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1 Introduction

1.1 History

Mankind has enjoyed the music of plucked string instruments for several millenia. The

earliest archeological illustrations of plucked string instruments have been found in the

Magdalenian cave in Ariége, France, where the rock art portrays a shaman holding an

object believed to be a musical bow, drawn approximately 17500 years ago [Sieveking,

1998]. Eventually, the primitive musical bow evolved into various plucked string in-

struments, such as harps, psalteries, and lutes. For an extensive tutorial on the history

of plucked instruments refer to [Jahnel, 1981]. One type of a gut-stringed lute, the 16th

century Spanish vihuela, can be seen as the ancestor of the modern six-string guitar.

The 19th century Spanish luthier Antonio de Torres (1817-1892) had a major impact

on the construction of the guitar by enlarging the body and introducing the fan-shaped

top-plate bracings [Fletcher and Rossing, 1988]. The concept of modern guitar was

dramatically changed with the introduction of the solid-body electric guitar by musical

instrument manufacturers Fender and Gibson in the 1950s.

First reported studies on vibrating strings were conducted by the Greek philosopher

Pythagoras (about 580-500 BC). He discovered that two plucked strings in equal ten-

sion produced pitches in consonant, or pleasing, intervals when their lengths were in

small integer ratios, such as 1
2
, 1

3
, 1

4
, . . .. Pythagoras’ work was not continued until two

thousand years later, when an Italian luthist and composer Vincenzo Galilei (1520-

1591) found that contrary to the knowledge at that time, the string tension did not

follow the Pythagorean consonance ratios [Caleon and Subramaniam, 2007]. Instead,

he concluded that the tension ratio between two similar strings with equal lengths was

4:1 when they were tuned an octave apart [Foley, 2007].
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Later, Vincenzo’s son, Galileo Galilei (1564-1642) revealed that the perceived pitch

of a vibrating string is determined by its frequency, i.e. the number of vibrations per

time unit [Caleon and Subramaniam, 2007]. Therefore, he correctly reasoned that the

pleasing consonance intervals were produced when the frequencies of the two strings,

rather than other string properties, were in integer ratios. At the same time, a French

philosopher and mathematician Marin Mersenne (1588-1648) discovered the relation

between a string’s length, tension, density, and the produced frequency [Foley, 2007].

The vibrational movement of an ideal string was studied in the early 18th century by

English mathematician Brook Taylor (1685-1731), who first noted in 1715 that the ac-

celeration of the string was proportional to its curvature [Mumford, 2006]. Using the

theory of calculus, introduced by Sir Isaac Newton (1643-1727) and Gottfried Wil-

helm Leibnitz (1646-1716) in the late 17th century, Daniel Bernoulli (1700-1782) was

able to derive the partial differential equation for an ideal string. He also provided a

solution in 1738 using separation of variables, which was later refined by Leonhard

Euler (1707-1783) and Joseph Louis Lagrange (1736-1813) [Robinson, 1982].

In 1747 a new solution to the wave equation was presented by the French mathemati-

cian Jean le Rond d’Alembert (1717-1783). He stated [Lindsay, 1973] that the solution

can be seen as a superposition of two arbitrary wave components, traveling in opposite

directions on the string. After this, Bernoulli, Euler, Lagrange, and d’Alembert de-

bated over the true general solution for the wave equation for several years [Shenitzer,

1998]. In 1759, starting from a finite set of linearly connected elementary masses, La-

grange showed that the harmonic vibration of a string is obtained as the number of the

elements approaches infinity [Rayleigh, 1945]. The discussion was finally concluded

in 1807, when the French mathematician and physicist Jean Baptiste Joseph Fourier

(1768-1830) showed that any function, e.g. the initial displacement of a string, can be

given as an infite sum of sinusoids.
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As musicians have known for long, the vibrating string has to be connected to an

instrument body for sufficient sound radiation. Thus, the vibrational properties of the

musical instrument itself have a major impact on the produced sound. There are many

studies on the vibration of a guitar body in the literature (e.g. [Fletcher and Rossing,

1988], see [Richardson, 2003] for an overview), but since it is essentially a linear and

time-invariant phenomenon1, it will not be discussed further in this thesis. For electric

guitars, the magnetic pickup and amplifier properties also contribute a great deal to the

sound. Electric guitar body vibrations have been studied in [Esposito, 2003], and a

report on magnetic pickups can be found in [Jungmann, 1994]. The effect of a guitar

amplifier will be discussed in Chapter 4.2.

The birth of computers in the mid-twentieth century gave new, powerful tools for musi-

cal instrument research. The first discrete-time string models were presented by Hiller

and Ruiz in the early 1970s [Hiller and Ruiz, 1971a,b]. Article III provides a more

thorough discussion on the simulation of a vibrating string. Several discrete-time gui-

tar body models have been presented during the last two decades, starting from simple

filters [Karjalainen and Laine, 1991; Karjalainen et al., 1991, 1993b], to more sophisti-

cated admittance-based [Cuzzucoli and Lombardo, 1999; Woodhouse, 2004] and finite

element [Elejabarrieta et al., 2001; Derveaux et al., 2003; Bader, 2003, 2005; Bécache

et al., 2005] models. Hybrid body models containing warped filters, resonators, and

reverb algorithms have been presented in [Karjalainen et al., 1999; Penttinen et al.,

2000, 2001b]. A comparison between synthesized and measured guitar tones has been

published in [Woodhouse, 2004].

1An opposing view has been presented in [Besnainou et al., 2001], but it is generally considered
invalid [Erkut, 2002; Penttinen, 2006].
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1.2 Nonlinearity and time-variance

The definition of nonlinearity is probably best made through negation. A system with

input x and output f(x) is considered linear, if it is both

• additive, i.e. if f(x1 + x2) = f(x1) + f(x2) and

• homogeneous, i.e. if f(αx) = αf(x), for all α.

An intuitive way of illustrating linearity is to plot the output of a system as a function

of the input. For memoryless linear systems, the result is always a straight line through

the origin, hence the term linear. On the other hand, if a system fails to fulfill either of

the requirements above, it is nonlinear. The input-output relation of a nonlinear system

is a curve, which is not a straight line.

A system is considered time-variant, if its response properties depend explicitly on

time. In other words, an input signal x(t) produces the output

• y(t) = f(x(t), t) at a given time instant t.

Thus, due to the time-variance, the system output can change even if x(t) remains con-

stant. In conclusion, nonlinearity and time-variance are two distinct properties. Thus, a

system might be either nonlinear or time-variant, both, or neither. Systems, which are

linear and do not depend explicitly on time are called linear and time-invariant (LTI)

systems.

So, what is the practical relevance of whether a system is LTI or non-LTI, one might

ask. The answer is that for LTI systems, a special set of analysis tools, called LTI
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system theory, can be used. Probably the most fundamental property of an LTI system

is that its behavior is explicitly defined by its impulse response. The impulse response

is, as its name implies, the output of the system when a single impulse is given as

the input. When the impulse response of a lumped, i.e. dimensionless, LTI system

is known, its response for any input signal can be obtained by convolving the input

signal in the time domain with the impulse response. This is a remarkable simplifica-

tion since it reduces all the functionality of the system into one signal. For spatially

distributed systems, convolving the impulse response in the space domain with an ar-

bitrary excitation gives meaningful results only if the system is space invariant, as in

the hypothetical case of an infinitely long string, for example. Since real strings are

not space invariant, simple spatial convolution does not suffice. This will be discussed

further in Sec. 2.

For non-LTI systems, this reduction is not possible. The impulse response of a non-

linear system tells only how the system reacts to an impulse input, but in general it

does not tell anything about the system’s response to any other signal. Therefore, if

the behavior of a nonlinear system is to be defined only by its input-output relation

(the so-called black-box approach), one would have to measure the system’s output

for every imaginable input signal. For time-varying systems, the case is even more

complicated, since the response for a given input depends also on when the input was

fed to the system.

Obviously, LTI systems are a lot easier to analyze or simulate than non-LTI systems

from the engineering point of view. Thus, it is not surprising that various systems are

often considered LTI, although, in the strict sense, they are not. In many cases, the

parameter ranges are chosen so that the inaccuracy due to this erroneous assumption

is negligible, i.e. the system is nearly-enough LTI. However, as nature does not follow

simple mathematical restrictions, the LTI assumption does not hold for real systems in

general. Especially in the case of musical instruments, there are various phenomena in
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which the LTI assumption does not yield realistic results.

1.3 Aim and contents of this thesis

The scope of this thesis is physics-based sound synthesis of string instruments. The

purpose of this branch of research is to use the laws of physics to artificially create

the sounds of real sounding objects, such as musical instruments. These synthesis

techniques can then be implemented for example in electronic keyboards, computer

programs, and mobile devices. Traditionally, most plucked string instruments have

been considered LTI in the synthesis point of view. Although usually faster to com-

pute, LTI string instrument models often sound too artificial or static to be interesting

for a human listener. The present thesis aims to address this problem by adding the

effect of many important non-LTI properties involved in real string instruments, gui-

tars in particular. The inclusion of these phenomena results in more realistic sound

synthesizers that respond to the user’s action more intuitively than previous synthesis

models.

In addition to the physical accuracy of these methods, their ability to produce real-time

sound synthesis is of paramount importance. Usually, there is a trade-off between these

requirements, so a choice has to be made between physical accuracy and system sim-

plicity. Since the author’s main motive for physical modeling of musical instruments

is real-time sound synthesis, the choice of generating models which are sufficiently

accurate for human listeners but can still produce synthesized sound in real time has

been made.

This thesis consists of a summary and seven articles. The articles are published in inter-

national peer-reviewed journals and conferences, and the summary aims to give a con-
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cise description of the results obtained as well as to provide more thorough background

information. The summary consists of five sections. Section 1 discusses the history of

string instrument research, introduces the concept of nonlinearity and time-variance,

and clarifies the aim and purpose of this work. Section 2 studies the vibrational behav-

ior of a linear string, and section 3 gives a brief overview of the simulation methods

used in this thesis. Section 4 discusses the guitar-related nonlinear and time-varying

phenomena that are studied and modeled in articles I-VII. Section 5 gives a conclusion

of the scientific results presented in this thesis. The rest of the thesis consists of the

articles.

Articles I and III introduce new spatially distributed sound synthesis algorithms for

tension modulated strings. These models simulate the initial pitch descent and mode

coupling effects of real string instruments. Unlike previous nonlinear string models,

the new algorithms allow the user to correctly interact with the string at any location

along its length, thus increasing the flexibility of string synthesizers.

Article II presents two new methods for compensating for artificial energy losses en-

countered in current varying-pitch string models. Using the presented techniques, more

realistic models for strings with rapidly varying pitch can be generated. The nonlinear

string model introduced in article III, and the virtual slide guitar introduced in article

VI use these methods.

Article IV introduces a new model for real-time simulation of a guitar tube ampli-

fier stage. In contrast to most previous algorithms, this technique allows a realistic

component-level simulation of the amplifier circuit. More importantly, the proposed

model is modular, which means that the circuit topology can be easily varied. This

simulation scheme is a first step towards a new type of a virtual guitar amplifier, where

the user could easily alter the device’s component values and circuit connections and

immediately hear the resulting change in amplifier’s tone. This future guitar ampli-
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fier simulator could also be used a prototyping tool for conventional tube amplifier

designers.

Handling noises on wound strings is analyzed in article V, which is the first scientific

study of this nonlinear and time-varying phenomenon to the author’s best knowledge.

These squeaky contact sounds are created by a moving finger on a wound string, and

they can frequently be heard in most guitar recordings, even though musicians often try

to avoid creating them. The inclusion of these effects is crucially important if realistic

guitar synthesis is desired, since a total lack of handling sounds make a synthetic string

instrument sound too machine-like and dull. Using the results presented in article V,

more realistic synthesis algorithms for wound string instruments can be generated.

Article VI introduces a new musical instrument, the virtual slide guitar. The physics-

based synthesis engine of this instrument uses the research results presented in articles

II and V, and it is capable of creating realistic slide guitar sounds. The virtual slide

guitar has a gestural camera-based user interface, so that the user can play this virtual

instrument simply by making slide guitar playing movements in front of a camera,

similarly as presented in Karjalainen et al. [2006].

Finally, a physics-based synthesis model for flageolet tones on string instruments is

presented in article VII. Flageolet tones (a.k.a. harmonics) can be generated nearly

with all string instruments by damping the string at some specific locations. The ad-

vantage of the proposed technique over previous flageolet tone modeling mechanisms

is that it allows a more realistic simulation also when the damping is varying in time,

which often happens in real playing situations.
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2 Linear string acoustics

2.1 Ideal string vibration

The vibration of a string can be decomposed into four orthogonal components. This

means that each infinitely short string segment can move in four independent direc-

tions, called polarizations. The first two polarizations, horizontal and vertical, are

transversal to the string, i.e. they move perpendicular to the direction of the string. The

third polarization, longitudinal, expresses the compressional waves within the string

medium. Finally, the fourth polarization, torsional, describes the string’s movement

around its longitudinal axis.

Although the torsional polarization plays an important role in characterizing the vibra-

tion of a bowed string, it has a negligible effect in the case of plucked strings. Thus,

only transversal and longitudinal vibrations are discussed in what follows. Also, since

the physical laws dictating the behavior of the horizontal and vertical polarizations are

the same, mainly the transverse string displacement u is discussed in what follows.

The mathematics in the remainder of this section follow the derivations presented in

several textbooks, e.g. [Fletcher and Rossing, 1988], except that here the focus is on

obtaining the string’s impulse response.

Consider an ideal string – a perfectly flexible, lossless cord – which is tightly fixed

at both ends. The transversal vibration of this theoretical string is governed by the

linearized inhomogeneous wave equation

utt − c2
tuxx =

f(x, t)

µ
, (2.1)

where ut and ux denote the temporal and spatial partial derivatives, respectively. Vari-
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able

ct =

√
T

µ
(2.2)

denotes the transversal wave velocity, where T is the tension of the string and µ is

its linear mass density, i.e. mass per unit length. Variable f in Eq. (2.1) denotes an

external excitation force density, which depends on the longitudinal coordinate x and

time, t. In other words, Eq. (2.1) relates the string’s acceleration to its curvature and

an external excitation. The longitudinal vibration of the string obeys a similar rule as

in Eq. (2.1), except that for the longitudinal wave velocity

cl =

√
EA

µ
, (2.3)

where E is Young’s modulus and A is the cross-sectional area of the string.

As discussed in Sec. 1.1, d’Alembert solved Eq. (2.1) using the traveling-wave solu-

tion

u(x, t) = u0(x + ctt) + u0(x− ctt), (2.4)

where u0(x) = 1
2
u(x, 0) denotes the initial string displacement. Although the synthesis

algorithms discussed later in this thesis are mainly based on d’Alembert’s solution, it

is educational to take a closer look at the closed-form solution of Eq. (2.1), presented

by Bernoulli:

u(x, t) =
∞∑

n=1

sin
(nπx

L

)[
an cos

(
nπctt

L

)
+ bn sin

(
nπctt

L

)]
. (2.5)

Here, L is the length of the string, so that 0 ≤ x ≤ L. Symbols an and bn are constants

defining the modal amplitudes. By setting t = 0 in Eq. (2.5), the initial displacement

of the string can be given as

u(x, 0) =
∞∑

n=1

an sin
(nπx

L

)
. (2.6)

For the initial velocity, taking the time derivative of Eq. (2.5) and setting t = 0 yields

ut(x, 0) =
∞∑

n=1

nπct

L
bn sin

(nπx

L

)
. (2.7)
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In order to solve an, Euler and Lagrange suggested multiplying each side of Eq. (2.6)

by sin(kπx/L) and integrating from 0 to L [Robinson, 1982] to get2

an =
2

L

∫ L

0

u(x, 0) sin
(nπx

L

)
dx. (2.8)

Similarly, Eq. (2.7) gives

bn =
2

nπct

∫ L

0

ut(x, 0) sin
(nπx

L

)
dx. (2.9)

In other words, if the initial string displacement and velocity are known, the vibration

of an ideal string is explicitly given by Eqs. (2.5), (2.8), and (2.9). It must be noted

that Eqs. (2.5) through (2.9) give the solution for the homogeneous wave equation,

corresponding to the case where f(x, t) = 0 in Eq. (2.1).

Since the ideal string is an LTI system, the closed-form solution to the inhomogeneous

wave equation can be obtained by using the impulse response. This would mean setting

f(x, t) = δ(x − x0)δ(t) in Eq. (2.1), i.e. using a (spatial and temporal) force density

impulse as an excitation. If the initial string displacement is zero, applying a force

impulse at x = x0 at time t = 0 corresponds to setting the initial acceleration to

utt =
δ(x− x0)δ(t)

µ
, (2.10)

due to Newton’s second law. Hence, the initial velocity becomes

ut =

∫
δ(x− x0)δ(t)

µ
dt =

δ(x− x0)

µ
. (2.11)

Substituting Eq. (2.11) into (2.9) and reformulating Eq. (2.5) (note that for zero initial

displacement an = 0) gives

u(x, t) =
∞∑

n=1

sin
(nπx

L

) 2

nπct

∫ L

0

δ(x− x0)

µ
sin
(nπx

L

)
dx sin

(
nπctt

L

)
. (2.12)

2More rigorously, it can be stated that the functions
√

2
L sin

(
nπx
L

)
are an orthonormal system of the

space L(2)[0, L].
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Additionally, noting that since the frequency of mode n is fn = nct/(2L), the transver-

sal wave velocity can be written as ct = 2Lfn/n. Also, since it is easy to see that the

integral in Eq. (2.12) equals sin (nπx0/L) /µ, the string vibration resulting from the

force impulse becomes

u(x, t) =
1

πLµ

∞∑
n=1

sin
(nπx

L

) 1

fn

sin (2πfnt) sin
(nπx0

L

)
. (2.13)

Thus, Eq. (2.13) represents the impulse response of an ideal string, fixed at both ends.

In order to get the response for any point-like excitation f(x0, t), time-domain convo-

lution must be applied.

For obtaining the string response to any spatially distributed excitation f(x, t), the case

is different. It must be noted that although the system under discussion is LTI, it is not

spatially invariant. This means that the vibration of a point on the string depends on

its longitudinal coordinate, and simply convolving f(x, t) with Eq. (2.13) in space

does not yield the correct solution. Instead, one must spatially integrate f(x, t) with

the modal shapes in order to get the temporal excitation for each mode separately. In

other words, since Eq. (2.13) gives the string response for any point-like excitation,

the string response for a spatially distributed excitation can be obtained using superpo-

sition, i.e. summing over the spatial points. Formally, the string response for arbitrary

force excitation is thus given as

u(x, t) =
1

πLµ

∞∑
n=1

sin
(nπx

L

)
Hn(t) ∗ Fn(t), (2.14)

where ∗ denotes convolution and

Hn(t) =
1

fn

sin (2πfnt) (2.15)

is the impulse response of mode n and

Fn(t) =

∫ L

0

sin
(nπx

L

)
f(x, t)dx (2.16)

is the excitation force of that mode.
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2.2 Losses and stiffness

In contrast to the ideal string, real strings lose their energy and their vibration grad-

ually decays. Three main reasons for the decay are [Fletcher and Rossing, 1988] air

damping, internal damping, and transfer of mechanical energy through the supports.

The first two of these are dissipative mechanisms due to viscoelastic and thermody-

namic losses. They convert the kinetic energy of the string into heat and are therefore

irreversible processes. Mechanical energy transfer is a process in which the kinetic

energy flows from the string to the instrument body. A small portion of this energy can

also flow back to the string, thus making the energy transfer bidirectional in nature.

These loss types are briefly discussed in what follows. For a more detailed study of

loss mechanisms in musical strings, refer to [Valette, 1995].

Air damping is caused by the viscous flow that retards the movement of the string.

There is also a small energy transfer from the string directly into the surrounding air,

but since the string itself is a poor radiator (its diameter is small compared to the wave-

length) this loss is often considered negligible. For a given frequency, air damping

causes an exponential decay of vibration. This decay is expressed using the time con-

stant τair, which is a function of the properties of the string and air and the vibration

frequency [Fletcher and Rossing, 1988]. A physical interpretation for τair is the time it

takes for the string vibration to decay to 1/e part due to air damping only.

Internal damping consists of all thermo-3 and viscoelastic forces that resist movement

within the string structure. The decay caused by internal damping is characterized

with time constant τint, which has a similar physical interpretation as τair, except that

instead of air damping, only internal damping is considered. String stiffness introduces

additional hysteretic damping, which can also be included in τint, if the frequency-

3Although thermoelastic losses generally play a minor role in metallic strings, they can have a no-
ticeable effect in a certain frequency region, as stated in [Zener, 1937; Valette, 1995].
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dependent behavior of the internal losses are suitably selected. For wound strings,

dry friction, i.e. the friction between contiguous turns of the wound wire, also damps

the string movement. The detailed effect of this phenomenon is, however, not well

understood [Valette, 1995].

Damping through the end supports is often characterized by the coupling impedance,

or its reciprocal, admittance (mobility), between the string and the instrument body.

The impedance gives the ratio between force and the resulting velocity, and it depends

on the string and body properties, contact type, and vibration frequency. The damping

effect of the end supports is again of exponential type and thus it can be given as a

time constant τsup, which essentially is a function of impedance [Fletcher and Rossing,

1988].

The net effect of the major losses can now be expressed using a resistance term [Morse,

1948; Bank, 2006]

R(f) =
1

τtot

=
1

τair

+
1

τint

+
1

τsup

, (2.17)

which is the effective frictional resistance per unit mass. Naturally, R depends not

only on the vibration frequency, but also on the physical properties of the string and air

discussed above. In practice, the correct value of R cannot be defined analytically, but

must be measured from the decay times of real string instruments over some frequency

range. For this reason, it is most practical to denote R as a function of frequency only.

As opposed to ideal strings, real strings are not perfectly flexible, but possess some

bending stiffness. This means that in addition to the string tension T , there is another

restoring force that tends to keep the string in its equilibrium position. In practice,

the stiffness causes dispersion, i.e. harmonic frequencies become stretched so that the

upper partials end up higher in frequency when compared to the perfectly harmonic

case. Stiffness plays a major role in the vibration of thick strings, such as those used
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in the piano, but it is not important for guitar strings due to their smaller diameter

[Järveläinen and Karjalainen, 2006].

Finally, the partial differential equation (PDE) governing the motion of a lossy string

with nonzero stiffness is given as

utt − c2
tuxx + 2R(f)ut +

EAκ2

µ
uxxxx = f(x, t), (2.18)

where κ is the radius of gyration. The solution to Eq. (2.18) is the same as that given

in Eq. (2.14), except that the losses cause the mode impulse response presented in Eq.

(2.15) to have an additional multiplicative decay term [Morse, 1948]:

Hn,lossy(t) =
e−Rnt

fn

sin (2πfnt) , (2.19)

where Rn is the frictional resistance for mode n. In principle, a finite damping through

the supports lowers the modal frequencies since the vibrational length of the string

increases. However, if the damping is small, this shift in frequencies can be considered

negligible, i.e.

fn =
1

2π

[(πnct

l

)2

−R(f)2

] 1
2

≈ nct

2l
. (2.20)

The stiffness causes the spreading of the modal frequencies so that

fn = f0n
√

1 + Bn2, (2.21)

where f0 is the fundamental frequency and

B =
EA

T

(πκ

L

)2

(2.22)

is called the inharmonicity coefficient [Fletcher et al., 1962].
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3 Physics-based sound synthesis

The purpose of physics-based sound synthesis is to create artificial instrument sounds

using the laws of physics. In most cases, it is desirable that the synthesized sounds re-

semble the sound of real instruments as much as possible. In some cases, however, the

synthesized sounds should represent the tones played on an imaginary instrument, a

musical tool for which a real-life implementation would be impractical or even impos-

sible to build (consider, e.g. the 24-string virtual super guitar, introduced in [Laurson

et al., 2002]).

At the time of the writing of this thesis, the largest drawback of physics-based sound

synthesis is the poor sound quality compared to sample-based synthesis methods. This

is caused by the fact that in order to be able to run in real-time, the physical models

often have to be simplified greatly. Also, insufficient control data causes the models

to sound unrealistic; high-quality guitar synthesis, for example, is hard to implement

with a different user interface than the one in a real guitar. Sample-based synthesis

methods can obviously produce very realistic instrument sounds, but they are greatly

limited in flexibility, since they are essentially just modified record-and-playback ma-

chines. Although sample-based approach is suitable for synthesizing instruments with

a relatively small expressive range, such as the organ, it fails to reproduce the nuances

of a more expressive instrument, such as the violin. An excellent article on evaluation

of different sound synthesis techniques can be found in [Jaffe, 1995].

The major advantage in all model-based sound synthesis is the flexibility; the same

model can produce a myriad of different sounds. For example, a general bowed-string

instrument model could produce all the tones of the whole bowed-string instrument

family. Preferably, the synthesizer would conceptually act like a real instrument, so

that the user’s action would produce an intuitive change in the produced sound. This
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way, a musician could play the virtual model just like a real instrument, without first

having to undergo special training for getting used to the model parameters. It must be

noted that such a system does not necessarily have to be implemented using physics;

sample-based synthesizers and spectral synthesis models can aim to do this as well,

although it usually is much more complicated.

Here lies, however, probably the greatest advantage of physics-based sound synthesis:

the mapping between the model parameters and the aspects of the resulting sound is

objective, i.e. defined by the universal laws of nature. In other synthesis methods, this

mapping is subjective. This means that in non-physics-based synthesis techniques the

system designer gets to choose the representation of the model parameters. Thus, he

might call a certain parameter “distance” just because changing that parameter seems

to change the distance between the listener and the virtual instrument in his own opin-

ion. In physics-based models, mother nature has made these decisions already, and

there is no need for the error-prone subjective part. It must be noted that in practice, it

is advisable to use also perceptual information in deciding which physical phenomena

are to be simulated and to which extent. If real-time sound synthesis is to be obtained,

there is little use of simulating processes that do not yield audible results. Perceptual

studies of synthesized string instrument sounds have been reported e.g. in [Järveläinen,

2003].

An exhaustive tutorial on physics-based sound synthesis methods is provided in article

III. For this reason, only those two modeling techniques, digital waveguides (DWGs)

and wave digital filters (WDFs), that are essential for understanding the research results

presented in this thesis are discussed in sections 3.2 and 3.3, respectively. Furthermore,

the discussion is focused on guitar-related modeling, although these paradigms can be

used for simulating various other systems as well. Both digital waveguides and wave

digital filters are based on the wave-formalism, which is elaborated in the following.
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3.1 Kirchhoff vs. wave models

As discussed in article III, physics-based sound synthesis techniques can be divided

into two categories: those that operate with Kirchhoff (K for short) variables, and

those that operate with wave (W) variables. Operating with K variables means that in

addition to the system states, also the digital signals inside the model represent phys-

ical quantities directly. Often these quantities are arranged in pairs (called Kirchhoff

pairs, hence the name) such as voltage and current or pressure and volume flow. The

operation of a system is then usually defined using immittances, i.e. impedances or

admittances, which give the relation between the Kirchhoff pair.

Operating with W variables means that instead of using physical quantities directly, the

model uses d’Alembert’s approach (see Sec. 2) and represents its variables as wave de-

compositions of the physical quantities. Thus, in a W-based model, the signals inside

the synthesis engine represent waves, e.g. pressure waves, traveling in opposite direc-

tions, and the actual physical quantities are obtained by summing the waves together.

In W-based models, the operation of a system is defined by its reflectance instead of

its immittance. Reflectance is defined as the relation between the wave going into the

system and the wave coming out (i.e., reflecting) from the system. From the signal

processing point of view the system reflectance can be seen as equivalent to the sys-

tem’s transfer function, representing the ratio between the input and output signals in

the frequency domain.

A major conceptual difference between K- and W-models is that in W-based systems

the direction of causality is fixed, as discussed in article III. In other words, a decision

has been made that the input causes the output. In K-models, the direction of causality

is left open. For example, in a mass-spring oscillator one might think that the restoring

force of the spring causes the mass to gain velocity, or alternatively that the velocity of
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the mass results in spring displacement and therefore causes a restoring force. If the

system is LTI, the direction of causality is not important from the modeling point of

view, since both interpretations yield the same model. However, with non-LTI systems

a different interpretation leads to a different model. W-based modeling techniques

avoid this ambiguity by forcing the system designer to choose explicitly the input and

output variables.

It must be noted that although immittances and reflectances are frequency-domain

quantities, the actual modeling is most often carried out in the time domain. In practice,

this is obtained by approximating them with digital filters.

3.2 Digital waveguides

The term digital waveguide modeling was introduced by Julius Smith in the 1980s

[Smith, 1985, 1987]. The same principle of using wave variables and scattering junc-

tions had been used already earlier in the Kelly-Lochbaum speech synthesis model

[Kelly and Lochbaum, 1962; Strube, 2000]. Also the Karplus-Strong string model

[Karplus and Strong, 1983] can be seen as a simplified case of a DWG system, although

its relation to physics-based modeling was not apparent at the time of its introduction.

For an excellent tutorial on DWG modeling, see [Smith, 1992].

In practice, DWG systems can be efficiently constructed using delay lines which con-

tain the traveling wave components. In DWG strings, the time delay of the delay loop

equals the inverse of the string’s fundamental frequency. For correct tuning, fractional

delay filters [Laakso et al., 1996] are used. Figure 3.1 illustrates a simple DWG string.

In the most straightforward implementation, only a pointer update per time step is re-

quired for modeling wave propagation. Simulation of losses, inharmonicities, etc. can
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Figure 3.1: A simple DWG string implementation consists of two delay lines, a frac-
tional delay filter for applying the fractional part of the delay, and a loop filter for
simulating losses (after [Smith, 1992]).

be implemented with FIR and IIR filters. Formally, DWG blocks can be seen as re-

flectance functions, discretized using the impulse invariant transform. It must be noted

that the DWG system itself does not have an anti-aliasing mechanism, thus the user has

to ensure that the input signals are properly band-limited to half of the Nyquist limit to

avoid aliasing.

As shown in Fig. 3.1, the simulation of a simple vibrating string can be very efficiently

carried out using DWGs. Concatenating the two delay lines in Fig. 3.1 leads to an

even simpler single-delay-loop [Karjalainen et al., 1998] DWG model. However, since

string instruments do not consist only of the vibrating string, the sound coloration due

to the instrument body is an important auditory aspect and must be simulated also. The

most straightforward implementation would be to apply a digital filter simulating the

instrument body’s transfer function at the string’s output. The shortcoming of this ap-

proach is that for realistic sound synthesis, a large filter would have to be used, which

would slow down the total operation of the instrument model. A solution for this prob-

lem was introduced in 1993 independently in articles [Smith, 1993] and [Karjalainen

et al., 1993b], which suggested that the FIR body filter be commuted with the DWG

input. In other words, the body’s impulse response would be used as the string exci-

tation. This approach simplifies greatly the synthesis algorithm and is perfectly valid
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as long as the string can be considered LTI. For nonlinear or time-varying strings, e.g.

strings that change their pitch during vibration, commuted DWG synthesis cannot di-

rectly be used, since changing the total delay length would vary the instrument body

resonances.

3.3 Wave digital filters

Wave digital filters are a special class of digital filters with physically meaningful pa-

rameters. The WDF technique was formulated by Alfred Fettweis in the late 1960s

[Fettweis, 1971] for discrete-time modeling of analog electric circuits. For a tutorial

on WDF modeling, see [Fettweis, 1986]. Unlike DWGs, WDFs are designed for sim-

ulating lumped, i.e. point-like, systems, although they can be extended for simulating

multidimensional systems in some cases [Bilbao, 2001].

Another difference between DWGs and WDFs is the type of discretization: WDFs

discretize the system reflectance using the bilinear transform, which maps the analog

frequency axis in the s-domain inside the unit circle in the z-domain. This avoids

aliasing of the system response, but introduces warping of the high frequencies since

the infinite analog frequency is mapped onto the Nyquist frequency in the digital do-

main. It must be noted that this warping takes place only in the system response and

not in the wave variables themselves. Thus, also with WDFs, the input signal must be

band-limited to half of the Nyquist limit to avoid signal aliasing. In practice, DWG

and WDF systems can be interconnected (through a scaling coefficient in some cases),

as the wave variables are essentially the same. Wave digital filters are especially well-

suited for modeling electric circuits. This is convenient for simulating the electric

guitar, since the circuitry involved in the magnetic pickups and the amplifier forms an

essential part of the instrument’s sound.
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A basic WDF model consists of elementary blocks called one-ports, which are inter-

connected using N -port adaptors. The one-ports simulate the basic circuit elements,

such as resistors, capacitors, and inductors. The adaptors come in two types: series and

parallel, and they represent series and parallel connections, respectively. The purpose

of an adaptor is to implement wave scattering between the one-ports so that Kirch-

hoff’s continuity rules are preserved. A straightforward implementation method is

to connect the one-ports using three-port adaptors so that the WDF circuit becomes

a binary tree [De Sanctis et al., 2003]. Since the operation of the WDF network is

based on Kirchhoff’s continuity rules, energetic stability is guaranteed automatically4

in time-invariant structures. In the time-varying case, if the system response does not

change rapidly, the system usually remains stable even though stability can no longer

be guaranteed theoretically. Figure 3.2 illustrates a simple electrical circuit and its

WDF representation.

Figure 3.2: A simple electrical circuit, the Kilroy bandstop (a) and its WDF equivalent
(b). In (b), resistor, capacitor, and inductor elements are connected using three-port
adaptor blocks. The lower adaptors (marked with ◦|) denote series connections, while
the upper adaptor (marked with ||) stands for parallel connection.

4With nonlinear WDFs, power-normalized waves [Bilbao, 2001] or variable turns-ratio transformers
[Meerkötter and Felderhoff, 1992] should be used for ensuring energy conservation.
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Each port in a WDF network holds a computational parameter, the port impedance,

which is used in calculating the wave scattering. Effectively, the port impedance values

of all circuit elements are interdependent. By choosing the individual port impedances

correctly, the one-port elements become extremely simple DSP blocks, where the in-

stantaneous dependency between input and output is removed. For a list of some typ-

ical circuit components and their WDF realizations, see article III, p. 41. Since the

signal flow between each element is bidirectional, special scheduling is needed in or-

der for the WDF network to be realizable. The binary-tree approach [De Sanctis et al.,

2003] uses reflection-free ports for implementing the scheduling. A detailed descrip-

tion of the binary-tree method is provided in Sec. 8 of article III.

If the modeled circuit is LTI, the port impedances remain constant throughout the sim-

ulation. Unfortunately, this is not the case with nonlinear WDF elements. Consider,

for example, that the leftmost resistor in Fig. 3.2(a) would be nonlinear. This would

mean that its resistance value, and thus the port impedance, would vary as a function

of the incoming signal. Since the port impedances are interconnected through adaptor

elements, changing the port impedance of any element would require a recalculation

of every port impedance within the circuit. The binary-tree approach [De Sanctis et al.,

2003] can handle one nonlinear element in the WDF network using its special schedul-

ing technique. Other nonlinearities can be connected through delay blocks, if desired.

For memoryless nonlinearities, i.e. nonlinear resistors, the reflectance can be imple-

mented as a simple lookup table, as done in article IV. For nonlinearities with memory

(nonlinear reactances), special mutator elements can be used [Sarti and De Poli, 1999].

It must be noted that, with nonlinearities, aliasing cannot always be avoided even with

properly bandlimited input signals. The reason for this is that the nonlinear distortion

creates high-frequency signal components that will alias back to the baseband. This

aliasing is audible if the nonlinearity is too strong. In article IV, aliased components

are suppressed by using temporal oversampling.
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4 Modeling of nonlinear and time-varying

phenomena

This chapter focuses on explaining a set of non-LTI phenomena related to the guitar,

namely tension modulation, vacuum-tube nonlinearity, time-varying pitch and damp-

ing, and handling noise. Previous simulation attempts are recapitulated, and new

synthesis models introduced in articles I-IV and VI-VII are discussed. For a gen-

eral overview of musical instrument nonlinearities, see [Fletcher, 1998]. Modeling of

various non-LTI effects in musical instruments are discussed in article III and [Bilbao,

2007].

4.1 Geometric string nonlinearities

The term “nonlinear strings”, widely used in the literature, usually refers to a special

vibrational aspect, where the spatial structure of the string causes nonlinear behavior.

Thus, the nonlinearity is caused by the geometry of the string rather than its material

properties, for example. This type of nonlinearity will be studied more thoroughly in

what follows.

4.1.1 Previous work

Many publications considering geometric string nonlinearities can be found in the lit-

erature; see overviews in [Narasimha, 1968; Tolonen, 2000; Erkut, 2002; Bank, 2006].

First studied by Kirchhoff in the late 19th century and later revised by Carrier [Carrier,

1945], the geometric nonlinearities in strings are responsible for various phenomena.
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One of the most audible effects is the initial pitch glide phenomenon [Carrier, 1945;

Valette, 1995], where a heavily plucked string experiences a pitch descent as its vibra-

tion decays due to tension modulation. Another interesting effect is the generation of

missing modes due to nonlinear coupling, where new vibrational modes are generated

after the plucking event [Miles, 1965; Legge and Fletcher, 1984; Feng, 1995; Valette,

1995; Conklin, 1999]. Transversal polarizations are also coupled due to the nonlinear-

ity, causing the vibration to have a whirling motion [Murthy and Ramakrishna, 1964;

Miles, 1965; Anand, 1969; Elliott, 1980; Gough, 1984; Miles, 1984]. The coupling

between transversal and longitudinal modes [Morse and Ingard, 1968; Giordano and

Korty, 1996] in turn leads to generation of another set of harmonics [Nakamura and

Naganuma, 1993], called phantom partials [Conklin, 1999]. The generation mecha-

nism of phantom partials is explained in detail in [Bank and Sujbert, 2005].

In thin strings with relatively high tension, such as those used in a guitar, the longitudi-

nal and transverse vibrations can be considered separable [Oplinger, 1960; Narasimha,

1968; Anand, 1969], as will be discussed later in this thesis. Coupling between the

transverse modes through torsional vibration has been discussed in [Watzky, 1992].

The nonlinearity also causes the string to experience amplitude jumps under forced

oscillation [Murthy and Ramakrishna, 1964; Tufillaro, 1989; Hanson et al., 1994]. An

excellent classification of geometric string nonlinearities can be found in [Bank, 2006].

4.1.2 Tension modulation

A more thorough explanation for the pitch glide and generation of missing harmonics

due to tension modulation is given in the following. The derivation follows the one

presented in [Legge and Fletcher, 1984]. A similar approach has also been used in

[Bank, 2006].
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Consider the short string segment illustrated in Fig. 4.1. The horizontal bold line de-

notes the segment of length dx in its equilibrium position. Next, the string is displaced

so that the end originally at (x1, 0) is moved by v in the longitudinal, and by u in the

transversal direction. The other end, originally at (x2, 0) experiences a displacement of

v + vxdx in the longitudinal and u + uxdx in the transversal direction. The bold arc in

Fig. 4.1 is the segment after the displacement. Since the new length ds of the segment

differs from the original length dx, the local tension of the string can be expressed as

[Oplinger, 1960]

T (x) = T0 + EA(ds− dx)/dx (4.1)

assuming that the relative strain (ds − dx)/dx is sufficiently small that Hooke’s law

still holds. Using linear approximation in Fig. 4.1, the tension can be written in terms

of u and v [Carrier, 1945]:

T (x) = T0 + EA
(√

(1 + vx)2 + u2
x − 1

)
. (4.2)

Figure 4.1: Displaced string segment (after [Carrier, 1945] and [Murthy and Ramakr-
ishna, 1964]).

In the case of guitar strings, the inequality T/EA � 1 usually holds (typical values
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for a low-e string made of steel are T ≈ 76N , E ≈ 20× 1010 N
m2 , and A ≈ 1.04mm2).

Thus, looking at Eqs. (2.2) and (2.3) it can be seen that the longitudinal wave velocity

is considerably larger than the transversal one. A simplifying assumption can now be

made; if the longitudinal tension propagation is considered instantaneous5, each point

on the string will experience the same tension at a given time instant, and the tension

becomes uniform [Oplinger, 1960]6:

T = T0 + EA(L′ − L)/L, (4.3)

where

L′ =

∫ L

0

√
1 + u2

xdx ≈ L +
1

2

∫ L

0

u2
xdx (4.4)

is the elongated length, i.e. the total length of the displaced string. Substituting Eq.

(4.4) in Eq. (4.3) gives an approximation for the spatially uniform tension

T = T0 +
1

2

EA

L

∫ L

0

u2
xdx. (4.5)

In the lossy case, the impulse response of the string can be written using Eqs. (2.14)

and (2.19) as

u(x, t) =
∞∑

n=1

an sin
(nπx

L

)
sin(2πfnt + φn)e−Rnt, (4.6)

where

an =
1

πLµfn

. (4.7)

The φn term in Eq. (4.6) simply denotes the initial phase of mode n. Substituting Eq.

(4.6) into Eq. (4.5) yields the time-varying tension as a function of the string vibration:

T (t) = T0 +
1

2

EA

L

∫ L

0

(
∞∑

n=1

an
nπ

L
cos
(nπx

L

)
sin(2πfnt + φn)e−Rnt

)2

dx. (4.8)

5More precisely, the excitation bandwidth must be small enough so that the longitudinal modes are
excited well below their resonances [Bank, 2006].

6This simplification is sometimes referred to as Anand’s argument due to a more detailed three-
dimensional study presented in [Anand, 1969]. However, it first appears in [Oplinger, 1960].
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Carrying out the integration and neglecting some higher-order terms leads to the ex-

pression [Legge and Fletcher, 1984]:

T (t) ≈ T0 +
π2EA

8L2

∞∑
n=1

n2a2
n (1− cos(4πfnt + 2φn)) e−2Rnt. (4.9)

Two remarkable observations can now be made by studying Eq. (4.9). Firstly, the

exponential term reveals that, due to the frictional resistance, the modulating tension

component decays in time. This explains the initial pitch glide effect, i.e. the fact

that with heavily plucked strings the pitch has initially a higher value that decreases as

the vibration decays. Secondly, the cosine term tells that the tension oscillates with a

double frequency compared to the transversal vibration.

From the 1D wave equation (Eq. (2.1)), one would now assume that the varying tension

would modulate the string curvature and excite vibrational modes near the correspond-

ing sum and difference frequencies. A closer look, however, proves this assumption

wrong. Consider a vibrating string fixed at both ends and characterized by Eqs. (2.1)

or (2.18). For each transversal mode n, the tension varies with frequency 2fn. If the

transversal vibration also carries a mode m, the driving force Tuxx has components

at frequencies 2fn ± fm. Note that even though the tension is the same for all points

on the string, the driving force is not. For efficient mode excitation, two criteria must

be filled: (1) the spatial shape of the exciting force must match the shape of the mode

under excitation, and (2) their frequencies must be relatively close. In other words,

both their spatial and temporal frequencies must match [Legge and Fletcher, 1984].

Listing out different mode numbers for n and m reveals that the two criteria above are

met only when n = m. This means that if the string ends are fixed, the modes can

only act back on themselves, and tension modulation cannot excite modes that are not

initially present in the transversal vibration. In reality, the string ends are not perfectly

fixed, but have a finite impedance. Figure 4.2 shows a typical termination case for a
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guitar.

Figure 4.2: Typical string termination in a guitar. The tension variation T (t) has a
transversal component Tu(t) = sin(α)T (t) (after [Legge and Fletcher, 1984]).

Figure 4.2 shows that due to the angled termination, the tension variation is directly

coupled to the transversal vibration, providing excitation for the double-frequency

modes. Thus, for a middle-plucked string, although the even modes are initially miss-

ing from the spectrum (since they have a node at the excitation location), they experi-

ence a gradual onset as the vibration continues. In reality, the coupling from tension

modulation to transversal vibration is not unidirectional, i.e. also the transversal vibra-

tion is coupled to the tension modulation due to the nonrigid bridge. However, since

this phenomenon is likely to be less significant in practice, it is not discussed further

here.

It must be noted that although the tension modulation was considered only in the two-

dimensional case above, the results are similar for the whole three-dimensional system.

Equations for the motion of a nonlinear string in 3D are provided in [Morse and Ingard,

1968] and [Bank, 2006]7.

7Note that the PDEs in [Morse and Ingard, 1968] differ slightly from the ones in [Bank, 2006]. The
latter ones seem to be physically more valid, as explained in [Bank, 2006].
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4.1.3 Modeling of tension modulation

Numerical simulation of the tension modulation nonlinearity has been carried out by

several techniques. Energy-preserving finite-difference models have been introduced

in [Furihata, 2001; Bilbao, 2004a,b] (see an overview in [Bilbao, 2005]). The advan-

tage of these models is that their numerical stability can be guaranteed. On the other

hand, their computational requirements are often too demanding for real-time sound

synthesis. A modal-based approach for nonlinear string simulation has been taken in

[Trautmann and Rabenstein, 2000] and [Bilbao, 2004b]. Also, hybrid models using

finite-difference strings with resonators for simulating longitudinal modes have been

presented [Bank and Sujbert, 2004; Bank, 2006], as well as models which use separate

DWGs for simulating different polarizations [Bank and Sujbert, 2003]. Stabilization

issues related to undamped nonlinear strings have been addressed in [Shahruz, 1999;

Kobayashi and Sakamoto, 2007].

One popular modeling method has been to use DWGs, where the length of the de-

lay line has been varied in order to simulate the initial pitch glide phenomenon [Kar-

jalainen et al., 1993a; Välimäki et al., 1998; Välimäki et al., 1999; Tolonen et al.,

1999, 2000; Erkut et al., 2002]. A similar approach had been taken already earlier

by Pierce and Van Duyne for modeling a vibrating string terminated in a nonlinear

spring [Pierce and Van Duyne, 1997]. However, since these algorithms use a lumped

fractional delay at the termination of the waveguide, the whole string essentially be-

comes a dimensionless black-box model, where physically meaningful interaction is

restricted to the string ends only. Article I tackles this deficiency by presenting a spa-

tially distributed nonlinear digital waveguide string model, which allows interaction

with the entire length of the string. This new waveguide model uses time-varying

first-order allpass filters evenly distributed along the string. The desired delay change

is evaluated from the tension variation, and the allpass filter coefficients are updated
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each time sample. It must be noted that although the model is presented in a spatially

distributed form, the string tension is considered uniform.

Article I also introduces an experimental finite-difference model of a spatially dis-

tributed nonlinear string. The nonlinearity is simulated by using fractional delay filters

to estimate the string state between sampling instants and thus varying the temporal

sampling interval during run-time. Although the digital waveguide model discussed

above performs better than the finite difference one, the derivation of the latter nicely

shows that tension modulation can be simulated in a finite difference scheme by simply

varying the time step of the algorithm during run-time.

4.1.4 Energy compensation

Another shortcoming of the previous nonlinear DWG models (and time-varying waveg-

uides in general), is the fact that changing the waveguide length at run time introduces

artificial energy variation. Consider, for example, a DWG string which is rapidly short-

ened to half of its original length. If no precautions are taken, half of the signal samples

in the delay lines are discarded, and the string loses its energy. It must be noted that

even though the energetic behavior of a real string under pitch change has not been

clarified, this type of artificial energy loss caused by the delay-line structure of the

DWG is clearly not physical and must be compensated for.

Article II presents two novel energy-compensation methods to resolve this problem.

The first method uses the string length variation to evaluate the artificial energy change

each time sample, and adjusts a scaling parameter inside the waveguide accordingly.

The second method uses power-normalized WDF one-ports in series connection as

delay lines in a DWG string. Due to the energy-preserving properties of power-

normalized WDF elements, the resulting varying-tension DWG does not encounter
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the artificial energy change. Using the power-normalized DWG string presented in II,

a new energy-preserving nonlinear DWG string model is proposed in article III. Basi-

cally, this nonlinear DWG model can be seen as an extension of the spatially distributed

DWG string in article I, with inclusion of the WDF energy-conservation technique de-

scribed in article II. The energy-scaling method, also introduced in II, is used in the

virtual slide guitar, presented in article VI.

4.2 Vacuum-tube nonlinearity

Probably the single most important nonlinear phenomenon related to the electric gui-

tar is the distortion effect caused by nonlinear amplification, vacuum-tube amplifiers

in particular. From the engineering point of view, vacuum-tube technology seems out-

dated in comparison to the modern solid-state (i.e. transistor-based) technology, due

to the large size, high power consumption, poor durability, and expensive price of the

tube elements. Therefore, it might be surprising that throughout the history of the elec-

tric guitar, vacuum-tube amplifiers have been favored by most professional guitarists.

A major reason for this is that the distinctive tone of tube amplifiers was popularized

in the 1950s and 60s by the early rock’n roll bands. At that time, before the transistor

revolution, vacuum-tube technology was the only viable solution for electric audio am-

plification. Since then, the perceptually favorable warm distortion of tube amplifiers

has become the de-facto standard of the rock’n roll guitar sound. From the auditory

point of view, vacuum tubes and transistors behave very similarly when operated in

their linear range. However, major audible differences emerge when the signal starts

to saturate [Hamm, 1973], as happens nearly always with the electric guitar.

A typical guitar amplifier unit consists of a preamplifier, equalization circuit, and a

power amplifier. The purpose of the preamplifier is to magnify the relatively weak
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signal from the magnetic guitar pickups and to provide buffering so that the pickup

response is not changed by the amplifier circuitry. The equalization unit (a.k.a. tone-

stack) provides a typical V-shaped equalization for compensating the pickup’s high

resonance at mid-frequencies, and gives the user additional control over the tone. The

power amplifier boosts the signal so that it is strong enough to drive a loudspeaker.

In the so-called all-tube guitar amplifiers, both the pre- and power amplifier circuits

are implemented with tube technology. Typically, they consist of one or more tube

stages, i.e. circuits that contain a vacuum-tube and other electric components. The

power amplifier also contains an output transformer for generating a suitable voltage

for the loudspeaker and often a phase-splitter circuit for feeding two equal but opposite

signals to the power tubes.

The nonlinear behavior of a triode tube-stage, encountered in preamps, is studied fur-

ther in the following. The same principles can be applied for tetrode and pentode stages

found in power amplifiers, although their operational details are different. An overview

of vacuum-tubes used in audio applications can be found in [Barbour, 1998], while

a more detailed tutorial on different vacuum-tube circuits is provided in [Langford-

Smith, 1954]. The detailed vacuum-tube physics is discussed in [Spangenberg, 1948].

4.2.1 Operation of a triode stage

The circuit diagram of a typical triode tube stage is shown in Fig. 4.3, where the oval

symbol denotes the triode tube. Physically, the tube consists of three electrodes: plate,

cathode, and grid, thus the name triode. The electrodes are marked with black dots in

Fig. 4.3, and the symbols Vp, Vk, and Vg denote the voltages between these respective

points and the ground. The electrodes are enclosed in a glass shell, and a vacuum is

generated inside this casing. The operational idea of the triode tube is that the current

flowing from the plate to the cathode is controlled by the grid, which is located in
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Figure 4.3: Circuit diagram of a typical triode tube stage (adapted from article IV).

between them.

More specifically, when the plate-to-cathode voltage Vpk = Vp−Vk is positive, current

tends to flow from the plate to the cathode. When a negative grid-to-cathode voltage

Vgk = Vg − Vk is applied, the plate-to-cathode current is disturbed, since less electrons

leaving the cathode reach the plate due to the repelling negative charge of the grid in

between. If the grid-to-cathode voltage reaches a large negative value, the plate-to-

cathode current ceases altogether.

The input voltage Vi in Fig. 4.3 represents the tube stage input signal, while the output

voltage Vo represents its output signal. The supply voltage V+ is typically in the range

of one hundred volts or more. The capacitance Ci and resistance Ri provide high-pass

filtering so that any DC component of the input signal is omitted. The resistance Rg

serves for limiting the current in the grid circuit and to avoid instabilities. The cathode

resistor Rk is used for setting the correct operation range for the tube, i.e. for making
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a negative bias for Vgk. The cathode capacitance Ck bypasses the cathode resistor,

increasing gain at audio frequencies. The output capacitance Co and resistance Ro

separate the DC component from the plate voltage Vp and yield the output voltage Vo.

The plate-to-cathode current Ipk (which causes the output voltage Vo) is a nonlinear

function of the plate-to-cathode and grid-to-cathode voltages:

Ipk = f(Vpk, Vgk). (4.10)

Figure 4.4 illustrates the function in Eq. (4.10) for a typical triode tube 12AX7. It

must be noted that besides being nonlinear, this relation also is essentially implicit,

since Vpk depends on Ipk. If a high-amplitude signal is fed to the input of the tube

Figure 4.4: A simulated characteristic plane of a typical triode tube (12AX7). The
current Ipk is a nonlinear function of both the plate-to-cathode and grid-to-cathode
voltages Vpk and Vgk.

stage, it might happen that the grid-to-cathode voltage becomes positive. In this case,
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a current Igk starts to flow from the grid to the cathode, thus producing a voltage drop

IgkRg across Rg. This reduces the grid voltage and causes an additional nonlinearity.

4.2.2 Modeling of vacuum-tube amplifiers

Despite their acclaimed tone, tube amplifiers have some impractical properties: they

are heavy, expensive, and relatively fragile. On the other hand, different classes of

tube amplifiers are known to have quite different tonal qualities. Thus, for obtaining a

variety of high-quality tones, guitarists have traditionally had to resort to an expensive

arsenal of different tube amplifiers. For these reasons, there has been a demand for

modeling amplifiers in recent decades. Several companies (e.g. Roland, Line6, Vox,

Fender, Yamaha) have pursued making products that realistically simulate a collection

of tube amplifiers.

Although solid-state amplifiers also produce nonlinear distortion, it is essentially dif-

ferent from the vacuum-tube distortion (see, e.g. [Santo, 1994]). Thus, for realistic

solid-state modeling of tube amplifiers, special transistor-based emulation circuits have

been suggested: [Todokoro, 1976; Sondermeyer, 1981, 1984; Pritchard, 1989, 1991;

Butler, 1991; Tiers and Kieffer, 1991; Pritchard, 1992, 1995; Sondermeyer, 1996;

Pritchard, 1997, 1998a,b,c]. Also, transistor-based models for simulating the guitar

amplifier’s loudspeaker [Pittman and Buck, 1990], and the loudspeaker-microphone-

setup [Kelsey, 1998] have been reported.

Since the 1990s, the trend of tube amplifier modeling has shifted towards simulation

via digital signal processing (DSP). The advantage of digital algorithms over analog

electric circuits is their versatility: new model parameters are simply loaded into the

system memory when the user switches between amplifier models. Also, the whole

virtual amplifier can be implemented as a computer program, and model updates can
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be made available through the Internet. The term virtual analog modeling describes

this general approach for digitally simulating analog electric circuits. Some digital

amplifier modeling patents can be found in the literature [Kuroki and Ito, 1998; Doidic

et al., 1998; Suruga et al., 2002; Gustafsson et al., 2004] while some others incorporate

also the simulation of special audio effects [Pennock et al., 2003], and multi-channel

amplifier modeling [Limacher et al., 2005, 2006]. Tube amplifiers and other nonlinear

signal processing systems can also be approximated by varying the coefficients of a

linear filter according to the input signal level, as suggested in [Kemp, 2006].

It is interesting to note that although there are various patents in solid-state tube model-

ing, surprisingly few can be found on tube simulation using DSP. One explanation for

this could be that in the quickly evolving music technology market, it is more advis-

able for the manufacturers to implement the software-based technology as quickly as

possible than to patent it. Solid-state tube amplifier modeling products are more easily

reverse-engineered by rival companies, and thus they require the additional protection

by the patent. Despite the marketing claims, current digital tube amplifier modeling

products in general do not simulate the tube circuitry using physics-based modeling.

Instead, most commercial DSP amplifier emulators use very simple signal-based mod-

els matched to the processing power of the hardware [Zölzer, 2007]. In recent years,

also DSP modeling of guitars has been introduced [Celi et al., 2004].

There are some academic studies on simulation of nonlinear audio circuits available

in the literature; a short overview is provided in [Schattschneider and Zölzer, 1999].

Although nonlinear system theory offers tools such as the Volterra series [Rugh, 1981]

for approximating mild nonlinearities [Schattschneider and Zölzer, 1999; Abel and

Berners, 2006], they are in general not well-suited for efficient modeling of strongly

saturating nonlinearities, such as those encountered in guitar amplifiers. Static non-

linearities can also be approximated using broken-line approximation, as suggested in

[Schimmel and Misurec, 2007].
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Non-real-time vacuum-tube simulation has been implemented using the SPICE [Quar-

les et al., 2007; Leach, 1995; Möller et al., 2002] and Matlab [Matlab; Zölzer, 2002]

softwares, while simplified real-time tube-amplifier models have been reported in [Sapp

et al., 1999; Möller, 2004; Schimmel, 2003; Karjalainen et al., 2006; Santagata et al.,

2007]. An analytic model of a triode tube stage has been presented in [Serafini], and

computational issues of nonlinear electric circuits have been addressed in [Serafini and

Zamboni]. The equalization circuitry of guitar amplifiers have also been simulated

[Curtis et al., 2001; Yeh and Smith, 2006]. In addition to vacuum-tube amplifiers,

other nonlinear electric audio circuits, such as the Moog ladder filter [Moog, 1965;

Huovilainen, 2004; Välimäki and Huovilainen, 2006; Hèlie, 2006], chorus and flanger

[Huovilainen, 2005], and distortion and overdrive pedals [Yeh et al., 2007a,b] have

been modeled.

The WDF modeling approach, reviewed in Sec. 3.3, is a promising approach for mod-

eling nonlinearities in real-time [Sarti and De Poli, 1999]. Although several stud-

ies on nonlinear WDF electric circuit simulation have been conducted [Meerkötter

and Scholtz, 1989; Meerkötter and Felderhoff, 1992; Fränken et al., 2001; WDInt],

WDF models for vacuum-tubes have not been previously introduced. Article IV of

this thesis presents WDF model for a triode vacuum-tube amplifier stage. A real-

time implementation of this model is carried out using the BlockCompiler software

[Karjalainen, 2003]. This new algorithm correctly mimicks the basic nonlinear opera-

tion of a single tube stage and realistically simulates the distorted vacuum-tube sound.

Although the WDF implementation of a vacuum-tube stage is computationally less

efficient than a direct signal-based filtering approach, this new algorithm provides a

more accurate, physics-based model suitable, e.g. for rapid prototyping of novel tube

amplifier circuits. Sound examples of the WDF tube stage are available at http://

www.acoustics.hut.fi/publications/papers/icassp-wdftube/.

http://www.acoustics.hut.fi/publications/papers/icassp-wdftube/
http://www.acoustics.hut.fi/publications/papers/icassp-wdftube/
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4.3 Nonlinearities in other string instruments

As one might have guessed, the set of guitar-related phenomena discussed so far is by

no means a complete listing of all nonlinear string behavior. In fact, many other non-

linear aspects affect the sound of various string instruments. One of the most important

ones (and one of the most studied ones, too) is the nonlinear friction between the string

and the bow in violin-type instruments. The nonlinearity causes the bow-string contact

to undergo a stick-slip movement, where the string repeatedly attaches to and detaches

from the constantly moving bow. This periodic excitation is the origin of bowed string

vibration, and thus the source of violin-type instrument sounds.

Many literary works study the bow-string nonlinearity in detail: [McIntyre and Wood-

house, 1979; Schumacher, 1979; Cremer, 1983; Woodhouse, 1993; Schumacher and

Woodhouse, 1995b; Pitteroff and Woodhouse, 1998; Guettler, 2002; Woodhouse and

Galluzzo, 2004]. Also, various modeling approaches have been suggested for sim-

ulating this phenomenon (see an overview in [Serafin, 2004]), for example DWGs

[Smith, 1986, 1997; Takala et al., 2000; Holm and Toiviainen, 2004]8, finite differ-

ences [Palumbi and Seno, 1999], mass-spring models [Cadoz et al., 2001], and modal

synthesis [Antunes et al., 2000]. Other modeling approaches have been presented in

[Schumacher and Woodhouse, 1995a,b; Woodhouse, 2003; Woodhouse and Galluzzo,

2004].

When a piano key is pressed and the hammer hits a string, the layer of felt covering the

hammer is compressed in a nonlinear manner. This causes the hammer to appear harder

when played with a greater intensity, and softer when played lightly. Thus, a heavily

pressed key results in a sound that has a lot of energy in the high frequencies of the

initial transient, while a softly pressed key produces a mellower tone. This hammer-

8Also the MSW algorithm, presented in [McIntyre et al., 1983] can be seen as a waveguide-based
model, although it was presented before the waveguide formalism had been developed.
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felt nonlinearity has been studied, e.g. in [Hall, 1986, 1987a,b, 1992] and simulated

in [Suzuki, 1987; Boutillon, 1988; Chaigne and Askenfelt, 1994a]. For a performance

evaluation of the synthesis model presented by Chaigne and Askenfelt, see [Chaigne

and Askenfelt, 1994b]. The phantom partials, mentioned already in section 4.1.1, are

also an important nonlinear effect in the piano.

Another interesting nonlinearity in plucked string instruments is the displacement con-

straint that the instrument body or fretboard poses to the string. This effect is best

illustrated by slap bass players, who vigorously pop the string so that it hits the fret-

board and produces a percussive sound. Naturally, this technique can be applied to the

guitar as well, although it is less frequently encountered. This effect is discussed and

modeled in the following publications: [Rank and Kubin, 1997; Karjalainen, 2002;

Krishnaswamy and Smith, 2003]. In some string instruments, such as the indian sitar

or tanpura, the displacement constraint takes place at the curved bridge. This phe-

nomenon, introduced in [Raman, 1921], has been thoroughly studied in [Burridge

et al., 1982] and [Valette, 1995].

4.4 Time-varying phenomena in guitars

In guitars, almost all musically interesting events are caused by time-varying string

properties. This section summarizes three important time-varying phenomena: the

varying-length string, fret noise, and time-varying spatial damping.
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4.4.1 Varying-length string

An important time-varying phenomenon encountered in many string instruments is the

change in the playing length of the string during its vibration. This takes place in ev-

ery string instrument where multiple pitches are to be played on a single string. As

with other non-LTI phenomena, physically correct simulation of this aspect might turn

out to be problematic, depending on the modeling technique. In DWG string models,

varying the length (or pitch) of the string corresponds to changing the delay line length

during the running of the algorithm. As discussed in Sec. 4.1.4, this causes an arti-

ficial energy change in the DWG string. Also, when the delay line length is varied,

commuted DWG synthesis, discussed in Sec. 3.2, cannot be used, since changing the

total delay length would also shift the simulated instrument body resonances. Physi-

cally, this would correspond to dynamically varying the size of instrument body during

playing. Although this non-physical behavior might be modeled as a special effect (as

done in [Penttinen et al., 2001a]), it is generally not desired. Varying-length digital

waveguides form the core of the synthesis algorithms presented in articles I, II, III, and

VI.

4.4.2 Fret noise

The guitar-related term fret noise refers to the usually unintentional handling noises

generated by the guitarist’s moving fingers on wound strings. These squeaky sounds

are especially audible in acoustic guitar music, and their imitation is essential for real-

istic guitar synthesis. It must be noted that despite the name, these noises have nothing

to do with the actual frets, and they are encountered also in fretless string instruments,

such as violins. Since the fret noise is caused by the friction between a moving finger

and the strings, it is essentially nonlinear [Urbakh et al., 2004]. Also, it can be seen as
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a time-varying phenomenon, since the characteristics of the excitation and the result-

ing noise vary considerably in time. Tutorials on friction-based sounds are provided in

[Serafin, 2004] and [Rocchesso and Fontana, 2003].

Due to the complicated nature of friction, general simulation models are considered

impossible to formulate [Olsson et al., 1998]. Thus, there are many different friction

models available in the literature. These models can be divided into static (a.k.a. ki-

netic) and dynamic models [Rocchesso and Fontana, 2003]. For static models, the

friction force is a function of the relative instantaneous velocity between the moving

bodies. For dynamic models, the friction force depends on the velocity via a differen-

tial equation. Generally, transient simulation is more accurate with dynamic models

[Altpeter, 1999]. Under constant- or low velocities, both model types behave similarly.

The first simple static friction model was already proposed by Leonardo da Vinci [20-

sim] in the 15th century. As later improved by Coulomb (1785), this model is usually

referred to as the Coulomb friction model. Basically, it states that the frictional force

is opposite to the direction of the movement, but it does not take the magnitude of the

velocity into account. The concept of static friction was introduced by A. J. Morin in

1833, and a viscous friction model was developed by O. Reynolds in 1866. In 1902,

Stribeck suggested that the friction force is a non-monotonic function of the sliding

velocity.

The first dynamic friction model was introduced by Dahl in the late 1960s [Dahl, 1968]

(reviewed in [Olsson et al., 1998]). This was the first model that could simulate the

dynamic pre-sliding displacement. Almost three decades later, a more advanced mod-

eling scheme, the LuGre friction model [Canudas de Wit et al., 1995], which also

simulates the frictional lag and the varying break-away force between the moving bod-

ies, was introduced. The LuGre model has later been extended to include hysteresis

in the friction force [Swevers et al., 2000]. Also, a class of elasto-plastic models that
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allow a purely elastic regime for small displacements [Dupont et al., 2002] have been

formulated.

Article V of this thesis is the first scientific study analyzing the handling noise on

wound strings. Based on this analysis, a contact sound synthesizer is proposed for sim-

ulating the slide guitar in article VI. As presented in article V, the fret noise is generated

by an exciter (the moving finger-string contact) whose output is modified by a resonator

(the vibrating string). The resulting noise has a time-varying harmonic structure with

also a few static harmonics. The frequencies and root-mean-square amplitudes of the

time-varying harmonic components were found to be linearly dependent on the sliding

velocity. Longitudinal wave components were discovered to be responsible for static

harmonics in the noise. It must be noted that although most friction-related studies

are interested in finding the relationship between the sliding velocity and the resulting

force, article V studies how the sliding velocity directly affects the resulting sound. In

a way, the handling noise model in V can be seen as a static friction model, since the

excitation force depends only on the sliding velocity. Recorded sound examples of the

contact noise discussed in article V can be found at http://www.acoustics.

hut.fi/publications/papers/jasael-handling-noise/.

There is a close resemblance between the sliding contact sound model presented in

article VI and the rolling sound synthesis model in [Rocchesso and Fontana, 2003].

However, the algorithm in [Rocchesso and Fontana, 2003] uses a fractal approach for

surface modeling, and implements the friction noise as a special type of pink noise,

called fractal noise. This approach is based on the assumption that the surface texture

is more or less random, and has a high self-similarity. In the case of wound strings,

however, the surface of the string consists of windings, and can therefore be considered

periodic from the sliding point of view. Rolling sound synthesis has been developed

further in publications [Rath, 2003; Rath and Rocchesso, 2004, 2005].

http://www.acoustics.hut.fi/publications/papers/jasael-handling-noise/
http://www.acoustics.hut.fi/publications/papers/jasael-handling-noise/
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In conclusion, the handling noise model proposed in article VI falls somewhere be-

tween a friction model and a periodic impact model. A video of the virtual slide gui-

tar described in article VI can be found at http://www.acoustics.hut.fi/

publications/papers/vsg/. Impact models for sound synthesis have been

implemented using modal techniques [Adrien, 1991; Pai et al., 2001; Rocchesso and

Fontana, 2003; Aramaki et al., 2006] and granular synthesis [Cook, 2002]. Resynthesis

of natural impact sounds is discussed in [Aramaki and Kronland-Martinet, 2006]. Also,

perceptional aspects of impact sounds have been studied [Gaver, 1988; Freed, 1990;

Lutfi and Oh, 1997; Kunkler-Peck and Turvey, 2000; Klatzky et al., 2000; Avanzini

and Rocchesso, 2001b,a; Rocchesso and Fontana, 2003; Avanzini et al., 2005].

4.4.3 Time-varying spatial damping

Spatial damping of a vibrating string refers here to the effect where a musician gently

touches the vibrating string at some location with a finger, setting the string displace-

ment to zero at that point. If performed at a correct location, this will force a vibrational

node at the touched point, but will leave the string vibrating. From the resulting flute-

like tone, called a flageolet tone (or a harmonic in the guitar terminology), all modes

which do not have a vibrational node at the touch point will be missing. In a way, the

plucking event (spatial excitation) can be seen as an opposite operation to the spatial

damping, since the plucking excites those modes that do not have a node at the pluck-

ing point, whereas the spatial damping attenuates all modes that do not have a node at

the damping point.

By damping the string at different locations, the musician can produce flageolet tones

with different pitches. In reality, the spatial damping is carried out in a time-varying

manner; the damping is released quickly right after it has been applied, so that the

string vibration does not attenuate too much. It must be noted that since the human

http://www.acoustics.hut.fi/publications/papers/vsg/
http://www.acoustics.hut.fi/publications/papers/vsg/
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finger is not a point-like object, also the flageolet components will attenuate gradually

if the damping is not released.

Article VII presents a novel physics-based method for synthesizing flageolet tones.

Unlike previous filter-based implementations (e.g. [Penttinen et al., 2006]), this new

technique is able to correctly simulate the spatial damping also in the time-varying

case. The model is based on a DWG string, where a WDF damper (i.e. mechani-

cal resistor) is connected at the desired damping location. This damping location can

be changed during the running of the algorithm. By varying the amount of damping,

realistic flageolet tones can be generated. Sound examples are available on the article’s

companion web-page: http://www.acoustics.hut.fi/publications/papers/

eusipco-flageolets/. Article VII also introduces a commuted version of the

string model, where the LTI parts have been lumped as separate filters.

http://www.acoustics.hut.fi/publications/papers/eusipco-flageolets/
http://www.acoustics.hut.fi/publications/papers/eusipco-flageolets/
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5 Conclusions and future development

This thesis studies some of the nonlinear and time-varying aspects related to the guitar

and presents physics-based methods for their realistic discrete-time modeling. Non-

linearities caused by tension modulation were studied and three new synthesis algo-

rithms were proposed for simulating them. The first algorithm, introduced in article

I, uses time-varying fractional delay filters, evenly distributed inside the delay lines of

a DWG string. The second algorithm, also introduced in article I, uses time-varying

fractional delay filters in varying the temporal sampling instants in a finite-difference

string. The third algorithm, introduced in article III, uses a series connection of time-

varying power-normalized WDFs as a delay line inside a DWG string. Unlike most

previous nonlinear string models, all of these novel algorithms are spatially distributed,

so that they allow interaction with various locations on the string.

Energy-related problems were found to arise with time-varying DWG models, and two

new techniques presented in article II were offered as a remedy. The first technique

evaluates the undesired energy variation from the string elongation each time instant

and tunes a scaling coefficient inside the DWG loop for compensation. The second

technique uses power-normalized WDFs, a.k.a. generalized allpass filters, as delay

elements inside a DWG string. Due to the energy-preserving properties of power-

normalized WDFs, the string energy remains unaltered even though the string tension

is varied. This second technique allows the DWG string to remain spatially distributed,

as shown in the case study of a nonlinear string in article III. The nonlinear operation

of a vacuum-tube amplifier stage was analyzed and a new model for simulating a guitar

tube amplifier stage was proposed in article IV. This novel real-time algorithm simu-

lates the entire amplifier circuit as a WDF network. Unlike previous guitar amplifier

models, this new design is modular, so that more flexible editing of the circuit structure

is enabled.



69

A first study of the handling noise created by a moving finger–string contact was pre-

sented in article V. The handling noise was found to consist of a lowpass-type noise

with both static and dynamic harmonic components. The lowpass cutoff frequency,

frequencies of the dynamic harmonics, and the total amplitude of the contact noise

were found to be dependent on the sliding velocity of the finger–string contact point.

Also, the longitudinal string vibration modes were discovered to generate the static

harmonics. Using the information presented in article V together with the energy-

compensation method in article II, a new real-time synthetic instrument, the virtual

slide guitar, was introduced in article VI. The synthesis model is controlled using a

camera-based gestural user interface, similar to what presented in [Karjalainen et al.,

2006]. Also, the virtual slide guitar includes a novel physics-based synthesis block for

generating the contact noise between the slide tube and the strings.

The generation of flageolet tones was studied and a novel physics-based synthesis al-

gorithm for their synthesis was presented in article VII. This DWG model uses a WDF

damper for simulating the effect of a finger, gently attenuating the string in the desired

location. Due to the physics-based realization of the damper, correct simulation of

time-varying damping is obtained.

In conclusion, the new results obtained in this thesis provide new understanding and

modeling tools for simulating the guitar-related non-LTI phenomena and can be used

for making the current guitar synthesis sound more realistic.

An obvious future task for physics-based sound synthesis research is to find new al-

gorithms for realistic simulation of those musical instruments that have not been pre-

viously modeled. Also, the improvement of current synthesis models in both sound

quality and computational efficiency remains to be done. As discussed in article III,

there is no silver bullet for physics-based instrument modeling: different vibrational

systems often require different modeling schemes. Thus, an important future chal-
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lenge in physics-based sound synthesis is to create a unifying simulation strategy that

efficiently combines the different modeling techniques. The idea of interconnecting

different modeling paradigms has been studied in [Rabenstein et al., 2007], and meth-

ods for combining state-space and wave digital filter models [Petrausch and Raben-

stein, 2005], as well as waveguide and finite difference models [Karjalainen and Erkut,

2004; Smith, 2004] have been presented.

For creating realistic synthetic instruments, extraction of control data for the models

must be further developed. This can be obtained using sensors (such as pressure or ac-

celeration) or optics-based gesture recognition, for example. Haptic interactivity with

the synthesizers can be implemented using e.g. vibrotactile actuators, as described in

[Marshall and Wanderley, 2006]. In many cases the synthesis model parameters are

not directly measurable, so physical parameter estimation must be carried out from

instrument recordings. Some studies applying this for plucked strings [Traube and

Smith, 2000; Liang and Su, 2000; Nackaerts et al., 2001; Erkut, 2002; Riionheimo and

Välimäki, 2003; Penttinen, 2006], bowed strings [Serafin et al., 2001], piano strings

[Aramaki et al., 2001], and the trumpet [D´haes and Rodet, 2003] have already been

conducted. Synthesis parameter estimation from recordings is closely related to auto-

matic music transcription, where playing gestures are extracted from recorded music;

see, e.g. [Klapuri and Davy, 2006] for a tutorial. By using automatic music tran-

scription together with high-quality physics-based sound synthesis, extremely efficient

music compression algorithms could be developed, since only the synthesis parameters

and control gesture data would have to be stored or transmitted.

More interestingly, with a unified modeling approach, the user could create the instru-

ment using a virtual lutherie system, which would allow the compilation of a musical

tool from physical subsystems, such as strings, plates, horns, etc., and the resulting

instrument would behave similar to a real, physical instrument. This system could be

implemented on a computer or a hand-held device, and it could be used by real instru-
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ment builders for rapid prototyping of new designs, or by music enthusiasts just for

entertainment. When combined with realistic control, such systems could, e.g., enable

live music performances through the Internet, where each musician of the orchestra

could participate by playing one’s self-made virtual instrument anywhere in the world.
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