
IV

Publication IV
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We study stationary clusters of vortices and antivortices in dilute pancake-shaped Bose-Einstein condensates
confined in nonrotating harmonic traps. Previous theoretical results on the stability properties of these topo-
logically nontrivial excited states are seemingly contradicting. We clarify this situation by a systematic stability
analysis. The energetic and dynamic stability of the clusters is determined from the corresponding elementary
excitation spectra obtained by solving the Bogoliubov equations. Furthermore, we study the temporal evolution
of the dynamically unstable clusters. The stability of the clusters and the characteristics of their destabilizing
modes only depend on the effective strength of the interactions between particles and the trap anisotropy. For
certain values of these parameters, there exist several dynamical instabilities, but we show that there are also
regions in which some of the clusters are dynamically stable. Moreover, we observe that the dynamical
instability of the clusters does not always imply their structural instability, and that for some dynamically
unstable states annihilation of the vortices is followed by their regeneration, and revival of the cluster.

DOI: 10.1103/PhysRevA.74.023603 PACS number�s�: 03.75.Lm, 03.75.Kk, 03.65.Ge

I. INTRODUCTION

Quantized vortices are topological defects in systems with
a long-range quantum phase coherence. They have been ex-
tensively investigated in different systems and branches of
physics such as helium superfluids �1,2�, superconductors
�3�, cosmology �4,5�, and optics �6�. Atomic Bose-Einstein
condensates �BECs� are extremely convenient systems to in-
vestigate the characteristics of quantized vortices due to their
experimental versatility; many properties of these systems
can be manipulated with lasers and external magnetic fields.
Furthermore, real-space imaging of BECs can be carried out
by optical in situ or time-of-flight measurements.

In addition to extensive theoretical analysis, vortices and
vortex clusters composed of several vortices with the same
topological charge have been realized and investigated ex-
perimentally in gaseous BECs �7–10�. These vortex clusters
are local minima of energy for rotated condensates and hence
stable states. However, recently there have been theoretical
suggestions that other kinds of vortex clusters can be station-
ary and stable states for nonrotated condensates �11,12�.
These clusters typically consist of vortices and antivortices
in specific configurations such that the various forces acting
on the vortices exactly balance each other. Based on the
seeming robustness under external perturbations of some of
these topological excited collective states, they could also be
considered as solitonic states—indeed, they seem to be sta-
bilized only by strong enough nonlinearity of the condensate.
The development of techniques for vortex creation in dilute
BECs, and especially phase-imprinting methods �13�, may
enable direct construction of such vortex clusters in the fu-
ture. Both from the experimental and theoretical points of
view, their stability properties are a central issue.

These vortex structures have been investigated in the non-
interacting limit �11,14� as well as in interacting systems
�11,12,15,16�. In previous studies, three different stationary
vortex cluster configurations have been found in interacting

pancake-shaped condensates. The so-called vortex dipole
and quadrupole states, shown in Figs. 1�a� and 1�c�, were
originally introduced by Crasovan et al. �11,12�. The station-
ary vortex quadrupole state was found to exist in both inter-
acting and noninteracting condensates, whereas the station-
ary vortex dipole state exists only in condensates interacting
strongly enough. Furthermore, the authors of Refs. �11,12�
studied the stability against small external perturbations of
these configurations by integrating the Gross-Pitaevskii
equation in real time, and concluded them to be stable and
robust in the nonlinear regime.

Subsequently, based on the Bogoliubov quasiparticle
spectra of the cluster states, the stability properties of the
stationary clusters were studied by Möttönen et al. �16�. It
was found that at least for the parameter values studied, both
the vortex dipole and vortex quadrupole states are energeti-
cally and dynamically unstable. The effects of the energetic
instability can be neglected at low enough temperatures due
to vanishingly small dissipation, but the dynamical instabili-
ties can prevent these states from being long-lived. In addi-
tion, another stationary cluster, a vortex tripole, was
introduced—see Fig. 1�b�.

FIG. 1. Density profiles of the condensate for the stationary
vortex dipole �a�, tripole �b�, and quadrupole �c� states. Vortices and
antivortices are denoted by plus and minus signs at the vortex cores,
respectively. The interaction strength parameter is g̃=170. The unit
of length is the harmonic-oscillator length in the x direction.
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In order to clarify the seeming contradiction between the
results of Refs. �11,12� and Ref. �16�, we present in this
paper a systematic study of the stability properties of the
above-mentioned stationary vortex clusters as functions of
total particle number and trap anisotropy. We find the station-
ary vortex cluster states by directly minimizing an error
functional for the Gross-Pitaevskii equation, and compute
the corresponding instability modes, i.e., the quasiparticle
excitations responsible for the dynamical instability, from the
Bogoliubov equations. Finally, we investigate the nature of
the instability modes by computing the time development of
slightly perturbed cluster states. It is found that the charac-
teristics of the instability modes only depend on the effective
strength of the particle interactions and the trap anisotropy.
Some dynamical instability modes do not destroy the cluster
structure and the condensate is therefore referred to as struc-
turally stable, whereas some lead to annihilation and subse-
quent revival of the vortices in the cluster.

II. MEAN-FIELD THEORY

The dynamics of weakly interacting gaseous Bose-
Einstein condensates in the zero-temperature limit is accu-
rately described by the Gross-Pitaevskii �GP� equation

i�
�

�t
��r,t� = H��r,t� , �1�

where the nonlinear operator H=H��� acting on the conden-
sate order parameter � is given by

H��� = −
�2

2m
�2 + Vtr + g���2. �2�

The interaction parameter g is determined by the s-wave
scattering length a as g=4��2a /m. Above, m is the atomic
mass, and the external trapping potential is denoted by Vtr�r�.
The order parameter is normalized according to ����2dr=N,
where N is the total number of atoms in the condensate. The
total energy of the condensate can be calculated as

E��� =� dr�*�r�	−
�2

2m
�2 + Vtr�r� +

g

2
���r��2
��r� .

�3�

The stationary states of the condensate with an eigenvalue
� are solutions to the GP equation of the form ��r , t�
=e−i�t/���r�. Energetic and dynamic stability of a given sta-
tionary state can be inferred from the corresponding excita-
tion spectrum given by the Bogoliubov equations

� L�r� g���r��2

− g��*�r��2 − L�r� ��uq�r�
vq�r�

� = ��q�uq�r�
vq�r�

� , �4�

where L=H+g ���2−�, the quasiparticle amplitudes are de-
noted by uq�r� and vq�r�, and �q is the eigenfrequency cor-
responding to the quasiparticle state with the index q.

If the quasiparticle spectrum contains excitations with
positive norm �dr��uq�2− �vq�2��0 but negative eigenfre-
quency �q, the corresponding stationary state is energetically

unstable, whereas eigenfrequencies with nonzero imaginary
part indicate dynamical instability. The occupation of dy-
namical instability modes increases exponentially in time,
and hence small perturbations of a dynamically unstable sta-
tionary state typically result in large modifications in its
structure.

In pancake-shaped traps, the system in question has an
SO�2� rotation symmetry. However, the vortex cluster states
shown in Fig. 1 are not rotationally invariant. Thus, accord-
ing to the Goldstone theorem �17,18�, there should exist col-
lective low-frequency modes that tend to restore the broken
symmetry by rigidly rotating the cluster states. These modes
are intrinsic to the vortex cluster states, since they are absent,
e.g, for an axially symmetric single vortex state.

The existence of a symmetry-breaking induced long-lived
collective mode is manifested as a 1/k2 divergence in the
response function of a symmetry-restoring variable F �17�.
Let us consider operators of the form �19�

F = 

q
� drf�r����*�r�uq�r� + ��r�vq�r��bqe−i�qt

+ ���r�uq
*�r� + �*�r�vq

*�r��bq
†ei�qt� , �5�

where bq
† and bq are the creation and annihilation operators

for a quasiparticle with index q and f�r� is a complex func-
tion. In the presence of dynamical instability modes, we may
generalize the result presented Ref. �19� to obtain the re-
sponse function as

�F��,t� = −
1

�



q
	 Aq

� − �q,0 + i	
e−2 Im��q�t

−
Bq

� + �q,0 + i	
e2 Im��q�t
 , �6�

with Aq= ��drf*�r���*�r�uq�r�+��r�vq�r���2 and Bq

= ��drf�r���*�r�uq�r�+��r�vq�r���2. The Bohr frequency �q,0

is given by �q,0= �Eq−E0� /�, where Eq=Re���q� is the en-
ergy of the excitation q and E0 is the ground-state energy.
From Eq. �6�, we observe that a necessary condition for the
response function �F to diverge as 1/�, i.e., as 1 /k2, is the
existence of excitations with Re��q�=0. In Sec. IV, we show
that there indeed exists a zero-energy instability mode for all
stationary vortex clusters and we therefore identify them as
the Goldstone modes corresponding to broken rotational
symmetry.

III. COMPUTATIONAL METHODS

In Ref. �16�, the stationary vortex clusters considered
were found to be energetically unstable. Thus, they cannot be
found with the usual methods based on energy minimization.
We employ the method introduced in Ref. �16�, in
which stationary solutions of the GP equation �1� are
found by minimizing the error functional F�� ,��
=�dr � �H���−����r��2. The chemical potential that mini-
mizes the error functional is given by the familiar expression
�=�dr�*�r�H�����r� /N. Using the functional gradient
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F��,��

�* = ��H��� − ��2 + 2g Re��*�r��H��� − ����r���

���r� , �7�

one obtains the stationary solutions, e.g, by the method
of steepest descent or by directly solving the equation

F /
�*=0.

For computational simplicity, we consider a pancake-
shaped system in the harmonic potential

Vtr�r� =
1

2
m��x

2x2 + �y
2y2 + �z

2z2� , �8�

with �x ,�y ��z. Especially, we assume the z confinement to
be tight enough such that the low-energy solutions of the GP
equation and the Bogoliubov equations can be taken to be of

the form 
�z�=1/�2�aze
−z2/�2az

2� in the z direction. If the
harmonic-oscillator length az=�� / �m�z� in the axial direc-
tion is much larger than the scattering length a, the conden-
sate can be described by the usual GP equation with
g=4��2a /m �20�. Substituting the ansatz ��r , t�
=�2D�x ,y , t�
�z� into Eq. �1�, one obtains the effectively
two-dimensional �2D� Gross-Pitaevskii equation in the di-
mensionless form

i
�

�t̃
�̃ =

1

2
	− �̃2 + �x̃2 + �2ỹ2� + g̃��̃�2 +

�z

�x

�̃ , �9�

where �̃�x̃ , ỹ , t̃�=ax�2D�x ,y , t� and ax=�� / �m�x�. The di-
mensionless quantities denoted by the tilde are obtained from
the original dimensional ones by scaling the length by ax,
time by 1/�x, and energy by ��x. The dimensionless con-
stant �=�y /�x characterizes trap anisotropy in the xy plane.

The normalization condition �dx̃ dỹ��̃�2=1 implies the effec-
tive dimensionless 2D coupling constant g̃=4��Na /az.
Equation �9� implies that the only relevant parameters in the
problem are the coupling constant g̃ and the trap anisotropy
�. Thus it suffices to investigate the cluster states as func-
tions of these parameters.

Based on the minimization of the error functional, we
have computed stationary cluster states for different values
of the interaction strength g̃ and trap asymmetry �. To obtain
a proper starting point for the minimization of the error func-
tional F�� ,��, we first minimize the energy of ansatz wave
functions for which the condensate phase is fixed. The found
stationary states were computed to the relative final accuracy
F��s ,�� / �N�2��10−15, which confirms that these states
were, indeed, very accurate stationary states. The Bogoliu-
bov equations were then solved for these states, identifying
possible excitation modes with nonreal eigenfrequencies.
Furthermore, we studied the nature of the found instability
modes by solving the condensate temporal evolution for ini-
tial, slightly perturbed states of the form

��r,0� = �s�r� + �q�uq�r� + vq
*�r�� , �10�

where �s�r� is the condensate order parameter for a station-
ary state, and uq�r� ,vq�r� are the quasiparticle amplitudes of
an instability mode. The constant �q describes the initial

population of the instability mode—by using the normaliza-
tion �dr��uq�2+ �vq�2�=1 for the instability modes, we typi-
cally chose �q�10−2−10−1 corresponding to less than 1% of
the atoms in the unstable mode. We also point out that con-
trary to the real-frequency modes, the energy of the per-
turbed stationary state ��r ,0� in Eq. �10� is up to second
order in �q equal to the energy of the stationary state �s�r� if
the perturbation corresponds to a dynamical instability mode.
Furthermore, our numerical computations have shown that in
the presence of several instability modes in the spectrum of
the state, it is typically sufficient to consider only the exci-
tation with the largest �Im��q��. This is due to the fact that
quasiparticle interactions necessarily excite also the fastest
growing imaginary mode, which seems to always dominate
the condensate dynamics. The temporal evolution of the per-
turbed state was solved numerically from the time-dependent
GP equation using a combination of a split-operator method
and an implicit Crank-Nicolson scheme.

IV. RESULTS

The vortex cluster states were analyzed by varying the
interaction parameter in the range 0� g̃�300 for the rota-
tionally symmetric trap with �=1, and by separately varying
the anisotropy parameter � for fixed interaction parameter
values. Specifically, we studied the existence of the station-
ary vortex clusters for g̃=170 �which was used in the previ-
ous studies in Ref. �16�� and the existence of certain insta-
bility modes for a wide range of the interaction parameter.
Excitation spectra for all the stationary clusters considered
contained negative energy excitations with positive norm,
implying these configurations to be energetically unstable.
On the other hand, dynamical instability of the clusters
turned out to be a more subtle issue. The imaginary parts of
the dynamical instability modes of the clusters in rotationally
symmetric traps are presented in Fig. 2 as functions of the
interaction strength g̃. Inspecting the temporal evolution of
the cluster states in the presence of excited instability modes,
we observe that there are two qualitatively different dynami-
cal instability modes for each cluster, one that turns out to
lead to decay of the cluster and one that tends to rotate the
cluster rigidly. We identify the latter modes as the Goldstone
modes discussed in Sec. II, since they have zero energy and
they vanish if the trap becomes sufficiently anisotropic.

A. Vortex dipole

For a rotationally symmetric trap with �=1, the stationary
vortex dipole state was found to exist only for interaction
strengths g̃�42, i.e., a certain amount of nonlinearity is re-
quired for the existence of the stationary dipole configura-
tion. This agrees with the observations presented in Ref.
�12�. For the vortex dipole, there exist two dynamical
instability modes: one for all interaction strength values g̃
�42–300 considered �marked with � in Fig. 2�, and one
that occurs only in the range g̃�50–80 �marked with � in
Fig. 2�. The latter mode dominates in the region g̃�50–80
due to its larger �Im��q��. Time development of slightly per-
turbed vortex dipole states shows that the mode existing out-
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side the region g̃�50–80 corresponds very accurately to
rigid rotation of the dipole configuration, as shown in Fig. 3.
The structure of the dipole remains intact in this rotation, and
hence the stationary dipole state can be considered structur-
ally stable, although it is dynamically unstable in this region.
Thus dynamical instability does not necessarily imply the
cluster structure to be unstable.

The nature of the instability mode dominating vortex di-
pole dynamics in the region g̃�50–80 is very different from
the rotational mode. Temporal evolution of a slightly per-
turbed dipole state in this regime is shown in Fig. 4. The
dominant mode renders the vortices of the dipole first to

annihilate each other, but eventually the dipole configuration
reappears from the vortex-free state. For g̃�50, the density
distribution of this revived dipole configuration is almost the
same as in the initial state, but the vorticity is changed such
that the vortex becomes an antivortex and vice versa. Similar
behavior has been observed in the numerical simulations of
light propagation in a graded-index medium, where the vor-
tex dipole nested in a light beam undergoes periodic collapse
and revival along the direction of the light propagation �21�.
The collapse and revival of the dipole configuration contin-
ues periodically for g̃�50, whereas for increasing interac-
tion strength, nonlinearity gradually prevents the topological
excitation from recombining and eventually the whole exci-
tation disappears for g̃�80.

In asymmetric traps, the stationary vortex dipole state cor-
responding to interaction parameter g̃=170 was found to ex-
ist in the range ��0.9–1.5. Interestingly, we found that even
the tiny amount of asymmetry corresponding to �=1.005 is
sufficient to eliminate the rotational instability mode for all
values of g̃. This is consistent with the fact that in an asym-
metric trap, the system no longer has the SO�2� symmetry
and the Goldstone mode should vanish. Thus by using a
slightly asymmetric trap, the stationary vortex dipole state
can be made fully dynamically stable in ranges g̃�42–50
and g̃�80. Experimentally, the transfer between the different
stability and instability regimes can be accomplished by
adjusting the total particle number and the trapping
frequencies.

B. Vortex tripole

The vortex tripole state exists only in rather strongly in-
teracting condensates: in symmetric traps with �=1, the sta-
tionary vortex tripole state was found to exist only for g̃
�108. The stationary vortex tripole has always two dynami-
cal instability modes, as shown in Fig. 2. The real part of the
eigenfrequency vanishes for both of these modes, but the
imaginary part of the dominating mode is roughly an order
of magnitude larger than that of the other one. The decay of
the tripole configuration corresponding to the dominating in-

FIG. 2. Absolute values of the imaginary parts of the eigenfre-
quencies corresponding to instability modes as functions of the in-
teraction strength g̃ for stationary dipole, tripole, and quadrupole
clusters confined in a rotationally symmetric trap, with �=1. Curves
corresponding to the vortex dipole are marked with � �decay mode�
and � �rotational mode�, the vortex tripole with � �decay mode�
and � �rotational mode�, and the vortex quadrupole with � �decay
mode� and � �rotational mode�. The dashed and the dotted line
indicate the lower limits of the interaction strength for which a
stationary vortex dipole and tripole were found to exist,
respectively.

FIG. 3. Temporal evolution of the slightly perturbed stationary
vortex dipole state for g̃=160 and �=1. The interaction strength
g̃=160 is in the region where only the rotational mode exists. Time
is denoted by t and it is given in units of 1 /�x. The structure of the
cluster remains very close to the original stationary configuration.

FIG. 4. Collapse and revival of the slightly perturbed stationary
vortex dipole state for g̃=60 and �=1. It should be noted that apart
from oscillations of the vortex locations, the vortex dipole state
remains essentially intact for a long time before it starts to decay.
The vortices have opposite topological charges after the revival of
the dipole state.
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stability mode is shown in Fig. 5. Under small perturbations,
one of the outermost vortices starts to drift out of the con-
densate and eventually it reaches the surface of the cloud and
excites surface modes, which can be observed in the last
panel in Fig. 5. The remaining two vortices form a topologi-
cally neutral vortex dipole. Furthermore, the stationary vor-
tex tripole exists as a stationary state only for g̃�108, which
lies in the structurally stable region of the stationary vortex
dipole. In the numerical simulations, the vortex tripole takes
a time of order 1 /�x for the population �q�10−2−10–1 of
the excitation, before it starts to notably decay. Thus the
decay of the vortex tripole to the vortex dipole is slow
enough to be experimentally observable. The nature of the
other instability mode, to which we refer as the slow mode,
is more difficult to find out since this mode never seemed to
dominate the temporal evolution. Numerical simulations
showed that the slow mode tends to rotate the condensate,
but the evolution of this mode excites also the dominant
instability mode leading to the decay of tripole cluster to
dipole cluster.

In anisotropic traps, the vortex tripole state turned out to
be stationary in the same range ��0.9–1.5 for g�170 as
the vortex dipole. Anisotropy of the trap corresponding to
��1.01 removes the slow instability mode from the spec-
trum, but the dominating mode always persists. This obser-
vation together with the characteristics of the initial decay
dynamics suggest that the slow mode is analogous to the
rotational mode of the vortex dipole and quadrupole. Since
the dominant mode persists in an asymmetric trap, the vortex
tripole state cannot be made dynamically stable by tuning the
interaction strength or the trap anisotropy.

C. Vortex quadrupole

The vortex quadrupole was found to be stationary for all
interaction strengths for �=1. These results are in agreement
with the previously reported calculations of Crasovan et al.
�11�, in which stationary vortex quadrupoles were found to
exist both in interacting and noninteracting condensates. In
this respect, the quadrupole configuration differs essentially
from the dipole and tripole clusters. The dynamical instabil-
ity modes of the quadrupole cluster resemble those of the

vortex dipole: The stationary vortex quadrupole state in a
rotationally symmetric trap has two instability modes, one
that exists for all values of the interaction parameter, and one
existing only in the range g̃�50–280, where it dominates
the condensate dynamics, see Fig. 2. The mode that exists for
all g̃ has Re��q�=0, whereas the other mode has energy
Re���q��10−1��x.

In the region g̃�50–280, the dominant mode of the vor-
tex quadrupole drives the vortices to merge together and an-
nihilate each other, but eventually the quadrupole configura-
tion reappears, as shown in Fig. 6. This mode also generates
oscillations with increasing amplitude such that the conden-
sate stretches and shrinks as the annihilation-revival cycles
proceed. The amplitude of these oscillations increases gradu-
ally, and finally the vortices are driven out of the condensate.
In the regions g̃�60 and g̃�280–300, the existing instabil-
ity mode is analogous to the dipole cluster mode that corre-
sponds to rigid rotation of the cluster, i.e., the Goldstone
mode. Thus the quadrupole cluster is structurally stable in
this regime. Furthermore, one observes from Fig. 2 that the
vortex quadrupole tends to become dynamically stable in the
limit of noninteracting condensate. It has, however, been
shown that in the noninteracting case the persistent current
such as the vortex quadrupole is always structurally unstable
against perturbations in the external trap parameters �22,23�.
Thus dynamical stability does not necessarily imply stability
against small perturbations in the trap parameters and, vice
versa, dynamically unstable states can be structurally robust
with respect to small perturbations.

As a function of the trap anisotropy parameter, the quad-
rupole cluster with g̃=170 was found to be stationary in the
range ��0.9–1.2. For increasing trap anisotropy parameter,
the two vortices of the vortex quadrupole in the direction of
the tight confinement move away from the center of the
cloud, and eventually the state cannot be considered as a
vortex quadrupole. This behavior is due to the increase of the
buoyancy force in the direction of tight confinement and re-
pulsive interaction between vortices with the same topologi-
cal charge.

Analogously to the vortex dipole case, computations with
different interaction strength values g̃ showed that for the
stationary vortex quadrupole state, even the rather small

FIG. 5. Temporal evolution of the perturbed stationary vortex
tripole state for g̃=160 and �=1. The vortex tripole starts to decay
almost immediately to the vortex dipole state due to the strong
dynamical instability.

FIG. 6. Collapse and revival of the vortex quadrupole for
g̃=260 and �=1. In contrast to the vortex dipole state, the vortices
have the same topological charge before and after the collapse and
revival of the cluster.
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amount of asymmetry �=1.1 is sufficient to remove the ro-
tational instability mode from the quasiparticle spectrum.
Hence, also the vortex quadrupole state can be made dy-
namically stable in the regimes g̃�60 and g̃�280.

V. CONCLUSIONS

We have systematically studied the existence, stability,
and dynamics of stationary vortex clusters in dilute pancake-
shaped BECs confined in nonrotating harmonic traps. In con-
trast to the previous investigations �11,12�, our approach uti-
lizes the Bogoliubov equations to determine the quasiparticle
spectrum, which reveals unambiguously not only the ener-
getic and dynamic stability of a given state, but also yields
explicitly the quasiparticle amplitudes of the instability
modes. The nature of these modes was found out by comput-
ing the temporal evolution of slightly perturbed stationary
cluster states.

It was observed that the dipole, tripole, and quadrupole
clusters have various regimes of dynamical instability, but in

some of these regimes the cluster configurations are structur-
ally stable as they only tend to rotate rigidly. On the other
hand, the vortex annihilation modes of the vortex dipole and
quadrupole break the cluster structures altogether, but if en-
ergy dissipation is negligible, the clusters can reappear after
a certain time. Furthermore, it was observed that even very
small trap anisotropies suffice to remove the rotational insta-
bility modes, thus dynamically stabilizing the dipole and
quadrupole clusters for suitable values of the interaction
parameter.
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