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ABSTRACT

Time-varying fractional delays are applied for example in physics-
based modeling of musical instruments, particularly for string and
wind instruments. While Lagrange interpolation and allpass fil-
ters are used routinely in such sound synthesis models, they are
found somewhat problematic for example in plucked string sim-
ulation when the length of the string is varied due to glissando or
vibrato. There can be problemswith signal energy levels and alias-
ing. In this paper we study two variable delay filter designs that
have physically realistic energetic behavior and keep undesirable
side effects, such as aliasing, in control. The first one is sliding ter-
mination point simulation with energy correction and the second
one is based on controllable wave digital filter delay lines.

1. INTRODUCTION

Modeling and sound synthesis of string andwind instruments is re-
alized typically by digital waveguides (DWG) [1] or by their sim-
plified version, the Karplus-Strong algorithm [2, 3, 4]. Figure 1(a)
shows the basic idea of a DWG, based on a two-directional delay
line and terminating wave reflection filters. For example a plucked
string model is excited by feeding a pulse into the lines and the
output may be the force at the bridge or a magnetic pickup signal.

Models based on the Karplus-Strong principle reduce the DWG
into a single-delay loop [4], see Fig. 1(b). It consist of the total
delay of the DWG and a loop filter implementing losses and dis-
persion in the string. The model is typically extended in various
ways, such as using submodels for the two polarizations of vibra-
tion in a string. In both DWG and KS models, fractional delays
are needed to adjust the pitch correctly. In many instruments the
length of the delays must be continuously controllable, which in-
troduces the specific problems discussed in this paper.

Fractional delays needed in the modeling can be realized and
approximated in various ways [5, 6]. The most popular principles
in physics-based modeling are the allpass filters and Lagrange in-
terpolation. Figure 2(a) shows the case where an integer length
part ��� is cascaded with a fractional part made as a first-order
allpass filter. It has the advantage of ideal magnitude response, but
it requires special techniques to avoid transients when when the
delay parameter is changed in a stepwise manner [7].

Figure 2(b) depicts a typical implementation of fractional de-
lay by Lagrange interpolation. It consists of an integer length part
��� and an FIR structure with controllable tap coefficients, in
this case a third order interpolator. Typically third or fifth order
interpolators are used to make the non-ideal magnitude response
flat enough [6]. The transient behavior is more easily in control by
Lagrange interpolation than with the allpass structure [6].
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Fig. 1. (a) The principle of digital waveguide for simulating two-
directional wave propagation and (b) a reduced version of it, a sin-
gle loop Karplus-Strong type of model.
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Fig. 2. Practical realizations of controllable fractional delays: (a)
allpass structure and (b) third order Lagrange interpolator.

In this paper we start from an assumption that an ideal frac-
tional delay filter with controllable delay is available. We can
approach this for example by choosing the order of a Lagrange
interpolator large enough. An ideal fractional delay � consisting
of an integer part ���� and a fractional part �, � � ���� � �, is
obtained as a bandlimited interpolation of signal in a delay line,
which is easily show to correspond to infinite order sinc function
interpolation

���� � ������ �
��

����

���� ��������� �� (1)

By limiting the range of summation and using proper weight coef-
ficients instead of sinc function values, the Lagrange interpolator
results, which is a maximally flat FIR approximation of ideal frac-
tional delay. The computation of tap coefficients for an� th order
Lagrange interpolation is done according to formula:
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Fig. 3. Definitions of sliding point interpolation. The point moves
from �� to �� in a sample period. Corresponding interpolated sig-
nal values are �� and �� . Points �� are integer delay points.
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Two methods will be studied in this paper to guarantee ener-
getically correct behavior of varying delay lines in physics-based
modeling. In Section 2, energy-preserving fractional delay tech-
niques are developed and the aliasing properties are discussed.
In Section 3, the use of energy-preserving Wave Digital Filters
(WDF) is introduced.

2. SLIDING POINT INTERPOLATION

Let us start for simplicity reasons from the single delay loop KS
type structure of Fig. 1(b), although it does not correspond to two-
directional wave propagation for example in a string.

2.1. Energetic behavior

Let us first look at an analog transmission line with a wave prop-
agating only in one direction in a medium, for example in a tube
such as a cylindrical bore of a wind instrument (Fig. 3). The en-
ergy 	 of the wave within a section ���� ��� of the delay-line is

�	 � 	���� ��� �

� ��

��

�����


�

�� (3)

where � is a wave variable such as the sound pressure, � is the lon-
gitudinal coordinate, and 
� is wave impedance properly formu-
lated from an energy point of view, assumed to be constant over the
medium. For discrete-time computation we can interpret Eq. (3)
so that position variable � directly represents the fractional delay,
i.e., � � � � ���� � �.

Let us now assume that we probe the wave variable �, traveling
in the positive direction of �-axis, and feed it back to the starting
point � � � of the delay line. Although this is not a physically
realistic two-directional model, it helps us to deal with the EKS
model of Fig. 1(b) that is important in practical sound synthesis.

If the position of interpolation point makes a jump of�� from
�� to ��, the amount of energy gain/loss�	 is obtained according
to Eq. (3). To conserve the energy in the delay line loop, we have
to compensate for �	 when feeding back the interpolated value
to the beginning of the delay line.

Accurate computation of the energy correction �	 is a nu-
merically expensive task becausethe interpolated waveform should
be known everywhere between � � and ��. It is thus meaningful to
find simple approximations for it. Let us first consider the case
where the frequency of a wave traveling in the line is very low so
that wavelength � � ����, where �� � �� � ��. Thus we can
assume that the value of � is practically constant within the range
���� ���. This can be called the zeroth order energy preserving in-
terpolation. In order to compensate the gain or loss of energy due
to the step �� � ��, we have to use a corrected output value � �
probed from the delay line so that

���


�

�
��


�

��	 �
��


�

���
��


�

(4)

By solving for �� we obtain
�� �

�
���� � � � � (5)

which for small steps�� � ��, where�� corresponds to a unit
step in the delay line, can be approximated by

�� � ��� ��

�
�� � �� � (6)

These compensation gain factors  � and �� are useful for small
steps per sample interval and low-frequency waves.

When the signal frequency is not low or the jump�� is large,
more accurate approximation of �	 can be tried. Next we study
the casewhere the signal output value from the delay line is known
in two points �� and ��. This needs in general the fractional delay
interpolation to be computed twice, first for the previous sample
position �� and then for the new position ��. Let us assume that
the signal values obtained are �� and ��. Then the energy change
�	 can be approximated by assuming linear variation of � be-
tween�� and��, where�� is the starting point of interpolation and
�� is the new interpolation point. Also let us denote � � �� � �

for linear intepolation of � between �� and �� so that � � �� and
� � �� � �� and � � �� ��. From Eq. (3) we obtain
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Similarly to Eq. (4) we obtain
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(9)
It is obvious from Eq. (9) that this first order energy preserving
interpolation is computationally expensive because it requires two
interpolations to get �� and �� and then computing the corrected
term �� from Eq. (9) for every sample period. Even higher order
correction terms can be derived, using a higher number of spatially
sampled points between �� and ��, but the complexity needed
hardly motivates using them in practice for real-time implementa-
tions. In Section 2.3 we will evaluate the method developed above.

The study of sliding interpolation above was made for the KS
type of single delay loop structure. A physically more relevent
model is the dual delay line structure of Fig. 1(a), where moving
the interpolation point has to be applied to both delay lines. In fact
the interpolation must be done from one line through termination
filter into the other one. The latter case can be done by deinterpo-
lation techniques [6]. The study of the energetic behavior of such
a case is left for future.

2.2. Aliasing behavior

Another important problem with delay loop models using time-
varying delays is aliasing. When the length of the delay changes,
the signal is resampled so that the frequencies are scaled accord-
ingly. This is similar to the Doppler effect in acoustics where sig-
nal frequencies are changed if the source or the receiver moves.

In shortening the delay the frequency components are scaled
up in frequency and there is a risk of aliasing, which happens in
a very specific way. When the interpolation point of the delay
line changes by �� per sample period, frequency � is scaled to
a new value � � by rule � � � �� � ���� , where �� � � means
lengthening by a unit step. For shortening of the delay�� is neg-
ative and the frequency is scaled up. For continuous shortening
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Fig. 4. Evaluation of fractional delay filter with (solid line) and
without (dashed line) energy compensation: (a) sliding loop delay
from 100 % (128 taps) to 50 % and back to 100 %, (b) energy
level, and (c) signal amplitude level.

of delay, frequencies close to the Nyquist frequency can thus get
aliased in a normal way. If the sliding of the delay is then stopped,
something interesting happens. The waveform in the delay loop,
see Fig. 1(b), continues looping around regularly, which means
that the signal must again become harmonic, and the aliased signal
components have contributed to the harmonic components of the
new state. Therefore it is not possible to observe inharmonically
aliased signal in the new steady state after the sliding period.

In the delay loop case the aliasing is more severe than in the
case of just reading from a sliding point of a delay line. For signal
components that have travelled around in the loop the final fre-
quency scaling factor is proportional to the relative delay length so
that � � � �������� , where �� is the new length and �� is the origi-
nal length. For example in a guitar string, if the length slides from
open string to fret #12, i.e., the length becomes one half of the full
length, and harmonic frequencies get doubled independently of the
speed of sliding. Fortunately, the high frequences after plucking
a string die out quite rapidly so that the aliasing problem is not
necessarily very severe in practice. It can be alleviated further by
using oversampling, which also helps to improve the magnitude
response of Lagrange type of FIR interpolation.

2.3. Evaluation and experiments

The energy-compensated and uncompensated fractional delay fil-
ters were compared using a lossless KS loop model. Interpolation
was computed through FFT as a 256 point interpolation, being
close to ideal. The delay was changed from 128 taps to 64 taps
and back to 128 taps in about 300 ms for the sample rate of 44100
Hz with step size ���� � ����. This approximates a fast sliding
od guitar string termination by an octave up from 345Hz and back.

For illustration purposes, see Fig. 4, the delay line was ini-
tially filled with a DC signal value, but similar results of amplitude
and energy envelopes are obtained with signal frequencies not too
close to the Nyquist limit. In Fig. 4(a) the energy of the filter cor-
rected according to Eq. (6) stays constant while the uncorrected
one loses energy in relation to the delay length, but gains it back
when the original length is resumed. Figure 4(b) shows how the

����

����

�

���� ���Series

Fig. 5. Wave digital one-port, corresponding to a generalization of
a first-order allpass section.

amplitude in the corrected case increases 3 dB when the delay is
halved, and returns to the original valuewhen the delay is resumed.
The first-order energy correction does not improve the model be-
havior noticeably in practical cases.

The energy preserving KS loop model was successfully used
also in a real-time electric guitar model calibrated after the Fender
Stratocaster. A fifth-order Lagrange interpolator with zeroth-order
energy correction was found perfect enough for good sustain.

3. TIME-VARYINGWDF DELAY LINE

This section will briefly consider a varying-tension string model,
implemented using time-varying wave digital one-ports.

A first-order allpass filter, relating an input sequence�� to an
output sequence 	�, is defined as

	��� �� � � �
���� �� � ������ 
	��� (10)

with � � ��, and is stable for �
� � �. It also possesses the
energy-conserving property

��

����

�	����� �
��

����

������� (11)

The matter of generalizing such a filter to the time-varying case
is a delicate matter; though, for slowly varying coefficients 
� ,
the above recursion is a perfectly acceptable generalization. For
faster variation, there may be some variation in the energy (squared
norm) as per (11), and for extreme variation, the energy can be-
come infinite even for finite energy input signals [9]. For physical
modeling applications in particular, it is very useful to have a guar-
antee of signal energy conservation.

One means of generalizing such an allpass is through the use
of wave digital filters, and in particular those of the power-normal-
ized variety. A wave-digital one-port is shown in Fig. 5 where we
refer to [10] for a description of basicWDF principles. The impor-
tant property of such a design is that, regardless of time-variation
of the terminating port resistance ����, the energy-conserving
property (11) holds (this is a consequence of the orthogonality of
the scattering matrix in the power-normalized case). The design
shown in Fig. 5 can be rewritten as a recursion

	����� � � �
��� ������ �� � ��������������
���	���
(12)

where
���� �

�
�� 
�� � ���

�� 
����
(13)

and reduces to (10) when 
��� � 
, a constant.
We can now construct a string model by connecting thesepower-

normalized one-ports in a loop, as illustrated in Fig. 6. Since the

 parameter of Eq. (12) controls the phase delay of the one-ports,
we can also vary the total loop delay and the resulting fundamen-
tal frequency of the string through 
. It is important to note that
while this WDF string is a single delay loop model such as the
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Fig. 6. (a) The WDF string consists of power-normalized wave
digital one-ports, connected in a loop. If the wave digital formal-
ism is used, the string can also be seen as a loop of inductors con-
nected in series, or as a branch of capacitors, connected in parallel.
(b) Each one-port is essentially a time-varying IIR filter with coef-
ficients given as in Eq. (12).

KS structure, the same energetic properties hold also for the phys-
ically valid dual delay line model, although the former is consid-
ered here for simplicity. Also, since the spatial resolution of the
string is preserved (the number of one-ports is fixed), changing the
� parameter is analogous to varying the string tension, rather than
the string length, as it was in Sec. 2.

3.1. Experiments

Experiments reveal that the time-varying WDF structure simulates
well the varying tension string. For the simulation, we used a loss-
less WDF string model consisting of 126 one-ports. The funda-
mental frequency of the string was again rapidly slided from 345
Hz to 690 Hz and back, and the resulting output amplitude and
normalized string energy behavior are shown in Fig. 7. The de-
lay lines were again initialized with a DC signal for illustrational
purposes, but similar results can be obtained even with impulsive
excitations. The string energy was evaluated as in Eq. (3), except
that this time, due to the change in tension, the wave impedance
was varied, instead of the integration limits. The wave impedance
was calculated as [8]

�� �

�
�� � ������ (14)

where � is the tension, � is the linear mass density,� is the length,
and �� is the fundamental frequency of the string. As can be seen
in Fig. 7(b), the energy of the WDF string remains constant.

It is interesting to note, that since the wave digital one-port
is a time-varying generalization of the simple first-order allpass
filter, the phase delay remains unaltered at high frequencies [5],
thus leading to inharmonicity near the Nyquist limit. On the other
hand, the same effect also prevents the aliasing problem, discussed
in Sec. 2.2.

4. DISCUSSION AND CONCLUSIONS

In this paperwe have studied two ways to realize energy-preserving
fractional delay filters for physics-basedmodeling applications. In
the first one the signal interpolated from a sliding termination point
is compensated by a correction factor. In the second one, time-
varying wave digital one-ports are used in a varying-tension string
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Fig. 7. Evaluation of the WDF string energy. The relative delay
time (in %) of the WDF loop was varied as shown in (a). The
resulting variation in the output amplitude and string energy are
shown in (b) with solid and dashed lines, respectively.

loop to preserve energy. Both methods are found useful in string
instrument modeling, such as in synthesizing the slide guitar.
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