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Department of Engineering Physics

Helsinki University of Technology

Espoo, Finland

Dissertation for the degree of Doctor of Science in Technology to be presented with

due permission of the Faculty of Information and Natural Sciences for public exam-

ination and debate in Auditorium D at Helsinki University of Technology (Espoo,

Finland) on the 7th of March, 2008, at 13 o’clock.



Dissertations of Department of Engineering Physics

Helsinki University of Technology

ISSN 1455-1802

Dissertation 153 (2008):

Jukka Huhtamäki: Stability and dynamics of quantized vortices in gaseous

Bose-Einstein condensates

Opponent:

Prof. Martin Holthaus, Carl von Ossietzky Universität, Germany

Pre-examiners:

Assist. Prof. Jani-Petri Martikainen, NORDITA, Sweden

Assist. Prof. Emil Lundh, Ume̊a University, Sweden

ISBN 978-951-22-9255-4 (print)

ISBN 978-951-22-9256-1 (electronic)

Multiprint Oy/Otamedia

Espoo 2008



AB
ABSTRACT OF DOCTORAL DISSERTATION HELSINKI UNIVERSITY OF TECHNOLOGY

P. O. BOX 1000, FI-02015 TKK

http://www.tkk.fi

Author Huhtamäki, Jukka Antti Mikael

Name of the dissertation

Manuscript submitted 11.12.2007 Manuscript revised

Date of the defence 7.3.2008

Article dissertation (summary + original articles)Monograph

Faculty

Department

Field of research

Opponent(s)

Supervisor

Instructor

Abstract

Keywords Bose-Einstein condensation, superfluidity, vortex

ISBN (printed) 978-951-22-9255-4

ISBN (pdf) 978-951-22-9256-1

Language english

ISSN (printed) 1455-1802

ISSN (pdf)

Number of pages 116

Publisher Department of Engineering Physics, Helsinki University of Technology

Print distribution

The dissertation can be read at http://lib.tkk.fi/Diss/2008/isbn9789512292561/

Stability and dynamics of quantized vortices in gaseous Bose-Einstein condensates

X

Faculty of Information and Natural Sciences

Department of Engineering Physics

Bose-Einstein condensation

Prof. Martin Holthaus

Acad. Prof. Risto Nieminen

Dr. Sami Virtanen, Dr. Mikko Möttönen

X

Bose-Einstein condensation is a quantum statistical phasetransition which was theoretically predicted almost a
hundred years ago. After years of seminal research, physicists realized the first almost ideal Bose-Einstein condensates
in ultracold dilute atomic gases in 1995. Since then, the theoretical and experimental methods concerning such systems
have been developing rapidly, and many fascinating phenomena have been found in these novel quantum systems.

Bose-Einstein condensation occurs in a system consisting of massive bosons when a single quantum state becomes
macroscopically occupied as the temperature is lowered below the transition temperature. In general, condensates
consisting of repulsively interacting bosons exhibit superfluidity: Particle currents can flow in the system without
dissipation and viscosity. Moreover, the velocity fields ofcondensates have to be irrotational, which severely restricts
the rotational characteristics of these systems. Apart from the center of mass motion, the system may carry angular
momentum in the form of elementary excitations or so-calledquantized vortices.

This Thesis is a theoretical study of subjects related to stability and dynamics of quantized vortices in dilute atomic
Bose-Einstein condensates. The precession and instability of off-centered vortices in trapped condensates is
investigated both in the zero-temperature limit and at finite temperatures. Dynamical stability of multiply quantized
vortices and vortex clusters is studied in axisymmetric trap geometries. Splitting of energetically and dynamically
unstable multiply quantized vortices into singly quantized vortices is also studied. Finally, as a separate subject,
tunneling of a condensate through a potential barrier is investigated. Majority of this work relies on numerical methods
for solving the Gross-Pitaevskii and Bogoliubov equations, which are of central importance in the study of dilute
atomic Bose-Einstein condensates.
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Bose-Einstein -kondensaatio on kvanttistatistinen faasitransitio, jonka olemassaolo ennustettiin teoreettisesti jo lähes
sata vuotta sitten. Vuosien uraauurtavan tutkimustyön tuloksena vuonna 1995 onnistuttiin realisoimaan kokeellisesti
ensimmäiset lähes ideaaliset Bose-Einstein -kondensaatit erittäin kylmissä atomikaasuissa. Tämän jälkeen aiheeseen
liittyvät teoreettiset ja kokeelliset menetelmät ovat kehittyneet nopeasti ja monia mielenkiintoisia ilmiöitä on löydetty
näistä uudenlaisista kvanttimekaanisista systeemeistä.

Bose-Einstein -kondensaatio tapahtuu massallisista bosoneista koostuvissa systeemeissä kun yksi kvanttitila miehittyy
makroskooppisesti lämpötilan alittaessa transitiolämpötilan. Repulsiivisesti vuorovaikuttavista hiukkasista koostuva
kondensaatti on yleensä on suprajuokseva: Hiukkaset voivat virrata systeemissä ilman kitkaa tai viskositeettia. Tämän
lisäksi kondensaatin nopeuskentän on oltava pyörteetön, mikä rajoittaa systeemin pyörimistä: massakeskipisteliikkeen
lisäksi kondensaatti voi sisältää kulmaliikemäärää eksitaatioina ja niin sanottuina kvantittuneina vortekseina.

Tässä väitöskirjassa tarkastellaan teoreettisesta näkökulmasta aiheita, jotka liittyvät kvantittuneiden vorteksien
stabiilisuuteen ja dynamiikkaan heikosti vuorovaikuttavissa Bose-Einstein -kondensaateissa. Epäkeskisten vorteksien
prekessiota ja epästabiilisuutta tutkitaan loukutetuissa kondensaateissa sekä nollalämpötilan rajalla että äärellisissä
lämpötiloissa. Monikvanttivorteksien ja vorteksiklustereiden dynaamista stabiilisuutta tarkastellaan
sylinterisymmetrisissä loukuissa. Lisäksi tutkitaan energeettisesti ja dynaamisesti epästabiilien monikvanttivorteksien
jakautumista yksikvanttivortekseiksi. Lopuksi tarkastellaan erillisenä aiheena kondensaatin tunneloitumista
potentiaalivallin lävitse. Suuri osa työstä pohjautuu Gross-Pitaevskii ja Bogoliubov -yhtälöiden numeeriseen
ratkaisemiseen. Nämä yhtälöt ovat keskeisessä roolissa harvoista atomikaasuista koostuvien Bose-Einstein
-kondensaattien mallintamisessa.
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III J. A. M. Huhtamäki, M. Möttönen, and S. M. M. Virtanen, Dynami-

cally stable multiply quantized vortices in dilute Bose-Einstein condensates,

Phys. Rev. A 74, 063619 (2006).
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1 Introduction

The theoretical prediction of a quantum statistical phase transition in a system of

massive bosons dates back to 1924-1925 when A. Einstein published the quantum

theory of an ideal bose gas [1, 2] based on S. N. Bose’s recent statistical derivation

of Planck’s radiation law [3]. In his work, Einstein concluded that in a gas of non-

interacting massive bosons, a significant fraction of the particles will occupy the

lowest-lying single-particle state below a critical temperature. This phenomenon,

later known as Bose-Einstein condensation, occurs also in certain interacting gases

as well as in strongly interacting systems. Later on, it has been related to such

fundamental concepts as superconductivity, discovered by H. Kamerlingh-Onnes in

1911 [4], and superfluidity of 4He discovered by P. L. Kapitza, F. J. Allen, and

A. D. Misener [5, 6]. However, in such a strongly interacting system, the relation

to Bose-Einstein condensation (BEC) is not obvious because only a fraction of the

particles reside in the lowest-lying single-particle state even in the zero-temperature

limit.

Nearly ideal Bose-Einstein condensation was finally realized experimentally in

1995 using trapped vapours of 87Rb [7], 23Na [8], and 7Li [9] which has effectively

attractive atom-atom interactions. Condensation in dilute atomic gases is quite

exceptional: due to the weak interactions between the atoms, the fraction of par-

ticles in the condensate is relatively large, well exceeding 1
2 already in the early

experiments [9, 10]. The weakly-interacting system can be modeled using a simple

mean-field approach, which is inapplicable to systems with strong interactions be-

cause of significant correlation effects. Due to the diluteness of the gas, the natural

length scales in the system are relatively large, providing the possibility to measure

directly optically, for example, the density profiles of these systems yielding direct

information on relevant physical quantities. Furthermore, the diluteness of the gas

greatly suppresses the three-body recombination events which are responsible for

the formation of molecules, and thus increases the lifetime of the condensate [11].

As opposed to, e.g., helium superfluids, the inhomogeneity of trapped gases allows

the observation of condensation not only in momentum, but also in real space.
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Neutral alkali atoms are well suited for magnetic and optical trapping. Major-

ity of condensates evoked to date consist of alkali atoms due to their advantageous

internal structure for laser cooling. All stable alkali species have been condensed:

In addition to the aforementioned gases, BEC has been achieved also in 41K [12],

39K [13], 85Rb [14], and 133Cs [15]. Besides alkali gases, BEC has been realized

also using vapours of spin-polarized H [16], metastable 4He [17], 174Yb [18], 6Li2

molecules [19], 40K2 molecules [20], and 52Cr [21] which has a relatively large mag-

netic dipole moment compared to the other atom species. Several Feshbach reso-

nances have been found in many of these gases, which turn out to be extremely

convenient for controlling the effective atom-atom interaction strength in purely

optical traps by using magnetic bias fields.

In a typical experiment, the number of atoms in the dilute Bose-Einstein conden-

sate is of the order of 106, the dimensions of the cloud is of the order of 10-100 μm,

yielding roughly a particle density of 1014 atoms/cm3. The critical temperature for

the occurrence of condensation is of the order of TBEC = 1 μK.

A Bose-Einstein condensate can be accurately described by a macroscopic wave

function, also known as the order parameter. The amplitude of this complex-valued

function is directly related to the density of the condensed particles and its phase

gradient to the average particle velocity. The elementary excitation spectrum of a

weakly-interacting Bose gas, which determines the density fluctuations in the system,

was derived in 1947 by Bogoliubov in an attempt of explaining the phenomenon of

superfluidity in helium II [22]. The low-energy excitations are phonons, i.e., collec-

tive modes with an approximately linear dispersion relation in the thermodynamic

limit, and the high-energy excitations are essentially single-particle modes with a

quadratic dispersion relation [23]. The eigenfrequencies of the energetically lowest-

lying collective modes of a harmonically confined condensate have been theoretically

predicted to deviate from the ideal gas case, and the frequencies were demonstrated

to depend on the effective interaction strength between the atoms [24–28]. The

experimentally measured frequencies [29–31] are in very good agreement with the

theoretical results.

One of the key signatures of Bose-Einstein condensation is superfluidity. In



– 3 –

superfluids, particle currents may flow without viscosity and dissipation. This phe-

nomenon is typically a consequence of the existence of a macroscopic wave function

which manifests the phase coherence among the condensed particles. Direct evidence

of superfluidity has been obtained by measuring the frequencies of the so-called scis-

sors modes of Bose-Einstein condensates [32–34]. Furthermore, the velocity field in

a condensate has to be irrotational, resulting in a reduced moment of inertia [35–37]

which is typical for superfluids. This reduction has been verified experimentally by

observing the expansion of a rotating condensate [38]. The Landau critical velocity

for the onset of dissipative flow has been measured by moving a laser beam through

a condensate [39].

The requirement of irrotationality of the condensate velocity field gives rise

to quantized vorticity in the system, which was first observed experimentally by

Matthews et al. [40]. The quantized vortex is an example of a state with a persis-

tent nonviscous particle flow. In addition to dilute atomic Bose-Einstein conden-

sates, vortices play an essential role in liquid helium [41,42] and superconductors [43],

and they have been observed also in coherent optical fields [44]. The 2π winding of

the complex phase around the vortex core has been measured using so-called phase

contrast imaging [40,45], demonstrating that the vortex state contains angular mo-

mentum. The presence of a vortex shifts the eigenfrequencies of the quadrupole

modes of the condensate [46] resulting in rotational motion of the system. By ex-

ploiting this effect, the angular momentum of a condensate containing one or more

vortices created by stirring the system with a laser beam has been measured [47].

This Thesis is a theoretical study of the stability and dynamics of vortices in

dilute atomic Bose-Einstein condensates. The theoretical formalism required for

understanding the concepts in the subsequent sections and the publications is out-

lined in Section 2. In particular, the mean-field formalism is introduced, and the

Gross-Pitaevskii and the Bogoliubov equations are derived, which are of central im-

portance in the publications included in this Thesis. In Section 3, theoretical aspects

concerning vortices in Bose-Einstein condensates are briefly reviewed with emphasis

on the energetic and dynamic stability of the vortex states. Also, the main results of

Papers I–IV are discussed. Section 4 concerns experiments with quantized vortices
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in Bose-Einstein condensates. The methods used for creating the first singly quan-

tized vortices, vortex lattices, and multiply quantized vortices are briefly explained

and their successful implementations are discussed. The splitting times of doubly

quantized vortices obtained from simulations described in Paper V are compared

with the results of the closely related experiments. Also, the splitting of a quadru-

ply quantized vortex, which is the topic of Paper VI, is discussed. Before the final

conclusions, dynamics of Bose-Einstein condensates in optical lattices is discussed

in Section 5. This subject is closely related to the tunneling of a Bose-Einstein

condensate through a potential barrier investigated in Paper VII.
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2 Mean-Field Theory of Dilute Bose-Einstein Condensates

This Thesis concerns mostly single-component (scalar) condensates, in which the

hyperfine spin degree of freedom is frozen to a single quantum state, e.g., due to

an external magnetic field. Hence, we will discuss the mean field theory only in

the scalar case. Generalization to the multi-component case is quite straightforward

[48–50].

2.1 Definition of Bose-Einstein Condensation

The system under study consists of N identical interacting bosons in a fixed spin

state, confined by some external potential. Due to the bosonic nature of the parti-

cles, the many-body wave function Ψ(r1, r2, . . . , rN ; t), where ri denote the particle

coordinates, of the system must be symmetric with respect to interchange of par-

ticle indices. The one-body density matrix ρ(r, r′; t) of the system, occupying the

orthonormal states Ψ
(s)
N with probabilities ps, is given by [50]

ρ(r, r′; t) = N
∑

s

ps

∫
dr2 . . . drN

[
Ψ

(s)
N (r, r2, . . . , rN ; t)

]∗
Ψ

(s)
N (r′, r2, . . . , rN ; t). (2.1)

The diagonal part of the density matrix yields the density of particles, whereas the

non-diagonal elements reveal the long-range order possibly present in the system.

Clearly, the matrix function ρ(r, r′; t) is Hermitian, and hence it can be diagonalized

in terms of single-particle eigenfunctions ϕα(r, t) as

ρ(r, r′; t) =
∑
α

Nα(t)ϕ∗
α(r, t)ϕα(r′, t), (2.2)

where the eigenvalues Nα(t) are real. (Simple) Bose-Einstein condensation takes

place if there exists exactly one eigenvalue which is of the order of the total number of

particles, N0 ∼ N , and the rest of the eigenvalues are much smaller Nα�=0 � N0. The

single-particle wave function ϕ0(r, t) corresponding to the macroscopic eigenvalue

is referred to as the order parameter, or the macroscopic wave function, of the

condensate.
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2.2 The Bogoliubov Approximation

The bosonic field operator ψ̂(r, t) in the Heisenberg picture can be written in terms

of the single-particle wave functions ϕα(r, t) and the corresponding bosonic creation

and annihilation operators1, â†α and âα, as

ψ̂(r, t) =
∑
α

ϕα(r, t)âα, (2.3)

where the bosonic creation and annihilation operators obey the usual equal-time

canonical commutation relations

[âα, â
†
β ] = δαβ , [âα, âβ ] = 0, [â†α, â

†
β] = 0, (2.4)

and the single-particle wave functions are assumed to be orthonormal

∫
drϕ∗

α(r, t)ϕβ(r, t) = δαβ . (2.5)

It is natural to split the sum in Eq. (2.3) into two parts

ψ̂(r, t) = ϕ0(r, t)â0 +
∑
α�=0

ϕα(r, t)âα. (2.6)

In the Bogoliubov approximation the operator â0, corresponding to the condensate

state, is substituted with the real number
√
N0, which amounts to neglecting the

noncommutativity of the operator [22]. Hence, the field operator is given as a sum

of a classical field Ψ =
√
N0ϕ0 (condensate) and an operator accounting for the

quantum and thermal fluctuations φ̂ =
∑

α�=0 ϕαâα (noncondensate) as

ψ̂(r, t) = Ψ(r, t) + φ̂(r, t), (2.7)

where the noncondensate part is assumed to be a small correction to the condensate

wave function [51]. The condensate wave function is given by the ground-state

expectation value of the field operator, Ψ(r, t) = 〈ψ̂(r, t)〉.
1In fact, the operators â

(†)
α are also in the Heisenberg picture, but for simplicity we will not state

their time dependence explicitly.
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2.3 The Gross-Pitaevskii Equation in the Low Temperature Limit

The effective grand-canonical Hamiltonian for the dilute Bose gas in a frame rotating

with the angular frequency Ω has the form

K̂Ω = ĤΩ − μN̂ =

∫
dr ψ̂†

[
ĥΩ − μ

]
ψ̂ +

g

2

∫
dr ψ̂†ψ̂†ψ̂ψ̂, (2.8)

where μ is the chemical potential and N̂ is the particle number operator. Above, the

two-body interaction potential has been replaced by a delta function, V̂ (r − r′) =

gδ(r − r′), yielding the same scattering properties at low energies as the actual

potential. ĥΩ = − �2

2m∇2 + Vext(r, t) − Ω · L̂ is the Hamiltonian of a single particle

in the external potential Vext in a rotating frame [52] with L̂ being the angular

momentum operator. The coupling constant is related to the s-wave scattering

length a by g = 4π�
2a/m, where m is the particle mass [53]. The field operator

must satisfy the Heisenberg equation of motion2

i�
∂

∂t
ψ̂ = [ψ̂, K̂Ω] =

[
ĥΩ − μ+ gψ̂†ψ̂

]
ψ̂. (2.9)

In the low temperature limit, T � TBEC , and for low enough densities, the non-

condensate component φ̂ may be neglected to a good approximation, and hence by

substituting ψ̂ → Ψ, we obtain the time-dependent Gross-Pitaevskii equation

i�
∂

∂t
Ψ(r, t) =

[
ĥΩ − μ+ g|Ψ(r, t)|2

]
Ψ(r, t), (2.10)

which is used extensively in Papers I and IV–VII for solving the time evolution of

the condensate. For a time-independent external potential Vext(r), stationary states

are solutions to the time-independent Gross-Pitaevskii equation

[
ĥΩ − μ+ g|Ψ(r)|2

]
Ψ(r) = 0, (2.11)

which play a central role in Papers III and IV.

A simple approximation for the ground state of the condensate in a non-rotating

frame is obtained by neglecting the kinetic energy term in Eq. (2.11), yielding

ΨTF(r) =

√
μ− Vext(r)

g
, (2.12)

2Naturally, the field operator is time independent in the Schödinger picture.
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for Vext(r) < μ, and zero otherwise. This is called the Thomas-Fermi (TF) approxi-

mation for the wave function. The approximation is accurate in the interior of the

condensate when the parameter Na is much larger than the typical length scale of

the external potential [23]. This requirement is often satisfied in experimental con-

figurations and it is one of the key approximations used for calculating the tunneling

rate of a condensate through a potential barrier in Paper VII.

2.4 Elementary Excitations in the Low Temperature Limit

In this section, we will study the low-energy collective oscillations of the condensate

in the ultralow temperature limit, such that the order parameter satisfies Eq. (2.11).

The Hamiltonian in Eq. (2.8) is treated in a mean-field approximation and diago-

nalized by a canonical transformation.

Small-amplitude oscillations around a given stationary state Ψ(r) can be studied

by writing the field operator in the form [51], c.f. Sec. 2.2,

ψ̂(r, t) = Ψ(r) + φ̂(r, t). (2.13)

By substituting this form into the Heisenberg equation of motion for the field op-

erator, Eq. (2.9), and neglecting terms higher than linear order in φ̂, we obtain an

equation of motion for the fluctuation operator

i�
∂

∂t
φ̂(r, t) = L(r)φ̂(r, t) + M(r)φ̂†(r, t), (2.14)

where L(r) = ĥΩ − μ+ 2g|Ψ(r)|2 and M(r) = g[Ψ(r)]2.

Bogoliubov Transformation and the Bogoliubov Equations

In order to solve Eq. (2.14), we introduce the quasiparticle creation and annihilation

operators b̂†α and b̂α, respectively, related to the original creation and annihilation

operators through [54]

b̂†α =
∑
β �=0

Uαβ â
†
β − Vαβ âβ, (2.15)

b̂α =
∑
β �=0

U∗
αβ âβ − V ∗

αβ â
†
β. (2.16)
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In order for the transformation to be canonical, the coefficient matrices U and V

are required to satisfy

UU † − V V † = I, UV T − V UT = 0, (2.17)

which imply the inverse transformation

â†α =
∑
β �=0

U∗
βαb̂

†
β + Vβαb̂β, (2.18)

âα =
∑
β �=0

Uβαb̂β + V ∗
βαb̂

†
β. (2.19)

Hence, we may write the fluctuation operator in the form

φ̂(r, t) =
∑
α�=0

ϕα(r, t)âα =
∑
β �=0

uβ(r, t)b̂β + v∗β(r, t)b̂†β , (2.20)

where

uβ(r, t) =
∑
α�=0

Uβαϕα(r, t), vβ(r, t) =
∑
α�=0

Vβαϕ
∗
α(r, t), (2.21)

are called the quasiparticle wave functions. By using the orthonormality of the

single-particle wave functions ϕα(r, t) and Eqs. (2.17), we note that in order for the

transformation to be canonical the following equations must be satisfied:∫
dr

[
uα(r, t)u∗β(r, t) − vα(r, t)v∗β(r, t)

]
= δαβ , (2.22)∫

dr
[
uα(r, t)vβ(r, t) − vα(r, t)uβ(r, t)

]
= 0, (2.23)

where the first equation is the orthonormality condition for the quasiparticle wave

functions. Expecting oscillatory solutions, we choose the time dependence of the

quasiparticle wave functions according to

uα(r, t) = uα(r)e−iωαt, vα(r, t) = vα(r)e−iωαt, (2.24)

where the quasiparticle eigenfrequencies ωα are required to be real valued. Substi-

tution of the trial in Eq. (2.20) into Eq. (2.14), yields the Bogoliubov equations for

the elementary excitations⎛
⎝ L(r) M(r)

−M∗(r) −L∗(r)

⎞
⎠

⎛
⎝uα(r)

vα(r)

⎞
⎠ = �ωα

⎛
⎝uα(r)

vα(r)

⎞
⎠ , (2.25)

which determine the quasiparticle spectrum and the spatial form of the excitations3.

3The excitations with ωα �= 0 should be projected orthogonal to the condensate in the sense thatR
dr [Ψ∗(r)uα(r) + Ψ(r)vα(r)] = 0 [54].
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Properties of the Bogoliubov Equations

In addition to the quasiparticle solutions, it is interesting to study so-called com-

plex modes which are solutions to Eq. (2.25) with non-real eigenfrequencies. For

an interacting system with g 	= 0, the coefficient matrix in Eq. (2.25) is not in

general Hermitian, which permits their existence. In this sense, complex modes

can be argued as resulting from the nonlinearity of the governing equation of mo-

tion, Eq. (2.10). However, for such solutions the condition of Eq. (2.22) has to

be relaxed. Stationary states that support modes with non-real eigenfrequencies

are called dynamically unstable, since the amplitude of a small perturbation related

to the excitation of a complex mode evolves initially exponentially in time. If all

eigenfrequencies of a stationary state are real, the state is called dynamically stable.

Dynamical stability of multiquantum vortex states and vortex clusters in different

trap geometries is studied in detail in Papers III and IV, respectively. Each solution

to Eq. (2.25) satisfies

(ωα − ω∗
α)

∫
dr

[|uα(r)|2 − |vα(r)|2] = 0, (2.26)

implying that the norm of solutions corresponding to non-real eigenfrequencies van-

ishes. For this reason, we normalize the complex modes according to∫
dr

[|uα(r)|2 + |vα(r)|2] = 2

∫
dr |uα(r)|2 = 1. (2.27)

By using the Gross-Pitaevskii equation, Eq. (2.11), it is straightforward to ver-

ify that
(
ωα;uα, vα

)
=

(
0; cΨ,−cΨ∗

)
, for an arbitrary complex number c, satisfies

Eq. (2.25). However, this solution merely changes the overall phase of the order

parameter Ψ(r), and hence does not correspond to a physical excitation. The coef-

ficient matrix B of the Bogoliubov equations is related to its Hermitian conjugate

by a unitary transformation σzBσ−1
z = B†, which implies that if ωα is an eigen-

value, then also ω∗
α is an eigenvalue. Moreover, the Bogoliubov equations possess

the following symmetry: If
(
ωα;uα, vα

)
is a solution, then

(−ω∗
α; v∗α, u

∗
α

)
is also a so-

lution. For modes with real eigenfrequency ωα, this implies that for every excitation

with energy �ωα and norm
∫
dr

[|uα|2 − |vα|2
]
, there exists a solution with energy

−�ωα and norm − ∫
dr

[|uα|2 − |vα|2
]
. However, the existence of a solution with a
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negative norm contradicts the normalization criterion of Eq. (2.22). Furthermore,

the excitation spectrum must be bounded from below, and therefore we neglect the

solutions with negative norms as unphysical.

Diagonalized Hamiltonian

By inserting the decomposition of Eq. (2.13) into the Hamiltonian, Eq. (2.8), we

obtain to second order in the fluctuation φ̂(r, t)

K̂ = E(Ψ) + K̂(2), (2.28)

where the zeroth-order term represents the free energy of the stationary state Ψ(r)

E(Ψ) =

∫
dr

[
Ψ∗(r)

(
ĥ− μ

)
Ψ(r) +

g

2
|Ψ(r)|4

]
, (2.29)

the first order term vanishes due to Eq. (2.11), and the second order term is given

by

K̂(2) =
∑
α

Re(�ωα)e2Im(ωα)t

∫
dr

[|uα(r)|2 − |vα(r)|2] b̂†αb̂α, (2.30)

where we have omitted a constant term arising from the commutator of the quasipar-

ticle operators b̂†α and b̂α. From this second-order term two profound observations

can be made: Firstly, the excitation of a mode α with real eigenfrequency changes

the free energy of the state by ΔE = �ωα. Hence, the existence of modes with neg-

ative eigenfrequencies renders the state energetically unstable4, as the system can

lower its free energy by exciting such modes. If all eigenfrequencies of a stationary

state are non-negative, the state is called energetically stable. Secondly, since the

expression
∫
dr

[|uα(r)|2 − |vα(r)|2] vanishes for complex modes, it costs no energy

to excite a mode with a non-real eigenfrequency.

2.5 Finite Temperature Hartree-Fock-Bogoliubov Mean-Field Theory

At finite temperatures, T � TBEC, the effect of the noncondensate component has

to be taken into account in the equation of motion for the condensate wave function.

4Energetic stability is also referred to as static stability [55] or local stability [56].
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The presence of the thermal cloud affects the stationary states, the elementary

excitations, and the dynamics of the system [57, 58]. By taking the expectation

value of Eq. (2.9) and using Eq. (2.7), we obtain

i�
∂

∂t
Ψ =

[
ĥΩ − μ+ g|Ψ|2

]
Ψ + 2gΨ〈φ̂†φ̂〉 + gΨ∗〈φ̂φ̂〉 + g〈φ̂†φ̂φ̂〉, (2.31)

where 〈φ̂†φ̂〉 is the density of the noncondensate, and 〈φ̂φ̂〉 is the so-called anomalous

density which accounts for the effect of the condensate to the collisions among the

thermal particles [59]. In the so-called Popov approximation, the anomalous density

is neglected [57, 60]. The triple operator product in Eq. (2.31) can be treated in

a self-consistent mean-field approximation φ̂†φ̂φ̂ 
 2φ̂〈φ̂†φ̂〉 + φ̂†〈φ̂φ̂〉, implying the

generalized time-dependent Gross-Pitaevskii equation for the order parameter in the

Popov approximation

i�
∂

∂t
Ψ =

[
ĥΩ − μ+ g

(
|Ψ|2 + 2〈φ̂†φ̂〉

)]
Ψ. (2.32)

In a similar manner as in the previous section, we may derive the Bogoliubov equa-

tions in the finite temperature scheme, and in the Popov approximation the result is

of the same form as in Eq. (2.25) with L(r) replaced by L′(r) = L(r)+2〈φ̂†φ̂〉Ψ [57].

By using the Bogoliubov transformation, Eq. (2.20), it can be shown that the non-

condensate density is related to the quasiparticle wave functions and eigenfrequencies

through

〈φ̂†φ̂〉 =
∑
α

[|uα|2 + |vα|2
]
f0(�ωα) + |vα|2, (2.33)

where f0(εα) = 〈 b̂†αb̂α〉 = 1/(eεα/kT −1) is the Bose distribution function. Equations

(2.25), with L → L′, (2.32), and (2.33) constitute the Hartree-Fock-Bogoliubov-

Popov formalism, which was used in Paper II for studying the precession of off-

centered vortices at finite temperatures. The equations have to be solved self-

consistently by starting, e.g., from the ideal gas case, g = 0, and by iterating until

self-consistency [57]. Unlike the full HFB formalism, the HFB-Popov theory yields a

gapless spectrum and is free of infrared divergencies [54], and hence it is often used

in numerical calculations at finite temperatures [27]. The theory is assumed to be

accurate for low and intermediate temperatures, T � 0.6 TBEC, and for condensate

fractions of 0.5 � N0/N � 1 [61].
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3 Vortices in Dilute Scalar Condensates

The fundamental distinction between superfluids and everyday normal fluids is that a

superfluid can support dissipationless particle flow analogously to superconductors

being able to support dissipationless electric currents. A stable quantized vortex

state is an example of such a persistent particle flow, the existence of which has been

considered to be a direct manifestation of superfluidity [62]. A quantized vortex line

is a one-dimensional singularity in the complex phase of the order parameter. In

this chapter, we discuss the structure and stability of quantized vortices in dilute

Bose-Einstein condensates in the ultralow temperature limit. For a thorough review

of the theory of vortices in trapped dilute Bose-Einstein condensates, see Ref. [63],

and of vortices in multicomponent condensates, see Ref. [64].

3.1 Vortex State

For studying the hydrodynamics of a condensate, it is often useful to write the or-

der parameter in the form Ψ(r) = f(r)eiS(r), where f(r) and S(r) are real-valued

functions, and the particle density is related to the amplitude through n(r) = f2(r).

Analogously to the single-particle case, the particle current density in a state de-

scribed by a macroscopic wave function is given by

j(r) =
�

m
Im [Ψ∗(r)∇Ψ(r)] = n(r)

�

m
∇S(r), (3.1)

implying that the velocity field v(r) = j(r)/n(r) is proportional to the gradient of the

complex phase of the order parameter. Hence, the velocity field in the condensate

region must be irrotational, ∇× v(r) = 0, which severely constrains the flow of the

condensate. One possible structure that fulfills the requirement of irrotationality is

a quantized vortex.

An axisymmetric vortex state is of the form

Ψ(r) = f(r, z)eiκφ, (3.2)

where (r, φ, z) are the cylindrical coordinates and f(r, z) is a real-valued function.

Because the wave function has to be continuous, it follows that the amplitude of the
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order parameter has to vanish at the vortex core, ψ(0, z) = 0, and the parameter κ

must be an integer. The parameter κ is called the quantum number, or the winding

number, of the vortex: For |κ| = 1, the state in Eq. (3.2) is called a singly quantized

vortex state, and for |κ| ≥ 2, a multiply quantized vortex state. Using Eq. (3.1), we

find that the velocity field associated with axisymmetric vortex states is of the form

v(r) =
�

m

κ

r
eφ, (3.3)

with the unit vector eφ = ∂φr/||∂φr||. Thus, the particles are rotating about the

vortex core where the particle density vanishes, and the circulation, defined by the

line integral of the velocity field about the core, is quantized in units of h/m, in

which h is Planck’s constant. A typical length scale of the vortex core region is

given by the healing length ξ = 1/
√

8πna which essentially describes the distance

over which the order parameter regains its bulk value when perturbed locally.

The axisymmetric vortex state yields a simple picture of the most important

aspects of the structure of a vortex line. However, it has been shown that for fast

enough rotation even in a completely axisymmetric trap geometry, the ground state

of the system hosts a bent vortex line for an elongated condensate [65,66]. Another

important example of a curved vortex is the vortex ring which can be viewed as a

vortex line closed upon itself.

The Gross-Pitaevskii and Bogoliubov Equations for Axisymmetric Vortex States

In a cylindrically symmetric configuration, the Gross-Pitaevskii and Bogoliubov

equations, Eqs. (2.11) and (2.25), may be cast in a simpler form. For a station-

ary state of the form presented in Eq. (3.2), the Gross-Pitaevskii equation reduces

to L′
κ(r, z)f(r, z) = 0, in which

L′
κ(r, z) = − �

2

2m

[
1

r

∂

∂r
+

∂2

∂r2
− κ2

r2
+

∂2

∂z2

]
+ Vext(r, z) − μ+ gf2(r, z), (3.4)

in the non-rotating frame of reference. It is convenient to write the quasiparticle

wave functions in the form uq(r) = uq(r, z)e
i(κq+κ)φ and vq(r) = vq(r, z)e

i(κq−κ)φ,

where κq is an integer that specifies the angular momentum of the quasiparticle

excitation with respect to the condensate. By substituting these forms into the
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Bogoliubov equations, we obtain

⎛
⎝Lκq+κ(r, z) M(r, z)

−M(r, z) −Lκq−κ(r, z)

⎞
⎠

⎛
⎝uq(r, z)

vq(r, z)

⎞
⎠ = �ωq

⎛
⎝uq(r, z)

vq(r, z)

⎞
⎠ , (3.5)

where Lκ(r, z) = L′
κ(r, z) + gf2(r, z), and M(r, z) = gf2(r, z). It is worthwhile

to notice that the coefficient matrix in Eq. (3.5) is real. Hence, if
(
ωq;uq, vq

)
is a

solution, then
(
ω∗

q ;u
∗
q , v

∗
q

)
is also a solution.

3.2 Energetic Stability of Stationary Vortex States

Multiply quantized vortex states are in general energetically unstable5. Let us con-

sider, for example, two vortex lines with quantum numbers κ1 and κ2 in a condensate

confined in a cylindrical vessel of radius R. The energy per unit length associated

with the vortices located close to the center of the cylinder is given, within logarith-

mic accuracy, by

Eκ1,κ2 =
πn�

2

m

[
(κ2

1 + κ2
2)log

R

ξ
+ 2κ1κ2log

R

d

]
, (3.6)

for ξ � d � R, in which d is the separation of the vortex lines [62]. The first term

in the brackets is the kinetic energy of the azimuthal flow, and the second term

is the interaction energy of the vortex lines. Because Eκ,0 > Eκ−1,1, for a given

total circulation of κh/m, it is energetically favorable to have a collection of κ singly

quantized vortices compared to one κ-quantized vortex.

In non-rotating harmonic traps, the quasiparticle energy spectra of stationary

axisymmetric single quantum vortex states contain at least one negative excita-

tion energy in the zero-temperature limit [28, 68, 69], and therefore these states are

energetically unstable. This so-called anomalous mode corresponds to transversal

displacement of the vortex which eventually spirals out of the condensate if dissipa-

tion is present in the system [56]. However, the state can be stabilized by rotation

of the external potential: In the rotating frame the free energy per particle in the

singly quantized vortex state is of the form EΩ = E0 − ΩLz = E0 − �Ω, where we

5Multiply quantized vortices may, in some cases, be energetically favorable. For example, the
doubly quantized vortex in a rapidly rotating quartic potential can be made energetically stable [67].
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have assumed that the vortex line coincides with the rotation axis, and denoted the

free energy per particle in the non-rotating frame by E0 and the angular momentum

per particle along the rotation axis by Lz. Figure 3.1 illustrates the stabilization of

the singly quantized vortex in a rotating potential. The curves in the figure repre-

sent qualitatively the free energy of the state with respect to the displacement of

the vortex from the center of the trap [69,70]. Above the critical rotation frequency

Ωm, the axisymmetric vortex state becomes a local minimum of the free energy, ren-

dering the state robust against small displacements of the vortex from the center.

However, the free energy of the nonvortex state is still the global minimum of the

free energy below the critical angular velocity Ωc1, and thus for rotation frequencies

Ωm < Ω < Ωc1 the vortex state is metastable. The energy barrier, denoted by ΔEΩ

in Fig. 3.1, prevents the vortex from moving out of the condensate. For Ω > Ωc1,

the vortex state becomes thermodynamically stable as the global minimum of the

free energy [71], and in this case the energy barrier ΔEΩ prevents a vortex from

entering the system. For a higher rotation frequency Ωc2
6, the barrier vanishes or

becomes negligible compared to other energy scales in the system [73]. Hence, a

vortex can be spontaneously nucleated by rotating the external potential with a

frequency Ω > Ωc2. When the rotation frequency is increased further, the single

quantum vortex state becomes energetically unfavorable against states with two or

more vortices, which is discussed in Sec. 4.2.

3.3 Off-Centered Vortices

Understanding the behavior of off-centered vortices in harmonically trapped Bose-

Einstein condensates is important, because an energetically unstable axisymmetric

vortex tends to become off-centered in the presence of dissipation. Moreover, under

sufficient external rotation, vortices emerge from the periphery of the cloud. It has

been shown theoretically that for small displacements of the vortex from the center

of the trap, the vortex moves perpendicular to the local gradient of the potential [69].

In a cylindrically symmetric potential, a vortex precesses along a circular constant-

6The critical frequency Ωc2 is given by the Landau criterion for formation of surface excita-
tions [72].
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Figure 3.1: Qualitative dependence of the free energy EΩ on the displacement d of
the vortex from the center. The free energy barrier ΔEΩ depends on the rotation
frequency of the trapping potential Ω, and becomes negligible at the critical velocity
Ωc2.

energy path. This can be viewed as resulting from the Magnus effect: A singly

quantized vortex line moving with velocity v experiences an effective force per unit

length, F = nhv, directed towards the center of the trap. Precession of off-centered

vortices has been observed experimentally, and their precession frequencies have

been measured [74].

In Papers I and II, we have studied the excitations of off-centered vortex states

in harmonic traps at zero and finite temperatures, respectively. When the external

potential is rotated with an angular velocity satisfying Ωm < Ω < Ωc2, in addition to

the axisymmetric vortex state, there exist off-centered vortex states with a very weak

time-dependence in the rotating frame of reference in which the external potential

is stationary. In these states the vortex is displaced from the center of the trap such

that it is located on top of the free energy barrier, denoted by ΔEΩ in Fig. 3.1. In

the laboratory frame, the vortex precesses around the center of the condensate with

a frequency that coincides with the angular velocity of the trap. In these papers,

we study an effectively two-dimensional condensate and look for solutions to the
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time-dependent Gross-Pitaevskii equation, Eq. (2.10), which satisfy7

maxx,y|∂tψ(x, y, t)|/maxx,y|ψ(x, y, t)| < 0.0005 ωtrap, (3.7)

where x and y are the cartesian coordinates, and ωtrap is the trapping frequency.

The dimensionless angular momentum per particle L = 〈L̂〉/(N�) of the off-centered

vortex state varies smoothly as a function of the vortex displacement d. This follows

closely the analytical result based on the Thomas-Fermi approximation8, LTF =

[1 − (d/RTF)2]2 [75], where RTF is the Thomas-Fermi radius of the condensate, see

Fig. 1 (b) in Paper I. Also, the normalized energy ΔE′ = (E − E0)/(E1 − E0), is

given quite accurately by the Thomas-Fermi result, ΔE′
TF = [1− (d/RTF)2]3/2 [63],

as shown in Fig. 1 (c) in Paper I. Here E, E1, and E0 are the energies of the

off-centered vortex, centered vortex, and vortexfree states, respectively.

For the weakly time-dependent states, we solve the Bogoliubov equations, as

if they were stationary states. For all trap rotation frequencies considered, the

excitation spectrum contains a mode with a negative excitation energy in the ro-

tating frame of reference, and therefore the off-centered vortex states are energet-

ically unstable. In the limit of small displacements, however, the excitation en-

ergy approaches zero. In the finite temperature calculations, the Bogoliubov equa-

tions are solved using the self-consistent Hartree-Fock-Bogoliubov-Popov scheme,

c.f. Sec. 2.5. Above a chosen energy cutoff, the excitations are taken into account

within a semiclassical approximation [72, 76, 77]. It has been shown that within

the Popov approximation, the noncondensate stabilizes a centered vortex at finite

temperatures [78] and even in the ultralow temperature limit [79], which is in agree-

ment with the results obtained in Paper II. In the zero temperature limit, it can

be shown that for small displacements the direction of precession of an off-centered

vortex in a frame rotating with the trap is related to the sign of the lowest excitation

energy [80]: For Ω < Ωm, the excitation energy is negative and the vortex precesses

in the counterclockwise direction, and vice versa for Ω > Ωm. However, the results

of Paper II show that this relationship is not valid at finite temperatures within the

Popov approximation.

7For vortices very close to the surface of the condensate, the right-hand side of this condition is
relaxed to 0.03 ωtrap.

8In these calculations the Thomas-Fermi approximation is well satisfied.
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3.4 Dynamical Stability of Multiply Quantized Vortex States

Energetic stability always implies dynamical stability, but not necessarily vice versa.

Even though multiply quantized vortices in harmonic traps are energetically unfa-

vorable, such states might still be robust against small perturbations. In Paper

III, we have studied the dynamical stability of multiply quantized vortex states9,

Eq. (3.2), with 2 ≤ κ ≤ 4. The external cylindrically symmetric potential employed

in the work was of the form

Vext(r, z) =
1

2
mω2

r

(
r2 + λ2z2

)
, (3.8)

in the cylindrical coordinates (r, ϕ, z). The parameter λ = ωz/ωr determines the

geometry of the trap, where ωr and ωz measure the strengths of the radial and ax-

ial confinements, respectively. If λ � 1, the radial confinement is much stronger

than the axial, and in such a configuration the BEC in its ground state is called

cigar-shaped. On the other hand, in a configuration where λ 1, the BEC is called

pancake-shaped. From previous theoretical studies it is known that, for example,

the doubly quantized vortex is dynamically unstable in the cigar-shaped limit [82],

see also Sec. 4.3 and Paper V. Moreover, in pancake-shaped condensates the mul-

tiquantum vortex state can be dynamically stable or unstable depending on the

interaction strength g [83,84]. In this work, we investigated the dynamical stability

of multiquantum vortex states in various trap geometries, 0 < 1/λ ≤ 2, and for

various effective interaction strengths10, 0 ≤ g̃ ≤ 1000, by solving the Bogoliubov

equations for axisymmetric vortex states, Eq. (3.5). Figure 3.2 displays, for the

doubly quantized vortex state, the absolute value of the imaginary part of the dom-

inating instability eigenfrequency, maxq|Im(ωq)|, with respect to the aspect ratio λ

and the effective interaction strength g̃. In the white regions all the eigenfrequen-

cies are real, and hence in these regions the system is dynamically stable. In the

pancake-shaped limit, the quasiperiodic structure of the instability as a function of

the interaction strength g̃ is restored, c.f. Refs. [83, 84]. Towards the cigar-shaped

limit, the instability regions start to overlap, and eventually the system becomes

9See also Ref. [81].
10In this case, the effective interaction strength g̃ is related to the s-wave scattering length a by

g̃ = 4πaN/ar, where ar =
p

�/(mωr) is the harmonic oscillator length.
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dynamically unstable for all interaction strengths. However, in the intermediate

regions, e.g., for spherically symmetric configurations, there exist wide regions of

dynamical stability in which the lifetime of the multiquantum vortex state should

be significantly longer.

Figure 3.2: Regions of dynamical stability (white) for the stationary doubly quan-
tized vortex state in the aspect ratio – interaction strength -parameter plane.

3.5 Stationary Vortex Clusters

In Paper IV, we have studied the dynamical stability of stationary vortex cluster

states in dilute pancake-shaped BECs in non-rotating harmonic traps11. The clusters

consist of vortices and anti-vortices in specific configurations such that the forces

on the vortices and anti-vortices balance exactly and the state is stationary. For

vortices the winding number κ is positive and for anti-vortices negative. Two vortices

with winding numbers of the same sign repel each other and vortices with winding

numbers of the opposite sign feel an attractive force, see Eq. (3.6). Figure 3.3

11Note that the symbols κq and λ are used in different contexts in Papers III and IV.
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Figure 3.3: Density profiles of three stationary vortex clusters in a cylindrically
symmetric harmonic trap: (a) the vortex dipole, (b) the vortex tripole, and (c) the
vortex quadrupole. The core of a vortex is marked by ’+’ and an anti-vortex by ’–’.
Length is measured in units of the harmonic oscillator length ax =

√
�/(mωx). The

vortex dipole and quadrupole were originally discovered by Crasovan et al. [85, 86],
and the vortex tripole by Möttönen et al. [87].

shows the density profiles of the three vortex clusters whose energetic and dynamical

stability was studied. The stationary states were solved using the Gross-Pitaevskii

equation, Eq. (2.11), with an external potential of the form

Vext =
1

2
m

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)
, (3.9)

where ωx, ωy � ωz, for different anisotropy parameters λ = ωx/ωy and effective in-

teraction strengths g̃. For λ = 1, the stationary vortex quadrupole was found to exist

for all positive interaction strengths, whereas the dipole and tripole were found to

exist only when g̃ � 42 and g̃ � 108, respectively. In order to determine the stability

of each stationary state, we solved the Bogoliubov equations, Eq. (2.25). Negative

energy excitations exist for each of the clusters, implying energetic instability. In

rotationally symmetric traps, all of the three clusters have at least the dynamical

instability mode corresponding to rigid rotation of the configuration. Moreover, the

dipole mode has another instability mode, corresponding to annihilation of the clus-

ter, for 50 � g̃ � 80, the quadrupole for 50 � g̃ � 280, and the tripole for all values

of g̃. Temporal evolution of the dipole and quadrupole states shows revival of the

collapsed configuration close to the initial state.
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4 Experiments with Vortices in Dilute Bose-Einstein

Condensates

After the realization of a nearly ideal Bose-Einstein condensate, one of the big chal-

lenges was to observe quantized vortices in the system. A successful experiment

would yield unambiguous evidence of Bose-Einstein condensation and the existence

of a macroscopic wave function. Measurements concerning the vortex structure,

stability, and dynamics would provide stringent tests to the underlying many-body

quantum field theory. In superfluid helium, the quantization of circulation was

observed in 1958 by V. F. Vinen [88, 89], and vortices were observed in 1979 by

E. J. Yarmchuk et al. [42].

4.1 Trapping of Alkali Atoms With Magnetic Fields

In a typical experiment a beam of atoms is directed into a so-called Zeeman slower,

in which the velocity of the atoms is reduced enough to be captured in a magneto-

optical trap (MOT). The atom vapour is laser cooled down to sub mK temperature,

cold enough to be captured purely magnetically. Condensation is finally achieved

by cooling the vapour below the transition temperature TBEC by forced evaporative

cooling, in which the most energetic atoms are removed from the trap with radio-

frequency transitions.

Trapping of neutral atoms with a magnetic field is possible because of the Zeeman

effect: The energy of an atom in a given state in a weak magnetic field is of the form

E = E0 − μB, (4.1)

where E0 is the energy in the absence of the magnetic field B, and μ is the magnetic

moment of the atom along the magnetic field in the particular state. Hence, in an

inhomogeneous field, the atom feels a spatially varying potential. Generally, it is

not possible for the strength of a static magnetic field to have local maxima, but it

can contain a local minimum. Therefore, in order to trap atoms, they have to be in

a weak-field seeking state, i.e., their magnetic moment must be oriented opposite to

the direction of the magnetic field.
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The first condensate was achieved in a time-averaged orbiting potential (TOP)

trap, which consists of a quadrupole field and a uniform field rotating at a constant

angular frequency [90], resulting in a harmonic time-averaged potential. Another

commonly used configuration which provides the atoms a harmonic confinement is

the Ioffe-Pritchard trap. One design of the latter consists of two Helmholtz coils with

currents flowing in the same direction and four leads, known as the Ioffe bars. Let

us fix the coordinate axes such that the coils lie parallel to the x-y plane, separated

by some distance, and the z-axis coincides with the centers of the coils. The Ioffe

bars lie parallel to the z-axis, symmetrically in each quadrant of the x-y plane, with

currents flowing in the opposite directions in neighboring wires. Close to the origin,

the magnetic fields generated by the coils and the wires are given by [53]

Bcoils =

[
−Bz − 3C1

(
z2 − 1

2
r2

)]
ez + 3C1zrer, (4.2)

Bbars = C2xex − C2yey, (4.3)

where Bz, C1, and C2 are constant depending on the geometry and the currents: Bz

is the strength of the axial bias field, C1 determines the curvature of the axial field,

and C2 characterizes the strength of the field generated by the Ioffe bars. Assuming

that Bz, C1 > 0, the total magnetic field strength is of the harmonic form

B = Bz + 3C1

(
z2 − 1

2
r2

)
+

C2
2

2Bz
r2, (4.4)

to second order in the coordinates. The field has a local minimum at the origin

provided that C2
2 > 3BzC1.

4.2 Methods to Create Vortices

In this section, we will briefly sketch methods to create singly quantized vortices,

vortex lattices, and multiquantum vortices in dilute Bose-Einstein condensates. In

addition to the methods described below, vortices have been created by moving laser

beams [91, 92], and by transferring orbital angular momentum into a condensate

from a Laguerre-Gaussian laser beam [93]. Vortices and vortex rings have also been

observed as a result of decay of solitons [94,95]. Moreover, M. Möttönen et al. have

recently suggested a method for creating a vortex with an arbitrarily large winding
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number by pumping vorticity adiabatically into a condensate with external magnetic

fields [96].

Vortex in a Two-Component Condensate

The first quantized vortices in dilute atomic Bose-Einstein condensates were created

by Matthews et al. in 1999 [40], using a method proposed by Williams et al.,

based on transferring matter between two hyperfine states of the atoms [97]. The

method relies on mechanical rotation of the system and coupling of two hyperfine

states with an electric field: The two components of the condensate are confined in

harmonic potentials with a common trapping frequency. The centers of the harmonic

potentials are spatially shifted by adding a linear potential yielding an energy shift

to the components equal in magnitude but of the opposite sign. The two harmonic

potentials are rotated about their symmetry axis at a frequency ωrot by rotating

the linear potential. The population transfer between the states is driven with an

off-set laser beam, detuned by a frequency δ from resonant coupling. In the frame of

reference in which the potentials are static, the single-particle Hamiltonians of the

two components are of the form H0 −ωrotL̂
(i)
z , where L̂

(i)
z is the angular momentum

per particle of the ith component along the rotation axis. Hence, the population

transfer between a nonvortex state with 〈L̂z〉 = 0 in one component and a vortex

state with 〈L̂z〉 = � in the other becomes resonant if the detuning is canceled by the

energy difference of the states, δ ≈ ωrot
12. The direction of the particle flow in the

vortex state is not directly associated with the rotational motion of the potentials:

a vortex with the same quantum number is obtained by reversing the direction of

the mechanical rotation and the sign of the detuning δ.

In the experimental realization of this method, the two components consist of the

hyperfine states |F = 1,mF = −1〉 and |F = 2,mF = 1〉 of 87Rb. The condensate

is confined in a time-averaged orbiting potential magnetic trap yielding identical

harmonic potentials for the two states. The mechanical rotation is attained with

a detuned focused laser beam rotating around the condensate, providing a time-

12In fact, the relatively small difference in the chemical potentials of the vortex and the nonvortex
state should also be included.
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dependent ac Stark shift. The population transfer between the internal states is

induced by a pulsed two-photon microwave field. Singly quantized vortex states

were created in both of the components in the experiment, and differences in their

dynamics and stability resulting from the different scattering lengths of the atoms

in the components were observed. The vortex cores were clearly distinguishable and

their precessional motion was detected. The phase difference between the vortex

and the nonvortex states was imaged using a nondestructive state-selective phase

contrast imaging [45], suggesting that the vortex state possesses angular momentum.

Generation of Vortex Lattices

At the early stages of vortex experiments, it was not clear whether one could create

vortices using an analogy to the rotating bucket experiment with superfluid helium.

Coupling of the condensate to the rotating environment was not well understood,

and therefore the time scale for creating vortices could well have been longer than the

lifetime of the condensate itself [40]. However, soon after the first successful vortex

experiment, Madison et al. managed to create a condensate containing up to four

vortices by stirring it with a focused laser beam [98], see also Refs. [99,100]. In the

experiment, a cigar-shaped condensate of 87Rb is prepared in the |F = 2,mF = 2〉
state and confined in a Ioffe-Pritchard trap [11]. The stirring beam creates effectively

an anisotropic harmonic potential, which is rotated at a fixed angular frequency Ω

about the long axis of the condensate during the evaporative cooling stage. After

the vortex creation stage, the stirring beam and the magnetic trap are switched off,

allowing the cloud to expand during free fall. After the expansion, the condensate is

illuminated with a resonant laser beam and the shadow of the cloud in the beam is

imaged onto a CCD camera. Depending on the angular frequency Ω of the stirring

beam, up to four vortices were observed in a symmetric arrangement, supporting

the predicted signatures of rotating Bose-Einstein condensates [101]. The rotation

frequency Ω needed for the formation of one vortex was precisely measured yielding

a value much higher than the theoretically predicted value Ωc1 for the vortex state

to become energetically favorable compared to the nonvortex state [71, 102]. This

suggested the existence of the energy barrier ΔEΩ, see Fig. 3.1. Later on, giant
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arrays containing over a hundred vortices uniformly distributed in an Abrikosov

lattice have been observed [103]. Also, giant vortices containing up to 60 phase

singularities have been created in rapidly rotating condensates by suppressing the

density at the center of the cloud with a tightly focused resonant laser beam [104].

Creation of Multiply Quantized Vortices

The first multiply quantized vortices were created by using the topological phase

imprinting technique [105], originally proposed by Nakahara et al. [106], see also

Refs. [107–109]. In this method, the phase of the order parameter corresponding to

a vortex state is obtained by rotating the spins of the condensed atoms through an

angle π about an axis that depends on the location of a particular atom. The atoms

are supposed to be confined in a weak-field seeking state |F,mF 〉 in a Ioffe-Pritchard

trap, �B(r) = xex−yey +Bzez, in which the curvature of the axial field is neglected,

c.f. Eqs. (4.2) and (4.3). Initially, the axial fieldBz is assumed to be strong compared

to the quadrupole field in the condensate region, and hence all the spins lie parallel

to the z-axis. The axial field is inverted adiabatically, Bz → −Bz, such that the

individual spins follow the local magnetic field13. The spin rotation can be described

with a unitary transformation of the form [110], Rn̂(φ)(π) = e−i(F̂ /�)·n̂(φ)π, acting on

the components of the order parameter, where n̂(φ) = sin(φ)ex + cos(φ)ey denotes

the local direction of rotation. The rotation matrix can be decomposed according

to Rn̂(φ)(π) = ei(F̂z/�)φe−i(F̂y/�)πe−i(F̂z/�)φ. By applying the rotation, one obtains in

the laboratory frame [111]

Rn̂(φ)(π)|F,mF 〉 = (−1)(F−mF )e−i2mF φ|F,−mF 〉, (4.5)

which describes a vortex state with phase winding κ = −2mF .

In the experiments, condensates consisting of 23Na were prepared in the hyperfine

state |F = 1,mF = −1〉 or |F = 2,mF = +2〉. The vortices were created by

reversing an external axial bias field linearly in time, and the vortices could be

removed by reversing the bias field back to its original direction. The density profiles

13Some of the atoms are lost due to Majorana spin flips at the center of the trap when the axial
field vanishes.
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of the vortices were measured using the absorption imaging technique. The angular

momentum per particle was measured using surface wave spectroscopy [46,47,112].

The results corresponded very accurately to 〈L̂z〉 = 2� for the mF = −1 state and

〈L̂z〉 = −4� for the mF = 2 state.

4.3 Splitting of Doubly Quantized Vortices

In the experiments of Leanhardt et al. [105], no detectable splitting of the multiply

quantized vortices was observed, contradicting with theoretical predictions of their

instability against decay into singly quantized vortices [62]. In reversing the axial

bias field, the local minimum of the magnetic field strength at the center of the

condensate transforms into a saddle point, resulting in axial antitrapping of the

weak-field seeking state. This limited the lifetime of the system to � 50 ms. The

axial absorption images of the vortices were taken � 30 ms after the inversion of the

axial field, which is too soon to observe the splitting of the vortices in a condensate

with a relative large number of particles. Moreover, the absorption images were

taken along the whole length of the condensate, which might lead to blurring of

the cores due to bending and intertwining of the vortex lines near the ends of the

cloud [65,66,82,113].

The splitting times of doubly quantized vortices in a condensate of 23Na in the

|F = 1,mF = −1〉 state were measured in a similar setup by Y. Shin et al. [114].

The problem with the axial antitrapping of the condensate was overcome by chang-

ing the sign of the axial field curvature as Bz passed zero during the creation of

the doubly quantized vortex. Also, possible blurring effects resulting from bending

and intertwining of the vortex lines near the ends of the cloud were reduced by

taking the axial absorption images only from a 30 μm thick slice at the center of

the condensate. The splitting times of the doubly quantized vortices were measured

for various values of the parameter anz, where a is the s-wave scattering length and

nz =
∫ |ψ(x, y, 0)|2dxdy is the averaged axial density of atoms at the center of the

condensate. The density was controlled by removing a variable number of atoms

by radio-frequency evaporation before creating the vortex. After the creation of the

vortex, the condensate was held in the trap for a certain time before releasing and
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Figure 4.1: (a) Splitting times of doubly quantized vortices with respect to the
parameter anz. The measured density profiles are classified to consist of one min-
imum (open circle) as in B or two minima (black dot) as in A, corresponding to
a doubly quantized vortex or two singly quantized vortices. The cases where the
core was elliptical, but the two cores were not clearly resolved are denoted by gray
circles. (b) Separation of the single quantum vortex cores as a function of the hold
time (Y. Shin et al., 2004).

letting the cloud to expand for 15 ms in order to take the absorption image. Fig-

ure 4.1(a) illustrates the measured splitting times of doubly quantized vortices. The

splitting time increases with increasing density and seems to saturate for densities

higher than anz � 10. Figure 4.1(b) shows the separation of the observed single

quantum vortex cores as a function of holding time. The distance of the cores is

roughly constant, implying that most likely the splitting process is mainly driven

by a dynamical instability instead of dissipation: The latter would lead to gradual

increase in the separation of the cores.

In order to elucidate the role of the dynamical instability in the splitting of the

doubly quantized vortices, in Paper V we performed numerical simulations in the
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Figure 4.2: Density isosurface of a cigar-shaped Bose-Einstein condensate with a
doubly quantized vortex splitting into two singly quantized vortices. The vortex lines
intertwine strongly as they split and surface modes are excited during the splitting
process.

zero-temperature limit closely mimicking the experimental setup, see also Refs. [82,

115, 116]. The origin of the perturbation which initiates the splitting process lies

in the gravitational sag: Initially, when the bias field is strong such that Bz is the

dominating term in Eq. (4.4), the gravitational force, directed perpendicular to the

axial direction, merely shifts the location of the minimum of the potential. The

doubly quantized vortex is created by reversing the axial magnetic field linearly

in time, Bz → −Bz, c.f. Sec. 4.2. When the axial field vanishes, the potential

becomes linear instead of harmonic in the radial direction, and thus, at this time

the gravitational sag vanishes. This vertical kick breaks the rotational symmetry of

the system: Due to inertia, the center of mass of the condensate does not follow the

minimum of the potential exactly, yielding a sufficient perturbation to initiate the

splitting process.

Starting from the axisymmetric doubly quantized vortex state, we solved the

time evolution of the condensate, see Fig. 4.2, using the time-dependent Gross-

Pitaevskii equation with various values of the parameter anz, and calculated the

axially integrated density profiles as functions of time. From the density profiles, we

determined the splitting time T of the doubly quantized vortex, as shown in Fig. 4.3.

The splitting times obtained from the simulation agree well with the experimental

results, demonstrating the importance of the dynamical instability of the system
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Figure 4.3: Splitting time T of a doubly quantized vortex as a function of the
parameter anz.

in the splitting process. In Ref. [115], the same experiment was analyzed from a

different point of view: It was claimed that the splitting process was mainly driven

by thermal fluctuations. A fraction of 10–15 % of thermal atoms yielded a time

scale comparable to that in the experiment. However, the splitting times obtained

from the zero-temperature simulations performed in Paper V are somewhat shorter

than the experimental results, verifying that the effect of dissipation does not have

to be taken into account in their interpretation.

4.4 Splitting of Quadruply Quantized Vortices

It is known from numerical simulations that, in a harmonic trap, the doubly quan-

tized vortex state with κ = 2 can have a dynamical instability mode only for κq = 2

in Eq. (3.5). A vortex with a higher quantum number, such as the quadruply quan-

tized vortex with κ = 4, can have several dynamical instability modes, e.g., for

κq = 2, 3, 4, 5, and 6, each mode corresponding to a κq-fold symmetric splitting

pattern [84]. The imaginary parts for modes with κq > κ are greatly suppressed

compared to the modes with κq ≤ κ. For example, the 5-fold symmetric splitting

pattern of an axisymmetric quadruply quantized vortex corresponds to splitting into
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five singly quantized vortices and a singly quantized anti-vortex.

In Paper VI, we studied the splitting of a quadruply quantized vortex into four

singly quantized vortices both experimentally and theoretically. In the series of

experiments, a cigar-shaped BEC consisting of 87Rb atoms was prepared in the

|F = 2,mF = 2〉 state in a Ioffe-Pritchard trap [117]. The quadruply quantized

vortex was created by reversing the axial magnetic field, as described in Sec. 4.2. A

blue-detuned laser beam was applied below the condensate in order to remove the

gravitational sag and consequently to stabilize the formation of the vortex. Time

evolution of the vortex was determined by taking a tomographic image of the central

region of the condensate after ballistic expansion. The off-centered minimum in the

density profile, corresponding to the vortex core area, was observed to precess around

the center of the condensate in the counterclockwise direction. Also, the core area

was found to deform into a linear shape, rotating around its center.

By slicing the cigar-shaped condensate along the axial direction, it can be roughly

viewed as a collection of pancake-shaped clouds. Their central densities are deter-

mined by their positions along the axis. In order to explain the deformation of the

core into the linear shape, the Bogoliubov spectrum of the pancake-shaped conden-

sate profiles was solved for the averaged axial density anz relevant in the experiment.

Indeed, the κq = 2 mode was found to be the dominating instability mode along

the whole length of the cigar-shaped condensate, explaining the two-fold symmetric

splitting pattern. Moreover, the time evolution of the condensate was solved us-

ing the time-dependent Gross-Pitaevskii equation, for an initial state for which the

quadruply quantized vortex was off-centered. This provided further evidence that

the linear deformation of the core was due to splitting of the quadruply quantized

vortex into four singly quantized vortices which were aligned in a linear configura-

tion.

The precessional motion of the vortex cluster around the center of the condensate

is analogous to the precession of a singly quantized vortex, c.f. Sec. 3.3. On the

other hand, the rotational motion of the linearly shaped defect around its center can

be understood by considering the velocity fields of the individual vortices separated

by an equal distance: The velocity field at the location of an individual vortex is



– 32 –

given by the sum of the fields generated by the other vortices. Hence, a vortex at

the end of the chain feels effectively a velocity field built constructively from the

fields of the rest of the vortices. At the location of a vortex close to the center of the

chain, the velocity fields generated by the neighboring vortices cancel, resulting in

a smaller velocity field. This simplified model yields a velocity field which depends

roughly linearly on the distance from the center of the chain. The precessional and

rotational frequencies observed in the experiment matched reasonably well with the

frequencies obtained from the simulation.
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5 Tunneling of Bose-Einstein Condensates in Optical

Lattices

Tunneling is a fascinating quantum mechanical phenomenon in which a particle

passes through classically forbidden nanoscopic regions: Quantum mechanically, the

particle has a finite probability of penetrating through a potential barrier even if

the barrier height exceeds the kinetic energy of the particle. In 1928, G. Gamow

explained the alpha decay of atomic nuclei with the quantum tunneling effect [118].

Macroscopic quantum tunneling (MQT), in which macroscopic matter waves pen-

etrate through a potential barrier coherently, has drawn wide attention since the

discovery of the Josephson effect in superconductivity [119,120].

Macroscopic quantum tunneling has also been under keen study in the field of

gaseous atomic Bose-Einstein condensates. The system is especially interesting be-

cause of the nonlinear effects due to atomic interactions, which can be controlled by

tuning the interaction strength or the number of particles in the condensate. Typ-

ically, tunneling of condensates is studied in a periodic optical potential formed by

a standing wave generated using lasers14, but tunneling between two potential wells

has also been investigated [122–124]. Josephson junctions have been realized with

Bose-Einstein condensates in optical potentials [122–126], tunneling of condensed

atoms through an accelerated optical lattice has been observed [127, 128], and the

critical velocity for the onset of dissipative processes has been investigated in a pe-

riodic optical potential [129, 130]. In the experiments, the optical lattice potential

is often tilted due to gravity, by applying a magnetic field or by accelerating the

lattice potential. This tilted one-dimensional lattice potential is often referred to

as the washboard potential, familiar from the physics of Josephson junctions, and

the resulting Gross-Pitaevskii equation is often called the nonlinear Wannier-Stark

problem. In Paper VII, we investigate the tunneling of a Bose-Einstein condensate

through a single barrier of such a potential in the zero-temperature limit. We derive

an analytical expression for the tunneling rate through the barrier, and investigate

the effects of noise and harmonic drive to the tunneling rate through simulations.

14For a review of Bose-Einstein condensates in an optical lattice, see Ref. [121].
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The derivation of the analytical formula for the tunneling rate through a po-

tential barrier is based on three assumptions: The Thomas-Fermi parameter, c.f.

Sec. 2.3, has to be sufficiently large such that the wave function is well approximated

by the Thomas-Fermi form in the interior of the condensate. The potential barrier

should be sufficiently strong, such that particle interactions can be neglected in the

region of the barrier. In this approximation, the time-dependent Gross-Pitaevskii

equation, Eq. (2.10), reduces to the form of the ordinary Schrödinger equation, en-

abling the use of a semiclassical (WKB) approximation for the order parameter in

the tunneling region. Finally, the chemical potential of the condensate should not

be too close to the maximum height of the potential barrier, such that the potential

may be linearized to a good approximation in the vicinity of the left-hand classical

turning point a, defined by Vext(a) = μ, see Fig. 5.1.

Figure 5.1: Setup for the calculation of the tunneling rate of a Bose-Einstein
condensate through a potential barrier defined by Vext(x). The classical turning
points are denoted by a and b. The wave function is assumed to be well approximated
by the Thomas-Fermi form in region I, and by an Airy function in region II, the
width of which has been exaggerated in the figure. In region III, the wave function
is approximated by a semiclassical (WKB) form.

By linearizing the potential at x = a and neglecting the nonlinear term, Eq. (2.10)

reduces to the Airy differential equation. By using the Thomas-Fermi form as the

left boundary condition and requiring that the order parameter vanishes for large

values of the argument, the resulting unique solution provides a fair approximation

in the vicinity of a. In turn, the Airy function may be extended by the semiclassical
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solution through the potential barrier, yielding the particle current at the right-hand

turning point b. The tunneling rate through the barrier is given by

Γ ≈ 0.161
�

m

F

g̃
e−2W (μ),

in which F = ∂xVext(x)
∣∣
x=a

, g̃ is the effective interaction strength, and W (μ) =∫ b
a

√
2m[μ− Vext(y)]/�2dy describes the strength of the barrier for the chemical

potential μ.

This result for the tunneling rate closely resembles the standard WKB result for

the probability of a particle to tunnel through a potential barrier [131]: The energy

of the particle is merely replaced by the chemical potential of the condensate, and the

prefactor, often referred to as the attempt frequency, explicitly includes the effective

interaction strength g̃. In order to examine the validity of the approximations, we

calculated the tunneling rate also numerically for various shapes of the potential

barrier and values of the interaction strength g̃. As expected, the approximation

fails for small values of g̃ due to the failure of the Thomas-Fermi approximation,

and for large values of g̃ since the chemical potential approaches the maximum of

the barrier. However, Eq. (5.1) correctly predicts the tunneling rate for intermediate

values of g̃ corresponding to several orders of magnitude in Γ.

It has been shown that the quantized energy levels in the lattice wells play an

important role in the tunneling rate through a tilted periodic potential, giving rise

to tunneling resonances [132–135]. Also, the effect of the optical lattice potential

to the frequencies of the lowest-lying modes in magnetically trapped condensates

has been investigated both theoretically [136] and experimentally [126, 137, 138].

We investigated the effect of a harmonic perturbation to the tunneling rate in our

setup by adding a small term with harmonic time dependence to the strength of the

optical potential. Distinct resonance peaks in the time-averaged tunneling rate were

found for perturbation frequencies matching the eigenfrequencies of the dipole and

the quadrupole modes. This can be interpreted as resulting from their excitation

by the perturbation. In contrast to this seemingly intuitive result of enhancing the

tunneling rate by perturbing the system, also suppression of the inter-well tunneling

rate of a condensate in a strongly driven optical lattice has been observed [139,140].
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6 Conclusions and Discussion

Ever since the realization of the first dilute atomic Bose-Einstein condensates in 1995,

remarkable progress has been achieved both in theory and experiments concerning

ultracold quantum gases. Theoretical study of such systems combined with the

rapidly advancing experimental techniques for measuring them provides a unique

test bench for testing the validity and applicability of modern many-body quantum

theories. Many fascinating phenomena have been discovered in the field during this

relatively short period of research.

The research results outlined in this Thesis elucidate, in particular, the behavior

of quantized vortices in dilute atomic Bose-Einstein condensates. We have studied

the stability and dynamics of singly quantized vortices, vortex cluster, and multiply

quantized vortices in such systems, and in addition, the tunneling of a condensate

through a potential barrier. In Papers I–II, we investigated numerically the preces-

sion and displacement of off-centered vortices both in the zero-temperature limit and

at finite temperatures. At ultralow temperatures, the spectrum of the off-centered

vortex state is shown to contain a negative energy core-localized excitation, implying

energetic instability. In Paper III, we studied numerically the dynamical stability

of stationary multiply quantized vortices in different axisymmetric geometries. The

states turned out to be robust against perturbations in wide regions of the parame-

ter space. Moreover, the stability of starionary vortex clusters in non-rotating traps

was studied in Paper IV. We observed that in some parameter regions, the dipole

and quadrupole clusters are robust against annihilation of the structure. In Papers

V–VI, we studied the dynamics of the splitting of doubly and quadruply quantized

vortices, respectively. The splitting times of the multiply quantized vortices into

singly quantized vortices obtained from the simulations were in fair agreement with

the experimental results. The tunneling of a Bose-Einstein condensate through a

single potential barrier was investigated in Paper VII, which is closely related to

dynamics of condensates in optical lattice potentials. An analytical expression for

the tunneling rate was derived, closely resembling the well-known formula for the

probability of a single-particle tunneling event. Also, in this work we studied the
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effects of noise and harmonic drive to the tunneling rate.

There are still some aspects that should be taken into account in these research

projects: The already published results concerning, e.g., the splitting of a doubly

quantized vortex under the perturbation due to the vortex creation process was

calculated using a scalar condensate. The topological phase engineering technique

employed in creating the vortex, however, requires a condensate consisting of three

spin components. Therefore, a more accurate analysis of the initiation of the split-

ting process of multiply quantized vortices and further development of the system

requires a multicomponent calculation. The topological phase engineering method

is currently used for the creation of doubly and quadruply quantized vortices. How-

ever, recently developed methods for creating multiply quantized vortices, e.g., by

transferring angular momentum into a condensate with a Laguerre-Gaussian laser

beam, will enable the creation of vortices with higher quantum numbers. The dy-

namical stability and the dynamics of the splitting of such states is yet to be inves-

tigated. Also, it should be feasible to extend the analysis concerning the tunneling

of a Bose-Einstein condensate through a single potential barrier to a tilted lattice

potential.
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Phys. Rev. Lett. 88, 070406 (2002).
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(1999).

[78] T. Isoshima and K. Machida, Phys. Rev. A 59, 2203 (1999).

[79] S. M. M. Virtanen, T. P. Simula, and M. M. Salomaa, Phys. Rev. Lett. 86,

2704 (2001).

[80] M. Linn and A. L. Fetter, Phys. Rev. A 61, 063603 (2000).

[81] E. Lundh and H. M. Nilsen, Phys. Rev. A 74, 063620 (2006).
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lache, and L. Torner, Phys. Rev. A 68, 063609 (2003).

[86] L.-C. Crasovan, G. Molina-Terriza, J. P. Torres, L. Torner, V. M. Pérez-
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