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ABsTrRACT. We show that given a positive and finite Radon measure p, there is a
Ap(.)-superharmonic function u which satisfies

—div A(z, Du) = p

in the sense of distributions. Here A is an elliptic operator with p(z)-type nonstan-
dard growth.

1. Introduction

We study the existence of solutions of
—div A(z, Du) = y, (1.1)

where A is an operator with p(x)-type nonstandard structural conditions. Our
main result is that for positive, finite Radon measures 1, there exists an A, .)-
superharmonic function u which satisfies (1.1) in the sense of distributions. See
section 2 for the exact definition of this class of functions. Examples of the
operators A considered here arise from variational integrals like

/ |VulP@® dz; (1.2)
the Euler-Lagrange equation of (1.2) is the p(z)-Laplacian equation
div(p(z)|Vu[P®~2Vu) = 0, (1.3)

where

Az, ) = p(a) g™ %€
There is an extensive literature on partial differential equations and the calculus
of variations with various nonstandard growth conditions, see for example [30,
31, 24, 2, 1, 4] and the references in the survey [26].

We study this problem for two reasons. First, some properties of A,
-superharmonic functions require an additional integrability assumption; see
for example [14, Theorem 4.5]. We would like to show the existence of A, .-
superharmonic functions for which the integrability assumption can be verified.
The need for an extra assumption is due to the fact that Harnack estimates for
equations with p(z)-growth are intrinsic in the sense that they depend on the
solution itself, see [2, 3, 14].

Second, we would like to show the existence of solutions with nonremovable
isolated singularities. There is a method due to Serrin [29] to construct such
solutions. Again because of the intrinsic nature of the Harnack estimates, this
method fails. Hence the second purpose of this work is to find an alternative
to Serrin’s method. This turns out to be quite simple, just choosing the Dirac
measure as p in (1.1) suffices.

Our approach is an adaptation of that of Kilpeldinen and Maly [17]. First,
we obtain approximative solutions u; by approximating p with more regular
measures. Then we prove uniform estimates for u; and use them to find a limit «
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and to prove the fact that the left hand side of (1.1) makes sense as a distribution.
Finally we show that this u is indeed a solution of (1.1). This approach is related
to the works of Boccardo and Gallouét [5, 6]; see also [7, 22, 28].

The results we use as tools here do not hold without additional assumptions
on the function p(-). Even the variable exponent Lebesgue and Sobolev spaces
have very few properties for general, for instance just measurable, exponents.
There is a frequently used assumption, called logarithmic Holder continuity,
that seems to be the right one for our purposes. See below for more details.

2. Preliminaries

A measurable function p: R” — (1,00), n > 2, is called a variable exponent.
We denote

ph=supp(x), p, = infp(x), p"=supp(x), p = inf p(z).
€A z€A rER™ TER™
We assume, unless otherwise specified, that the exponent p(-) is logarithmically
Hélder continuous, i.e. satisfies (2.1) below and that 1 < p~ < pt < co.
Let 2 C R™ be an open bounded set. The variable exponent Lebesgue
space LP()(Q) consists of all measurable functions u defined on Q for which the

p(+)-modular
%“M:Awmwmz

is finite. The Luxemburg norm on this space is defined as

- u(z)
lullycy = it {1 >o;/Q ulz)

A
Equipped with this norm LP()(Q) is a Banach space. For basic results on variable
exponent spaces we refer to [19]. In particular, the dual of L) (1) is the space
LP' ()(Q) obtained by conjugating the exponent pointwise, [19, Theorem 2.6]. It
follows that Lp(')(Q) is reflexive. Furthermore, a version of Holder’s inequality,

Ammswmmmm»

holds for functions f € LP()(Q) and g € L?' ()(Q).

The variable exponent Sobolev space W'P()(Q) consists of functions u €
LPO)(Q) whose distributional gradient Vu exists and belongs to LP()(Q). The
variable exponent Sobolev space WP()(Q) is a Banach space with the norm

o dz < 1}.

[ullepey = llellpey + [Vullpe)-

Smooth functions are not dense in WP()(Q) without additional assumptions
on the exponent p(-). This was observed by Zhikov [30, 31] in the context of the
Lavrentiev phenomenon. Zhikov introduced the logarithmic Hélder continuity
condition,

C
(@) =Pl = o=

for all z,y € Q such that |z — y| < 1/2, as a criterion for the absence of the
Lavrentiev phenomenon. If the exponent satisfies (2.1), smooth functions are
dense in variable exponent Sobolev spaces and we can define the Sobolev space
with zero boundary values, denoted by W, ” (')(Q), as the completion of C§° ()
with respect to the norm || - ||; ;). We refer to [10] and [16] for the details of
this definition.

(2.1)
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Since we assume the exponent p(-) to be continuous, the p(-)-Poincaré in-
equality
lullpiy < ClIVullpe

holds for every u € Wol’p(')(Q), see [13, Theorem 4.1]. In particular, the p(-)-
Poincaré inequality implies that the norms |u||; ,(.) and ||Vul,(.) are equivalent

on Wy (Q).
We use the following compactness properties of WO1 P (’)(Q) in our existence

proof. The limit function v belongs to WO1 P (’)(Q) by Mazur’s lemma, the first
property follows from the reflexivity of LP()(Q) and the second from the fact
that Wol’p(')(ﬂ) embeds compactly into LP()(Q), see [19, Theorem 3.10].

THEOREM 2.2. Assume that the sequence (u;) is bounded in Wol’p(')(Q).

Then there is a function v € Wol’p(’)(ﬂ) and a subsequence (uj, ) with the follow-
ing properties.

(1) Vuj, — Vv weakly in LPC) ().

(2) wj, — v pointwise almost everywhere and in LP()(Q).

We need the following assumptions to hold for the operator A : Q x R" —
R"™.
(1) z — A(x,&) is measurable for all £ € R,
(2) &€ — A(z,&) is continuous for all z € Q and A(z, —§) = —A(z, &) for
all £ e R™,
(3) A(z,€) - € > €|’ where a > 0 is a constant, for all z € Q and
§eR”,
(4) |A(z,€)] < BIE[P®) 1, where 3 > a > 0 is a constant, for all z € Q
and £ € R",
(5) (A(z,m) — A(z,8))-(n—¢&) >0for all z € Q and n # £ € R™.
These are called the structure conditions of A.
We say that a function u € Wllo’f (‘)(Q) is a subsolution of the equation

—div A(z,Vu) =0 (2.3)

A(z,Vu) - Vedz <0
Q
for all nonnegative test functions ¢ € C§°(€2). We use the assumption A(z, —§) =
—A(x,€) and say that u is a supersolution if —u is a subsolution. Further, u is
a solution if it is both a super- and a subsolution. Since smooth functions are
dense in W17()(Q2), we are allowed to employ test functions ¢ € Wy *")(Q) with
compact support in 2 by the usual approximation argument.

Logarithmic Hélder continuity plays an important role in the calculus of
variations and theory of partial differential equations with p(-)-growth. Indeed,
higher integrability [31], Holder regularity results [1, 8], and Harnack estimates
[2, 12, 14] use condition (2.1). Harnack estimates and boundary regularity
theory from [3] are used to prove the properties of supersolutions and A,.)-
superharmonic functions we employ here, i.e. Theorems 2.5 and 2.7 below.
Hence the log-Holder assumption is crucial to us.

The results in [2, 3, 12, 14] are given for A(z, &) = p(z)|€[P®)~2¢ or A(x, €) =
|€|P®)=2¢. However, they hold also for the general operators A considered here.
This is due to the fact that the same Caccioppoli type estimates, the comparison
principle and convergence results are available. Indeed, using the ellipticity con-
dition (3) and the growth condition (4) the proofs of the Caccioppoli estimates
given for operators A with constant growth exponents given, for example, in [23,
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Chapter 2] can be adapted to the case we consider here; see Lemma 3.1 below for
a simple example of such an adaptation. Further, comparison and convergence
results are a consequence of the monotonicity assumption (5) and the continuity
assumption (2), replacing the constant exponent Holder’s inequality by a point-
wise application of Young’s inequality where necessary; see, e.g., the arguments
given in [15, Chapter 3|.

DEFINITION 2.4. We say that a function u : Q@ — (—o00,00] is Ap(.)-
superharmonic in Q, denoted u € S(Q), if

(1) w is lower semicontinuous,

(2) w is finite almost everywhere and

(3) The comparison principle holds: Let D € Q be an open set. If h is a
solution in D, continuous in D and u > h on 9D, then u > h in D.

Further, we say that u is A,)-hyperharmonic if v has the properties (1)
and (3) of Definition 2.4.

The properties of supersolutions and A,,(.)-superharmonic functions we need
below are collected in the next theorem. For the first property, see [12, Theo-
rem 6.1] and [14, Theorem 4.1]. The second property is an easy consequence of
the definition, as is the fact that truncations of A, .)-superharmonic functions
are Ap(.)-superharmonic. Bounded A, .)-superharmonic functions are superso-
lutions by [12, Corollary 6.6], and hence the functions min(u, \) are also super-
solutions. The last two properties follow in the same way as in the constant
exponent case, see [15, Corollary 7.23 and Theorem 7.27].

THEOREM 2.5. (1) If u is a supersolution, then the lower semicon-
tinuous regqularization of u, defined as

u(x) = essliminf u(y),
y—x

is an A,(.)-superharmonic function and equals u(z) a.e.

(2) If (ux) is an increasing sequence of Ay (.)-superharmonic functions,
then the limit function is A, . -hyperharmonic.

(3) If u is Ap(.y-superharmonic, so is the function min(u, \) for all A € R.
The truncations min(u, ) are also supersolutions.

(4) Ifu and v are A, (.)-superharmonic and u = v almost everywhere, then
u = v everywhere.

(5) Being Ay(.y-superharmonic is a local property.

For an A,(.y-superharmonic function u we define a derivative Du pointwise
as

Du = lim Vmin(u,k).

k—o0
Note that Du is not necessarily the gradient of u in any sense.
We recall the following integrability lemma. See [17, Lemma 1.11], or [15,
Lemma 7.43], for the proof, and [15, Section 1.6, p. 6] for the choice of x.

LEMMA 2.6. Let Q be bounded, 1 < p < oo and let u be a nonnegative
function which is finite almost everywhere. Set

nL_p, ifp<n, and
R =
2, ifp>n.

Suppose that for all k € N
min(u, k) € W, ?(Q)
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and
/ |V min(u, k)|” de < Mk
Q

for a constant M independent of k. If 1 < g < kp/(k(p—1)+ 1), then
/ |V min(u, k)[7P~Y dz < C,
Q

where C = C(n,p,q, M,diamQ), and if 0 < s < k(p — 1), then

/usd:cSC',
Q

where C = C(n,p, s, M,diam ).

The previous lemma is used to prove the following result; see [12, Theorem
7.5] and [21, Theorem 4.6]. The extra assumption mentioned in the introduction
is the requirement that u € L ().

loc

THEOREM 2.7. Assume that u is Ay .y-superharmonic in Q. Ifu € L} ()
for some t > 0, there is a number ¢ > 1 such that |u|9P@)~1) and |Du|1P@)-1)

are locally integrable.

Theorem 2.7 seems insufficient to bound the gradients of approximate so-
lutions in the proof of our main theorem. We fix this by using the following
lemma. In the lemma, we need the sharp form of the weak Harnack inequality
[14, Theorem 3.7]

1/~
(][ u? dx) < C( inf u(z)+ R). (2.8)
Baor x€EBR

More precisely, we need an exponent v > pp  — 1 on the left hand side of (2.8).
We can establish this by modifying the iteration argument of [3, Lemma 6.3] to
use [14, Lemma 3.4] in a fashion similar to [14, Lemma 3.5]. This way, we see that
the weak Harnack inequality (2.8) holds for any exponent 0 < v < k(pp,. — 1),
where x = k(pp, ) is the Sobolev inequality parameter corresponding to pp, ,
as given in Lemma 2.6.

LEMMA 2.9. Let u be a nonnegative A,.)-superharmonic function such that
uw € L}, .(Q) for some t > 0. Then there exist numbers ¢ > 1 and ¢ > 0, such
that

rEBR

B pPg, . —1—¢
/ |Du|q(1’(z)*1) dz <CR" Pran < inf w(z)+ R) *
Br

(1+e)/(Phy )" /a=1)
)

+ CR" ( inf u(z)+ R

rEBR

for all sufficiently small balls B = B(xzg, R). The constant depends on p(-),
n, q, €, the structural constants 3 and o, and the Lq/S(BgR)—norm of u for
5> pEGR — PRy Where q' is the Hélder conjugate of q.

PROOF. Let us first pick a number A > 1 such that the exponent A(pp, —1)
is admissible in the weak Harnack inequality; for instance, the choice

/\min{L,§}
n—12

will do. Further, we let ¢ > 1 be a number such that
¢ <min{(p*)", A}
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and set
(1 _ A
E—mln{§(p — 1),m —1},
where 6 = (A —1)/4.

Assume first that w is a supersolution, and pick a cutoff function n compactly
supported in Bog such that 0 <7 < 1,7 =1 on By and |Vn| < C/R. We use
Young’s inequality and the Caccioppoli estimate for supersolutions [14, Lemma
4.3], and get that

/ |Vu|q(p(z)—1) dz :/ |vu|q(p(z)—1)u—q(1+e)P(pac()leuq(l-i—e)z?;z()z;l de
Br Br

<C |Vu|p(l)u_1_5npgm dz
Bar

+C w19/ (@' (2)/a=1) 44
Bar

SC/ W@ 18 g (@) 4y
Bar

L C / L)/ @ @)/a-1) 4y
Bar

We estimate the first integral by log-Holder continuity (see [14, Lemma
3.3]), Holder’s inequality, the weak Harnack inequality and Lemma 3.4 of [14],
and obtain

/ W@ 12| P 4y
Bar

_ , _ 1/q _ 1/q
<CR" PBar (]Z u? P@)=pg, ) dx) <][ wIPByp =170 dz>
Bar Bar

— !t — 1/(], pEZRilis
<CR" PB2r <]Z 1+ u? N ) d:c) < inf w(z)+ R>
Bar

rEBR
1—¢

<CRn_pEQR(1+||u||(p£2R_pEZR)) inf U(.I')+R pEQR_
> Lq’s(Bf,R) rEBR

For the second term, we first estimate

/ W14/ @) /a=1) 4 < CR" + cRn]l WO/ (@h,)" /a1 4z (2.10)
Bar Bar

Next we claim that we can choose ¢ > 1 such that the exponent on the right
hand side of (2.10) is admissible in the weak Harnack inequality. A sufficient
condition for admissibility is

q(pi%m -1 +e¢)
P — 4Ph,, — 1)

By the continuity of p(-), we can assume that

< App,, —1). (2.11)

pa—|
Phan ™ <1456
szRil

by considering small enough balls Bar. Whenever Bag is such a ball, (2.11) is
satisfied if
q(1+¢) A
pr—qlpt—1) " 1+4

(2.12)
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Here we used the fact that the function ¢ — ¢ —q(t — 1) is decreasing and positive
on the interval [0, pT], since 1 < ¢ < (pT)’. The left hand side of (2.12) tends to
1+ ¢ as ¢ tends to one. Since 1 +& < A/(1+20) < A/(1 + 9), it is possible to
choose a number ¢ > 1 such that (2.12) holds. Now we can estimate the integral
average on the right hand side of (2.10) by the weak Harnack inequality. This
proves the claim in the case of supersolutions.

For a general A, (.)-superharmonic function u, we apply the estimate for
supersolutions to u; = min(u, k) and note that we can estimate the norms of
uy, appearing in the constants by the norms of u. Letting k& — co completes the
proof. O

We use the next estimate in proving that the A,(.)-superharmonic solutions
of (1.1) we find below are solutions outside the support of the measure u. A
simplified version of the arguments leading to Lemma 3.7 in [21], with the ap-
propriate modifications to take care of the presence of A, establishes the case
qo > p~ — 1. The case ¢o > 0 then follows by a standard iteration argument, see
for example [15, Lemma 3.38].

LEMMA 2.13. Let u > 0 be a solution of (2.3) in Ber. Then

1/q0
(][ u° dx) + R
Bar

where qo > 0. The constant depends on n, qo, p(-) and the Lq/T(BGR)—norm of
u, where 1 < g <n/(n—1), ¢ is the Holder conjugate of ¢ and r > pEGR ~DBog-

esssupu(z) < C
rEBR

)

3. Compactness of A,.)-superharmonic functions

In this section we prove a weak compactness property of A,,(.)-superharmonic
functions, Theorem 3.4. It is our main tool for the next section.

LEMMA 3.1. Assume that u is a nonnegative subsolution and n € C5°(2)
is such that 0 <n < 1. Then

/ |Vu|p(l)np+ dz < 0/ w?@) |V P 4z,
Q Q
PROOF. We use u77p+ as a test function and obtain
0> / Az, Vu) - Vun”+ dx +/ Az, Vu) - Vnp+77p+_1u dx.
Q Q
From this we obtain that
/ Az, Vu) - Vun? da < p+/ |A(z, Vu)||V77|np+_1u dz. (3.2)
Q Q
Next we use structure, (3.2) and Young’s inequality and conclude that
/ 77”+|Vu|p(l) dz §C/ Az, Vu) Vun? dw
Q Q
gc/ | Az, V)| |Vyln? "~ uda
Q
<C [ [Fup vyl tude
Q
pt
< / |VufP@n 7@ " dy
2 Jo
pt
e / P [P ) g,
Q

from which the claim follows. O
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It follows from the inequalities between the Luxemburg norm and the mod-
ular |9, Theorem 1.3] that
N +_ -_
PO~y < masc{llallZc; L lallZe - (3.3)
When using inequality (3.3) in the sequel, we preserve the letter s for the expo-
nent at which the maximum on the right hand side is attained.

THEOREM 3.4. Let (u;) be a sequence of positive A, .y-superharmonic func-
tions. Then there exist a subsequence (uj, ) and an A, . -hyperharmonic function
u such that u;, — u almost everywhere in ) and Du;, — Du almost everywhere
in the set {u < oo}.

ProOF. Assume first that u; < M < oo, where M > 1. Then the functions
u; are supersolutions, [12, Corollary 6.6]. Let U € U’ € ' € Q be open sets and
choose cutoff functions n € C§°(U’) and ¢ € C§° () such that 0 < ¢,n < 1,
n=1inU and ¢ = 1in U’. We want to show that the sequence (nu;) is

bounded in Wy (U"). To this end, we estimate

|V (o) P SC(/U U§(1)|V77|p(””) dx—i—/U |V PP da)
g , ,

<cM?” / |Vn|P@®) dz + C / |V, [P @) d,
! U/

Since M —u; is a nonnegative subsolution, we obtain for the second term by the
Caccioppoli estimate (Lemma 3.1) that

/ IV [P dg < / IV, P da
U’ U’

< [ V(M —uy)|P@ P da
Q/

<C / i — MP® | VP® da
Q/

<cMmP’ / |Vl da.
(/

The p(-)-Poincaré inequality now implies that the sequence (nu;) is bounded

in Wol’p(‘)(U’). Thus by Theorem 2.2 there is a function u € Wol’p(‘)(U’) and a
subsequence, still denoted by (nu;), such that nu; — win LP()(U’) and pointwise
almost everywhere in U’, and finally V(nu;) — Vu weakly in LP()(U’). Since
n =1in U, it follows that u; — u in LP()(U) and pointwise almost everywhere
in U, and Vu; — Vu weakly in LPO)(U).

Next we claim that u has a representative which is A, -superharmonic
in U. To prove this, set v; = inf;<; u; and for a fixed ¢, wr = min;<j<i u;.
Then wy, is a supersolution by [12, Theorem 3.3] and the sequence (wy) is
decreasing and bounded below. By [12, Theorem 5.2] this implies that v; =
limy .o wy is a supersolution. Thus the function v;(x) = essliminf, ., v;(y) is
Apy-superharmonic in U. Let v = lim; . v;. Now v is the desired representa-
tive since it is Aj,(.)-superharmonic as an increasing limit of A,.)-superharmonic
functions and

u(z) = lim uj(z) = lim v;(z) = v(x)
Jj—o0 2

for almost every = € U.

We have proved that if the sequence (u;) is bounded and U € €, we can
find a subsequence that converges pointwise a.e. in U to a function u which
is Ap()-superharmonic in U. To find a limit which is A,,.)-superharmonic in
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), choose open sets Uy, £k = 1,2,..., such that Uy € Uiy, and Q@ = UgUy.

Then we can pick a subsequence (u}) and a limit function u' which is A,.)-
Ly

J

superharmonic in U;. We proceed inductively and pick a subsequence (u]
of (u) that converges to a function "' € S(U41). Then u* = u**! almost
everywhere in Uy, and by A, (.)-superharmonicity this holds everywhere. Thus
we can define the desired limit function as v = u* in Uj. This function u is
Ap()-superharmonic in (2 since being A,,(.)-superharmonic is a local property.
Further, u < M by the boundedness of the original sequence, and in particular
u is a supersolution in ).

The next step is to prove that we can assume Vu; — Vu almost everywhere
in Uy for any k = 1,2, ... by passing to a further subsequence. To this end, fix
a number € > 0 and let

E; ={z € Uy : Az, Vu) — Az, Vu;) - (Vu — Vu,) > e},

Ej ={z € Ej : [u—uy| > &%}
and E? = E; \ E}. |E}| — 0 as j — oo since u; — u in LPO)(U}). To estimate
|E?|, we note that

1
|E7| < - /E2 (A(z, Vu) — A(z, Vu;)) - (Vu — Vu;) dz,
pick a cutoff function n € C§°(Ug41) such that 0 <n <1, n=1in Uy and set
v; = min((u; — u + &), 2e?).
We use nv; as a test function and obtain

0< Az, Vu) - v;Vnde + / Az, Vu) - n(Vu; — Vu) de.
Uk+1 Uk+1N{|u—u;|<e?}
(3.5)

We pick another cutoff function ¢ € C§°(Ug42) such that 0 < ¢ <1, ¢ =11in
Uk+1. Using the Caccioppoli estimate (Lemma 3.1) as in the beginning of the
proof, we obtain

[ vuPars [ 90— e o
Uki1

Uk+2

<C [ M- VP de

Uki2

<cMmP’ / |Vo[P@® dz.
Ugy2

The same computation can be carried out for u, since we know that u is a
supersolution in €2. Thus we can find a constant C' such that

||Vu||p(.)7Uk+1 < (C and ||Vuj||p(‘),Uk+l <C. (3.6)

We use (3.5), structure of A, the Holder inequality, (3.3) and (3.6) and get that

/ Az, Vu) - n(Vu — Vu;)der < Az, Vu) -v;Vnde
Uk1N{lu—u;|<e?}

Ugt1

SC'EQ/ |Vul|P®) = V| da
Uk+t1

<C2(|Vull3 ) v, IV lpe), 00
<Ce?.
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Replacing v; with v; = min((u — uj +£?) 1, 2¢?) allows us to reverse the roles of
u; and u in the above computation. Thus we conclude that

|E7| < %/ (A(z, Vu) — A(z, Vu;)) - (Vu — Vu,) de < Ce.
B2

It follows that
|Ej| = |E}| + |Ef| < (C+1)e (3.7)
for j > j..

Estimate (3.7) implies that Vu; — Vu in measure in Uy; this allows us to
pick the desired pointwise almost everywhere convergent subsequence. To prove
the convergence in measure, we assume the opposite and find positive numbers
6 and a such that

H{z € Uy : |Vu; — Vu| > §} > a > 0.

Pick any sequence (g;) such that &; — 0 as ¢« — oo. We note that

Hz € Uy : (A(z, Vu) — A(z, Vu,)) - (Vu — Vu,) > g}
>z e Uy : (A(z, Vu) — Az, Vu;j)) - (Vu — Vu;) > &;,|Vu; — Vu| > §}.

By measure theory, the structure of A and the counterassumption, the right
hand side tends to a limit L > a as i — oo. Thus there is a number ¢ > 0 such
that

{z € Uy : (A(z,Vu) — A(z, Vu,)) - (Vu — Vu;) > e} > a/2 >0

whenever ¢ < g9, and this contradicts (3.7).

We can now assume that Vu; — Vu pointwise almost everywhere in {2. This
follows from the pointwise almost everywhere convergence in Uy proved above
by an inductive process similar to the one by which we found the superharmonic
limit u in Q.

As the final step we remove the boundedness assumption by another diago-
nalization argument. By the first part of the theorem, we can find a subsequence
(uj) and an A, (.y-superharmonic function u; such that

min(u}, 1) — uy and Vmin(u}, 1) = Vuy
almost everywhere in 2. We proceed inductively and pick a subsequence (uf) of
(u?il) such that

min(u?, k) — uy and Vmin(u¥, k) — Vuy,
almost everywhere in 2. We observe that if | > k and ux(x) < k, we have
uy(z) = wug(z). Thus the sequence (uy) is increasing, and we conclude that
the limit u = limg .o us, exists and defines the desired A, .)-hyperharmonic
function in 2. We note that by construction min(u, k) = uy, so that for the

diagonal sequence (uf) it holds that Vu¥ — Du almost everywhere in the set
{u < oo} O

4. Existence of A,.)-superharmonic solutions

In this section we prove our main existence result, Theorem 4.7. Through-
out, we use T to denote the map defined by

(Tu, ) = /QA(J:, Du) - Vedz, (4.1)

where ¢ € C§°(€2). By Theorem 2.7 and the structure of A, Tu defines a
distribution for A,(.)-superharmonic functions v that belong to L}, () for some
t >0, and Tu € (WHPO(Q))* if u € WHPO(Q).
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THEOREM 4.2. Let u be an Ay -superharmonic function such that u €
(Q) for some t > 0. Then there is a positive Radon measure {1 such that

—divA(z,Du) = p

Lt

loc

in the sense of distributions.

loc

orem 2.7. Pick any ¢ € C§°(Q2) such that ¢ > 0 and denote u; = min(u, k).
Then

PROOF. Since u € Lt (Q) for some ¢t > 0, |Du[P®)~1 € L1 (Q) by The-
loc

A(z,Vuy) - Vo — A(z, Du) - Vo
pointwise almost everywhere by the continuity of £ — A(x, £).
Using the structure of A, we have

|A(z, Vug) - V| < C|Vur|P® =1 Ve| < C|DuP® =1 V.

Using the dominated convergence theorem and the fact that the functions wy
are supersolutions, we conclude that

(Tu,) = | A(z,Du) -Vedr = klim Az, Vug) - Vedz > 0.
Q —JQ

The claim now follows from the Riesz representation theorem, see for example
[27, Theorem 2.14]. O

LEMMA 4.3. Let u,v € Wol’p(')(Q) be supersolutions such that
Tu=p<v=To.

Then u < v almost everywhere in €.

PrOOF. Let = min(v — u,0). Since u < v, we obtain that

Oz/ndv—/ndu
Q Q

:/ Az, Vo) - Vndz — / A(z,Vu) - Vndz
Q Q
:/{ > }(A(a:,Vv) — Az, Vu)) - (Vo — Vu) dz.

By the monotonicity of A, it follows that Vv = Vu almost everywhere in {u >
v}. Hence Vi = 0 and it follows that 7 = 0 almost everywhere, which means
that v > u almost everywhere. O

To show the existence of solutions in the case p € (VVO1 P() (©))*, we use the
following theorem. See [20, Théoréme 2.1, p. 171] for the proof.

THEOREM 4.4. Let X be a reflexive, separable Banach space, and assume
that T : X — X* is
(1) monotone, i.e. (Tu—Tv,u—v) >0 for all u,v € X,
(2) bounded, i.e. if E C X is bounded, so is T(E);
(3) demicountinuous, i.e. x; — x implies (T'xz;,y) — (Tx,y) for ally € X
and
(4) coercive, i.e. for a sequence (x;) C X such that ||z;||x — oo it holds
that
(szvxj>
[EF71P%
Then T is surjective, i.e. the equation Tx = f has a solution x € X for each
feXx .

— 00 as j — 00.
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THEOREM 4.5. Let Q be a bounded domain and p € (Wol’p(‘)(Q))* be a
positive Radon measure. Then there is a unique nonnegative supersolution u €

Wy (Q) such that
—divA(z,Vu) =

in the sense of distributions.

PrOOF. We prove the existence part by verifying the assumptions of The-
orem 4.4 for the map T : Wol’p(‘)(ﬂ) — (Wol’p(‘)(Q))* given by (4.1). First, the
monotonicity of 7" is an immediate consequence of the monotonicity assumption
on A.

Using the structure of A, the Hélder inequality and (3.3), we infer that

(0] <C [ [Vup® (o] ds
Q

<C||[VulPO ] [Vl
<Olullf pey vl pe)-

This implies that |\Tu||(W1,p(l>(Q))* < Cllull} ,.), so that T' is bounded.
. :

Let (u;) € WaP")(Q) be such that u; — u in W*") (). We pass to a sub-
sequence and assume that v; — v and Vu; — Vu pointwise almost everywhere.
By continuity of the map & — A(z,§), it follows that A(z, Vu;) — A(z, Vu)
almost everywhere. Since

|A(z, V) )[P@/PE@=D g < C/ |V, [P de < M < 00
Q Q

by the convergence of the sequence (u;), (A(x, Vu,)) is bounded in L¥'()(().
Thus we may pass to a further subsequence and assume that A(z,Vu;) —
A(z, Vu) weakly in L7 ()(Q).

This implies that the whole sequence converges weakly; indeed, assuming
the opposite, we find a weak neighbourhood U of A(z, Vu) and a subsequence
such that (A(z, Vu;,)) € LP'()(Q) \ U. We may assume pointwise convergence
by passing to a further subsequence, and this sub-subsequence converges weakly
in L )(Q) to A(z, Vu) by the earlier argument, which is a contradiction. It
follows that

(Tuj,v) = | A(z,Vu;)-Vvdz — / Az, Vu) - Vodz = (Tu,v).
Q Q

Let (u;) be a sequence such that ||u;l|;,,(.) — oo. Since the norms |u||; »(.
and ||Vul|,(.) are equivalent on Wol’p(')(ﬂ), we may assume that ||Vu;l[,.) > 1.
By [9, Theorem 1.3|, this implies that o,..)(Vu;) > ||VUj||Z(7.). We use the
structure of A, and the p(-)-Poincaré inequality and obtain that

(Tujwy) o Jo |V [P da CHVUng(.)

-1
> CH“J’H?I,(.) — 0

sl — luillieey — lugllee
as j — oo.
Finally, we note that the uniqueness and positivity claims follow from
Lemma, 4.3. O

We say that a sequence of measures (u;) converges weakly to a measure
if

lim wduj:/sﬂdu
Jj—© Jo O
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for all p € C§°(£2). We use the following elementary technique from Mikkonen’s
thesis [25] to approximate a general, finite positive Radon measure p by measures

i € (WP ().

LEMMA 4.6. Let Q2 be a bounded open set and assume that p is a finite
positive Radon measure on Q. Then there is a sequence (u;) of finite positive

Radon measures such that u; € (Wol’p(')(Q))*, i — o weakly and 1;(2) < p(Q).

PROOF. Let Q;;, i =1,...,Nj, be the dyadic cubes with side length 277
contained in . For any measurable set £ C € we define

N(Qw
2-70:,]

and the proof will be completed by showing that the sequence (u;) has the
desired properties. First we observe that

N
0 =3 Q) < @),

since the cubes @); ; do not completely cover the set Q. Given a function ¢ €
C5°(92) we obtain

=3 [ oo

<9mi 1(Q) /Q lpldz < Cllellyey < Cllellpe),

i (E) = |0 Qi l,

so that p; € (WO1 P0) (Q))*. The weak convergence follows in the same way as in
[25, Lemma 2.12], and we omit the details. O

THEOREM 4.7. Let 2 be bounded and 1 a finite positive Radon measure.
Then there is an A,(.y-superharmonic function u such that min(u, k) € Wol’p(')(ﬂ)
for all k > 0 and

—divA(z,Du) = p

in the sense of distributions.

PROOF. Let (p;) be the sequence of measures belonging to (Wol’p(’)(ﬂ))*
obtained from Lemma 4.6 and denote by (u;) the sequence of supersolutions
satisfying

—div A(z, Vu;) = p; (4.8)

in the sense of distributions; such functions u; exist by Theorem 4.5.

By Theorem 3.4, there is an A,.)-hyperharmonic function u such that we
can assume u; — u and Vmin(u;, k) — Vmin(u, k) almost everywhere by
passing to a subsequence. As the first step, we prove that u € L} () for some
t > 0. To this end, we use structure of A and (4.8) and infer that

/Q |V min(uj, k)|P® dz §C/QA(J:, Vu;) - Vmin(uj, k) do
=C | min(u;, k) dy;

<Coy(Vk < Cu(. (4.9)
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From (4.9) and the p~-Poincaré inequality, we obtain that
/ | min(u;, k)P dz SC/ |V min(uj, k)|P dz
Q Q

S/ 11+ V min(uj, k)[P® dz
Q
<CI0+ Cu(@)k < C(I2 + p(@)h.  (4.10)

Since u; — u almost everywhere, it follows from Fatou’s lemma and (4.10)
that

/ | min(u, k)P dz < Mk,
Q

with the constant M = C(|Q] + p(€2)) independent of k. This estimate implies
that w is finite almost everywhere. Indeed, denoting E = {z €  : u(z) = oo},
we get
1 - 1 . - 1-p~
|E|=— [ kP dz < — [ |min(u, k)] de <Mk —0
kP™ Jg kr™ Jq

as k — oo. Estimate (4.9) and the p(-)-Poincaré inequality imply that (min(u;, k))
is bounded in W, ?")(Q). It follows that min(u, k) € Wy ") () since weak lim-
its must coincide with pointwise limits. Next, we use pointwise a.e. convergence
of the gradients and Fatou’s lemma and argue as in (4.10). This leads to the
estimate

/Q IV min(u, B)7 dz < C(9Q| + u()k.

This inequality allows us to use Lemma 2.6 to conclude that u € L! () for some

t >0, and then we use Theorem 2.7 to conclude that u, Du € LIP™~1(Q) for
some g > 1.
By Theorem 4.2, there is a measure v such that

—div A(x, Du) = v (4.11)

in the sense of distributions. We will complete the proof by showing that 4 = v in
the sense of distributions. We know that u € L} () for some ¢ > 0. We consider
an arbitrary ball B = B(xg, 2R), chosen sufficiently small that the exponent ¢ is
admissible in Lemma 2.9. By the usual partition of unity argument, it suffices

to show that
/ pdu = / pdv
B B
for all p € C§°(B).
The constants on the right hand sides of (4.9) and (4.10) are independent
of j. Hence the sequence (||u;||z:(p)) is bounded for some ¢ > 0, by Lemma 2.6.
The pointwise convergence of (u;) implies that (infp, u;) is bounded. Thus the

sequence (|Vu;[P(®)~1) is bounded in L9(B) for some ¢ > 1 by Lemma 2.9. Next
we use the structure of A, and get that

/ |A(z, Vu;)|?de < C/ |V, |9P@) =D 4z < C.
B B

Thus the sequence (A(z, Vu,)) is also bounded in L9(B), and it follows from
the continuity of £ — A(z,&) that A(z, Vu,;) — A(z, Du) weakly in LY(B). We
use the weak convergence in L7 and (4.11) to conclude that

lim pdu; = lim / A(z,Vu,;) - Vodz :/ A(z, Du) - Vo dx :/ pdy,
i—e /B i—e Jp B B

which completes the proof. O
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5. Solutions with isolated singularities

In this section we show the existence of solutions with nonremovable isolated
singularities. We assume that the origin belongs to Q, 1 < p~ < p™ < n and
use J to denote the unit mass at the origin.

THEOREM 5.1. If u is a solution of

—div A(z, Du) =6 (5.2)
obtained from Theorem 4.7, then u is a solution of
—divA(z,Vu) =0 (5.3)

PROOF. Let (11;) be the sequence approximating § we obtain from Lemma
4.6. From the proof of the lemma we see that the support of u; is contained
in a ball B; = B(0,c277), where the constant c is independent of j. Thus the
corresponding supersolution u; is a nonnegative solution of (5.3) in Q\ B;.

Next we pass to the subsequence provided by Theorem 3.4, still denoted by
(uj). Fixaball B = B(xo, R) with 9 € Q, 29 # 0 and R such that 6B € Q\{0}.
Then for sufficiently large j it holds that 68 € Q\ B;. We discard the values
of j that are not sufficiently large and still denote the subsequence we obtain by
(u5)-

Since the right hand side of (4.9) is independent of j, Lemma 2.6 implies
that the sequence (u;) is bounded in L*(Q) for some ¢ > 0. We can use Lemma
2.13 and the bound in L*(Q2) to conclude that the sequence (u;) is uniformly
bounded in B. Indeed, we can pick r > 0 such that ¢ = ¢’r and then assure that
r is admissible in Lemma 2.13 by passing to a smaller ball if necessary, since
p(+) is continuous. Further, the sequence is also equicontinuous in B, since the
bound in L!(€2) also allows us to take a constant independent of j in Harnack’s
inequality, [14, Theorem 3.9]. The reason for this is the fact that the dependence
of the constant of Harnack’s inequality on wu is the same as in Lemma, 2.13. Now
by using the Arzela—Ascoli theorem we can assume that (u;) converges uniformly
in B by passing to a further subsequence. This uniform limit must be u by the
pointwise convergence, and thus v is a solution in B by [12, Corollary 5.3]. Since
this argument can be repeated for any point zo € Q \ {0}, it follows that u is a
solution in Q \ {0}. O

The above proof can be easily modified to show that a solution of
—div A(xz, Du) = p

constructed by the present method is a solution of (5.3) in Q \ spt(u). However,
solutions of equations involving measures are not necessarily unique without
some additional assumptions, even when the exponent is constant; see [18] for
an example. Hence our present tools are insufficient to obtain the conclusion of
Theorem 5.1 for an arbitrary solution of (5.2).

A solution of (5.2) cannot be a supersolution of (5.3). To see this, note that
if the measure p is such that p € (Wol’p(‘)(Q))*, then u(E) = 0 for all E C Q
such that cap,.,(E,) = 0, where cap,., is the variational p(r)-capacity, as
defined in [11]. This can be proven in the same way as in the constant exponent
case, see [25, Lemma 2.4]. Further, recall that the operator T defined by (4.1)
maps Wol’p(')(ﬂ) to (Wol’p(‘)(ﬂ))*. This implies that the measure p associated
to a supersolution u € Wy ") (Q) by Theorem 4.2 must belong to (W, 7" (Q))*.
Clearly cap,.,({0},Q) = 0if p* < n, so that § ¢ (Wa")(€))*; hence a solution
of (5.2) cannot be a supersolution.
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