electric field established at the junction of the diode and are then
driven around an external circuit by this junction potential. There are losses associated
with the series and shunt resistance of the cell as well as leakage of some of the current
back across the p-n junction. This leads to the equivalent circuit shown in Figure 2.39 [1],
[71].

D

sR

shR loadR

+

__

U

DIphI

I

shI

Figure 2.39: Equivalent circuit of a PV module.

The PV cell can be modeled as a diode in parallel with a constant current source and a
shunt resistor. These three components are in series with the series resistor. The output-
terminal current I is equal to the light-generated current Iph, with subtracted diode-
current ID and the shunt-leakage current Ish.

I = Iph − ID − Ish (2.53)

The series resistance Rs represents the internal resistance of the current flow, and it
depends on the p-n junction depth, the impurities and the contact resistance. The shunt
resistance Rsh is inversely related to the leakage current to the ground. In an ideal PV
cell, Rs = 0 (no series loss), and Rsh = ∞ Ω (no leakage to ground). The PV cell conver-
sion efficiency is sensitive to small variations in Rs , but is insensitive to variations in
Rsh . A small increase in Rs can decrease the PV output significantly. In the equivalent
circuit, the current delivered to the external load equals the current Iph generated by the
illumination, less than the diode current ID and the ground-shunt current Ish. The open
circuit voltage Uoc of the cell is obtained when the load current is zero, i.e., when Ish = 0
and is given as:

Uoc = U + IRs (2.54)

where U is the terminal voltage of the cell [V].
The diode current ID is given by the classical diode current expression [69]:

ID = Id

[
qUoc

AcfKBT
− 1

]
(2.55)
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where
Id the saturation current of the diode,
q electron charge = 1.6 ∗ 10−19 Coulombs,
Acf curve fitting constant,
KB Boltzmann constant = 1.38 ∗ 10−23 Joule/◦KT
T temperature [◦K].
The output current is given by the expression [72]:

I = Iph − Ios

{
exp

[
qUoc

AcfKBT

]
− 1

}
− Uoc

Rsh
(2.56)

where

Iph =
G

100
[ISCR + KI(T − 25)] (2.57)

Ios = Ior

(
T

Tr

)3

exp
[
qEGO

BKB

(
1
Tr
− 1

T

)]
(2.58)

and
I ,U cell output current and voltage,
Ios cell reverse saturation current,
B ideality factor of p-n junction,
KI short circuit current temperature coefficient at

ISCR,KI= 0.0017 A/◦C,
G solar irradiation in W/m2,
ISCR short circuit current at

25◦C and 1000W/m2,

Iph light generated current
EGO band gap for silicon,
Tr reference temperature, Tr=301.18◦K,
Ior cell saturation current at Tr,
Rsh shunt resistance,
Rs series resistance.

ISCR, the current at maximum power point (Impp), the voltage at maximum power
point (Vmpp), and the open circuit voltage of the cell Uoc, are given by the manufacturers.
Table 2.3 illustrates the Standard Test Condition (STC) of AM1.5, 1000W/m2 and 25◦C,
also the data for 80W PHOTOWATT which are used in the simulation study of [73]

2.6.2 Simulation Results

The I-U and P-U characteristics for various irradiance at fixed temperature ( T = 25 ◦C),
obtained from the model are shown in Figures 2.40 and 2.41, respectively.
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Table 2.3: Parameters for 80W PHOTOWATT panel PWZ750 at STC.
Parameter Value
Maximum Power Point, (Pmpp) 80W
Minimum Power Point, (Pminpp) 75.1W
Current at MPP,(Impp) 4.6A
Voltage at MPP,(Vmpp) 17.3V
Short Circuit Current,(ISCR) 5A
Open Circuit Voltage,(Uoc) 21.9V
Short circuit current temperature coefficient,αscT 1.57mA/◦C
Open circuit voltage temperature coefficient,βocT -78.2mV/◦C
NOCT (Normal Operating Cell Temperature) 45◦C
Insolation, G=0.8W/m2, Ta=20◦C,wind speed=1m/s
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Figure 2.40: I-U characteristic for a PV cell at a constant temperature of 25◦C

Figures 2.42 and 2.43 show the I-U and P-U characteristics respectively, for different
values of temperature and fixed irradiance of 1000W/m2.

From these figures, the upper curve shows that the open-circuit voltage of the cell is
about 22 Volt, when the irradiation is 1000W/m2, which corresponds approximately to a
cloud-free, sunny day. As the load (current) of the cell increases, the voltage decreases
and at short-circuit (voltage = 0) the current is approximately 5 A. At open circuit and at
short-circuit, no power is produced. At a point called the maximum power point (MPP),
maximum power is gained from the PV-cell. To visualize this, a rectangle can be drawn
from a point on the curve to the x and y-axis. For the point where this rectangle has the
largest area, the maximum power is generated. At a lower irradiation, the short-circuit
current decreases approximately linearly with irradiation. The open circuit voltage does
not decrease as much until a very low irradiation. However, the open circuit voltage is
much more affected by the temperature of the PV-cell. At a higher temperature, the open
circuit voltage decreases. The phenomenon has quite large an impact and it decreases the
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Figure 2.41: P-U characteristic for a PV cell at a constant temperature of 25◦C
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Figure 2.42: I-U characteristic for a PV cell at constant G= 1000W/m2

output power by approximately 15 % at a temperature increase from 25◦C to 60◦C.
The effect of irradiance and cell temperature on I-U characteristic curve is shown in Fig-
ures 2.42 and 2.43. Figure 2.42 shows that the maximum power output varies almost
linearly with the irradiance. Figure 2.43 shows that the maximum output power from
the PV decreases as the temperature increases.

2.6.3 PV optimization model

Photovoltaic generations are systems which convert the sunlight directly to electricity. PV
technology is well established and widely used for power supplies to remote sites from
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Figure 2.43: P-U characteristic for a PV cell at constant G= 1000W/m2
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Figure 2.44: I-U characteristic of PV for some set of G and T

the distribution network [1]. The characteristics of the PV in operating conditions that
differ from the standard condition (1000 W/m2, 25◦C cell temperature), the influences of
the solar irradiation and ambient temperature on PV characteristics are modeled. The
effect of solar intensity is modelled by considering the power output of the module to be
proportional to the irradiance [74],[75]. The PV Modules are treated at Standard Test Con-
dition (STC). The output power of the module for can be calculated using equation (2.59):

PPV = PSTC
GING

GSTC
(1 + k(Tc − Tr)) (2.59)
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where
PPV The output power of the module at Irradiance GING,
PSTC The Module maximum power at STC,
GING Incident Irradiance,
GSTC Irradiance at STC 1000 W/m2,
k Temperature coefficient of power,
Tc The cell temperature.
Tr The reference temperature.

In computing the different modules, the Standard Rating System used is a peak power
value given by the manufacturers. This is based on the module maximum power output
at (STC), which means that under 5.11 PHS the output of the modules per day will be
5.11 times their rating, where SOLAREX MSX-83 modules are used in this study. Their
output characteristics are: peak power = 83W , voltage at peak power = 17.1V , current
at peak power = 4.84A, short circuit current = 5.27A, and open circuit voltage =21.2V at
STC.

2.7 Battery Storage optimization model

Battery banks are electrochemical devices that store energy from other AC or DC sources
for later use. The power from the battery is needed whenever the microsources are insuf-
ficient to supply the load , or when both the microsources and the main grid fail to meet
the total load demand. On the other hand, energy is stored whenever the supply from
the microsources exceeds the load demand.

The following assumptions are used to model the battery bank: The charge and dis-
charge current are limited at 10 % of battery AH capacity (the storage capacity of a bat-
tery is measured in terms of its ampere-hour (AH) capacity [76] [68]). The round- trip
efficiency is 95 %.
Because it is impossible for an energy storage device to contain negative energy, the max-
imum state of charge (SOCmax) and the minimum state of charge (SOCmin ) of the battery
are 100 % and 20 % of its AH capacity, respectively. When determining the state of charge
for an energy storage device, two constraint equations must be satisfied at all times [68].
The maximum allowable charge and discharge current must be to be less than 10% of the
battery AH capacity and are given by the following equations, respectively.

P+ 6 (0.1× Vsys × Ubatt)/∆t (2.60)

P− 6 (0.1× Vsys × Ubatt)/∆t (2.61)

where the parameter Vsys is the system voltage at the DC bus, ∆t is time in hours, and
the parameter Ubatt is the battery capacity in AH. The state of charge (SOC) of the battery
can be obtained by monitoring the charge P+ and discharge P− power of the battery, and
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is given by the following equation:

SOC = SOCmax − P− + P+ (2.62)

It is important that the SOC of the battery prevents the battery from overcharging or
undercharging. The associated constraints can be formulated by comparing the battery
SOC at any hour ∆t with the battery SOCmin and the battery SOCmax, as depicted in
(2.63). This study assumes that the initial SOC of the battery is equal to 100% in the
beginning of the simulation.

The constraints on battery SOC are:

SOCmin ≤ SOC ≤ SOCmax (2.63)

Finally, in order for the system with battery to be sustained over a long period of time,
the battery SOC at the end must be greater than a given percentage of its SOCmax. This
study assumes the percentage to be 90%.

2.8 Conclusions

To analyze the dynamic performance of MGs, proper dynamic models are required for
different investigation purposes. Therefore, component models, which reflect the phys-
ical processes within MGs components, are modeled to simulate the dynamics of MGs
for steady-state studies and online management purposes. In this Chapter, modelling of
components of a MG system has been successfully done. Models, which allow the inves-
tigation of the individual power sources behaviour, have been developed. Testing was
also a significant part of this chapter. In the following Chapters further development will
be carried out on the system, with the goal that MGs will be able to generate power in an
economical and efficient way by reducing the costs and the emission. Although certain
commercial components were specifically chosen, the models are easily generalizable to
other, similar components.



Chapter 3

Online Optimal Management of
MicroGrid using Mesh Adaptive
Direct Search (MADS)

3.1 Introduction

This chapter presents a generalized formulation to determine the optimal operating strat-
egy and cost optimization scheme for a MicroGrid. The proposed cost function takes into
consideration the costs of the emissions NOx, SO2, and CO2, start-up costs, as well as the
operation and maintenance costs. Also, the daily income and outcome is added from the
sales or purchased power. The optimization is aimed at minimizing the cost function of
the system while constraining it to meet the customer demand and safety of the system.
For purpose of comparison, two different techniques are applied to solve the proposed
optimization problem. The first technique is Sequential Quadratic Programming (SQP),
while the second one is the Mesh Adaptive Direct Search (MADS) method.
MADS is a generalization of the pattern search algorithm. These methods are intended
for black box optimization problem. They are derivative-free methods in the sense that
they do not compute nor even attempt to evaluate derivatives. There is a wide range
of interesting applications of pattern search and MADS methods [77, 78, 79, 80]. In this
work, (MADS) reported in [24] is applied to the optimization management problem of a
MG.
The chapter is divided as follows. An overview of the optimization problem is provided
in Section 3.2. Section 3.3 contains a brief description of MADS method. Section 3.4 out-
lines the optimization model process. Section 3.5 presents the proposed objective func-
tions for online management of a MG with the three scenarios applied. In section 3.6,
the golden search method is applied to see the minimization of the three cost functions
of MT, FC and DG individually. Section 3.7 summarizes the key characteristics of the im-
plemented strategy. Section 3.8 discusses the results obtained for this specific problem.
In Section 3.9, the conclusions and the performance of the algorithms are presented.
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CHAPTER 3. ONLINE OPTIMAL MANAGEMENT OF MICROGRID USING

MESH ADAPTIVE DIRECT SEARCH (MADS)

3.2 Optimization Overview

A General optimization Problem (GP) is given as:

minimize
P∈Rn

f(P)

subject to

Gi(P) = 0, i = 1, ..., me

Gi(P) ≤ 0, i = me + 1, ...m

Pl ≤ P ≤ Pu

(3.1)

where P is an n dimensional vector of design parameters, f(P) is the objective function,
f : Rn → R, and the vector function G : Rn → Rm returns a vector of length m containing
the values of the equality and inequality constraints evaluated at P.
Optimization techniques are used to find the design parameters vector,
P = (P1, P2, ..., Pn), that can in some way be defined as optimal. In a simple case this
might be the minimization or maximization of some system characteristic that is depen-
dent on P. In a more advanced formulation the objective function, f(P), to be mini-
mized or maximized, might be subject to constraints in the form of equality constraints,
Gi(P) = 0 (i = 1, ..., me); inequality constraints, Gi(P) ≤ 0 (i = me + 1, ..., m);
and/or parameter bounds, Pl, Pu .

3.3 Direct Search

Direct search algorithms can be used for problems that are difficult to be solved with
traditional optimization techniques, including problems that are not well defined or are
difficult to model mathematically. They can be also used when the objective function is
discontinuous, highly nonlinear, stochastic, or has unreliable or undefined derivatives.
In general, direct search algorithms are called the generalized pattern search (GPS) al-
gorithms or the MADS algorithms. Both are pattern search algorithms that compute a
sequence of points that get closer and closer to the optimal point. At each step, the al-
gorithm searches a set of points, called a mesh, around the current point (the point com-
puted at the previous step of the algorithm). The mesh is formed by adding the current
point to a scalar multiple of a set of vectors called a pattern. If the pattern search algo-
rithm finds a point in the mesh that improves the objective function at the current point,
the new point becomes the current point at the next step of the algorithm.
MADS algorithms are a modification of the GPS algorithm. The algorithms differ in how
the set of points forming the mesh is computed. The GPS algorithm uses fixed direction
vectors, whereas the MADS algorithms use a random selection of vectors to define the
mesh.

3.3.1 The MADS algorithm

The MADS class of algorithms, introduced in [24], is designed for nonsmooth optimiza-
tion problems. The convergence analysis of MADS ensured necessary optimality condi-
tions of the first [24] and second [81] orders under certain assumptions.
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A general optimization problem (3.1)may be stated as,

min
P∈X

CF (P) (3.2)

X = {P ∈ Rn |Gi (P) 6 0, i = 1, 2, ..., m, Pl 6 P 6 Pu} (3.3)

where, CF : Rn → R∪{+∞}, G : Rn → Rm, and Pl ∈ ({−∞}∪R)n and Pu ∈ (R∪{+∞})n.
Each iteration k of the MADS algorithm is characterized by two steps. First, an optional
search step over the space of variables is carried out, as long as it is a finite process and
all trial points lie on a mesh. If no better point is found or no global search is used,
the algorithm goes to a mandatory local exploration step (mandatory because it ensures
convergence). Second is the poll step, at most 2n trial mesh points near the incumbent
solution are selected (the poll set) and evaluated. If no better neighbor is found, the mesh
is refined.
If an improved mesh point Pk+1 ∈ X is found, the mesh is kept the same or coarsened,
and then Pk+1 is the next incumbent. The exploration directions vary at each iteration,
and become dense with probability 1. This is the main difference between the pattern
search and MADS algorithms. General constraints are handled with a barrier approach,
which redefines the objective as in the equation below.

CFX =

{
CF (P) if P ∈ X

+∞ otherwise
(3.4)

Then, MADS is applied to the unconstrained barrier problem

min
P

CFX(P) (3.5)

The feasible region X can be nonlinear, non-convex, non-differentiable, or disjoint.
There are no hypotheses made on the domain, except that the initial point must be feasi-
ble. The convergence results depend on the local smoothness of CF (and not CFX , which
is obviously discontinuous on the boundary of X). They also depend on the tangent cone
at the limit point produced by the algorithm.

3.3.2 Description of MADS algorithm

A general and flexible algorithmic framework for MADS was proposed in [24]. This gen-
eral framework is then specialized to a specific algorithmic implementation. The main
steps of the algorithm are summarized as follows , and in more details in the Appendix
A.

• Initialization
The user defines the starting point and the initial mesh size.
The algorithm initializes other parameters for subsequent steps.

• Quest for an improved mesh point
Global search (optional): evaluation of CF over a finite subset of points defined by
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the mesh;
Local poll (mandatory): definition of a poll set and evaluation of CF over points in
that set.

• Parameters update
Parameters are updated.

• Termination
If some stopping criterion is reached, stop; if not, go back to step 2.

3.4 Optimization Model

The power optimization model is formulated as follows. The output of this model is the
optimal configuration of a MG taking into account the technical performance of supply
options, locally available energy resources, load demand characteristics, environmental
costs, start-up costs, daily purchased-sold power tariffs, and operating and maintenance
costs.

Figure 3.1 illustrates the optimization model, where its inputs are:

• The power demand by the load.

• Data about locally available energy resources: These include solar irradiation data
(W/m2), temperature (◦C), wind speed (m/s), as well as cost of fuels ($/liter) for
the DG and natural gas price for supplying the FC and MT ($/kW).

• Daily purchased and sold power tariffs in ($/kWh).

• Start-up costs in ($/h).

• Technical and economic performance of supply options: These characteristics in-
clude, for example, rated power for PV, power curve for WT, fuel consumption
characteristics of DG, MT and FC.

• Operating and maintenance costs and emission factors: Operating and mainte-
nance costs must be given ($/h) for all emissions; emission factors must be given in
kg/h for DG, FC, and MT

3.5 Proposed Objective Functions

A major concern in the design of an electrical system that utilizes MG sources is the accu-
rate selection of output power. The power economically satisfies the load demand, while
taking into account the environmental externality costs by minimizing the emissions of
oxides of nitrogen (NOx), sulfur oxides (SO2), and carbon oxides (CO2). In this section,
different scenarios of the MG operation are considered. These scenarios are:
Scenario 1: The MG is considered to be working in an islanding condition with no battery
storage in the MG, with power balance and power generation constraints.
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Figure 3.1: The Optimization Model.

Scenario 2: Again the islanding condition is considered, with a battery storage. Further-
more, more constraints are added to reflect some of the behavior which can be found in
the MG.
Scenario 3: The MG is considered to be connected to the upper grid, taking into account
the battery storage and the constraints in the pervious two Scenarios. The following sub-
sections describe how these Scenarios are implemented in detail.
In power balance constraints, the line loss is not considered here as it is quite small and
could be neglected.

3.5.1 Scenario 1

The proposed cost function for a MG serving an isolated load demand is given in the
following form [82]:

CF (P) =
N∑

i=1
(Ci × Fi(Pi) + OMi(Pi)) +

N∑
i=1

M∑
k=1

αk(EFikPi) (3.6)

where
Ci Fuel costs of generating unit i,
Fi(Pi) Fuel consumption rate of generator unit i.
OMi(Pi) Operation and maintenance cost of generating unit i,
Pi Decision variables, representing the power output from generating unit i,
P = (P1, P2, ..., PN ) Decision variable vector,
αk Externality costs of emission type k,
EFik Emission factor of generating unit i and emission type k,
N Number of generating units i,
M Emission types (NOx or CO2 or SO2 ).
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The solution of the optimization procedure produces the optimal decision variables:
{Pi = PFCi , Pj = PMTj , Pk = PDGk

: i = 1, ..., N1; j = N + 1, ..., N2; k = N2 + 1, ..., N }.
where
PFCi : Output power of fuel cell i [kW ],i = 1, ..., N1,
PMTj : Output power of microturbine j [kW ],j = N + 1, ..., N2

PDGk
: Output power of diesel generator k [kW ], k = N2 + 1, ..., N

In equation (3.6) , the expressions for different Fi(Pi)’s are found in equations (2.6) , (2.28)
and (2.41). Expression for OMi(Pi) is given in equation (3.13).
Objective Constraints:
Power balance constraints: The total power generation must cover the total load demand.
Hence

N∑

i=1

Pi = PL − PPV − PWT (3.7)

where∑
Pi Total power generation [kW ],

PL Power demanded by the load [kW ],
PPV Output power of the photovoltaic [kW ],
PWT Output power of the wind turbine [kW ].

Generation capacity constraints: For stable operation, real power output of each power
generator is restricted by lower and upper limits as follows:

Pmin
i ≤ Pi ≤ Pmax

i , ∀i = 1, ..., N (3.8)

where
Pmin

i Minimum operating power of unit i,
Pmax

i Maximum operating power of unit i.

3.5.2 Scenario 2

In this Scenario a battery storage is added to the system and more constraints are consid-
ered in the objective function to obtain a more realistic model. The total power generation
to cover the total load demand becomes [83]:

N∑

i=1

Pi = PL − PPV − PWT − Pbatt (3.9)

where:∑
Pi Total power generation [kW ],

PL Power demanded by the load [kW ],
PPV Output power of the photovoltaic [kW ],
PWT Output power of the wind turbine [kW ],
Pbatt Output power of the battery [kW ].

Where the start-up cost and the max and min stop time constraints are included, the
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cost function will take the form:

CF (P) =
N∑

i=1
(Ci × Fi(Pi) + OMi(Pi) + STCi) +

N∑
i=1

M∑
k=1

αk(EFikPi) (3.10)

where

STCi is the start-up cost in $/h given in equation (3.12). Each generating unit has a
minimum up/down time limit (MUT/MDT). Once the generating unit is switched on, it
has to operate continuously for a certain minimum time before switching it off again. On
the other hand, a certain stop time has to be terminated before starting the unit. A viola-
tion of such constraints can cause shortness in the life-time of the unit. These constraints
are formulated as continuous run/stop time constraints as follows [84]:

(
T on

t−1,i −MUTi

)
(ut−1,i − ut,i) ≥ 0(

T off
t−1,i −MDTi

)
(ut,i − ut−1,i) ≥ 0

(3.11)

T off
t−1,i/T on

t−1,i is the unit off/on time, while ut,i denotes the unit off/on [0, 1] status.
The generator start-up cost depends on the time the unit has been off prior to a start-up.
The start-up cost in any given time interval can be represented by an exponential cost
curve:

STCi = σi + δi

[
1− exp

(−Toff,i

τi

)]
(3.12)

where, σi is the hot start-up cost, δi the cold start-up cost, τi the unit cooling time constant
and −Toff,i is the time a unit has been off.

The operating and maintenance costs refer to the electricity output [7]. They are as-
sumed to be proportional with the produced power and therefore the total costs are:

OM =
∑

OMi(Pi) =
N∑

i=1

KOMiPi (3.13)

where the proportionally constant is KOMi for each generating unit. The values of KOM

for different types of generation units are as follows [85]: KOM1 = KOM (DG) = 0.01258
$/kWh, KOM2 = KOM (FC) = 0.00419 $/kWh and KOM3 = KOM (MT ) = 0.00587 $/kWh.

For a stable operation of the MG, a number of the starts and stops (εstart−stop) should
not exceed a certain number (Nmax).

εstart−stop ≤ Nmax (3.14)

3.5.3 Scenario 3

As shown in Figure 1.1, the main utility balances the difference between the load demand
and the generated output power from the microsources. Therefore, there is a cost to be
paid for the purchased power whenever the generated power is insufficient to cover the
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Table 3.1: Externality costs and emission factors for NOx,SO2, and CO2.
Emission Type Externality costs Emission factors Emission factors Emission factors

$/lb for DG for FC for MT
lb/MWh lb/MWh lb/MWh

NOx 4.2 21.8 0.03 0.44
SO2 0.99 0.454 0.006 0.008
CO2 0.014 1.432 1.078 1.596

load demand. On the other hand, there is income due to the sold power when the power
generated is more than the load demand but the price of the sold power is lower than the
purchased power tariff. It is possible that there will be no sold power at all. Therefore,
to model the purchased and sold power, two different conditions are considered. These
conditions are defined in the form [21]:

DCPEi = Cp ×max(PL −
∑

Pi, 0)
IPSEi = Cs ×max(

∑
Pi − PL, 0)

(3.15)

where Cp and Cs are the tariffs of the purchased and sold power respectively in ($/kWh).
Then the cost function takes the form:

CF (P) =
N∑

i=1
(Ci × Fi(Pi) + OMi(Pi) + STCi + DCPEi − IPSEi) +

N∑
i=1

M∑
k=1

αk(EFijPi)

(3.16)
where
DCPEi Daily purchased electricity if the load demand exceeds the generated power

in $/h,
IPSEi Daily income for sold electricity if the output generated power exceeds the load

demand in $/h.

This Chapter considers the effect of the environmental externalities, including NOx, SO2

and CO2, on the per $/h cost of power supply solutions. The total discounted cost of
environmental externalities is calculated by multiplying the estimated discounted exter-
nality cost by the emission factor of each power generating technology, and by the total
power generated by microsources. Externality costs and emission factors of the DG, FC,
and MT used in this Chapter are stated in [27], [86], [87] and summarized in Table 3.1.

3.6 Golden Search

This method is applicable to an unconstrained minimization problem such that the solu-
tion interval [Pmin, Pmax] for each generation unit is known and the objective function
CF (P) is unimodal within the interval; that is, the sign of its derivative CF ′ changes at
most once in [Pmin, Pmax] so that CF (P) decreases/increases monotonically for [Pmin,
P o]/[P o, Pmax], where P o is the solution that we are looking for. The so-called golden
search procedure is summarized in [35] as:
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• Step 1. Pick two points c and d, c = Pmin + (1− r)h and d = Pmin + rh, inside the
interval [Pmin, Pmax], where r = (

√
5− 1)/2 and h = Pmax − Pmin.

• Step 2. If the values of CF (P) at the two points are almost equal [i.e., CF (Pmin) ≈
CF (Pmax)] and the width of the interval is sufficiently small (i.e., h ≈ 0),
then stop the iteration to exit the loop and declare P o = c or P o = d depending on
whether CF (c) < CF (d) or not. Otherwise, go to Step 3.

• Step 3. If CF (c) < CF (d), let the new upper bound of the interval Pmax ← d; oth-
erwise, let the new lower bound of the interval Pmin ← c. Then, go to Step 1.

In order to explore the minimum costs of the DG, FC, and MT, golden search technique
is used for all the three cost functions individually. Figure 3.2 shows the minimization
of the costs of the three cost functions. It is noticeable that the DG has the highest cost,
whereas the MT has the lowest cost. The lower and upper bounds for each generator unit
were as follows:

DG: Pmin= 0 Kw, Pmax =7 Kw.
MT :Pmin= 0 kW, Pmax= 4 Kw.
FC: Pmin =0 Kw, Pmax= 4 Kw.
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Figure 3.2: Minimization of the MT, FC, and DG costs.
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3.7 Implementation of the Optimization Algorithm

When designing MGs, several goals could be set, including reduction in emissions and
generation costs. To achieve this, it is important to highlight all factors influencing the
main goal. The following items summarize the key characteristics of the implemented
strategy:

• Power output of WT is calculated according to equation (2.52) with measured wind
speed data depicted in Figure 3.3.

• Power output of PV is calculated according to equation (2.59) with measured tem-
perature and solar radiation data as shown in Figures 3.4 and 3.5, respectively .

• It is assumed that WT and PV deliver free cost power (in terms of running as well
emission free). The output powers are then treated as negative loads.

• The power from the battery is needed whenever the PV, WT are insufficient to serve
the load , meanwhile the charge and discharge of the battery is monitoring.

• Calculate the unmet load that can not served by WT,MT and battery storage.

• Choose serving the load by other sources (FC or MT or DG) according to the objec-
tive functions.

• If the output power is not enough then purchase power from the main gird, and if
the output power is more then the load demand sell the exceed power to the main
grid
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Figure 3.3: The input wind speed to the model.

3.8 Results and Discussions

The optimization model described in Section 3.4 is applied where the load demand is
shown in Figure 3.6 which is rescaled from [88] and [89]. The load varying between 4 kW
to 14 kW. The available power from the PV and the wind generators are used first. The
result obtained by applying the three Scenarios are given next:



3.8. RESULTS AND DISCUSSIONS 61

2 4 6 8 10 12 14 16 18 20 22 24
13

14

15

16

17

18

19

20

21

22

Time [hour]

T
em

pe
ra

tu
re

 [ °  
C

 ]

Figure 3.4: The input temperature data to the model.
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3.8.1 Scenario 1

Table 3.2, Figures 3.7 and 3.8 show the optimal setting and the total cost of the MG per day
for Scenario 1 in both methods (SQP and MADS). These curves are plotted against time.
It is observed from the figures that the load demand is satisfied with the three available
sources, and the DG is the last preferable source as it has the highest operating cost. In

Table 3.2: Total Optimal Generation and Total Cost of the MG Scenario 1
Total load Demand (kW/Day) Optimal Generation (kW/Day) Total Cost ($/Day)

SQP MADS SQP MADS
171.2924 171.2924 171.2928 28.6813 28.7460

Table 3.2 the total cost of the MG found using the MADS technique is $ 28.7460 , which
is almost the same as for the SQP technique $ 28.6813. This is a very small difference as
seen in Fig 3.9. Figures 3.10 to 3.12 show the contribution of the fuel cost, operation and
maintenance cost, and the emission cost to the total cost. It can been seen that the fuel
cost assumes major part of the total cost.
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Figure 3.7: The hourly power curves using SQP scenario 1.
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Figure 3.8: The hourly power curves using MADS scenario 1.

Due to low operating cost of MT, it is noticeable that the MT supplies its maximum or
near maximum power for prolonged periods within the day. Therefore, it is adequate to
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Figure 3.9: Hourly total cost of the microgrid using 2 different technique scenario 1.
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Figure 3.11: Hourly emission costs of the microgrid scenario 1.

investigate whether the utilization of smaller identical units with total equivalent capac-
ity would be more economical regarding the operating costs. In this case, one unit is used
when low power is to be supplied and the other units are added when required.
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Figure 3.12: Hourly OM cost of the microgrid scenario 1.

A combined algorithm of the two techniques can be used together, as MADS alone was
not sufficient to find the minimum. The idea is to use the SQP method first. The optimal
generation variable is used then as a starting point to search for optimal solution with
MADS method. After applying the proposed procedure, the same results are reached as
obtained with SQP.

3.8.2 Scenario 2

In this Scenario, the results are different as more constraints and a battery storage are
added to the MG system. From the results obtained, it can be seen that the algorithms
acted very well in meeting the load demand but they had a different distribution of the
power on the sources. Furthermore, the effect of the battery is very small as just one bat-
tery unit (PVX-340 battery,33AH, 12 v) is used in the system. The controller of the SOC
met the design requirement desired, in which the battery has to be fully charged at the
end of the day.
The results illustrated in Table 3.3, Figures 3.13 and 3.14 show that the MADS optimiza-
tion technique has made as good a selection of the power of the microsources as the SQP
to meet the changes in the load in minimum cost. The total cost per day is shown in
Fig 3.15 and Table 3.3. It can be seen that the total cost is 47.7148 $ using the SQP, while
it is decreased to 44.6829 $ using the MADS method. It is also noticed that the repeti-

Table 3.3: Total Optimal Generation and Total Cost of the MG Scenario 2
Total load Demand (kW/Day) Optimal Generation (kW/Day) Total Cost ($/Day)

SQP MADS SQP MADS
171.4009 171.4009 171.4013 47.7148 44.6829

tive start/stop cycles of each microsource causes a higher daily operating cost compared
to Scenario 1. This is also due to the associated start-up cost STC. The priority is al-
ways given to the lowest operating cost of continuous running or, in a few cases, for
the complete shut down of the highest costs. In MADS, the optimal scenario is to run
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Figure 3.13: The hourly power curves using SQP Scenario 2.
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Figure 3.14: The hourly power curves using MADS Scenario 2.
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Figure 3.15: Hourly total cost of the microgrid using 2 different technique Scenario 2.

MT continuously for a certain time period and then to switch it off for a short time as
shown in Figure 3.14. On the other hand, the DG is kept off for a longer time and is only
switched on when the peak load occurs (Fig. 3.6) . Therefore, the constraint, which limits
the start/stop cycles below a certain number as in equation (3.14), is always inactive since
this situation cannot be avoided in the case of MT.



66
CHAPTER 3. ONLINE OPTIMAL MANAGEMENT OF MICROGRID USING

MESH ADAPTIVE DIRECT SEARCH (MADS)

3.8.3 Scenario 3

Figures 3.16-3.19 show the effect of varying sold tariffs on the operation of the MG for the
applied load demand of both algorithms. Let the sold tariff be $ 0.0/kWh in Case 1 and
0.12/kWh in Case 2, while the purchased tariff is kept constant at $ 0.16/kWh for both
cases. Again the same optimization methods (SQP and MADS) are applied. Furthermore,
Figures 3.20 and 3.21 show the sold and purchased power of the two cases above of the
MG when the SQP and MADS methods are used.
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Figure 3.16: Effect of sold power tariff on the MG optimal operation Scenario 3.
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Figure 3.17: Effect of sold power tariff on the MG optimal operation Scenario 3.

In the first case, Figure 3.20 shows that no power is sold back to the main grid. In the
second case with SQP, the MG produces more power to cover the load and the excess
power is sold back for $ 0.12/kWh. In Figures 3.21 and 3.23 MADS is applied to the same
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Figure 3.18: Effect of sold power tariff on the MG optimal operation Scenario 3.
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Figure 3.19: Effect of sold power tariff on the MG optimal operation Scenario 3.

optimization problem. It can been seen that the effect of changing the sold tariffs is very
clear compared to the SQP method.
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Figure 3.20: Sold and purchased power using SQP method and Scenario 3.

Figure 3.22 illustrates the total cost in the two cases using the SQP method. It is quite
evident that the algorithm failed to meet reducing the cost as the selected power option
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Figure 3.21: Sold and purchased power using MADS method and Scenario 3.

was at maximum. The total cost was 80.8576 $ in Case 1 and 120.8424 $ in case 2. The total
cost of the MG using MADS method for Case 1 and Case 2 is shown in Fig 3.23. In Case
1 the total cost is 79.0752 $ while in Case 2 it is 83.9106 $ which is less than in Scenario 2.
Using the MADS method, the total cost is reduced compared to the SQP method.
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Figure 3.22: Cost per day using SQP method and Scenario 3.
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Figure 3.23: Cost per day MADS method and Scenario 3.
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Figures 3.24 to 3.27 show the effect of varying purchase tariffs on the operation of the
MG with purchase tariff $ 0.12/kWh in Case 3 and 0.16/kWh in Case 4, while the sold
tariff is kept constant at $ 0.07/kWh for both cases.
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Figure 3.24: Effect of purchased power tariff on the MG optimal operation Scenario 3
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Figure 3.25: Effect of purchased power tariff on the MG optimal operation Scenario 3

Figures 3.28 and 3.29 show the effect of changing the purchased tariffs on the sold and
purchased power as well the effect on the total cost per day. The MADS algorithm has a
better output for minimizing the total cost, with a better of compromise between the sold
and purchased power.

Table 3.4 summarizes the four cases applied in Scenario 3. It can been seen that in the
last two cases when the purchase tariffs are changed and the sold tariffs are kept con-
stant, this has no effect on the optimal setting of the MG when MADS method is applied.
The same situation occurs when the SQP is applied to the problem. However, using SQP
results in a higher cost compared to MADS method.
The proposed approach is general in the sense that multiple fuels, multiple pollutants

and a highly non-linear cost function can be dealt with. The effectiveness of the approach
has been demonstrated in all three different scenarios.
The total electrical output power from the three microsources together for MADS is simi-
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Figure 3.26: Effect of purchased power tariffs on the MG optimal operation Scenario 3
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Figure 3.27: Effect of purchased power tariff on the MG optimal operation Scenario 3
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Figure 3.28: Sold and purchased power using SQP and MADS methods and Scenario 3.

lar in the last three cases. However, the contributions from individual units vary depend-
ing on the load, the operating tariffs and the operating cost of each one. In some cases,
one or two units are not used for a long time. In other cases, one or two units are used
only for short periods, particularly at peak-load time, as shown in Figures 3.24 to 3.27.
Switching on one or two units increases the total operating cost as a result of the start-up
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Figure 3.29: Total cost per day using SQP, MADS methods and scenario 3.

Table 3.4: Total Optimal Generation and Total Cost of the MG Scenario 3

PL (kW/Day) Cp ($/kWh) Cs ($/kWh) Total Cost ($/Day) Optimal Generation (kW/Day)
SQP MADS SQP MADS

Case 1 171.4009 0.16 0.00 80.8576 79.0752 187.6473 176.1020
Case 2 171.4009 0.16 0.12 120.8424 83.9106 285.0000 204.2817
Case 3 171.4009 0.12 0.07 120.5106 85.6072 273.1226 204.2817
Case 4 171.4009 0.16 0.07 120.5220 85.7750 273.1226 204.2817

costs. In addition, utilization of three units in parallel results in operating the units at
lower efficiencies compared to a single unit since they generate a higher percentage of
power based on their ratings. The result from MADS in Scenario 3 reflects the high accu-
racy of finding the minimum and ensures the efficient capability of the MADS to extract
the features of the optimal performance.
The MADS outputs show good performance to meet the load demand, which demon-
strates the capability of the MADS and the effectiveness of the presented approach. It is
expected that using more constraints such as the starting cost leads to a significant in-
crease in the operating cost compared to Scenario 1.
The average optimal daily operating cost using MADS is about 83.5920$/day depending
on the four cases in Scenario 3. This value increases to 110.6832 $/day if the SQP method
is used. These results reflect the success of the MADS to capture the optimal behavior of
the MG with high accuracy even with new four different cases. Table 3.4 compares the
total daily operating costs when the MADS is used to minimize the total cost of the MG
with the SQP considering the optimal settings for the four investigated cases.
Generally, the MADS approach can be applied to provide a simple and effective opti-
mization technique for MG management and also other distributed generation sources
in the online mode with a high accuracy.
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3.9 Conclusions.

The optimization problem includes a variety of energy sources that are likely to be found
in a MG: a fuel cell, a diesel generator, a microturbine, a photovoltaic cell, and a wind gen-
erators. Constraint functions are added to the optimization problem to reflect some of the
additional considerations which are often found in a small-scale generation system. From
the results obtained, it is clear that the optimization works very well and assigns optimal
power to the generators after taking into account the cost function for each of them. The
effectiveness of the suggested approach is confirmed through the agreement between the
optimized settings and the output from the algorithm. The responses are effected by sev-
eral variables including weather conditions, emissions operation and maintenance costs,
sold and purchased tariffs, and of course, the actual power demand.
The results show the capability of the proposed system model and the proposed algo-
rithm to achieve both reduction in the operating costs and meeting the load demand.
The proposed procedure can be implemented with different loads and for periods more
than one day. From the results obtained it is noticeable that the effect of changing the
sold tariffs results in different optimal settings of the MG depending on the optimization
technique. It is clear that the sold tariffs have more effect on the SQP method, and a
smaller effect on the MADS method. Both optimization techniques made a good selec-
tion to meet the load demand. Furthermore, some constraints were found not to be active
when MADS method is applied. The total cost per day was the lowest when the MADS
is used in all cases.



Chapter 4

MicroGrid Online Management
Using Multiobjective Optimization

4.1 Introduction

This chapter presents a generalized formulation to determine the optimal operating strat-
egy and cost optimization scheme as well as the reduction of emissions for a MG. Mul-
tiobjective (MO) optimization is applied to the environmental/economic problem of the
MG. The proposed problem is formulated as a nonlinear constrained MO optimization
problem. Prior to the optimization, system model components from real industrial data
are constructed. The model takes into consideration the operation and maintenance costs
as well as the emission reduction of NOx, SO2, and CO2 . The optimization is aimed at
minimizing the cost function of the system while constraining it to meet the customer
demand and safety of the system. The results ensure the efficiency of the proposed ap-
proach to satisfy the load and to reduce the cost and the emissions in one single run.

Multiobjective (MO) optimization has a very wide range of successful applications in
engineering and economics. Such applications can be found in optimal control systems
[90], chemical engineering [91], engineering design [92], and communication [93] . The
MO optimization is applied to find the optimal solution which is a compromise between
multiple and contradicting objectives. In MO optimization we are mostly interested in
the Pareto optimal set which contains all non-inferior solutions. The decision maker
can then select the most preferred solution out of the Pareto optimal set. The weighted
sum method is applied in this Chapter. Furthermore, the weighted sum is a simple and
straightforward method to handle the MO optimization problems.

Solving the environmental/economic problem in the power generation has received con-
siderable attention. An excellent overview on commonly used environmental/ecomomic
algorithms can be found in [15]. The environmental/ecomomic problems have been ef-
fectively solved by goal programming [16], classical technique [17] , and fuzzy satisfaction-
maximizing approach [18]. The computing speed of these approaches limits their appli-
cability in online applications. The goal here is to develop methods that improve the
online applicability and efficiency.

73
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The proposed optimization method is compared with the results obtained in [94, 95,
96]. It incorporates an explicit cost minimization criterion applied to the MG architecture
as well as minimizing the emission. The formulation in this work seeks the most optimal
environmental/economical generation to satisfy the load demand and the constraints.
The problem is decomposed into two stages starting by building the system model. The
next stage is the application of the algorithm developed. The algorithm consists of deter-
mining at each iteration the optimal use of the resources available, such as wind speed,
temperature, and irradiation as they are the inputs to the model. If the produced power
from the wind turbine and the photovoltaic cell is less than the load demand, then the al-
gorithm goes to the next stage which is the use of the other alternative sources according
to the load and the objective function of each one.

The second objective of this Chapter deals with solving the optimization problem con-
sidering several scenarios to explore the benefits of having optimal management of the
MG. The study is based on minimizing the running costs and reducing the emissions.
This is extended to cover a load demand scenario in the MG. It will be shown that by de-
veloping a good system model, the proposed problem is accurately and efficiently solved
using optimization techniques.

The power optimization model is shown in Figure 4.1 highlighting the following points.
The output is the optimal configuration of a MG that takes into account technical perfor-
mance of supply options, locally available energy resources, demand characteristics, and
environmental level. Small-scale power generating technologies under consideration in-
clude PV, WT, DG, and FC.

To run the model, the following items have to be defined:

• The power demand by the load.

• Locally available energy information: This includes solar irradiation data (W/m2),
temperature (◦C), wind speed (m/s), as well as cost of fuels ($/liter) for the DG and
natural gas price for supplying the FC and MT ($/kWh).

• Daily purchased and sold power tariffs in ($/kWh).

• Start-up costs in ($/h).

• Technical and economic performance of supply options: These characteristics in-
clude, for example, rated power for PV, power curve for WT, fuel consumption
characteristics DG and FC.

• Operating and maintenance costs and the total emission: Operating and mainte-
nance costs must be given ($/h) for DG, FC, and MT.

• Emission level must be given in kg/h for DG, FC, and MT.
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Figure 4.1: Optimization algorithm Model.

4.2 Optimization Problem

4.2.1 Proposed Objective Function

The major concern in the design of an electrical system that utilizes MG sources is the
accurate selection of output power that can economically satisfy the load demand, while
minimizing the emissions. Hence, the system requirements are determined subject to:
1. Minimizing the operation costs ($/h).
2. Minimizing the emission (kg/h).
3. Ensuring that the load is served according to given constraints.

4.2.2 Operating Cost

The same Scenarios as formed in Chapter 3 are also considered here. However, the only
difference in the operating cost function is that there is no emission cost. As the problem
is treated as multiobjective, the emissions are computed separately as emission level. The
three different scenarios are modified as follows:

Scenario 1
The purpose of the cost function is to optimize the operation cost CF (P) of the MG in
$/h as follows:

CF (P) =
N∑

i=1
(Ci × Fi(Pi) + OMi(Pi)) (4.1)

where the same notation as in (3.6) in is used.
The solution of the optimization procedure produces the optimal decision variables:
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{Pi = PFCi , Pj = PMTj , Pk = PDGk
: i = 1, ..., N1; j = N + 1, ..., N2; k = N2 + 1, ..., N }.

P is N vector of the generators active power and is defined as P = (P1, P2, ..., PN )
The operating and maintenance costs of the generating unit OMi have the same form as
in (3.13). Furthermore, the values of KOMi are as in Chapter 3.

Objective Constraints:
Power balance constraints are described by (3.7) and the generation capacity constraints

are given in (3.8).
Scenario 2
The total power generation to cover the total load demand is given in(3.9). Considering

the start-up cost (3.12), the cost function assumes the form:

CF (P) =
N∑

i=1
(Ci × Fi(Pi) + OMi(Pi) + STCi) (4.2)

and the maximum and minimum stop time constraints are described by (3.11). A num-
ber of starts and stops (εstart−stop) are given in (3.14) and the generation capacity and
power balance constraints are also considered in this scenario.

Scenario 3
As in Fig 1.1, the main utility balances the difference between the load demand and the

generated output power from the microsources. Then the cost function takes the form:

CF (P) =
N∑

i=1
(Ci × Fi(Pi) + OMi(Pi) + STCi + DCPEi − IPSEi) (4.3)

where
DCPEi Daily purchased electricity of unit i if the load demand exceeds the generated power

in $/h.
IPSEi Daily income for sold electricity of unit i if the output generated power exceeds the load

demand in $/h.
The constraints of Scenario 2 apply also here.

4.2.3 Emission Level

The atmospheric pollutants such as sulphur oxides (SO2), carbon oxides (CO2), and ni-
trogen oxides (NOx) caused by fossil-fueled thermal units can be modeled separately.
However, for comparison purposes, the total ton/h emission of these pollutants can be
expressed as [22]:

E(P) =
N∑

i=1

10−2(αi + βiPi + γiP
2
i ) + ζi exp(λiPi) (4.4)

where αi, βi , γi, ζ, and λi are nonnegative coefficients related to the ith generator emis-
sion characteristics.
In the emission model introduced in [15], [22], an approach is proposed to evaluate the
parameters α, β , γ, ζ, and λ using the data available in [27]. Thus, the emissions per day
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for the diesel engine, fuel cell, and microturbine are estimated , and the characteristics of
each generator will be accordingly determined.

4.3 Implementation of the Algorithm

When designing MGs, several goals should be set including reduction in emissions and
generation cost. To achieve this, it is important to highlight all factors influencing the
main goal. Figure 4.2 summarizes the key characteristics of the implemented strategy as
illustrated in the following items:

• Power output of WT is calculated according to the relation between the wind speed
and the output power.

• Power output of PV is calculated according to the effect of the temperature and the
solar radiation that are different from the standard test condition.

• Since the WT and PV deliver free cost power (in terms of running as well the emis-
sion free), the output power is treated as a negative load , so the load which is
the difference between the actual and microsource output can be determined if the
output from PV and WT is smaller than the load demand.

• The power from the battery is needed whenever the PV, WT are insufficient to serve
the load , meanwhile the charge and discharge of the battery is monitoring.

• Calculate the unmet load that can not served by WT,MT and battery storage.

• Choose serving the load by other sources (FC or MT or DG) according to the objec-
tive functions.

• If the output power is not enough then purchase power from the main gird, and if
the output power is more then the load demand sell the exceed power to the main
grid

4.4 Multiobjective optimization problem

Multiobjective optimization is a method to find the best solution between different objec-
tives, usually conflicting objectives. In the MO optimization problem, there is a vector of
objective functions. Each objective function is a function of the decision (variable) vector
[97], [90]. A general multiobjective mathematical formulation is expressed as:

min {f1(x), f2(x), ..., fk(x)}
subject to x ∈ S

(4.5)

where k is the number of the objective functions fi ( i > 2 ) , fi : Rn → R i = 1, ..., k. The
vector of objective functions is denoted by F(x) = (f1(x), f2(x), ...fk(x))T . The decision
variable vector x = (x1, x2, ..., xn)T belongs to a (nonempty) feasible region (set) S, which
is a subset of the decision variable space Rn. The abbreviation min {.} means that all the
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Figure 4.2: Implementation of the algorithm flow chart.

objectives are to be minimized simultaneously. Usually the objectives are at least par-
tially conflicting and possibly incommensurable. This generally means that there is no
single vector x, which can minimize all the objectives simultaneously. Otherwise, there
is no need to consider multiple objectives. Because of this, MO optimization is used to
search for efficient solutions that can best compromise between the different objectives.
Such solutions are called non-dominated or Pareto optimal solutions.
If the final solution is selected from a set of Pareto optimal solutions, there would not
exist any solutions that are better in all attributes. It is clear that any final design solution
should preferably be a member of the Pareto optimal set. If the solution is not in the
Pareto optimal set, it could be improved without degeneration in any of the objectives,
and thus it is not a rational choice. This is true as long as the selection is only done based
on the objectives. Pareto optimal solutions are also known as non-dominated or efficient
solutions.
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Definition [97]
A decision vector x* ∈ S is Pareto optimal if no another decision vector does exist x ∈ S

such that fi(x) 6 fi(x*) for all i = 1, 2, .., k and fj(x) < fj(x*) for at least one index j.
There are usually a lot (infinite number) of Pareto optimal solutions. The Pareto optimal
set is the set of all possible Pareto optimal solutions. This set can be nonconvex and non-
connected.
After the generation of the Pareto set, one solution of this set is the aim. This solution is
selected by the decision maker. There are different techniques to solve the MO optimiza-
tion problems. One way to solve this kind of problems is to use softcomputing methods
such as genetic algorithms. This thesis concentrates on the analytical solutions of the MO
optimization problems. One of the techniques to solve the MO optimization problem is
to convert it to a single objective optimization problem as in the Weighting Method [97].

4.4.1 Weighted Sum

The weighted sum method is one of the most common methods for solving MO optimiza-
tion. The idea is to associate each objective with a weighting coefficient and minimize the
weighted sum of the objectives. In this way, the multiobjective functions are transformed
into a single objective function.
The weighting method transforms (4.5) into the following scalar objective optimization
problem:

Min
k∑

i=1

wifi(x)

subject to x ∈ S

(4.6)

where fi’s are as in (4.5) and the weighted coefficients wi are real numbers such that
wi > 0 for all i = 1, ..., k. It is usually supposed that the weights are normalized, that is,∑k

i=1 wi = 1. The multiobjective problem can be solved e.g. using MADS.
Mathematically, the environmental/economic for MG problem is formulated as follows:
Find the output generator power vector P = (P1, P2, ..., PN ) that minimizes the function:

F(P) = {CF (P ), E(P )} (4.7)

subject to

hi(P) = 0 i = 1, ..., q (4.8)

gj(P) ≤ 0 j = 1, ..., p (4.9)

Pmin
i ≤ Pi ≤ Pmax

i , ∀i = 1, ..., N (4.10)

where the number of the objective functions = 2, F(P) : Rn → R2. The vector of objective
functions is denoted by F(P) = (F (P1), F (P2))T .
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The decision variable vector P = (P1, P2, ..., PN ) consists of all the design variables in the
problem which may be bounded.

The collection of the equality constraints, H(P) = (h1(Pi), h2(Pi), ...hq(Pi))T , is an
equality constraint vector. The inequality constraint vector is G(P) = (g1(Pi), g2(Pi), ...gp(Pi))T

and it is less or equal to zero. The elements of vector P may be constrained by Pmin
i and

Pmax
i .

From the definition of multi-objective problems, a non-dominated solution is a feasible
solution; at least one of the objective values is better than the corresponding objective
of all the other feasible solutions. The non-dominated solutions are those from which
the multi-objective decision algorithm attempts to select the best compromise solution
according to the preferences of the decision makers. Consequently, the two objectives of
all the non-dominated solutions are located along the left and lower boundaries of the
feasible domain as minimization is desired.
Based on the proposed modelling concept, the three considered Scenarios can be sum-
marized as follows:

Scenario 1

CF (P) =
N∑

i=1
(Ci × Fi(Pi) + OMi(Pi)) (4.11)

subject to:

N∑

i=1

Pi − PL + (PPV + PWT ) = 0 (4.12)

Pmin
i ≤ Pi ≤ Pmax

i , ∀i = 1, ..., N (4.13)

Scenario 2

CF (P) =
N∑

i=1
(Ci × Fi(Pi) + OMi(Pi) + STCi) (4.14)

subject to:

N∑

i=1

Pi = PL − PPV − PWT − Pbatt (4.15)

(
T on

t−1,i −MUTi

)
(ut−1,i − ut,i) ≥ 0(

T off
t−1,i −MDTi

)
(ut,i − ut−1,i) ≥ 0

(4.16)

εstart−stop ≤ Nmax (4.17)

Scenario 3

CF (P) =
N∑

i=1
(Ci × Fi(Pi) + OMi(Pi) + STCi + DCPEi − IPSEi) (4.18)

subject to the same constraints as in Scenario 2.
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Emission Level

E(P) =
N∑

i=1

10−2(αi + βiPi + γiP
2
i ) + ζi exp(λiPi) (4.19)

4.5 Results and Discussion

At first, the optimization model is applied to the load shown in Figure 4.3 which is
rescaled from [88] and [89]. The load demand varies from 4 kW to 14 kW. The avail-
able power from the PV and the WT are used first. The result obtained from applying the
three Scenarios are discussed next:
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Figure 4.3: Hourly load.

4.5.1 Scenario 1

In order to explore the extreme points of the trade-off surface, operational cost and emis-
sion objectives are optimized individually using two different techniques. They are Mul-
tiobjective Sequential Quadratic Programming (MOSQP) and Multiobjective Adaptive
Direct Search (MOMADS). In Case 1, the cost objective function is optimized and in Case
2, the emission objective function is optimized.
The best results of cost and emission functions, when optimized individually with the
two techniques, are given in Table 4.1. Convergence of the operation cost and emission
objectives using MOSQP and MOMADS are shown in Figure 4.4. It should be noted that
the figure is plotted by selecting an arbitrary one hour load sample from the 24 hour data
samples. On the other hand the Table 4.1 shows the total by summing the values over
one day.

Then the problem is solved as a MO optimization problem where both operation cost
and emissions are optimized simultaneously. Considering the diversity of the Pareto op-
timal set over the trade-off surface, the trade-off relation can be obtained by minimizing
the function [15]:
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Figure 4.4: Convergence of the operating cost and emission objective functions using MOSQP and MOMADS
Scenario 1.

Table 4.1: The objective functions when optimized individually: Scenario 1
PL (kW/Day) Total Emission (kg/Day) Total Cost ($/Day) Optimal Generation (kW/Day)

MOSQP MOMADS MOSQP MOMADS MOSQP MOMADS

Case 1 171.2924 104.2151 88.8812 28.6813 31.6402 171.2924 171.2928
Case 2 171.2924 50.5100 49.6815 68.0909 69.0050 171.2924 171.2928

C(P) = wCF (P) + (1− w)E(P) (4.20)

subject to power balance, and upper and lower limits on the generation. Here w ∈ [0, 1].
Value w =1.0 implies minimum operating cost and full emissions. We obtain the opti-
mum solution of the operating cost objective. The importance of the emission objective
increases when w decreases. Then the optimum solution will move toward the optimal
emission objective value w =0.0, which implies minimum emission with no attention
being paid to operating costs. The optimum solution of the emission objective is now
obtained. Function C is minimized for successive values of w to cover the entire range
from 0 to 1, the two objectives are given the same weights. For non-dominated solution
points, an improvement in one objective requires degradation of the other objective.
The proposed model is highly nonlinear. Since each generator has different behavior that
influences the operating cost, the solutions are diverse and acceptably distributed over
the trade-off curve.
Figures 4.5 and 4.6 show the relationship (trade-off curves) of the operating costs and
emissions level objectives of the non-dominated solutions obtained by the MO optimiza-
tion. The operating costs of the non-dominated solutions appear to be inversely pro-
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portional to their emissions. It can be seen that the Pareto optimal set has a number of
non-dominated solutions. Out of them, two nondominated solutions that represent the
best cost and best emission can be chosen.
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Figure 4.5: Trade- off in operating cost and emission using MOSQP Scenario 1.
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Figure 4.6: Trade- off in operating cost and emission using MOMADS Scenario 1.

The best selection of the power generators of the MG using MOSQP and MOMADS are
given in Table 4.2. Both techniques produce nearly the same results while solving the MO
problem. Furthermore, this ensures that the proposed approach is capable of exploring
more efficient and noninferior solutions of multiobjective optimization problem of MG.
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Table 4.2: The best selection per day of the power generators of the MG using MO: Scenario 1
PL (kW/Day) Optimal Generation (kW/Day) Total Cost ($/Day) Total Emission (kg/Day)

MOSQP 171.2924 171.2924 36.2344 74.4566
MOMADS 171.2924 171.2928 35.9737 74.8105

The set of power curves found by the MOSQP and MOMADS optimization algorithms
are shown in Figures 4.7 and 4.8, respectively. These figures confirm that when the load
demand is low, the best choice in terms of cost is to switch off the diesel generator and
start to use the output power from the MT. The second best choice is the use of the fuel
cell. When the load is high at the peak time, the diesel generator is switched on and its
extra power is used to serve the load.
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Figure 4.7: The hourly power curves generated by different energy resource using MOSQP Scenario 1.
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Figure 4.8: The hourly power curves generated by different energy resource using MOMADS Scenario 1.

Table 4.2 and Figures 4.7 and 4.8 confirm that the MO optimization technique has made
reasonable selections for the whole day. The selections for the rest of the electricity de-
mand are as straightforward. The DG is the least preferred generator, because of its
higher cost and emissions, compared with the others. It is used only when there are no
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other generation options available.

Figures 4.9 and 4.10 illustrate the hourly cost and the hourly emissions using MOSQP
and MOMADS. In both figures, the cost and emission are high during the peak time and
the DG is fully on.
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Figure 4.9: Hourly operating cost using the MOSQP and MOMADS Scenario 1.
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Figure 4.10: Hourly emission using the MOSQP and MOMADS Scenario 1.

4.5.2 Scenario 2

Following the same procedure to explore the extreme points of the trade-off surface, the
same two different cases covered in Scenario 1 are considered again. Table 4.3 shows the
best results when the operational cost and emission objectives are optimized individually.
The result obtained is different than the result in Table 3.3, because they have different
settings in the constraints 4.16 and 4.17.

Convergence of operation cost and emission objectives at different times of the day
are shown in Figure. 4.11. It is noticeable that there is some difference between the two
algorithms when the objectives are optimized individually, unlike in Scenario 1.
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Table 4.3: The objective functions when optimized individually: Scenario 2
PL (kW/Day) Total Emission (kg/Day) Total Cost ($/Day) Optimal Generation (kW/Day)

MOSQP MOMADS MOSQP MOMADS MOSQP MOMADS

Case 1 171.4009 95.0842 84.4096 52.0362 54.5920 171.4009 171.4013
Case 2 171.4009 68.2011 68.2014 51.8436 51.8281 171.4009 171.4009
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Figure 4.11: Convergence of operating cost and emission objective functions using MOSQP and MOMADS
Scenario 2.

Figures 4.12 and 4.13 show the output power of the MG in Cases 1 and 2 using MO-
MADS method. These figures show that the constraints (4.16) and (4.17) have no effect
on Case 2 where the emission objective is optimized individually. The figures clarify why
case 2 gives better cost values than Case 1.

Figures 4.14 and 4.15 illustrate the hourly operating costs and emissions using the
MOSQP and MOMADS techniques. Both hourly operating costs and emissions are high
when the generators are on and the load is high.

The Pareto-optimal front of MOSQP is depicted in Figure 4.16. The distribution of the
non-dominated solutions in the Pareto-optimal front using the proposed MOMADS is
shown in Figure 4.17. It is evident that the solutions are diverse and well distributed
over the trade-off curve. Comparison of Figures 4.16 and 4.17 showed that the non-
dominated solutions of both approaches have good diversity characteristics and better
non-dominated solutions.

The set of power curves found by the two optimization algorithms are shown in Fig-
ures 4.18 and 4.19. It is observed in these figures that when the battery reaches the SOC
minimum limit, it is considered as a load (when battery power is negative in the figures).
The other sources are then used to charge the battery and serve the load. Table 4.4 with
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Figure 4.12: Power Generation distribution case 1 using MOMADS Scenario 2.
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Figure 4.13: Power Generation distribution case 2 using MOMADS Scenario 2.
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Figure 4.14: Hourly operating cost using the MOSQP and MOMADS Scenario 2.

Figures 4.18 and 4.19 confirm that the MO optimization technique has made reasonable
selections in the total cost and emissions per day compared with the result in Table 4.3.
The selections were not so straightforward, because of the existing start-stop time limit
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Figure 4.15: Hourly emission using the MOSQP and MOMADS Scenario 2.
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Figure 4.16: Trade- off in operating cost and emission using MOSQP Scenario 2.

constraints which have a big effect on the performance of the algorithm. It finally con-
firms that the load is perfectly served.

Table 4.4: The best selection per day of the power generators of the MG using MO: Scenario 2
PL (kW/Day) Optimal Generation (kW/Day) Total Cost ($/Day) Total Emission (kg/Day)

MOSQP 171.4009 171.4016 60.4935 97.0396
MOMADS 171.4009 171.4009 58.8531 77.2721

The load demand is served with the battery storage and at the same time the SOC is
monitored. At the end of the simulation the battery should be fully charged. The battery
capacity is not large enough to supply the load for the whole time. The charged values
of the battery power are added to the power demand. The algorithm then calculates the
needed power to charge the battery and serve the load.
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Figure 4.17: Trade- off in operating cost and emission using MOMADS Scenario 2.
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Figure 4.18: The hourly power curves generated by different energy resource using MOMADS Scenario 2.

4.5.3 Scenario 3

The best results of the cost and emission functions, when optimized individually, are
given in Table 4.5. Convergence of operation cost and emission objectives for both ap-
proaches, when the purchased tariff is 0.12 $/kWh and the sold tariff 0.07 $/kWh, is as
shown in Figure. 4.20.
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Figure 4.19: The hourly power curves generated by different energy resource using MOSQP Scenario 2.

Table 4.5: The objective functions when optimized individually: Scenario 3

PL (kW/Day) T E(kg/Day) T C($/Day) O G (kW/Day) SP (kW/Day) PP (kW/Day)

MOSQP MOMADS MOSQP MOMADS MOSQP MOMADS MOSQP MOMADS MOSQP MOMADS

Case 1 171.4009 149.9198 68.6616 76.1973 61.3615 241.9197 144.3805 70.5188 17.8455 14.8635 27.0204

Case 2 171.4009 12.3885 13.0826 124.6914 113.7293 36.0860 42.5693 00.0000 00.0000 135.3149 128.8316

where
TE Total Emissions.
TC Total Operating Cost .
OG Total Optimal Generated Power .
SP Total Sold Power.
PP Total Purchased Power.

Figures 4.21 and 4.22 illustrate the hourly operating costs and emissions for the two pro-
posed techniques. Constraints (4.16) and (4.17) behave differently compared to the pre-
vious scenarios. However, the costs and emissions are high when the generators are on
and the load is high.

Figures 4.23-4.26 show the relationship (trade-off curves) of the operating cost and
emission objectives of the non-dominated solutions obtained by MOSQP and MOMADS
approaches for different purchased and sold tariffs. Considering the definition of the
multi-objective problems, a non-dominated solution becomes a feasible solution. Then
at least one of the objective values is better than the corresponding objective of all the
other feasible solutions. The non-dominated solutions are those from which the multi-
objective decision algorithm attempts to select the best compromise solution according
to the preferences of the decision makers. Consequently, the two objectives of all the
non-dominated solutions are located along the left and lower boundaries of the feasible
domain as minimization is desired.
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Figure 4.20: Convergence of operating cost and emission objective functions using MOSQP and MOMADS
Scenario 3.
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Figure 4.21: Hourly operating cost using the MOSQP and MOMADS Scenario 3.

The operating costs of the non-dominated solutions thus appear to be inversely propor-
tional to their emissions, as illustrated in Figures 4.23-4.26. Table 4.6 and Figures 4.27
and 4.28 show the effect of changing the purchased and sold tariffs on the optimal set-
ting of the MG. There are all together four cases. In case 1, the effect of the changing the
purchased tariffs is studied. The sold power is first 0.04 $/kWh and the purchased tariff
is 0.1 $/kWh. In Case 2 the value of the purchased tariff is increased to 0.16 $/kWh and
the sold one is the same as in Case 1. During changing the purchased tariff values, it was
noticed that when the tariff is low, it was preferable to buy as much power from the main
grid as possible. However, when the tariffs were higher, it was more economical to gen-
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Figure 4.22: Hourly emission using the MOSQP and MOMADS Scenario 3.
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Figure 4.23: Trade- off in operating cost and emission using MOSQP at Scenario 3 and for P = 0.12 and S= 0.

erate the required power from the MG according to MOSQP and MOMADS approaches.
In Cases 3 and 4, the purchase power tariff is kept constant at 0.12 $/kWh, while the sold
tariff was 0.0 $/kWh in Case 3 and 0.04 $/kWh in Case 4. It is noticeable that the MG
generates more power when increasing the sold tariffs and when applying MOMADS
optimization algorithm. In MOSQP, changing of the sold tariffs has no effect for such a
small change. MOSQP only reacts if the change is much larger. This leads to conclude
that the MOMADS is more efficient if there is a change in the sold tariffs even if the
change is very small. The higher values of the sold power tariff gives the possibility to
produce more power to meet the load demand in MOMADS.

Table 4.7 illustrates the cost savings and emission reductions of the MG using different
cases and compares them with the proposed MOMADS technique. The results obtained
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Figure 4.24: Trade- off in operating cost and emission using MOMADS at Scenario 3 and for P = 0.12 and S=
0.
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Figure 4.25: Trade- off in operating cost and emission using MOSQP at Scenario 3 and for P = 0.16 and S=
0.1.

using the proposed technique to minimize the total cost and total emissions are com-
pared with conventional strategies. In the first case the DG, FC, and MT operate at their
rated power for the whole day (Case A). In the second case costs are optimized individu-
ally (Case B). In the third scenario emissions objective function is optimized individually
(Case C).
Case A gives a higher operating cost and higher emissions than other sittings which in-
dicates that it is not relevant. Larger generating power, larger costs and emissions are
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Figure 4.26: Trade- off in operating cost and emission using MOMADS at Scenario 3 and for P = 0.16 and S=
0.1

Table 4.6: The effect of the Purchased and Sold tariffs on the optimal Generation: Scenario 3
Load (kW/Day) Optimal Generation (kW/Day) Total Cost($/Day) Total Emission(kg/Day)

MOSQP MOMADS MOSQP MOMADS MOSQP MOMADS

Case 1 171.4009 112.5081 110.7196 58.5862 51.0058 40.3235 47.3697
Case 2 171.4009 127.1114 112.4749 61.3490 64.5349 49.4893 47.1226
Case 3 171.4009 117.7365 111.2769 60.4168 56.3351 44.6083 47.5260
Case 4 171.4009 117.7365 111.2769 60.4168 56.3351 44.6083 47.5260

attained. In Case B, the cost is somewhat reduced, while the emissions increase. In the
third case, the cost increased while the emissions decreased and the optimal choice was
to purchase more power from the main grid.
For achieving the completeness and checking the effectiveness of the proposed cost func-
tion and proposed solution, the problem is treated as a single objective optimization prob-
lem: [22] (case D):

Minimize
P

ωCF (P) + (1− ω)λE(P ) (4.21)

where λ is the scaling factor and ω is the weighting factor. The scaling factor λ is used
to balance the two objectives. The increase of the scaling factor favors the predominance
of the total emission objective function over the total operating cost objective function.
Value of λ= 3000 was found to be the best compromise between the two objectives. In
this study the weighting factor ω is selected to be varying randomly ω = rand[0, 1] and λ

is chosen to be 3000. With the proposed MOMADS method, the total operating cost and
emissions are reduced to 48.3012 $/day and 41.8015 kg/day, respectively.
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Figure 4.27: Effect of purchased power tariffs on the MG optimal operation using MOMADS Scenario 3.
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Figure 4.28: Effect of purchased power tariffs on the MG optimal operation using MOSQP Scenario 3.

MOMADS is more capable of handling the multiobjective optimization problem of the
MG when the problem becomes more complex, e.g, when more constraints and pur-
chased and sold power are considered. It is also noticeable from Figures 4.29 and 4.30
that MOMADS has a good distribution of the powers given to the microsources.

Table 4.7: Cost savings and emissions reductions of the MG using multiobjective optimization: Scenario 3
Average Cost &Emissions Average difference with respect to the optimal case

Cost $/Day Emissions kg/Day cost $/Day Emissions kg/Day Cost% Emissions%

Case A 95.3091 229.4895 47.0079 187.6880 97.32% 449.00%
Case B 68.6616 61.3615 20.3604 19.5600 42.15 % 46.79 %
Case C 113.7293 13.0826 65.4281 -28.7189 135.46% -68.70 %
Case D 53.5643 58.9397 53.5643 11.7628 10.90 % 28.14%

MOSQP 49.3980 44.0851 1.0968 2.2836 2.27% 5.46%

MOMADS 48.3012 41.8015 00.0000 00.0000 0% 0%
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Figure 4.29: Power Generation distribution using MOSQP Scenario 3.
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Figure 4.30: Power Generation distribution using MOMADS Scenario 3.

4.6 Conclusions.

Objective functions to determine the optimum operation of a MG with respect to the load
demand and environmental requirements are constructed and presented in a new form.
The optimization problem includes a variety of energy sources that are likely to be found
in a microgrid: fuel cells, diesel engines, microturbines, PV arrays, wind generators, and
battery storages. Constraint functions are added to the optimization problem to reflect
some of the additional considerations often found in a small-scale generation system.
The results of the optimal power operating costs and emissions curves for the MG ensure
that the optimization works very well and can give the optimal power to the genera-
tors after taking the operating costs and emissions into account. The effectiveness of the
suggested approach is confirmed through the agreement between the optimized settings
and the output from the algorithm. The responses are effected by several variables such
as weather conditions, sold and purchased tariffs, and of course, the actual power de-
mand. The results show the capability of the proposed system model and the proposed
algorithm to achieve both reduction in the operating costs and meeting the load demand.
The proposed procedure can be implemented with different loads and for periods more
than one day.



Chapter 5

MicroGrid Online Management
Using Multiobjective Genetic
algorithms

5.1 Introduction

This chapter develops a novel intelligent technique to manage the operation of MG units
for residential or industrial utilization. Genetic algorithms (GAs) are used to find opti-
mal settings of the MG units depending on detailed economic and environmental models.
This approach is applied to the three scenarios described in Chapter 4. The objective is
to develop an intelligent management tool , which can be used for environmentally con-
strained economic problems of the MG. The problem can be classified as a multiobjective
optimization and nonlinear programming problem. The purpose of the tool is to find the
optimal amount of the generated power by minimizing the operating cost and the emis-
sion level simultaneously while satisfying the load demand and operational constraints.
The trade-off curve is obtained by forming an objective function which combines the op-
erating costs and emission level objectives. The next step is to use GA to determine the
global optimum solutions.

5.2 Genetic algorithms

Genetic algorithms (GAs) and the closely related evolutionary algorithms are a class of
global non-gradient methods which have grown in popularity. Reference [98] presents a
comprehensive study of genetic algorithms. Genetic algorithms are modeled after mech-
anisms of natural selection. Each optimization parameter (xn) is encoded by a gene using
an appropriate representation, such as a real number or a string of bits. The correspond-
ing genes for all parameters x1, ..xn form a chromosome capable of describing an indi-
vidual design solution. A set of chromosomes representing several individual design
solutions comprises a population where the fittest are selected to reproduce. Mating is
performed using crossover to combine genes from different parents to produce children.
The children are inserted into the population and the procedure starts over again. The

97



98
CHAPTER 5. MICROGRID ONLINE MANAGEMENT USING MULTIOBJECTIVE

GENETIC ALGORITHMS

general form of genetic algorithms is presented in Figure 5.1. Content of each block in
this flow chart is explained in greater details in the following.

Initialize
Population

Fitness
evaluation

Insert offspring
into population

Create offspring
crossover and mutation

Selection patents
for mating

Is the stopping
criterion met?

Terminate
No YES

Figure 5.1: Flow chart of a general form of the genetic algorithm

Initialization
In the initialization, one generates, often randomly, a population from which new gen-
erations are formed. At this point one also needs to define the terminating condition so
that the algorithm stops running once an acceptable solution is found.

Crossover
Crossover is one of the genetic operators used in producing new candidates using the
features of the existing ones. The crossover procedure is illustrated in Figure 5.2 below.
The crossover procedure consists of three parts. First one selects two parents from the

population. Then the crossover points are selected. The selection of crossover points is
done at random, usually so that the distribution from which the points are drawn from
is uniform. In Figure 5.2, two crossover points are marked with dotted lines. Once the
points are defined, two offsprings are generated by interchanging the values between the
two parents as illustrated in Figure 5.2. In the genetic algorithm, crossover is the opera-
tor that spreads the favorable characteristics of the members around the population. A
number of different crossover techniques have been presented in the literature.
Mutation
Mutation is the operator that causes totally new characteristics to appear in the members
of the population. In many cases the mutations, result in offsprings that are worse than
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Figure 5.2: Crossover procedure

the other members, but sometimes the result has characteristics that make it better. Figure
5.3 demonstrates the mutation operation. First, one selects a member from the popula-
tion to be mutated and a point of mutation. Then the value at the point of mutation is
replaced by another value that is picked randomly from the set of all possible values.

1 1 1 1 1 1 1 1 1

1 1 2 1 2 1 1 1 1

Figure 5.3: Mutation

Evaluation
After the population is manipulated using the genetic operators, the fitness of each new
offspring is evaluated. To do this one needs to have a numerical function and a fitness
function.

Selection
In the selection, the weakest individuals in the population are eliminated. Most fit off-
springs survive to the next generation.
Population size specifies how many individuals there are in each generation. With a
large population size, the genetic algorithm searches the solution space more thoroughly,
thereby reducing the chance that the algorithm will return a local minimum that is not a
global minimum. However, a large population size also causes the algorithm to run more
slowly. Population size of 100 is used in this study.



100
CHAPTER 5. MICROGRID ONLINE MANAGEMENT USING MULTIOBJECTIVE

GENETIC ALGORITHMS

Mutation options specify how the genetic algorithm makes small random changes in
the individuals in the population to create mutation children. Mutation provides genetic
diversity and enable the genetic algorithm to search a broader space. The mutation func-
tion, adds a random number taken from a Gaussian distribution with mean 0 to each
entry of the parent vector. Gaussian mutation function is applied in this study.

Crossover options specify how the genetic algorithm combines two individuals, or
parents, to form a crossover child for the next generation. Crossover function specifies the
fraction of the next generation, other than elite children, that are produced by crossover.
Set Crossover fraction to be a fraction between 0 and 1, either by entering the fraction in
the text box or moving the slider. The value 0.8 is used.

Selection options specify how the genetic algorithm chooses parents for the next gen-
eration. The Tournament selection is employed in the thesis. This chooses each parent by
choosing Tournament players at random and then pikes the best individual out of that
set to be a parent. Tournament size must be at least 2. The value of Tournament size 4 is
used.

5.3 Multiobjective genetic algorithms (MOGA)

The simplest and most obvious approach to multiobjective optimization is to combine
the objectives into one aggregating function, and to treat the problem like a single objec-
tive optimization problem. Therefore, it is commonly used because of its simplicity and
computational efficiency as in Chapter 4.
The weighted sum approach combines k objectives fi using weights, wi, i = 1, ..., k:

fitness = w1f1(P) + w2f2(P) + ... + wkfk(P) (5.1)

The weights are real numbers, wi > 0 and P as in (4.1)

5.4 Results and Discussion

Following the same procedure as proposed in Chapter 4, the optimization model is ap-
plied to the load shown in Figure 4.3 and MOGA is used to solve the problem in the three
scenarios.

5.4.1 Scenario 1

Table 5.1 shows the operating costs and emissions objective functions which are opti-
mized individually. The first case occurs when the operation cost is optimized and the
second case when the emission objective is optimized. Then the problem is solved as a

Table 5.1: The objective functions when optimized individually Scenario 1
PL (kW/Day) Total Emission (kg/Day) Total Cost ($/Day) Optimal Generation (kW/Day)

Case 1 171.2924 85.1738 32.5497 171.5044
Case 2 171.2924 68.6615 51.1472 171.2954
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MO optimization problem where both operation costs and emissions are optimized si-
multaneously. In order to see the diversity of the Pareto optimal set over the trade-off
surface, the trade-off relation can be obtained by minimizing (4.20).
Figure 5.4 shows the relationship trade-off curve between the two objectives, where the
Pareto optimal set has a number of non-dominated solutions. Two of them represent the
best cost and best emission. The best selection of the power generators of the MG using
MOGA is given in Table 5.2 and in Figure 5.5. It can be concluded that the proposed
approach is capable of reducing the operation cost from 51.1472 $/Day to 32.5497 $/Day
and the emission level from 85.1738 kg/Day to 68.6615 kg/Day while the load is satisfied
all the time.
Figure 5.6 shows the hourly costs and emissions. The costs and emissions are high only
when the DG is fully in the peak time, which means that the proposed approach has
reached an optimal setting. Furthermore, because the DG has the highest cost and emis-
sion, it is the least preferable generation unit.
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Figure 5.4: Trade- off in operating cost and emission using GA Scenario 1.

Table 5.2: The best selection per day of the power generators of the MG using MOGA Scenario 1
PL (kW/Day) Optimal Generation (kW/Day) Total Cost ($/Day) Total Emission (kg/Day)

171.2924 171.3003 39.0442 73.0406

5.4.2 Scenario 2

As mentioned in Chapter 4, more constraints in Scenario 2 are added to the operation
costs. The results when the two objectives of the total operating costs and total emissions
level are optimized individually are summarized in Table 5.3. The results explore the
extreme points for the costs and emissions. Furthermore, the added constraints could de-
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Figure 5.5: The hourly power curves using GA Scenario 1.
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Figure 5.6: Hourly operating cost and emission using MOGA Scenario 1.

crease the operation costs and emissions level compared to the results obtained from
Scenario 1. Figure 5.7 depicts the trade-off curve of the Pareto-optimal set obtained
by minimizing (4.20) subjected to the constraints considered in Scenario 2. The figure
demonstrates how an operational policy may be chosen as a compromise between the
operation cost and the emission.

Table 5.3: The The objective functions when optimized individually Scenario 2
PL (kW/Day) Total Emission (kg/Day) Total Cost ($/Day) Optimal Generation (kW/Day)

Case 1 171.4009 76.7318 45.7703 171.9298
Case 2 171.4009 68.2841 51.6224 171.4024

Table 5.4 shows the results when the problem is solved as a multiobjective optimization
problem. It can been seen also that the operating costs and emission level are reduced
compared to Scenario 2 in Chapter 4.
Figures 5.8 and 5.9 illustrate the power curves and hourly cost and emission using MOGA.
In both figures, the cost and emission are high during the peak time. Also the DG is fully
on and the load is handled well.
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Figure 5.7: Trade- off in operating cost and emission using GA Scenario 2.

Table 5.4: The best selection of the power generators of the MG using MOGA Scenario 2
PL (kW/Day) Optimal Generation (kW/Day) Total Cost ($/Day) Total Emission (kg/Day)

171.4009 171.4029 50.6136 68.6519
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Figure 5.8: The hourly power curves using GA Scenario 2.

5.4.3 Scenario 3

Here the purchased tariff is 0.12 $/kWh, the sold tariff 0.07 $/kWh and the cost and
emission functions are optimized individually. The result obtained is shown in Table 5.5.
The emission is reduced to 14.5988 (kg/Day) when optimized individually, whereas the
cost is increased to 85.2773 ($/Day) in the second case. It can be noticed that the different
tariff prices have an effect on the operation cost objective functions. With the same tariffs,
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Figure 5.9: Hourly operating cost and emission using MOGA Scenario 2.

Table 5.5: The objective functions when optimized individually using MOGA Scenario 3
PL (kW/Day) T E(kg/Day) T C($/Day) O G (kW/Day) S.P (kW/Day) P.P (kW/Day)

Case 1 171.4009 219.8892 85.2773 345.6814 174.2805 00.0000
Case 2 171.4009 14.5988 114.9525 19.0519 00.0000 152.3490

the hourly cost and emission are illustrated in Figure 5.10, which shows that the cost and
emissions are high when the DG is fully operated and the load is high.
Figures 5.11 and 5.12 show the operation point of the minimum operating cost and they
indicate the minimum emission level for the different tariffs. These figures reveal that
when θ in equation (4.20) varies from 0 to 1, the operating cost continuously increases,
but the emission level decreases . Therefore, the test results clearly explain the trade-off
between economy and environmental protection requirements for different tariffs.
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Figure 5.10: Hourly operating cost and emission using MOGA Scenario 3.

As in Chapter 4, the effect of changing the sold and purchased tariffs is studied here
in four different cases as shown in Table 5.6 and Figures 5.13 and 5.14. For Cases 1 and
2 the effect of changing the purchased tariffs is studied. In Case 1, the sold power is 0.04
$/kWh and the purchased tariff is 0.1 $/kWh, while in Case 2 the value of the purchase
tariff has increased to 0.16 $/kWh and the sold one is the same as in Case 1. As expected,
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Figure 5.11: Trade- off in operating cost and emission using MOGA Scenario 3 and for P = 0.12 and S= 0.
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Figure 5.12: Trade- off in operating cost and emission using MOGA at Scenario 3 and for P = 0.16 and S= 0.1.

the MG increases the optimal generation when the purchased tariffs increase. It is more
economical to buy power from the main grid if the purchased tariff is 0.1 $/kWh.
Changes in the sold tariffs are considered in Cases 3 and 4. In these cases, the purchased
tariff is kept constant at 0.12 $/kWh, while the sold tariff is 0.0 $/kWh in Case 3 and 0.04
$/kWh in Case 4. It is noticeable that the MG generates more power when the sold tariffs
are increased. However, there is an increase in the cost and emission per day. Higher
values of the sold power tariffs give the possibility to produce more power to meet the
load demand.

A direct comparison of the outcomes achieved by different cases is presented in Table
5.7. The results obtained using the proposed technique to minimize the total cost and
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Table 5.6: The effect of the Purchased and Sold tariffs on the optimal Generation using MOGA and Scenario
3

Load (kW/Day) Optimal Generation (kW/Day) Total Cost($/Day) Total Emission(kg/Day)

Case 1 171.4009 120.4416 49.3850 39.1980
Case 2 171.4009 135.0016 52.0921 46.9082
Case 3 171.4009 124.5539 50.6185 41.3060
Case 4 171.4009 125.4585 50.9941 41.7836
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Figure 5.13: Effect of sold power tariff on the MG optimal operation using MOGA Scenario 3.
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Figure 5.14: Effect of purchased power tariff on the MG optimal operation using MOGA Scenario 3.

total emissions is compared with the same strategies of settings as in Chapter 4. The first
method is to operate the DG, FC, and MT at their rated power for the whole day (Case A).
The second method is to optimize the operating costs individually (Case B). The scenario
in the third is to optimize the emissions objective functions individually (Case C).
The same result obtained from Case A in Chapter 4 is attained here and leads to the same
conclusion. In the second scenario, the cost is reduced somewhat, but the emissions are
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increased. In the third case, the cost increases while the emissions decrease and the opti-
mal choice is to purchase more power from the main grid.
Finally, the problem is treated as a single objective optimization problem (Case D). Equa-
tion (4.21) is minimized to check the effectiveness of the proposed technique. The objec-
tive function is a linear combination of the cost and emission objectives.
With the proposed MOGA method, the total operating cost and emission are 48.7863
$/day and 43.1379 kg/day respectively. Furthermore, the MOGA is slower than the other
techniques in Chapter 4.

Table 5.7: Cost savings and emissions reductions of the MG using multiobjective optimization Scenario 3
Average Cost &Emissions Average difference with respect to the optimal case

Cost $/Day Emissions kg/Day cost $/Day Emissions kg/Day Cost% Emissions%

Case A 95.3299 229.4895 46.5228 186.3516 95.3600 % 431.99 %
Case B 85.2773 219.8892 36.4910 176.7513 74.80 % 409.74 %
Case C 114.9525 14.5988 66.1662 -28.5391 135.62 % -66.16 %
Case D 50.1359 74.0180 1.3496 30.8801 2.77 % 71.58 %

MOGA 48.7863 43.1379 00.0000 00.0000 00.0000 00.0000

5.5 Conclusions.

This chapter has presented the GA approach to solve the multiobjective problem. From
the results obtained, optimization of the above-formulated objective functions using MOGA,
yields not only a single optimal solution, but a set of Pareto optimal solutions, in which
one objective cannot be improved without sacrificing other objectives. For practical appli-
cations, however, one solution is needed to be selected , which will satisfy the different
goals to some extent. Such a solution is called the best compromise solution. One of
the challenging factors of the trade-off decision is the imprecise nature of the decision
maker’s judgment.
Initially in all the three scenarios, minimum and maximum values of each original objec-
tive function are computed in order to obtain the last compromise solution. Minimum
values of the objectives are obtained by giving full consideration to one of the objectives
and neglecting the others. In this study, two objective functions are considered. Operat-
ing costs and emission level are optimized individually to obtain minimum values of the
objectives. Owing to the conflicting nature of the objectives, emission level has to have
maximum values when operating cost is minimum.
The GA transforms the original multiobjective optimization problem into a single-objective
problem and, thus, the set of noninferior solutions can be easily obtained. Compared
with the other conventional strategies of settings, the proposed approach significantly
reduces the operating cost and emission level, while satisfying the load demand required
by the multiobjective MG problem.





Chapter 6

MicroGrid Online Management
Using Game Theory

6.1 Introduction

One of the main contributions in this thesis is a novel procedure to solve the MG manage-
ment problem based on Game Theory and multiobjective optimization. The contribution
is discussed in this chapter.
Game Theory is a collection of mathematical models formulated to study the situations
of conflicts and cooperation. More precisely, it is a general theory of rational behavior for
situations in which rational decision makers (players) have available with them a finite
number of courses of action, each leading to a well-defined outcome or end with gains
and losses expressed in terms of numerical payoffs associated with each combination of
courses of action for each decision maker [99]. Game theory studies the phenomenon of
negotiation between rational agents in conflict situations and in a very general setting.
Game theory does not cover the games of changes where the decision makers do not
have any influence on the results [100].

6.2 Game Theory

The cooperative game theory approach of solving a multi objective optimization problem
of MG management can be stated as follows [25]. Two players are assumed to correspond
to two objectives; one for operating cost and one for the emission level. While playing
the game, each player will try to improve his own conditions that is, to decrease the
value of his own objective function. The players will start to bargain from their respec-
tive reference (starting) values and put a joint effort in maximizing a subjective criterion
(supercriterion) formed by themselves. It is assumed that each player has analyzed his
own criterion before starting the game to find the maximum possible benefit he can ob-
tain. This will also help him in guaranteeing against the worst value. This analysis is
necessary since each player should know the extreme conditions of his own and others
so that none of them is bargaining from a reference value which is unrealistic (i.e., unac-
ceptable to the other player).

109
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In reference [101], this method is applied to a three degree- of-freedom spring-and-damper
system. The relative displacement and transmitted force are minimized subject to limits
on the design variables, which are the mass, spring constant, and damping coefficient for
each degree-of-freedom. In [26], controlled two-bar and twelve-bar trusses are actively
optimized. There are four objective functions: weight, "control effort", effective damping
response time, and performance index, which provides a measure of the total system en-
ergy. The crosssectional areas of the structural members are the design variables. Limits
are placed on the damping ratios and cross-sectional areas. In [25], this approach is ap-
plied to the probabilistic design of an eighteen-speed gear train. Reliability in bending
and in wear is maximized while the weight is minimized. The width of each gear is used
as a design variable. In [102], a comparative study of several methods of multiobjective
optimization has been carried out using two structural design optimization problems.
The method is theoretically designed to reach a near Pareto optimal design and it is in-
troduced so that the game theory can be practically applied without much deviation from
its original form. Although the final design is aimed to be near Pareto optimum, the use
of this method requires some additional work from the designer.
To increase the computational efficiency of the game theory method [103] it is proposed
in [25] that the Pareto optimal solution generation and the maximization of the supercri-
terion are performed simultaneously. This may be done by combining the Pareto optimal
solution generation and the supercriterion into one objective by subtracting the supercri-
terion from the Pareto optimal objective. This new objective may be minimized by a stan-
dard, single objective optimization program. This formulation, however, does change the
characteristic of the optimization problem so that it is neither truly minimizing the Pareto
objective nor it is truly maximizing the supercriterion. The constrained MO problem is
formulated using the modified game theory as follows:

1. Form a constant initial design vector, minimize each of the n objectives separately
and record the values of the other objectives at each optimal design vector. According
to the game theory, the Pareto optimal solution is determined by solving the following
problem [103]:

F(P) = {CF (P ), E(P )} (6.1)

subject to

hi(P) = 0 i = 1, ..., q (6.2)

gj(P) ≤ 0 j = 1, ..., p (6.3)

Pmin
i ≤ Pi ≤ Pmax

i , ∀i = 1, ..., N (6.4)
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where the number of the objective functions = 2, and F(P) : Rn → R2. The vector
of objective functions is denoted by F(P) = (F (P1), F (P2)). The decision variable vec-
tor P = (P1, P2, ..., PN )T consists of all design variables in the problem and may be
bounded. The collection of equality constraints, H(P) = (h1(P1), h2(P2), ...hq(Pi))T , is
an equality constraint vector, and similarly the inequality constraint vector, G(P) =
(g1(P1), g2(P2), ...gp(Pi))T is less or equal to zero.

2. Due to the computational complexities when using the game theory approach, a mod-
ification to the method was proposed [25]. The solution is expected to be near optimal
solution obtained by the original game theory. Normalize the objectives so that no objec-
tive due to its magnitude will be favored. The following normalization procedure gives
zero as the optimum value and one as the worst value of the operating cost objective
function:

CFn(P) =
CF (P)− CF (P∗)
CFw − CF (P∗)

(6.5)

where CFw is the worst of CF (P) and it is defined as the maximum value of CF (P). It is
determined from CFw = max

j=1,2,...,N
CF (P∗j ).

The minimum value of CF (P) is called the best value of CF (P), which is shown as
CF (P∗), where P∗ is the optimal design vector obtained when only CF (P) is minimized.

3. Formulate the supercriterion S: The supercriterion gives an indication as to how far
the objective function is from its worst value at any design. Therefore, the higher the
value of S, the lower cost and emission in terms of compromise solution.
This normalization procedure gives zero as the minimum value and one as maximum of
the operating cost objective function.

S = 1− CFn(P) (6.6)

S always has value between zero and one due to the normalization with the same mag-
nitude as the normalized objective.

4. Formulate a Pareto optimal objective FC using the normalized objective

FC(P) =
N∑

i=1

c1CFi(P) + c2E(P) (6.7)

subject to c1 + c2 = 1
5. Since FC has to be minimized and S has to be maximized, a new objective is created
(for minimization)

OBJ(P) = FC(P)− S(P) (6.8)

subject to the three scenario constraints.
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6.3 Results and Discussion

Multiobjective game theory is tested with the three different scenarios presented in Chap-
ter 3. The method attempts to produce a good balance between the two objective func-
tions in (6.1) by trying to keep them close to their optimum values and hence aims at
reaching a Pareto optimal design. The first player, who corresponds to the operation cost
objective, cannot claim a value lower than the minimum of his objective function. Fur-
thermore, it is also guaranteed that the cost will never exceed the worst value which is its
maximum. The same procedure is also true for the emission level objective function.

6.3.1 Scenario 1

Scenario 1 is studied, when the MG is working in the islanding mode. Figure 6.1 shows
the trade-off between the operating cost and emission objective functions. Each point on
the trade-off curve is a noninferior solution and corresponds to a unique set of generator
schedules. The optimal generated powers of the sources are shown in Figure 6.2, in which
the MT is the cheapest and is the lowest emission power source while the power is nearly
full all the time. The second choice is the FC, and the poorest choice is the DG as it has the
highest cost and emission. Figure 6.3 illustrates the hourly cost and emission of the MG,
where the cost and emission level are high when the load is high. Table 6.1 presents the
compromise output from the optimal configuration of the algorithm, in which 35.2130
$/Day is obtained for the operating cost function and 76.4520 kg/Day for the emission
level.
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Figure 6.1: Trade- off in operating cost and emission using MOGT Scenario 1.
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Figure 6.2: The hourly power curves using MOGT Scenario 1.
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Figure 6.3: Hourly operating cost and emission using MOGT Scenario 1.

Table 6.1: The best selection of the power generators of the MG using MOGT: Scenario 1
PL (kW/Day) Optimal Generation (kW/Day) Total Cost ($/Day) Total Emission (kg/Day)

171.2924 171.2928 35.2130 76.4520
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6.3.2 Scenario 2

The proposed algorithm is then applied to Scenario 2, when the MG is working in the is-
landing mode. Table 6.2 presents the response of the algorithm to the load demand. The
results shown in Figure 6.4 display the output power from the generators. The curves
have almost the same shape as in Scenario 1. The figure also shows that the constraints
(4.16) and (4.17) are inactive. The hourly cost and emission of the sources, when work-
ing optimally, are shown in Figure 6.5. They are high when all the sources are working
nearly full efficiency. The distribution of the nondominated solutions obtained with the
proposed approach is given in Figure 6.6. The results show that the proposed approach
is superior and preserves the diversity of the nondominated solutions over the trade-off
front.

Table 6.2: The best selection of the power generators of the MG using MOGT: Scenario 2
PL (kW/Day) Optimal Generation (kW/Day) Total Cost ($/Day) Total Emission (kg/Day)

171.4009 171.4009 36.0704 77.1775
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Figure 6.4: The hourly power curves using MOGT Scenario 2.
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Figure 6.5: Hourly operating cost and emission using MOGT Scenario 2.
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Figure 6.6: Trade- off in operating cost and emission using MOGT Scenario 2.

6.3.3 Scenario 3

In this Scenario, the MG is connected to the main grid. At first, to explore the extreme
values of the operating cost and emission level objective functions, they are optimized
individually for purchased tariff equal to 0.12 $/kWh and the sold tariff 0.07 $/kWh.
The result obtained is shown in Table 6.3. The emission is reduced to 31.3689 (kg/Day)
when optimized individually (Case 2), whereas the cost increased to 58.5249 ($/Day).
In Case 1 the operating cost is optimized individually. The total operating cost is found
to be 40.7757($/Day) and the total emission 53.1386(kg/Day). It can be noticed that the
presence of the tariff prices has an effect on the operation cost objective functions.

Table 6.3: The objective functions when optimized individually using MOGT: Scenario 3
PL (kW/Day) T E(kg/Day) T C($/Day) O G (kW/Day) S.P (kW/Day) P.P (kW/Day)

Case 1 171.1044 53.1386 40.7757 138.3802 00.0000 32.7242
Case 2 171.1044 31.3689 58.5249 89.8034 00.0000 81.3009

With the same tariffs the problem is solved as a multiobjective optimization problem.
The hourly cost and emission are illustrated in Figure 6.7, which shows that the cost and
emissions are high when the DG is fully operated, and the load is high. Figure 6.8 shows
the optimal generated power. It is noticeable that the DG is turned off most of the time
and switched on only when the power from other sources is not enough to meet the load
demand.

The Pareto optimal front for different tariffs are shown in Figures 6.9 and 6.10. These
figures ensure that the Pareto optimal front have a good diversity characteristic of non-
dominated solutions. Furthermore, the problem is efficiently solved by Game Theory.
The results also represent the operation point of the minimum operating cost, and indi-
cate the minimum emission level for different tariffs.
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Figure 6.7: Hourly operating cost and emission using MOGA Scenario 3.
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Figure 6.8: The hourly power curves using MOGT Scenario 3.

As in Chapters 4 and 5, the effect of changing the purchased and sold tariffs is studied
here in four different cases as given in Table 6.4 and Figure 6.11. In Cases 1 and 2 chang-
ing the purchased tariffs is studied. In Case 1, the sold power is 0.04 $/kWh and the
purchased tariff is 0.1 $/kWh. In Case 2, the value of the purchased tariff has increased
to 0.16 $/kWh and the sold tariff is the same as in Case 1. As expected the MG increases
the optimal generation when the purchased tariff value increases. It is more economical
to buy power from the main grid. Changes in the sold tariff is considered in Cases 3 and
4. The purchased tariff is kept constant at 0.12 $/kWh, while the sold tariff is 0.0 $/kWh
in Case 3 and 0.04 $/kWh in Case 4. From Table 6.4 it is noticeable that the MG generates
the same power when increasing the sold tariffs. However, there is no increase in the cost
and emission per day. The optimal generated power is always less than the load, which
means that changing the sold tariff has no effect on the optimal generation.
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Figure 6.9: Trade- off in operating cost and emission using MOGT Scenario 3 and for P = 0.12 and S= 0.
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Figure 6.10: Trade- off in operating cost and emission using MOGT at Scenario 3 and for P = 0.16 and S= 0.1.

Table 6.4: The effect of the Purchased and Sold tariffs on the optimal Generation using MOGT: Scenario 3
Load (kW/Day) Optimal Generation (kW/Day) Total Cost($/Day) Total Emission(kg/Day)

Case 1 171.4009 108.1694 45.4938 39.8396
Case 2 171.4009 113.7652 54.1840 41.2879
Case 3 171.4009 110.5522 48.7014 40.4481
Case 4 171.4009 110.5522 48.7014 40.4481
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Figure 6.11: Effect of purchased power tariffs on the MG optimal operation using MOGT Scenario 3.

A direct comparison of the outcomes achieved by the different cases is presented in
Table 6.5. The results obtained using our proposed technique to minimize the total cost
and total emissions are compared with the same strategies of settings as in Chapters 4
and 5. The first case is when the DG, FC, and MT operate at their rated power for the
whole day (case A). In the second case the costs are optimized individually (case B). The
third case is to optimize the emission objective function individually (case C).
The same result obtained for Case A in Chapters 4 and 5 is reached here and leads to the
same conclusion. In the second case, the cost is reduced somewhat, but the emissions are
increasing. In Case C, the cost increase while the emissions decreased compared to Case
B and the optimal choice is to purchase more power from the main grid.
With the proposed MOGT method, the total operating cost and emissions are 47.4326
$/day and 41.4918 kg/day respectively. It can be noticed that the MOGT is more capa-
ble of handling the multiobjective optimization problem of the MG when the problem
becomes more complex. Furthermore, the MOGT is slower than the other techniques
discussed in Chapter 4 although the results are better here.

Table 6.5: Cost savings and emissions reductions of the MG using multiobjective optimization: Scenario 3
Average Cost &Emissions Average difference with respect to the optimal case

Cost $/Day Emissions kg/Day cost $/Day Emissions kg/Day Cost% Emissions%

Case A 95.3091 229.4895 47.8765 187.9977 100.94 % 453.10%
Case B 59.8804 39.0681 12.4478 -2.4237 26.24 % -5.84%
Case C 28.2629 62.9865 -19.1697 21.4947 -40.41 % 51.80 %

MOSQP 49.3980 44.0851 1.9654 2.5933 4.14 % 6.25 %

MOMADS 48.3012 41.8015 0.8686 0.3097 1.83 % 0.75 %

MOGA 48.7863 43.1379 1.3537 1.6461 2.85 % 3.97 %

MOGT 47.4326 41.4918 00.0000 00.0000 00.0000 00.0000
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6.4 Conclusions

A new approach for solving multiobjective management problem of the MG has been
presented. Game Theory helps the proposed method to efficiently search and to actively
explore solutions. The introduced technique is able to handle the changes in the pur-
chased tariff effectively by increasing the generated power, while changing the sold tariff
has no effect on the generated power as it is smaller than the load. The significant merits
of the proposed approach are that it can automatically adjust the generated power to meet
the changes in the load demand. However, the proposed method requires more time in
comparison with the techniques investigated in Chapters 4 and 5. The results confirm
that the proposed MOGT outperforms the setting, in both reducing the operating cost
and emission level, according to the power demand and constraints for the MG.





Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this final chapter, the importance, aims and outcomes of this research are highlighted
and summarized. The research is discussed in terms of what it aims for and how it could
contribute to the power industry’s needs. It also explores, how the research of MGs could
be extended and improved and how this might be done.
By making optimal use of the small and varied energy sources which comprise MGs,
MGs may be able to make a significant contribution to the distributed power generation.
For instance, if the sun is shining, the PV array may provide power; if it is windy the wind
turbine will generate the power; if it is neither or if more power is needed, the fuel cell,
diesel engine, and micro-turbine or main supply can be used. The key is how to orches-
trate the power sources in the optimal manner. The inclusion of batteries in a MG system
allows excess power produced to be stored, or alternatively, the excess power could be
put into the main grid. In this way it is expected that MGs could reduce pollution and
deliver reliable energy in a variety of situations as discussed in Chapter 1.
To understand the behaviour of a Microgrid, the thesis develops models suitable for over-
all analysis and design. The aim of the work is to model both for optimization and for
understanding the steady-state behaviour of the MG’s individual power sources. The
final goal is to lay a groundwork which would allow efficient management of the MGs
by minimizing the operating costs and reducing emission level while meeting the load
demand. More specifically, steady-state and optimization models for diesel engines, fuel
cells, photovoltaic cells, micro-turbines, wind turbines, and battery storage have been
developed. All models developed will allow studies of different scenarios that provided
an understanding of MGs for online management application.
The online management of MGs for three different scenarios is addressed to understand
the behaviour of the MG in islanding and utility connected situations. Single and multi-
objective functions are presented of the optimization producer. Two techniques to solve
the single objective problem of the MG are applied. They are SQP and MADS in Chapter
3. For the multiobjective case MOMADS and MOSQP are used as presented in Chapter
4. MOGA is applied in Chapter 5. Finally, the MOGT approach is explained and applied
for the same problem in Chapter 6..
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7.2 Modelling of the MG components

7.2.1 Modelling of the Diesel Engine

The general structure of the fuel actuator system is usually represented as a first order
phase-lag network, which is characterized by a gain, and time constant. The output of
the actuator is the fuel-flow. Fuel flow is then converted into mechanical torque after a
time delay and engine torque constant, diesel engine can be represented by such a model.

An economic model for the Diesel Generator is constructed from real manufactural
data. The diesel fuel consumption data of a 6-kW diesel generator set (Cummins Power
DNAC 50 Hz) is used to model the fuel cost function.

7.2.2 Modelling of the Fuel Cell

Dynamic responses of the output power, voltage, and current are obtained by modelling
Solid Oxide Fuel Cell (SOFC). The responses of pressure difference between hydrogen
and oxygen could also be studied. The response time of a SOFC is limited by the time
constants of the fuel processor, which are normally large and cannot be made smaller for
a given fuel cell due to physical limitations imposed by the parameters of the correspond-
ing chemical reactions. Therefore, the response time of the plant cannot be enhanced by
manipulating its input. Technological changes in the fuel cell plant are required if the
fuel cell power plant is to operate in a stand alone mode, which requires load-following
capabilities. Alternatively, other technical solutions should be sought; for example, the
combined use of fuel cell modules and a gas turbine, or the use of an external energy stor-
age, such as batteries, a flywheel, or a superconducting magnetic energy storage device.
The developed SOFC system model appears suitable for the time scale to be used in our
dynamic simulation.

An economic model of the FC is obtained from the the efficiency curve of the PEMFC.
The efficiency curve is used to develop the cell efficiency as a function of the electrical
power.

7.2.3 Modelling of the MicroTurbine

The microturbine model has been developed to investigate the responses of the output
power, shaft speed and DC link voltage for different levels of power demand. The sim-
ulated model and the results obtained for various operating conditions permit to predict
the performance of the microturbine. The simulation results demonstrate that the estab-
lished model provides a useful tool suitable to study and to perform accurate analysis of
most electrical phenomena that occur when a microturbine is connected to the grid. The
simulation results obtained for different levels of power demand show the usefulness of
the model and its accuracy.
As in the case of a FC, the same procedure is applied to the MT to obtain an economic
model of the MT. However, the parameters and curves are modified to properly describe
the performance of the MT unit.
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7.2.4 Modelling of the Wind Turbine

Modelling of the wind turbine with a doubly fed induction generator and also the devel-
opment of models of the most important current wind turbine types for power system
dynamics simulations are completely covered. First, the basic working principle of the
wind turbine is discussed. Then, an overview over the most important types of wind tur-
bines is given: they are the constant speed wind turbine with a squirrel cage induction
generator, and the variable speed wind turbine with a doubly fed induction generator
and the one with a direct drive synchronous generator. The structure of the model of
each turbine type is depicted, after which equations for each of the subsystems are given.
Finally, the models are used in simulations in order to investigate the impact of chang-
ing the wind speed on the active power, pitch angel, rotor speed, and also to study the
power curve of the wind turbine. Measured wind sequence data is used to simulate the
responses of active power, rotor speed, pitch angle. Wind turbine responses with a de-
signed signal which has different values of wind speed are also simulated. From these,
it can be seen that the responses of the simulated input and measured input wind speed
have almost the same range of fluctuations of the output power. The range of the re-
sponse of the rotor speed fluctuations are similar, the behavior of the response of the
pitch angle is different as there was no pitch controller in the design model.

The WT in the optimization model is modeled using industrial data. The actual AIR403
power curve of the wind turbine is obtained from the owner’s manual, in order to find
the mathematical equations representing the power curve.

7.2.5 Modelling of the Photovoltaic Cell

Having a simple but equivalent model of a photovoltaic cell allows the extraction of the
device’s electrical characteristics. The model is presented and analyzed. The current
voltage relationship of the PV is determined by the shunt and series resistances and the
magnitude of the current source. From the model equations, it can be seen that the open
circuit voltage is logarithmically proportional to the magnitude of the current source.
The short circuit current is directly proportional to illumination intensity. The solar cell
current ranges from zero to short circuit current. The solar cell voltage ranges from zero
to open circuit voltage, Uoc . As the current increases, the voltage decreases due to the
series resistance. As the voltage increases, the current decreases due to the shunt resis-
tance. Since power is the product of voltage and current, the current that will produce
the maximum power current will be found to be somewhere between zero and the short
circuit current, and the maximum power voltage somewhere between zero and open cir-
cuit voltage.
The PV characteristics are presented in operating conditions that differ from the Stan-
dard Test Condition (STC). The effect of solar irradiation and ambient temperature on PV
characteristics are modeled. The effect of solar intensity is modeled by considering that
power output of the PV module is directly proportional to the irradiance. On the other
hand, the temperature effect is represented by a temperature coefficient of power.
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7.3 The Online Management of the MG

7.3.1 Online Management using MADS

A new approach for optimizing the performance of the MG for residential or industrial
applications is presented. The single objective operating cost function is optimized using
SQP and MADS methods for three different scenarios proposed in Chapter 3. The MADS
has a proven good capability to handle the operation management problem of the se-
lected MG units when supplying the load. Analyzing the obtained results demonstrates
a significant reduction in the daily operating costs using the MADS, which contributes
to improving the economic feasibility of the MG units. Supplying the load using MADS
shows a lower daily operating cost compared to SQP.

7.3.2 Multiobjective using MOMADS

When the emission level is added as an objective function, the problem is solved with
multiobjective optimization techniques. MOSQP and MOMADS are applied to the prob-
lem in Chapter 4. Constraint functions and three scenarios are added to the optimization
problem to reflect some of the additional considerations often found in a small-scale gen-
eration system. The results of the optimal power operating costs and emissions curves
for the MG ensure that the optimization works very well and can give the optimal power
to the generators after taking the operating costs and emissions into account.

7.3.3 Multiobjective using MOGA

A novel approach to solve the Multiobjective problem of Chapter 4 is to use genetic
algorithms, the MOGA approach. Initially in all three scenarios, minimum and max-
imum values of each original objective function are computed in order to obtain the
best compromise solution. Minimum values of the objectives are obtained by giving
full consideration to one of the objectives and neglecting the others. Comparison with
MOSQP and MOMADS, the proposed approach significantly reduces the operating costs
and the emission level, while satisfying the load demand required for the multiobjective
MG problem. The main disadvantage is that it will take quite a long time to obtain the
optimal setting.

7.3.4 Multiobjective using MOGT

A new approach for solving the multiobjective management problem using game theory,
MOGT, is proposed. Game Theory helps the optimization algorithm to search efficiently
and explore actively solutions. The introduced technique is able to handle the changes
in the purchased tariff effectively by increasing the generated power, while the sold tariff
changes have no effect on the generated power as it is smaller than the load. The signif-
icant merits of the proposed approach are that the proposed method can automatically
adjust the generated power to meet the changing load demand. However, the proposed
method requires more time in comparison with the techniques discussed in Chapters 4,
5.
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7.4 Microgrid Modelling and the Future

The next step in this research is to to learn more about how the sources interact with each
other. More specifically their relationship to each other needs to be defined. If all goes
as anticipated and the MG system is developed, the control of the system will likely be
imbedded within the electronics. It is possible to use specialized controllers to get a more
stable response and to use each power source more efficiently. This should certainly be
researched and considered once the power sources interaction and relationship with each
other and the mains have been defined. Other aspects that could be developed further
are the individual sources within the MG. This could be done at two levels. The first
is the consideration of other variables for each source. For example, the wind speed is
not considered for the PV array and in some conditions it would prove quite significant.
Also, working in pu is more desirable than actual values: the full conversion of the mi-
crosources to pu would be useful. Another issue is to keep the model up-to-date with the
technology. In the area of PV arrays and micro turbines technology is rapidly changing
and improving.
The final important aspect is to obtain some actual MG data (rather than data from indi-
vidual power sources). During this research work we were unable to find any actual data
about implemented MGs. This is likely due to MGs being such a new idea and therefore
no data is currently available.

7.5 Final Remarks and Future Work

In this presented work, modelling and online management of components of a MG sys-
tem has been successfully done. Models, which allow for investigation of the individual
power sources behaviour, have been developed. The work was carried out by doing ex-
tensive research and by using a design process to implement each system individually.
Testing and development through understanding was also a significant part of this work.
The goals of this work have been met and it is anticipated that further research and devel-
opment will be carried out on the system, with the goal that MGs will be able to make a
valid, greener, contribution to the world’s growing energy needs. The future steps will be
introducing more constraints to the optimization problem, study also the communication
infrastructure used to communicate between the microsources and central controller.
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A.1 The General Pattern Search Algorithm

For simplicity, our discussion will focus primarily on the case of unconstrained mini-
mization: minimize CF (P).

We assume that CF is continuously differentiable, but that information about the gra-
dient of CF is either unavailable or unreliable. Since the inception of pattern search
methods, various techniques have also been used to apply them to solve the general non-
linear programming problem (3.1)

A.1.1 Generalized pattern search

We will consider the NLP problem,

min
x∈X

CF (P) (A.1)

where CF : X → < ∪ {∞} , X = {P ∈ <n : l 6 AP 6 u} , A ∈ <m×n is a real matrix,
l, u ∈ (< ∪ {±∞})n, and l 6 u.

A key point is that if an iterate falls outside of the domain X , it is simply ignored [105].
This differs in construction from that of some proposed methods, where the algorithm

is applied to CFP = CF + ϕCF rather than CF , where ϕCF is the indicator function for
CF ; that is, it is zero for any point in X and 1 outside of X .

While l = u is allowed in the formulation, equality constraints are problematic in prac-
tice because points outside of X are not evaluated by the algorithm, and any roundoff
error would eliminate feasible points from being considered. Thus, to use these methods
in practice, variables ought to be eliminated until all the constraints can be expressed as
l < u.

The GPS algorithm is a direction-based method, whose convergence theory is based on
searching in directions that form a positive spanning set. A finite set of positive spanning
directions D is used to construct (theoretically) a mesh on which GPS iterates lie. This
is based on the positive basis theory, and is done with the idea that, if CF is sufficiently
smooth in a neighborhood of Pk and ∇CF (Pk) 6= 0, then at least one direction d ∈ D

must be a descent direction. Thus, for some sufficiently small value of ∆k > 0, there
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exists a point y = Pk + ∆kd satisfying CF (y) < CF (P). Specifically, at iteration k, the
mesh Mk is defined as:

Mk =
{

Pk + ∆kDz ∈ X : z ∈ Z
|D|
+

}
(A.2)

where Pk is the current iterate, ∆k > 0 is a parameter that controls the fineness of the
mesh, and Z+ is the set of nonnegative integers. For convenience, the positive spanning
set D is represented here as a real n × |D| matrix whose columns are the vectors in the
set.

The positive spanning directions must also satisfy the mild restriction,

D = GZ (A.3)

where G ∈ <n×n is a nonsingular generating matrix, and Z ∈ Zn×|D|. A common
choice for G is the identity matrix.

A.1.2 The Basic GPS Algorithm

In the GPS algorithm, each iteration is characterized by an optional global search step
and a local poll step. In the search step, the objective function CF is evaluated at a finite
number of points lying on the current mesh Mk in an attempt to try to find a new point
with a better function value than the incumbent. Any strategy may be used (including
none), as long as the number of mesh points it evaluates is finite.

In the poll step, a positive spanning set Dk ⊆ D is chosen from which the poll set is
constructed. Again, we represent Dk also as a matrix whose columns are the members of
the set. It is a function of k and Pk; i.e., Dk = D(k, Pik) ⊆ D. The poll set Pk is constructed
as the neighboring mesh points in each of the directions in Dk; i.e.,

Ok = {Pk + ∆kd ∈ X : d ∈ Dk} (A.4)

The function CF is evaluated at points in Ok until the points have all been evaluated, or
until one with a lower objective function value is found. The set of trial points is defined
as Tk = Sk ∪ Ok, where Sk is the finite set of mesh points evaluated during the search
step. The following definitions define the two possible outcomes of the search and poll
steps [105].

Definition 1: If CF (y) < CF (Pk) for some y ∈ Tk, then y is said to be an improved
mesh point.

Definition 2 If CF (Pk) 6 f(y)for all y ∈ Ok, then Pk is said to be a mesh local optimizer.
If either the search or poll step is successful to find an improved mesh point, then it

becomes the new incumbent Pk+1, and the mesh is coarsened according to the rule,

∆k+1 = τm+
k ∆k, (A.5)

where τ > 1 is rational and fixed over all iterations, and the integer m+
k satisfies 0 6

m+
k 6 mmax for some fixed integer mmax > 0.
If the poll and search steps both fail to find an improved mesh point, then the mesh
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local optimizer should remains unchanged, while the mesh is refined according to the
rule,

∆k+1 = τm−
k ∆k (A.6)

where

τ > 1 is defined as above, τm−
k ∈ (0, 1) , and the integer τm−

k satisfies mmin 6 τm−
k 6 −1

for some fixed integer mmin.
Furthermore, for any integer k > 0 , there exists the integer rk such that

∆k = τ rk∆0 (A.7)

The generalized Pattern search algorithm is in the form [105]:
Initialization:
Let P0 be such that CF (P0) is finite, and let M0 ⊂ X be the mesh defined by ∆0 > 0

and x0.
For k = 0,1,2,..., perform the following:
1. Search step: Employ some finite strategy seeking an improved mesh point; i.e.,

Pk+1 ∈ Mk such that CF (Pk+1) < CF (Pk).
2. Poll step: If the search step was unsuccessful, evaluate CF at points in the poll set

Pk until an improved mesh point Pk+1 is found (or until done).
3. Update: If search or poll finds an improved mesh point, Update Pk+1, and set

∆k+1 > ∆k;
Otherwise, set Pk+1 = Pk, and set ∆k+1 < ∆k.

A.2 Mesh Adaptive Direct Search (MADS) Methods

The MADS class of algorithms, introduced in [24], is designed for nonsmooth optimiza-
tion problems. The convergence analysis of MADS ensured necessary optimality condi-
tions of the first [24] and second [81] orders under certain assumptions.

A.2.1 Features of the MADS algorithm

Each iteration k of a MADS algorithm is characterized by two steps. First, an optional
search step over the space of variables, as long as it is a finite process and all trial points
lie on a mesh. If no better point is found or no global search is used, the algorithm goes to
a mandatory local exploration step (mandatory because it ensures convergence). Second
is the poll step, at most 2n trial mesh points near the incumbent solution are selected (the
poll set) and evaluated. If no better neighbor is found, the mesh is refined [24].

If an improved mesh point Pk+1 ∈ X is found, the mesh is kept the same or coarsened,
and then Pk+1 is the next incumbent. The exploration directions vary at each iteration,
and become dense with probability 1. This is the main difference between the pattern
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search and MADS algorithms.

CFX =

{
CF (P) if P ∈ X

+∞ otherwise
(A.8)

Then, MADS is applied to the unconstrained barrier problem

min
P

CFX(P) (A.9)

The feasible region X can be nonlinear, non-convex, non-differentiable, or disjoint.
There are no hypotheses made on the domain, except that the initial point must be feasi-
ble. The convergence results depend on the local smoothness of CF (and not CFX , which
is obviously discontinuous on the boundary of) and on the tangent cone at the limit point
produced by the algorithm.

A.2.2 The MADS algorithm Description

A general form for MADS is proposed in [24]. This general framework is then special-
ized to a specific algorithmic implementation. The algorithm is very similar to GPS, with
differences in the POLL step, and the new size parameter. The main algorithm is sum-
marized in the following steps:

A.2.3 Initialization

MADS is an iterative algorithm, and the iteration number is denoted by the index k. Then
the iteration counter k is set to 0. The user must specify the starting point P0 such that
CFX(P0) < ∞, and an initial mesh size parameter ∆m

0 ∈ R+.
Then, the algorithm defines:
the poll size parameter ∆p

k =
√

∆m
k :

the fixed positive basis needed to generate polling directions D = {±ei, i = 1, 2, ..., n}:
where ei is the ith coordinate direction;

Mk = ∪
P∈Sk

{
Pk + ∆m

k Dz
∣∣ z ∈ N2n

}
: the mesh, where Sk

is the set of points where the objective function CF had been evaluated by the start of
iteration k.

MADS then proceeds to the quest for an improved mesh point.

A.2.4 Search Step

The goal of this step is to provide flexibility to the algorithm. with the optional search
allows the evaluation of CFX at any finite set of mesh points. The search and possibly
the Poll step is performed until an improved mesh point Pk+1 is found on the mesh Mk.

A.2.5 Poll Step

This step ensures the convergence of the algorithm. It begins by defining the poll set
Pk = {Pk + ∆m

k d |d ∈ Dk } ⊂ Mk. Where Dk is a positive spanning set such that for each
d ∈ Dk,
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• Non-negative combinations of the elements of the set Dk span the entire space Rn;

• While k goes to infinity, the elements of Dk do not collapse to a lower dimensional
subspace;

• Each d in Dk may be written as d = Du with u ∈ N2n (it is a positive integer
combination of the columns in D);

• The distance from the frame center Pk to a poll point Pk +∆m
k d, ∀d ∈ Dk is bounded

above by the poll size parameter:

‖∆m
k d‖∞ 6 ∆p

k.
The number of possible directions for building Pk is of the order of (∆m

k )−n. As ∆m
k

becomes small, the number of possible poll points increases. It is shown in [24] that the
set of normalized directions formed by (A.10) is dense in the unit circle with a probability
of 1.

∞∪
k=1

{
d

‖d‖ |d ∈ Dk

}
(A.10)

There are two strategies for the evaluation of set Pk. The opportunist one is to terminate
iteration k whenever there is a decrease in f . The exhaustive one consists of evaluating
the entire poll set Pk and then choosing the feasible point leading to the largest decrease
of the objective function value CF . If no improvement of f is made with the poll step,
i.e., when it is shown CFX(Pk) 6 CFX(P)∀x ∈ Pk, then Pk is declared a "mesh local
optimizer".

A.2.6 Parameters update

This step uses a resizing factor of 4 to update mesh and poll parameters. We define Pk+1

as being the better point obtained by either the search or the poll step, or being a mesh
local optimizer. According to the result of step 2, the algorithm applies:

• if CFX(Pk+1) = CFX(Pk) then ∆m
k+1 = 1

4∆m
k ;

• if CFX(Pk+1) < CFX(Pk) then ∆m
k+1 = min {1, 4∆m

k }.

This redefinition of the mesh parameter (the poll size parameter is defined as in initial-
ization step) ensures that lim

k→∞
inf ∆p

k = lim
k→∞

inf ∆m
k = 0. The algorithm updates k → k+1

and then goes to the termination step.

A.2.7 Termination

The user must specify some termination criterion, such as a minimal value on the mesh
size parameter ∆m

k , a maximal number of objective function evaluations, or a maximal
number of consecutive unsuccessful function evaluations. As soon as one termination
criterion is reached, the algorithm terminates. Otherwise, it returns to step 2.
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A.2.8 Convergence Analysis

The main results of the convergence analysis of [24] will be summarized. Under the as-
sumptions P0 ∈ X , that CF (P0) is finite, and that all iterates Pk produced by the MADS
algorithm lie in a compact set.The convergence analysis relies on the two following hy-
potheses:

• Function CFX : Rn → R∪{∞} and an initial point P0 (CFX(P0) < ∞) are available;

• The set {Pk} of iterates produced by MADS lies in a compact set.

Next the type of optimality results guaranteed by MADS is presented. The idea is
to prove that there are no feasible descent directions at P̂ ; this is the concept of a KKT
(Karush- Kuhn-Tucker) point. The set of feasible descent directions is a type of "tangent
cone" and is defined according to the domain’s constraints.

Let P̂ be a point in Rn and v be some direction in Rn. If CF is a differentiable function,
then the directional derivative at P̂ in the direction v is defined by:

CF ′
(
P̂ ; v

)
= lim

t→0

CF
(
P̂ + tv

)
− CF

(
P̂

)

t
(A.11)

where t ∈ R+. If all constraint functions are differentiable, the tangent cone can be
defined as

TX(P̂ ) =
{

v ∈ Rn
∣∣∣vT∇gi(P̂ ) 6 0, ∀i such that gi(P̂ ) = 0

}
(A.12)

The necessary first-order optimality condition for the smooth case may be stated as:
Suppose that CF (P) is continuously differentiable near P̂ ∈ X .
A necessary condition for P̂ to be a local minimizer is that:
CF ′

(
P̂ ; v

)
> 0∀v ∈ TX(P̂ ).

The point P̂ is called a KKT stationary point.
In the context of the present work, however, we are concerned with non-smooth func-

tions, and so the directional derivative CF ′
(
P̂ ; v

)
and/or the tangent cone TX(P̂ ) may

not necessarily exist. Under the assumption that the function f is Lipschitz near P̂ , i.e.,
that is there exists a scalar K ∈ R+ such that:

∣∣∣∣∣
f(P̂ )− CF (y)

P̂ − y

∣∣∣∣∣ 6 K (A.13)

for any y in some open neighborhood of P̂ , the generalized Clarke derivative of CF at
P̂ in the direction v is defined as:

CF o(P̂ ; v) = lim
y→P̂ ,

sup
t↓0

CF (y + tv)− CF (y)
t

(A.14)

Note that CF o is a generalization of CF
′
, in the sense that if CF is differentiable, then

CF o = CF
′
[14]. Similarly as (7), a vector v ∈ Rn is said to be Clarke-tangent to X ⊂ Rnat

a point P̂ ∈ X if for any sequence {yk} ∈ X that converges to P̂ , and for any sequence
{tk} > 0 ∈ R converging to 0, there exists a sequence of vectors {wk} converging to v such
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that yk+tkwk ∈ X . The set TCl
X (P̂ ) of Clarke-tangent vectors is called Clarke tangent cone

at P̂ .
Some references also provides conditions ensuring that TCl

X (P̂ ) = TX(P̂ ) [24]. In the
context of non-smooth optimization, the necessary optimality condition may be stated
as:

Suppose that CF (P) is Lipschitz near P̂ ∈ X . A necessary condition for P̂ to be a local
minimizer is that:

CF o
(
P̂ ; v

)
> 0∀v ∈ TCl

X (P̂ )

The point P̂ is called a Clarke-KKT stationary point.
[24] consider the limit P̂ of a convergent subsequence of mesh local minimizers on

meshes that get infinitely fine. They show the existence of such points and provide a
hierarchy of convergence results based on the local smoothness of the functions.

Their main convergence result is that if CF (P) is Lipschitz near P̂ ∈ X , and if either
X is closed or int(TCl

X (P̂ )) 6= 0, then P̂ is a Clarke-KKT stationary point.
In the case where there are no constraints (X = Rn) or when the optimum does not

lie on the boundary (P̂ ∈ int(X)), then the tangent and Clarke tangent cones include all
directions in Rn. The optimality conditions reduce to∇CFX(P̂ = 0) for the continuously
differentiable case, and to 0 ∈ ∂CF (P̂ ) for the non-smooth case, where ∂CF (P̂ ) is the
generalized gradient.
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B.1 The numerical values used to simulate Fuel Cell model

Pref Real power reference 100 kW
T Absolute temperature 1273 K
F Faraday’s constant 96 487 C/mol
R Universal gas constant 8314 J/(kmol K)
E0 Ideal standard potential 1.18 V
N0 Number of cells in series in the stack 384
Kr Constant, Kr = N0/4F 0.996× 10−6 kmol/(s A)
Umax Maximum fuel utilization 0.9
Umin Minimum fuel utilization 0.8
Uopt Optimal fuel utilization 0.85
KH2 Valve molar constant for hydrogen 8.43× 10−4 kmol/(s atm)
KH2O Valve molar constant for water 2.81× 10−4 kmol/(s atm)
KO2 Valve molar constant for oxygen 2.52× 10−3 kmol/(s atm)
τH2 Response time for hydrogen flow 26.1 s
τH2O Response time for water flow 78.3 s
τO2 Response time for oxygen flow 2.91 s
r Ohmic loss 0.126 V
Te Electrical response time 0.8 s
Tf Fuel processor response time 5 s
rH−O Ratio of hydrogen to oxygen 1.145
PF Power factor 1
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