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Precessional motion of a vortex in a finite-temperature Bose-Einstein condensate
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We study the precessing motion of a vortex in a Bose-Einstein condensate of atomic gases. In addition to the
former zero-temperature studies, finite-temperature systems are treated within the Popov and semiclassical
approximations. Precessing vortices are discussed utilizing the rotating frame of reference. The relationship
between the sign of the lowest excitation energy and the direction of precession is discussed in detail.
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I. INTRODUCTION

The Gross-Pitaevskii (GP) approximation is often used to
analyze the Bose-Einstein condensates (BEC) of atomic
gases [1]. The GP approximation only treats the condensate
fraction, leaving out the normal component. Therefore, the
GP equation treats systems at zero temperature. The Bogo-
liubov equations [1] describe the excitations supported by
the condensate in the zero-temperature limit. The Bogoliu-
bov excitation spectra agree with experimental results, such
as the collective oscillation modes (including the Tkachenko
waves) [2,3] of a vortex lattice and those on Bragg spectros-
copy [4] of elongated condensates. Since physical systems
exist at finite temperatures, attempts to incorporate effects of
temperature into the various approximations have been made
[5,6]. Among these, the Hartree-Fock-Bogoliubov-Popov
(Popov) approximation (Sec. V F in Ref. [7]) is one of the
most common finite-temperature approximations.

The Popov approximation treats the density of the normal
gas component as a mean field. The condensate is described
with the GP equation, extended to include the mean field
potential. The excitation spectra and the wave functions of
the normal gas are given by eigenequations which are similar
to the Bogoliubov equations. The excitation spectra and the
wave functions constitute the density of the normal gas.

Within the Bogoliubov (T=0) approximation, the occur-
rence and the disappearance of a vortex are indicated by the
existence of an excitation with negative excitation energy (in
other words, the anomalous excitation). There also exist re-
lations between the direction of the precessional motion of
the vortex and the sign of the excitation energies within zero-
temperature theories. This paper aims to answer the follow-
ing question: Does this relation stay valid in the Popov
(T>0) approximation?

In addition to the problem of the direction of precession,
the precession frequency within the Popov approximation
has not been investigated in detail. The precession frequency
at zero temperature has been discussed within the Thomas-
Fermi (TF) approximation using several methods (see Sec.
5.1 of Ref. [8] and Ref. [9]). There also exists an analysis
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The condensate is assumed to be trapped with a rotation-
ally symmetric trap. Therefore, a precessing vortex is an off-
centered vortex. Within zero-temperature theories, a static
system with an off-centered vortex [11] in the rotating frame
is equivalent to a system in the presence of a precessing
vortex. If the displacement Ar of the vortex from the trap
center is small, the excitation energy of the anomalous mode
[12] or the core-localized mode depends linearly on the ro-
tation frequency. The variational Lagrangian analysis used in
Ref. [12] and Bogoliubov theory yield the same dependence
for a centered vortex.

In a previous study [13], we discussed a precessing vortex
state as a deviation from the axisymmetric configuration. In
this work we aim to treat the precessing vortex in a two-
dimensional (2D) geometry directly within the Popov ap-
proximation in order that the relation between the precession
and the excitations is directly taken into account from the
outset.

II. APPROXIMATIONS

The condensate is treated with a nonlinear Schrodinger
equation (NLSE) within the Popov approximation. The ther-
mal atoms are described using the Popov equations which
are eigenequations. Because of computational complexity,
we use the Popov equations only for excitations below a
certain cutoff energy E... The excitation energies e > E_; are
taken into account within the semiclassical approximation
[14-16]. The density of the condensate is ny(r)=|(r)[?,
where ¢(r) is the condensate wave function. The normal
particle density coming from the excitations below (above)
E.t IS ny (ny). Therefore, the particle number density is
n(r)=ny(r)+n.(r)+ny(r). The condensate is described with
the NLSE:

{- CV2+V_M+g(nO+2n1+2n2) ~ @ I X pip=0,
(1)

where C=#2/(2m) and g=4m#2a/m. The mass of a Na atom
m=38.17 X 10?7 kg and the scattering length a=2.75 nm for

m;hp;grattﬁfe Scyl:\tsesr:fgl-fleld approximation [10] in finite- ,:lioaffoms are employed. We use the cu_toff energy Ey
= wy [17]. The angular velocity of rotation is w,; and the
rotation axis is parallel with the z axis (@,;=€,w,qt). EXcita-
tions below the cutoff E are eigenstates of the Popov equa-
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{= CV2+ V= 1+ 2g(Ng+ Ny + Ny)— @y T X Pl — 9y

= gqUq, (2a)

—{=CV2+ V= +29(ng + Ny + N+ g+ T X Plog
+ g¢*2uq =equq- (2b)

These reduce to the Bogoliubov equations if we neglect n;
and n,. The wave functions uq and v obey the normalization
condition

[ a2 = fogorar =1 ®

The density n,; is a weighted sum of the wave functions u
and v:

ny(r) = { 2
Aleq<Egyp)

(ugf? + logf?) f(eg) + |uq|2}, @)

1
f(e) = e 1" (5)

The higher-energy range e>E, is described within the
semiclassical approximation [14—16] which neglects the de-
rivatives of the amplitudes of the wave functions u and v and
the second derivatives of their phases. We also neglect the
phase of the condensate wave function ¢ here. Then the
Popov equations (2) reduce to algebraic from [Ref. [16], Egs.
(5)]. The expression for n,, in analogy with Eq. (4), is

_ dp EHF 1 1
Ny(r) = J F{g(%) + 5) - E} O (e~Eu), (6)
where the Hartree-Fock (HF) energy

2
8HF(r.p):;_m‘*V‘M+29(no+n1+n2) (7)

and the energies

B(r,p) = Vege(r,p) — gy, (8)
e(r,p) =&(r,p) — @t I X p 9

are functions of r and p. The noncondensate densities n; and
n, are determined from Eqs. (4) and (6). They are treated as
mean field potentials throughout the above equations. Thus
the numerical procedure needs to be self-consistent such that
it is repeated until the solution reaches convergence in which
all the equations are simultaneously satisfied.

The angular momenta of the condensate ¢ and of the
wave functions u, v are

fdf(r X p)gdr
Alp)=e, ——F—, (10)

ﬁJ ny(r)dr
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FIG. 1. Dependence of &’ (lowest &) 0N w,q IN an axisymmetric
system (Ar=0). The solid lines indicate the &’ at T=0 (Bogoliubov
approximation) and T/T.=0.1, 0.3, and 0.5 (Popov approxima-
tion). The dotted lines represent Eq. (13). The angular momentum
gy=-1. The dotted line and the solid line overlap at T=0. The two
lines are separated for T>0, which means that “equality” between
the rotation velocity wy and the excitation energy in Eq. (13) is lost
at finite temperatures.

fu;(r X p)ugdr

Alug) =, (11)

nu,

fv;(r X p)ugdr

1V

where Uy= [|ugl?dr and V4= [|vg/*dr. Within the Bogoliu-
bov theory (T=0), the excitation energies depend linearly on
the angular velocity w,q as follows:

Alvg) =€, , (12)

&= &~ Nt 0y, (13)

Re[{A(ug) = A(¢)1Uq +{Avg) + A($)}V,]
(Ug+Vy) '

o
(14)

The value g is useful for characterizing [2,3] an excitation
for finite-temperature systems also. But as for the « depen-
dence of &, there are deviations from Eq. (13) due to changes
of density in the normal component n;(r)+n,(r) for finite-
temperature systems. Figure 1 indicates these deviations.
Changes in the excitation energies modify the normal-
component density which in turn affects the whole system,
including the &’s themselves. Therefore, the spectrum for
each value of w,y needs to be calculated individually.

I11. OFF-CENTERED VORTEX

The sign of the excitation energy of the core-localized
excitation and the direction of the precessional motion are
related at zero temperature. [12] The predicted precession
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frequency fits well with results of the experiments [18]. A
finite-temperature extension of the Bogoliubov equation, the
Popov approximation, shows that the sign of the core-
localized excitation becomes positive [19,20]. If the direction
of the precessing motion and the sign of the excitation en-
ergy correspond to each other, the precessing motion of the
vortex must also be inverted as the lowest excitation energy
rises from negative to positive values.

We extend the 2D treatment [11] of the Bogoliubov equa-
tions to finite-temperature Popov equations. This makes it
possible to treat the slightly off-centered vortices directly
within the Popov approximation.

Assume that a BEC system has a vortex line perpendicu-
lar to the z axis. Particles are confined with a harmonic trap
along the x and y axes

2
Moy,

2

Vixy) = — (¢ +y) (15)
with w,=27 X 200Hz. The system has finite z thickness and
it is uniform along the z axis. Periodic boundary conditions
along z are used. Hence this system is not a two-dimensional
BEC [21,22], but rather a three-dimensional BEC having re-
stricted geometry. We treat a system having 10° atoms within
a z thickness of 10um. The Thomas-Fermi radius Rqg
=6.793 um is used as the scale of length.

Equations (1)—(9) are repeatedly solved until convergence
to a self-consistent solution. While the vortex-free [A(¢)
=0] and centered-vortex [A(¢)=1] configurations are most
likely, there also exists a solution with an off-centered vortex
[0<A(¢)<1] in a narrow window of w. Figures 2(a)-2(c)
represent such a typical system. Here the angular momentum
is A(¢$)=0.863. The particle number of the condensate is
48% of the total particle number. The noncondensate density
has a characteristic peak at the core of the vortex, like those
in the axisymmetric studies [19,20].

The displacement of the vortex core Ar is unrestricted in
the numerical processes, unlike for the axisymmetric situa-
tions (Ar=0). Therefore, the displacement Ar depends on
temperature T and rotation frequency w,y as presented in
Fig. 3(a).

Figure 3(a) plots rotation frequencies at which the system
is static. Let us denote the displacement and the rotation
frequency at the static point as Ar’ and o/, When Ar < Ar’,
wrot= 0y, and T=0, the vortex has an instability and it tends
to move inward. When Ar> Ar’, the direction is outward.
As w,y increases in Fig. 3(a), the system has a wider range of
displacements Ar having an inward instability. This instabil-
ity brings the vortex to the center of system and makes the
vortex state more sustainable. At the finite temperature T
=0.1T,, the range of Ar having an inward instability is al-
most the same. But the positive value of the lowest excitation
energy &’ in Fig. 3(b) requires that the displacement Ar is
stable and the vortex tends to remain at Ar=Ar’.

The lowest excitation energies &’ in Fig. 3(b) differ sig-
nificantly between the T=0 system and the T=0.1T, system.
It is small and negative (0>¢&’>-0.004% w,,) for the T=0
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FIG. 2. Density profiles of a system at the temperature T
=0.5T, and angular momentum of the condensate .A(¢)=0.863 in
rotating coordinates with w,,;=0.300 wy,. (a) Particle density ny(x,y)
of the condensate; (b) particle density n;(x,y)+n,(x,y) of the non-
condensate; (c) excitation spectra eq vs d,. The solid line shows 1
- w00yl @y 1tS slope indicates the rotation velocity wy. The line
touches the dipole modes at gy==*1.

system, while it is positive in the T=0.1T, system. The cor-
responding rotation frequencies w,q in Fig. 3(b) differ only a
little. This indicates that the direction of the precessional
motion, which is represented by the sign of w,., and the sign
of the lowest core excitation energy are not related in the
T>0 systems. This point is discussed further in the next
section.
Figures 4(a) and 4(b) compare the spectral densities
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FIG. 3. Horizontal axis indicates the displacement Ar of the
vortex core from the center of the harmonic trap. (a) The vertical
axis is the angular velocity w of the rotating coordinates for tem-
peratures T=0.0T;, 0.1T., 0.3T,, and 0.5T.. The difference in the
frequencies is less than 2% between a point at T=0 and a corre-
sponding one at T=0.1T. within Ar<0.4. The dotted line is the
result of the TF approximation at T=0 [9]. Our results for T
=0.1T, are 16-19% above those of the TF approximation. (b) The
lowest excitation energy. All of the energies in the finite-
temperature (T/T;=0.1,0.3, and 0.5) systems are positive. The en-
ergy of the lowest core-localized excitation turns negative for T
=0 only when the normal densities n; and n, are neglected.

= [or B (uelogieq + oot
Qi<

h—ujfr<(j+1)
(16)
" — dpdr %( 1) - l n_
G(=") -f - { S\ e+ 5 ) =5 (oo
(17)
and the angular momenta of the noncondensate
. 1 "
Li=e - > dr[{ug(r X p)ug
‘sﬂ- j+
a.j ﬁwtr<(J 1
+04(r X pPlugh(eq) + vg(r X p)ugl, (18)
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FIG. 4. (a) Spectral distributions g;(e) obtained within the
Popov approximation and g,(e) obtained within the semiclassical
approximation. (b) Angular-momentum distributions L; and L,.
These two approximations yield consistent particle numbers and
angular momenta for a wide range of energies. The temperature
T/T,=0.5 and the angular momentum A(¢)=0.863.

h h3

1 ewe(rp) "
- 2( (D) 1)}5(8 €) (19)

to verify the mutual consistency of the Popov approximation
and the semiclassical approximation. Above, g; and L, are
obtained within the Popov approximation, while g, and L,
are obtained within the semiclassical approximation. Results
of these two approximations are consistent with each other
for £ > 5% wy,.

The core-localized mode is mainly affected by the particle
densities inside the core, while g; and g, account for the
densities over the whole area of the system. Since our main
interest is the core-localized mode, we employ calculations
with reduced accuracy for n, and g, for larger x, y (around
|X| >1.2Ry or |y|>1.2Ry). This affects the plot for g; in
Fig. 4(a), but it has little effect on ¢’ as shown in the depen-
dence of ¢’ on the cutoff energy E. [17].

L =e, - f dndr - p){f(s(r,p))

IV. THE SIGN AND DIRECTION OF VORTEX
PRECESSION

The angular velocity wp. Of the precessional motion of a
vortex is related to that of the rotating frame w,, through

Wprec + Wror = CONSt (20)

within the GP equations. The core-localized excitation has
the lowest excitation energy ¢’ within the range of w,,; we
treat. Using variational Lagrangian analysis [12], it can be
shown that

063601-4



PRECESSIONAL MOTION OF A VORTEX IN A...

g’ =0at wye=0 (21)

for a small displacement Ar. This relation remains valid for
0< Ar <0.5R within the accuracy 0>¢’ >-0.004% w, in
the present system [see Fig. 3(b)].

Equations (13), (20), and (21) lead to the relation

&' = ipwprec. (22)

Therefore, the direction of the precessional motion and the
sign of the core-localized excitation correspond to each other
at T=0.

If the coordinate transformation in Eqg. (20) were not
valid, the relation Eq. (22) between the excitation energy &’
and the angular velocity g of the precessional motion
would not hold. The next section describes how this occurs
at finite temperatures.

An easier way to disprove Eq. (22) is as follows. Figure
3(b) displays &’ for wpe=0. It shows that Eq. (21) is no
longer satisfied for T>0. Therefore, it becomes impossible
to satisfy Eq. (22). The sign of the lowest excitation and the
direction of the precessional motion are no longer related
within the finite-temperature (Popov) approximation.

V. PRECESSING AND ROTATING FRAMES

We have presented density profiles of an off-centered vor-
tex within the rotating frame. This frame mimics a system of
atoms in a rotating trap although the deformation of the trap-
ping potential is not included explicitly. The vortices are pre-
cessing if we observe them from the nonrotating frame. But
there is a restriction in the velocity of the precession.

Let us compare the velocities of the noncondensate and
the angular velocity of the frame ;o at wpe=0. Figure 5(a)
displays the local velocities on the x axis for the system. The
velocities

_ Re[Py(r) + Py(r)]
Y0 ity + g0} =9
V(r) = Re[Py(r) + Py(r) + Pz(r)], (24)

mn(r)

which are particle-current densities divided by the particle
densities; they are defined using the momentum densities

Po(r) = ¢*(r)pe(r), (25)
Pi) = 2 {ug(n)pug(r) + vg(npog(n}f(eq)
q(8q<Ecut)
+vg(r)pog(r), (26)
_[dp _1lene(r,p)
Pz(r)—f h3p{f(e(r,p)) 2( D) 1)}
x@)(s(r,p) - Ecut)- (27)

The velocity closely follows that of the rotating frame out-
side the condensate (|x|>Ryg) in Fig. 5(a). It is straightfor-
ward to show that V(r) reduces to
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T T

FIG. 5. (a) Velocities of all the atoms (solid line) and the normal
component (dashed line) along the x axis (y=0). The velocity fol-
lows that of the rotating frame (dotted line) outside the condensate
(X > Ryg). Temperature T=0.5T, and angular momentum A(¢)
=0.863. (b) Density profiles along the x axis for comparison with
(a). The plots of ny (dashed line) and ny+n, (dotted line) are
equivalent to those on the x axes in Figs. 2(a) and 2(b).

V(1) = o= Y, %,0) (28)

for large |r| where the densities of the condensate and of the
normal component below the cutoff are negligible (ng+n;
<n). This indicates adiabaticity between the rotating trap
and the normal gas. Within the Popov approximation, the
angular velocity of the precessional motion of a vortex is
restricted to that of a normal gas and a confining trap.

We have considered static systems with wpe.=0 in a ro-
tating frame with the angular velocity w,,;. These two w’s
may be transformed into each other using the simple rela-
tionship between the stationary and rotating frames of refer-
ence in Eq. (20), valid at zero temperature. But taking into
account the normal component, this relation is valid only
when the normal component is rotating at the angular veloc-
ity wy. Varying o, Will change the density profiles through
Egs. (9) and (13). Then the coordinate transformation Eq.
(20) does not hold. The adiabaticity required within the
Popov framework restricts the recognition of w,y as the an-
gular velocity of precession wyc. This is another reason why
Eqg. (22) does not hold at finite temperatures.

V1. DISCUSSION

It is confirmed that the sign of the lowest excitation en-
ergy &’ is, in general, unrelated to the direction of the pre-
cessional motion of a vortex within the Popov approxima-
tion. Within the Bogoliubov approximation, the excitation
energy ¢’ of the core-localized mode and the precession fre-
quency wpr are proportional to each other as shown in Eq.
(22). The derivation of Eqg. (22) shows that the angular ve-
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locity (and the direction) wyc Of the precessional motion
arises from the coordinate transformation Eq. (20), which
does not have any explicit relation with the core-localized
excitation. Therefore, the core-localized excitation is respon-
sible for the inward/outward motions of vortex and not ex-
plicitly related to the precessional motion.

We think that this nature of the core-localized excitation
does not change even at a finite T. However, a system de-
scribed within the Popov approximation cannot undergo the
coordinate transformation. Within the Popov approximation,
the velocity w,q in Fig. 3(a) may be recognized as the angu-
lar velocity of the precessional motion only when the condi-
tion of adiabaticity is obeyed. Therefore, the relation be-
tween the sign of the lowest excitation energy " and the sign
of wpye, i.6., the direction of the precessional motion of a
vortex, is broken within the Popov approximation.

We obtained the precession frequencies of a vortex at fi-
nite temperatures. The vortex-precession frequency mani-

PHYSICAL REVIEW A 69, 063601 (2004)

fests [Fig. 3(a)] the same tendency as a function of displace-
ment Ar as the zero-temperature TF studies [8,9]. The
precession frequency increases as the displacement Ar and
the temperature increase. The frequencies for T=0 and T
=0.1T,, differ only little despite the large changes in the
excitation spectra. Although the pinning effect [19-21]
caused by the normal component makes a significant differ-
ence in the excitation energy ¢’, it has little effect on the
precession frequencies between the systems at zero and finite
temperatures.
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