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This study analyzes the handling noises that occur when a finger is slided along a wound string.

The resulting noise has a harmonic structure due to the periodic texture of the wound string. The

frequency of the harmonics and the root-mean-square amplitude of the noise were found to be

linearly proportional to the sliding speed. In addition, the sliding excites the longitudinal modes

of the string, thus resulting in a set of static harmonics in the noise spectrum. The sliding excites

different longitudinal modes depending on the sliding location.
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1. Introduction

Although the basic vibrational behavior of musical
strings is extensively studied in the literature (see, for
example the book by Fletcher and Rossing1), not much
is known about the unintentional handling sounds a musi-
cian makes when playing a stringed instrument. Interest-
ingly, musicians, especially in classical music, often tend
to avoid making these sounds, but artificially removing
them completely will make the music sound unrealistic.
This is one reason why synthetic music can sound less
lively, or more machine-like, than a real recording.

One approach to correct this machine-like quality in
synthesizers is to record a sample library of different han-
dling sounds and trigger a sample whenever a specific
sound is needed, as done by Laurson et al.

2 On the other
hand, a parametric model would provide a more flexi-
ble and memory-efficient way of implementing the han-
dling sounds. More information concerning parametric
or model-based sound synthesis can be found, for exam-
ple in the report by Välimäki et al.

3 Obviously, before
a parametric model for the handling noises can be con-
structed, an in-depth analysis of the noise type must be
presented.

This study analyzes the handling noise generated by
sliding the fingertip or -nail along a wound string, thus
producing a squeaky sound. This type of handling noise,
usually called “fret noise” in the guitar terminology, can
be heard often wherever a wound string is played with
fingers. For the remainder of the article, this squeaky
sound is simply referred to as handling noise.

This article is organized as follows: The measurement
setup is described in detail in Sec. 2, and the general
structure of the handling noise is explained in Sec. 3. A
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thorough analysis of the time-varying noise components
is presented in Sec. 4, while the static noise components
are analyzed in Sec. 5. Finally, conclusions are drawn in
Sec. 6.

2. Measurement setup

The wound string handling noises on a steel-string
acoustic guitar (Landola D-805E) were recorded in the
small anechoic chamber at the Helsinki University of
Technology. The guitar was placed in the normal playing
position (in the player’s lap), and the sound was picked
up by a microphone (AKG C 480 B, cardioid capsule)
50 cm away from the soundhole along the line normal to
the soundboard. The signal was recorded digitally (44.1
kHz, 16 bits) with a sound card (Edirol UA-101) to the
hard drive of a Macintosh laptop.

The handling noises were created by sliding the finger-
tip or -nail along the wound 6th, 5th, and 4th strings.
During the measurements, the slide was performed on
one string at a time, and all other strings were damped
with tape to prevent them from ringing. Although the
analysis for only the 6th string is presented in the fol-
lowing, these results were found to apply to other wound
strings as well.

3. General structure of the handling noise

The resulting spectrogram in Fig. 1 shows that the
noise has a smooth lowpass character with a time-varying
harmonic structure. The frequency of these harmonics
depends on the slide velocity; a faster slide will lift the
harmonics in frequency. This effect was found already
earlier in a recent study4. Also, the amplitude of the
handling noise increases with slide velocity. It can be
seen in Fig. 1, that the slide first increases and then
decreases its velocity. This is natural, since the finger first
accelerates and then decelerates when changing position
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FIG. 1. A spectrogram of the handling noise created by sliding
a finger on a wound guitar string. A 12 ms Hamming analysis
window was used with 75 % overlap. The noise clearly has a
harmonic structure, where the frequency and amplitude of the
harmonics increase with the sliding velocity. In addition to
the moving harmonics, static harmonics (denoted by arrows)
can be found in the spectrum.

on the string.

The presence of the time-varying harmonics can be
explained by the surface texture of the wound string:
each time the finger passes over a single winding turn,
it will produce a noise pulse. Since the winding pattern
is periodic, the resulting sound will be a train of noise
pulses, and thus have a harmonic structure. Naturally,
a faster slide will shorten the time interval between the
noise pulses, thus raising the harmonics in frequency.

In addition to the moving harmonics, less intensive
static harmonics can be found in the spectrum. These
are illustrated with arrows in Fig. 1. The static harmon-
ics are due to the longitudinal vibration of the string: the
finger excites the longitudinal modes while scratching the
surface of the string.

With this in mind, the handling noises can be thought
of as consisting of an exciter and a resonator part. The
excitation, created by the moving string-finger contact,
is discussed in Sec. 4, while the resonator, consisting of
the string vibrations, is discussed in Sec. 5.

4. Analysis of the time-varying finger-string excitation

4.1. Harmonic components

As explained above, an object (finger, nail, or plec-
trum) moving on a wound string creates a velocity-
dependent harmonic force excitation to the string. This

force can be approximated as a periodic pulse train:

F (t) =

[

∑

k

δ(t − tk)

]

∗ f(t), (1)

where t denotes time, δ is Dirac’s delta function, tk is
the time instant of the kth pulse, and f(t) is the impulse
response of a single pulse that is generated when a finger
slips from one winding. The operator ∗ denotes convo-
lution. Thus, the excitation force presented in Eq. (1)
can be interpreted as a periodic Dirac train filtered by
the transfer function of a single pulse. When the sliding
velocity is constant, tk has the form

tk =
k

dwvs
, (2)

where dw is the wound density (wounds per meter) and
vs is the sliding speed (meters per second).

When the sliding speed varies in time, the harmonic
frequencies change. The relationship between the har-
monic frequencies and the sliding speed can be given as
fHn = nvsdw, where n = 1, 2, 3, ... is the mode number.
This relation was found to coincide well with the results
obtained by tracking the lowest harmonic frequency and
the sliding speed on the recordings.

4.2. Handling noise amplitude

The amplitude of the handling noise as a function of
the sliding velocity is illustrated in Fig. 2. The figure
was obtained by evaluating 20 slide events, where the user
slided his fingernail the distance of 23 cm on the surface of
the string while attempting to maintain a constant sliding
speed. The sliding velocity is approximated by dividing
the distance (23 cm) by the duration of each slide event.
The vertical axis in Fig. 2 denotes the root-mean-square
(RMS) value of the slide events, normalized to between
zero and unity. It can be seen that the RMS value of
the handling noise is approximately linearly dependent
on the sliding speed.

It must be noted that, due to the measurement setup,
the finger speed could only be kept approximately con-
stant during the slides. However, small variations in the
sliding speed average out when the RMS value is taken.

5. Analysis of the string resonances

Naturally, the force exerted by a sliding object to the
string excites the transversal and longitudinal vibrational
modes. The object can also, depending on its type, damp
the string vibrations, especially in the transversal direc-
tion.

In other words, for rigid and relatively sharp objects,
such as a plectrum, mode damping is minimal, and the
transversal vibration plays a major part in the handling
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FIG. 2. Normalized RMS noise value as a function of the
sliding speed. The circles denote 20 different slide events
performed on the fingernail. The dashed line represents a
straight-line fit to the data, where the standard deviation of
the residues is 0.053.

sound. The “pick scrape” effect in contemporary elec-
tric guitar playing is a good example of this; the player
scrapes the plectrum against the string with a long move-
ment, in order to produce a grinding sound with a chang-
ing pitch. The pitch change is caused by the change in
the string’s length from the transversal vibration point
of view: the moving plectrum acts as a rigid termina-
tion and divides the string into two segments. Since the
magnetic pickup is located near one end of the string,
it typically registers the vibration of only one of these
segments.

On the other hand, a fingertip effectively attenuates
the transversal vibrations, so the string vibrates mostly
in the longitudinal direction. Since this type of handling
noise generation is much more common, the longitudinal
mode excitation is considered more thoroughly in the fol-
lowing.

The partial differential equation for the longitudinal
string vibration can be formulated as follows5:

µ
∂2ξ

∂t2
= ES

∂2ξ

∂x2
− 2R(f)µ

∂ξ

∂t
+ d(x, t), (3)

where ξ(x, t) is the longitudinal displacement of the
string, E is Young’s modulus, S is the cross-section area
of the string, and µ is the linear mass density. The prop-
agation speed is cL =

√

ES/µ =
√

Eρ, where ρ is the
density of the material. Thus, the propagation speed is
constant for a given material and does not depend on
string tension, unlike in the case of the transverse vi-
bration. The function R(f) is the frequency-dependent
frictional resistance. The excitation force density is de-
noted by d(x, t). When the string is excited at one point
xexc, the spatial distribution of the force can be ap-
proximated by a Dirac function: d(x, t) = δ(xexc)F (t).
The force acting on the bridge, Fb, can be computed as
the tension variation at the bridge termination, that is
Fb = ES(∂ξ/∂x)|x=0.

For a given excitation force F (t) at the position xexc,
the bridge force can be approximately computed as

follows6:

Fb(t) =
ES

µL2

∞
∑

k=1

{

k

fk

e−tR(fk) sin(2πfkt)

}

∗
{

sin

(

kπxexc

L

)

F (t)

}

. (4)

The longitudinal modal frequencies fk = kcL/(2L) de-
pend on the propagation speed cL and string length L.
In Eq. (4) it can be seen that the force signal excites a
set of parallel resonances and that the excitation ampli-
tudes depend on xexc. As a special case, those modes that
have a node at the excitation point will not be present.
In addition to eliminating some harmonics, the excita-
tion position xexc has a strong influence on the general
shape of the spectrum. For xexc ≈ 0 or xexc ≈ L the first
few longitudinal modes are only weakly excited.

The assumption that the static components are orig-
inating from the longitudinal vibration is confirmed by
measurements. It can be seen in Fig. 1 that the static
components have a clear harmonic structure and are
around those frequencies where the longitudinal modes
are expected when calculated from the physical param-
eters of the string. Moreover, the frequencies do not
change as a function of tension. Instead, they are in-
versely proportional to string length, being in good agree-
ment with theory. This is shown in Fig. 3. When the
string is excited at different positions, the shape of the
spectrum changes considerably. Figure 4 shows special
cases of exciting the string at half, one third, and one
fourth of its length, and leading to the expected result
that every second, third, or fourth harmonic is miss-
ing from the power spectrum. The time-varying contact
noise caused by the string excitation is averaged mostly
at low frequencies. This explains the spectral peaks be-
low the first longitudinal modes in Fig. 4.

6. Conclusions and discussion

The handling noises created by sliding a finger on a
wound string were analyzed. The resulting noise can be
interpreted to be a result of an exciter-resonator system.
The moving finger-string contact forms the exciter part:
a lowpass-type noise with a clear harmonic structure is
created when the finger rubs against the string windings.
The harmonic frequencies and the RMS amplitude of the
handling noise were found to be linearly dependent on
the slide velocity.

The resonator part consists of the vibrational behav-
ior of the string. The sliding contact excites mainly
the longitudinal string modes, since transversal vibra-
tion is effectively damped by the soft finger-string con-
tact itself. Naturally, different longitudinal modes are
excited depending on the finger location. When a
harder object, such as a plectrum or bottleneck, is
used in the slide, transversal modes will be more sig-
nificant. Sound examples of different handling noises
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FIG. 3. Spectrograms of the scratch noise on the damped 6th
string of an acoustic guitar. A 23 ms Hamming window with
75 % overlap was used in analysis. The string was scratched
with a fingertip, while (a) it had an open length. In (b) and
(c), a capo was applied (b) at the third and (c) at the fifth fret.
In (a), the dotted white line illustrates the frequency of the 1st
and 3rd static harmonics (1400 Hz and 4200 Hz, respectively).
In (b) and (c) the white line denotes the frequency where the
static harmonics should be located if they were a function of
the length of the string. As can be seen, the static resonances
coincide well with the dotted lines.
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FIG. 4. The averaged power spectrum of the handling noise
when the 6th string is scratched at 1/2 (top pane), at 1/3rd
(middle pane), and at 1/4th (bottom pane) of the string’s
length. A magnitude offset of 20 dB was applied to the spectra
for clarity. An averaging window of 23 ms was used. The k

values and the vertical dotted lines denote the longitudinal
mode numbers and locations, respectively.

are available in the companion web-page of this article:
http://www.acoustics.hut.fi/publications/
papers/jasael-handling-noise.

A simple signal-based model for synthesizing contact
sounds on wound strings has been introduced in an ear-
lier study4. However, based on the knowledge obtained
in this article, a more sophisticated physics-based model
for synthesizing wound string contact noises will be pre-
sented in an upcoming article on slide guitar synthesis7.
There, the contact noise between a wound string and the
slide tube is synthesized with a noise pulse train -based
parametric model. Transversal string vibration is im-
plemented with digital waveguides, and the longitudinal
modes are created with static resonators.
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