Outi Elina Maasalo. The Gehring lemma in metric spaces. http://arxiv.org, arXiv:0704.3916v3 [math.CA].
© 2008 by author

The Gehring lemma in metric spaces

Outi Elina Maasalo

21th March 2006*

Abstract

We present a proof for the Gehring lemma in a metric measure space endowed with a doubling measure. As an application we show the selfimproving property of Muckenhoupt weights.

1 Introduction

The following self-improving property of the reverse Hölder inequality is a result due to Gehring 6. Assume that f is a non-negative locally integrable function and $1<p<\infty$. If there is a constant c such that the inequality

$$
\begin{equation*}
\left(f_{B} f^{p} d x\right)^{1 / p} \leq c f_{B} f d x \tag{1.1}
\end{equation*}
$$

holds for all balls B of \mathbb{R}^{n}, then there exists $\varepsilon>0$ such that

$$
\begin{equation*}
\left(f_{B} f^{p+\varepsilon} d x\right)^{1 / p+\varepsilon} \leq c f_{B} f d x \tag{1.2}
\end{equation*}
$$

for some other constant c. The theorem remains true also in metric spaces. However, the proof seems to be slightly difficult to find in the literature.

The subject has been studied for example by Fiorenza [5] as well as D'Apuzzo and Sbordone [4, 14]. Gianazza [7] shows that if a function satisfies (1.1), then there exists $\varepsilon>0$ such that

$$
\begin{equation*}
\left(f_{X} f^{p+\varepsilon} d \mu\right)^{1 / p+\varepsilon} \leq c f_{X} f d \mu \tag{1.3}
\end{equation*}
$$

for some constant c. The result is obtained in a space of homogeneous type, with the assumption that $0<\mu(X)<\infty$. In this paper, our purpose is to present a transparent proof for a version of the Gehring lemma in a metric space that has the annular decay property and that supports a doubling measure.

[^0]Also Kinnunen examines various minimal, maximal and reverse Hölder inequalities in [11] and [12]. Strömberg and Torchinsky prove Gehring's result under the additional assumption that the measure of a ball depends continuously on its radius, see [15]. Zatorska-Goldstein [16] proves a version of the lemma, where on the right-hand side there is a ball with a bigger radius.

We present a proof of the Gehring lemma in a doubling metric measure space. In addition, we assume that the space has the annular decay property, see Section 2. This is true for example in length spaces, i.e. metric spaces in which the distance between any pair of points is equal to the infimum of the length of rectifiable paths joining them. Our method is classical and intends to be as transparent as possible. In particular, we obtain the result for balls in the sense of (1.2) in the metric setting instead of (1.3). The proof is based on a Calderón-Zygmund type argument.

The Gehring lemma has a number of possible applications. As an example we show that the Muckenhoupt class is an open ended condition. The proof is classical and holds without the assumption of annular decay property. Moreover, the Gehring lemma can be applied for example to prove higher integrability of the volume derivative, also known as the Jacobian, of a quasisymmetric mapping, see [10].

2 General Assumptions

Let (X, d, μ) be a metric measure space equipped with a Borel regular measure μ such that the measure of every nonempty open set is positive and that the measure of every bounded set is finite.

Our notation is standard. We assume that a ball B in X comes always with a fixed centre and radius, i.e. $B=B(x, r)=\{y \in X: d(x, y)<r\}$ with $0<r<\infty$. We denote

$$
u_{B}=f_{B} u d \mu=\frac{1}{\mu(B)} \int_{B} u d \mu
$$

and when there is no possibility for confusion we denote $k B$ the ball $B(x, k r)$. We assume in addition that μ is doubling i.e. there exists a constant c_{d} such that

$$
\mu(B(x, 2 r)) \leq c_{d} \mu(B(x, r))
$$

for all balls B in X. We refer to this property by calling (X, d, μ) a doubling metric measure space and denote it briefly X. This is different from the concept of doubling space. The latter is a property of the metric space (X, d), where all balls can be covered by a constant number of balls with radius half of the radius of the original ball. A doubling metric measure space is always doubling as a metric space.

A good reference for the basic properties of a doubling metric measure space is [9. In particular, we will need two elementary facts. Consider a ball containing disjoint balls such that their radii are bounded below. In a doubling
space the number of these balls is bounded. Secondly, the doubling property of μ implies that for all pairs of radii $0<r \leq R$ the inequality

$$
\frac{\mu(B(x, R))}{\mu(B(x, r))} \leq c_{d}\left(\frac{R}{r}\right)^{Q}
$$

holds true for all $x \in X$. Here $Q=\log _{2} c_{d}$ is called the doubling dimension of (X, d, μ).

Given $0<\alpha \leq 1$ and a metric space (X, d, μ) with a doubling μ, we say that the space satisfies the α-annular decay property if there exists a constant $c \geq 1$, such that

$$
\mu(B(x, r) \backslash B(x,(1-\delta) r)) \leq c \delta^{\alpha} \mu(B(x, r))
$$

for all $x \in X, r>0$ and $0<\delta<1$. We omit α in the notation if we do not care about its value. See [1] for further information on spaces that satisfy the annular decay property.

Throughout the paper, constants are denoted c and they may not be the same everywhere. However, if not otherwise mentioned, they depend only on fixed constants such as those associated with the structure of the space, the doubling constant etc.

3 Gehring lemma

The following theorem is our main result.
Theorem 3.1 (Gehring lemma). Consider (X, d, μ), where μ is doubling. Let $1<p<\infty$ and $f \in L_{l o c}^{1}(X)$ be non-negative. If there exists a constant c such that f satisfies the reverse Hölder inequality

$$
\begin{equation*}
\left(f_{B} f^{p} d \mu\right)^{1 / p} \leq c f_{B} f d \mu \tag{3.1}
\end{equation*}
$$

for all balls B of X, then there exists $q>p$ such that

$$
\begin{equation*}
\left(f_{B} f^{q} d \mu\right)^{1 / q} \leq c_{q} f_{2 B} f d \mu \tag{3.2}
\end{equation*}
$$

for all balls B of X. The constant c_{q} as well as q depend only on the doubling constant, p, and on the constant in (3.1).

In metric spaces with a priori more geometrical structure this can be improved.

Corollary 3.2. In addition to the assumptions in Theorem 3.1, suppose X satisfies the annular decay property. Then the measure induced by f is doubling and (3.1) implies

$$
\begin{equation*}
\left(f_{B} f^{q} d \mu\right)^{1 / q} \leq c_{q} f_{B} f d \mu \tag{3.3}
\end{equation*}
$$

for all balls B of X. The constant c_{q} as well as q depend only on the doubling constant, p, and on the constant in (3.1).

The following is a standard iteration lemma, see 8].
Lemma 3.3. Let $Z:\left[R_{1}, R_{2}\right] \subset \mathbb{R} \rightarrow[0, \infty)$ be a bounded non-negative function. Suppose that for all ρ, r such that $R_{1} \leq \rho<r \leq R_{2}$

$$
\begin{equation*}
Z(\rho) \leq\left(A(r-\rho)^{-\alpha}+B(r-\rho)^{-\beta}+C\right)+\theta Z(r) \tag{3.4}
\end{equation*}
$$

holds true for some constants $A, B, C \geq 0, \alpha>\beta>0$ and $0 \leq \theta<1$. Then

$$
\begin{equation*}
Z\left(R_{1}\right) \leq c(\alpha, \theta)\left(A\left(R_{2}-R_{1}\right)^{-\alpha}+B\left(R_{2}-R_{1}\right)^{-\beta}+C\right) \tag{3.5}
\end{equation*}
$$

Lemma 3.3 is needed in the proof of our first key lemma:
Lemma 3.4. Let $R>0, q>1, k>1$ and $f \in L_{l o c}^{q}(X)$ non-negative. There exists $\varepsilon>0$ such that, if for all $0<r \leq R$ and for a constant c

$$
\begin{equation*}
f_{B(x, r)} f^{q} d \mu \leq \varepsilon f_{B(x, k r)} f^{q} d \mu+c\left(f_{B(x, k r)} f d \mu\right)^{q} \tag{3.6}
\end{equation*}
$$

holds, then

$$
\begin{equation*}
f_{B(x, R)} f^{q} d \mu \leq c\left(f_{B(x, 2 R)} f d \mu\right)^{q} \tag{3.7}
\end{equation*}
$$

The constant in (3.7) depends on k, on the doubling constant and on the constant in (3.6).

Proof. Fix $R>0$ and choose $r, \rho>0$ such that $R \leq \rho<r \leq 2 R$. Set $\tilde{r}=(r-\rho) / k$. Now

$$
B(x, \rho) \subset \bigcup_{y \in B(x, \rho)} B(y, \tilde{r} / 5)
$$

and by the Vitali covering theorem there exist disjoint balls $\left\{B\left(x_{i}, \tilde{r} / 5\right)\right\}_{i=1}^{\infty}$ such that $x_{i} \in B(x, \rho)$ and

$$
B(x, \rho) \subset \bigcup_{i} B\left(x_{i}, \tilde{r}\right)
$$

These balls can be chosen so that

$$
\begin{equation*}
\sum_{i} \chi_{B\left(x_{i}, k \tilde{r}\right)} \leq M \tag{3.8}
\end{equation*}
$$

for some constant $M<\infty$. This follows from the doubling property of the space. Indeed, assume that y belongs to N balls $B\left(x_{i}, k \tilde{r}\right)$. Clearly

$$
B\left(x_{i}, k \tilde{r}\right) \subset B(y, 2 k \tilde{r}) \subset B(y, 2 R)
$$

Remember that \tilde{r} and R are fixed and choose $K=20 R / \tilde{r}$. Now there are N disjoint balls with radius $\tilde{r} / 5 \geq 2 R / K$ included in a fixed ball $B(y, 2 R)$. Since the space is doubling, we must have $N \leq M(K)$. The inequality (3.8) follows.

Observe then that by the doubling property and the construction of the balls $\left\{B\left(x_{i}, \tilde{r}\right)\right\}_{i}$ we have

$$
\begin{aligned}
\sum_{i} \mu\left(B\left(x_{i}, \tilde{r}\right)\right) & \leq c \sum_{i} \mu\left(B\left(x_{i}, \tilde{r} / 5\right)\right)=c \mu\left(\cup_{i} B\left(x_{i}, \tilde{r} / 5\right)\right) \\
& \leq c \mu(B(x, r)) \leq c\left(\frac{r}{\rho}\right)^{Q} \mu(B(x, \rho))
\end{aligned}
$$

On the other hand, $B(x, \rho) \subset B\left(x_{i}, 2 k \rho\right)$, so that

$$
\begin{aligned}
\mu(B(x, \rho)) & \leq \mu\left(B\left(x_{i}, 2 k \rho\right)\right) \leq c\left(\frac{2 k \rho}{\tilde{r}}\right)^{Q} \mu\left(B\left(x_{i}, \tilde{r}\right)\right) \\
& =c\left(\frac{\rho}{r-\rho}\right)^{Q} \mu\left(B\left(x_{i}, \tilde{r}\right)\right)
\end{aligned}
$$

Combining these two inequalities implies

$$
\begin{aligned}
\mu(B(x, \rho)) & \geq c\left(\frac{r}{\rho}\right)^{-Q} \sum_{i} \mu\left(B\left(x_{i}, \tilde{r}\right)\right) \\
& \geq c\left(\frac{r}{\rho}\right)^{-Q}\left(\frac{\rho}{r-\rho}\right)^{-Q} \sum_{i} \mu(B(x, \rho)) .
\end{aligned}
$$

And as a consequence

$$
\#\left\{B\left(x_{i}, \tilde{r}\right)\right\} \leq c\left(\frac{r}{\rho}\right)^{Q}\left(\frac{\rho}{r-\rho}\right)^{Q}
$$

i.e. the number of balls $B\left(x_{i}, \tilde{r}\right)$ is at most $c(r /(r-\rho))^{Q}$, where c depends only on k, on the doubling constant and $Q=\log _{2} c_{d}$.

Observe that (3.6) holds true for \tilde{r}, so that

$$
\begin{align*}
\int_{B\left(x_{i}, \tilde{r}\right)} f^{q} d \mu \leq & \varepsilon \frac{\mu\left(B\left(x_{i}, \tilde{r}\right)\right)}{\mu\left(B\left(x_{i}, k \tilde{r}\right)\right)} \int_{B\left(x_{i}, k \tilde{r}\right)} f^{q} d \mu \\
& +c \frac{\mu\left(B\left(x_{i}, \tilde{r}\right)\right)}{\mu\left(B\left(x_{i}, k \tilde{r}\right)\right)^{q}}\left(\int_{B\left(x_{i}, k \tilde{r}\right)} f d \mu\right)^{q} \\
\leq & \varepsilon \int_{B\left(x_{i}, k \tilde{r}\right)} f^{q} d \mu+c \mu\left(B\left(x_{i}, \tilde{r}\right)\right)^{1-q}\left(\int_{B\left(x_{i}, k \tilde{r}\right)} f d \mu\right)^{q} \tag{3.9}
\end{align*}
$$

We note that

$$
\frac{\mu(B(x, r))}{\mu\left(B\left(x_{i}, \tilde{r}\right)\right)} \leq \frac{\mu\left(B\left(x_{i}, 2 r\right)\right)}{\mu\left(B\left(x_{i}, \tilde{r}\right)\right)} \leq c_{d}\left(\frac{2 r}{\tilde{r}}\right)^{Q} \leq c\left(\frac{r}{r-\rho}\right)^{Q}
$$

from which it follows that

$$
\mu\left(B\left(x_{i}, \tilde{r}\right)\right)^{1-q} \leq c\left(\frac{r}{r-\rho}\right)^{Q(q-1)} \mu(B(x, r))^{1-q}
$$

Together with (3.9) this implies

$$
\begin{align*}
\int_{B\left(x_{i}, \tilde{r}\right)} f^{q} d \mu \leq & \varepsilon \int_{B\left(x_{i}, k \tilde{r}\right)} f^{q} d \mu \\
& +c\left(\frac{r}{r-\rho}\right)^{Q(q-1)} \mu(B(x, r))^{1-q}\left(\int_{B\left(x_{i}, k \tilde{r}\right)} f d \mu\right)^{q} \tag{3.10}
\end{align*}
$$

Since $B(x, \rho) \subset \cup_{i} B\left(x_{i}, \tilde{r}\right)$, summing over i in (3.10) gives

$$
\begin{aligned}
\int_{B(x, \rho)} f^{q} d \mu \leq & \sum_{i} \int_{B\left(x_{i}, \tilde{r}\right)} f^{q} d \mu \\
\leq & \varepsilon \sum_{i} \int_{B\left(x_{i}, k \tilde{r}\right)} f^{q} d \mu \\
& +c\left(\frac{r}{r-\rho}\right)^{Q(q-1)} \mu(B(x, r))^{1-q} \sum_{i}\left(\int_{B\left(x_{i}, k \tilde{r}\right)} f d \mu\right)^{q} \\
\leq & \varepsilon M \int_{B(x, r)} f^{q} d \mu \\
& +c\left(\frac{r}{r-\rho}\right)^{Q(q-1)} \mu(B(x, r))^{1-q}\left(\frac{r}{r-\rho}\right)^{Q}\left(\int_{B(x, r)} f d \mu\right)^{q} \\
= & \varepsilon M \int_{B(x, r)} f^{q} d \mu+c\left(\frac{r}{r-\rho}\right)^{Q q} \mu(B(x, r))^{1-q}\left(\int_{B(x, r)} f d \mu\right)^{q} .
\end{aligned}
$$

Finally, remember that $R \leq \rho<r \leq 2 R$, so that

$$
\begin{aligned}
\int_{B(x, \rho)} f^{q} d \mu \leq \varepsilon M \int_{B(x, r)} & f^{q} d \mu \\
& +c R^{Q q}(r-\rho)^{-Q q} \mu(B(x, r))^{1-q}\left(\int_{B(x, r)} f d \mu\right)^{q}
\end{aligned}
$$

and furthermore

$$
\begin{align*}
f_{B(x, \rho)} f^{q} d \mu \leq \varepsilon c f_{B(x, r)} f^{q} d \mu & \\
& +c R^{Q q}(r-\rho)^{-Q q}\left(f_{B(x, 2 R)} f d \mu\right)^{q} \tag{3.11}
\end{align*}
$$

We are able to iterate this. In Lemma 3.3 set

$$
Z(\rho):=f_{B(x, \rho)} f^{q} d \mu
$$

so that Z is bounded on $[R, 2 R]$. Set also $R_{1}=R, R_{2}=2 R, \alpha=Q q$ and

$$
A=c R^{Q q}\left(f_{B(x, 2 R)} f d \mu\right)^{q} \geq 0
$$

where c is the constant in (3.11). Putting $\theta=c \varepsilon$ and choosing ε so small that $c \varepsilon<1$, (3.11) satisfies the assumptions of Lemma 3.3 with $B=C=0$. This yields $Z(R) \leq c A(2 R-R)^{-Q q}$, that is

$$
\begin{aligned}
f_{B(x, R)}|f|^{q} d \mu & \leq c R^{Q q}(c R-R)^{-Q q}\left(f_{B(x, 2 R)} f d \mu\right)^{q} \\
& =c\left(f_{B(x, 2 R)} f d \mu\right)^{q}
\end{aligned}
$$

In the following, we consider the Hardy-Littlewood maximal function restricted to a fixed ball $100 B_{0}$, that is

$$
M f(x)=\sup _{\substack{B \ni x \\ B \subset 100 B_{0}}} f_{B}|f| d \mu
$$

Clearly the coefficient 100 can be replaced by any other sufficiently big constant. The role of this constant is setting a playground large enough to assure that all balls we are dealing with stay inside this fixed ball.

Lemma 3.5. Let f be a non-negative function in $L_{l o c}^{1}(X)$ and suppose that is satisfies the reverse Hölder inequality (3.1). Then for all balls B_{0} in X

$$
\begin{equation*}
\int_{\left\{x \in B_{0}: M f(x)>\lambda\right\}} f^{p} d \mu \leq c \lambda^{p} \mu\left(\left\{x \in 100 B_{0}: M f(x)>\lambda\right\}\right) \tag{3.12}
\end{equation*}
$$

for all $\lambda>\operatorname{ess}_{\inf }^{B_{0}}$ Mf with some constant depending only on p, the doubling constant and on the constant in (3.1).

Proof. Let us fix a ball B_{0} with radius $r_{0}>0$. We denote $\{x \in X: M f(x)>\lambda\}$ briefly by $\{M f>\lambda\}$. Let $\lambda>\operatorname{ess}^{\inf }{B_{0}} M f$. Now there exists $x \in B_{0}$ so that $M f(x) \leq \lambda$. This implies that $B_{0} \cap\{M f \leq \lambda\} \neq \emptyset$. For every $x \in B_{0} \cap\{M f>$ $\lambda\}$, set

$$
r_{x}=\operatorname{dist}\left(x, 100 B_{0} \backslash\{M f>\lambda\}\right),
$$

so that $B\left(x, r_{x}\right) \subset 100 B_{0}$. Remark that the radii r_{x} are uniformly bounded by $2 r_{0}$.

In the consequence of the Vitali covering theorem there are disjoint balls $\left\{B\left(x_{i}, r_{x_{i}}\right)\right\}_{i=1}^{\infty}$ such that

$$
B_{0} \cap\{M f>\lambda\} \subset \bigcup_{i} 5 B_{i}
$$

where we denote $B_{i}=B\left(x_{i}, r_{i}\right)$. Both $B_{i} \subset 100 B_{0}$ and $5 B_{i} \subset 100 B_{0}$ for all $i=1,2, \ldots$, so they are still balls of (X, d). Furthermore, $5 B_{i} \cap\{M f \leq \lambda\} \neq \emptyset$ for all $i=1,2, \ldots$ so that

$$
\begin{equation*}
f_{5 B_{i}} f d \mu \leq \lambda \tag{3.13}
\end{equation*}
$$

for all $i=1,2, \ldots$. We can now estimate the integral on the left side in (3.12). A standard estimation shows that

$$
\begin{aligned}
\int_{B_{0} \cap\{M f>\lambda\}} f^{p} d \mu & \leq \int_{\cup_{i} 5 B_{i}} f^{p} d \mu \leq \sum_{i} \int_{5 B_{i}} f^{p} d \mu \\
& =\sum_{i} \mu\left(5 B_{i}\right) f_{5 B_{i}} f^{p} d \mu \leq c^{p} \sum_{i} \mu\left(5 B_{i}\right)\left(f_{5 B_{i}} f d \mu\right)^{p} \\
& \leq c^{p} \lambda^{p} \sum_{i} \mu\left(5 B_{i}\right)
\end{aligned}
$$

where the second last inequality follows from the reverse Hölder inequality and the last from (3.13). Since μ is doubling and the balls B_{i} are disjoint we get

$$
\sum_{i} \mu\left(5 B_{i}\right) \leq c \sum_{i} \mu\left(B_{i}\right)=c \mu\left(\cup_{i} B_{i}\right) .
$$

By the definition of $B_{i} \subset 100 B_{0} \cap\{M f>\lambda\}$ for all $i=1,2, \ldots$. Therefore

$$
\int_{B_{0} \cap\{M f>\lambda\}} f^{p} d \mu \leq c \lambda^{p} \mu\left(\cup_{i} B_{i}\right) \leq c \lambda^{p} \mu\left(100 B_{0} \cap\{M f>\lambda\}\right)
$$

for all $\lambda>\operatorname{ess}^{\inf }{ }_{B_{0}} M f$.
Remark. Note that ess $\inf _{B_{0}} M f \neq \infty$.
Indeed, in the well known weak type estimate for locally integrable functions

$$
\mu\left(B_{0} \cap\{M f>\lambda\}\right) \leq \frac{c}{\lambda} \int_{100 B_{0}} f d \mu
$$

the right-hand side tends to zero when $\lambda \rightarrow \infty$. The constant c depends only on the doubling constant c_{d}. We can thus choose $0<\lambda_{0}<\infty$ so that

$$
\frac{c}{\lambda_{0}} \int_{100 B_{0}} f d \mu \leq \frac{1}{2} \mu\left(B_{0}\right)
$$

As a consequence,

$$
\begin{gathered}
\mu\left(B_{0} \cap\left\{M f \leq \lambda_{0}\right\}\right)=\mu\left(B_{0}\right)-\mu\left(B_{0} \cap\left\{M f>\lambda_{0}\right\}\right) \\
\geq \mu\left(B_{0}\right)-\frac{c}{\lambda_{0}} \int_{100 B_{0}} f d \mu \geq \frac{1}{2} \mu\left(B_{0}\right) .
\end{gathered}
$$

This leads to $\operatorname{ess}_{\inf }^{B_{0}}{ }^{M f} \leq \lambda_{0}$, for if $\operatorname{ess}_{\inf }^{B_{0}} M f>\lambda_{0}$, then $M f(x)>\lambda_{0}$ for almost every $x \in B_{0}$. This impossible since

$$
\mu\left(B_{0} \cap\left\{M f \leq \lambda_{0}\right\}\right) \geq \frac{1}{2} \mu\left(B_{0}\right)
$$

For the reader's convenience, we present here one technical part of our proof as a separate lemma.

Lemma 3.6. Let $1<q<\infty$ and let $f \in L_{\text {loc }}^{q}(X)$ be non-negative. Suppose in addition that f satisfies the reverse Hölder inequality. Then for every ball B_{0} in X and for all $1<p<q$

$$
\begin{equation*}
\int_{B_{0} \cap\{M f>\alpha\}} f^{q} d \mu \leq c \alpha^{q} \mu\left(100 B_{0} \cap\{M f>\alpha\}\right)+c \frac{q-p}{q} \int_{100 B_{0}}(M f)^{q} d \mu \tag{3.14}
\end{equation*}
$$

where $\alpha=\operatorname{essinf}_{B_{0}} M f$ and c depends on p, the doubling constant and on the constant in (3.1).

Proof. Fix a ball B_{0} in X. Let $\alpha=\operatorname{ess}^{\operatorname{sinf}}{B_{0}} M f$, so that $M f \geq \alpha \mu$-a.e. on B_{0}. Set $d \nu=f^{p} d \mu$. Now

$$
\int_{B_{0} \cap\{M f>\alpha\}} f^{q} d \mu=\int_{B_{0} \cap\{M f>\alpha\}} f^{q-p} f^{p} d \mu \leq \int_{\{M f>\alpha\}}(M f)^{q-p} d \nu
$$

However, for every positive measure and measurable non-negative function g and a measurable set E, we have

$$
\int_{E} g^{p} d \nu=p \int_{0}^{\infty} \lambda^{p-1} \nu(\{x \in E: g(x)>\lambda\}) d \lambda
$$

for all $0<p<\infty$. This implies

$$
\begin{aligned}
\int_{B_{0} \cap\{M f>\alpha\}} f^{q} d \mu \leq & (q-p) \int_{0}^{\infty} \lambda^{q-p-1} \nu\left(B_{0} \cap\{M f>\alpha\} \cap\{M f>\lambda\}\right) d \lambda \\
= & (q-p) \int_{0}^{\alpha} \lambda^{q-p-1} \nu\left(B_{0} \cap\{M f>\alpha\}\right) d \lambda \\
& +(q-p) \int_{\alpha}^{\infty} \lambda^{q-p-1} \nu\left(B_{0} \cap\{M f>\lambda\}\right) d \lambda .
\end{aligned}
$$

Replacing $d \nu=f^{p} d \mu$ and integrating over λ, we get

$$
\begin{aligned}
\int_{B_{0} \cap\{M f>\alpha\}} f^{q} d \mu \leq \int_{B_{0} \cap\{M f>\alpha\}} & \alpha^{q-p} f^{p} d \mu \\
& +(q-p) \int_{\alpha}^{\infty} \lambda^{q-p-1} \int_{B_{0} \cap\{M f>\lambda\}} f^{p} d \mu d \lambda
\end{aligned}
$$

We can now use Lemma 3.5 for both integrals on the right-hand side and obtain

$$
\begin{aligned}
& \int_{B_{0} \cap\{M f>\alpha\}} f^{q} d \mu \leq c \alpha^{q} \mu\left(100 B_{0} \cap\{M f>\alpha\}\right) \\
& \\
& \quad+c(q-p) \int_{\alpha}^{\infty} \lambda^{q-1} \mu\left(100 B_{0} \cap\{M f>\lambda\}\right) d \lambda
\end{aligned}
$$

Then by changing the order of integration we arrive at

$$
\begin{aligned}
\int_{B_{0} \cap\{M f>\alpha\}} f^{q} d \mu \leq & c \alpha^{q} \mu\left(100 B_{0} \cap\{M f>\alpha\}\right) \\
& +c(q-p) \int_{\alpha}^{\infty} \lambda^{q-1} \int_{100 B_{0} \cap\{M f>\lambda\}} d \mu d \lambda \\
= & c \alpha^{q} \mu\left(100 B_{0} \cap\{M f>\alpha\}\right) \\
& +c(q-p) \int_{100 B_{0}} \int_{\alpha}^{M f} \lambda^{q-1} d \lambda d \mu
\end{aligned}
$$

from which by integrating over α we conclude that

$$
\begin{aligned}
\int_{B_{0} \cap\{M f>\alpha\}} f^{q} d \mu \leq & c \alpha^{q} \mu\left(100 B_{0} \cap\{M f>\alpha\}\right) \\
& +c \frac{q-p}{q} \int_{100 B_{0}}\left((M f)^{q}-\alpha^{q}\right) d \mu \\
\leq & c \alpha^{q} \mu\left(100 B_{0} \cap\{M f>\alpha\}\right) \\
& +c \frac{q-p}{q} \int_{100 B_{0}}(M f)^{q} d \mu
\end{aligned}
$$

Proof of the Gehring lemma. Consider a fixed ball B_{0}. Set $\alpha=\operatorname{essinf}_{B_{0}} M f$ and let $q>p$ be an arbitrary real number for the moment. We divide the integral of f^{q} over B_{0} into two parts:

$$
\begin{equation*}
\int_{B_{0}} f^{q} d \mu=\int_{B_{0} \cap\{M f>\alpha\}} f^{q} d \mu+\int_{B_{0} \cap\{M f \leq \alpha\}} f^{q} d \mu \tag{3.15}
\end{equation*}
$$

The second integral in (3.15) is easier to estimate, and we have

$$
\int_{B_{0} \cap\{M f \leq \alpha\}} f^{q} d \mu \leq \int_{B_{0} \cap\{M f \leq \alpha\}}(M f)^{q} d \mu \leq \alpha^{q} \mu\left(100 B_{0} \cap\{M f \leq \alpha\}\right)
$$

It would be tempting to use Lemma 3.6 to the first integral in (3.15), but this would require $f \in L_{l o c}^{q}(X)$. Unfortunately, that is exactly what we need to prove. The function f is assumed to be locally integrable and by the reverse

Hölder inequality it is also in the local L^{p}-space. Nevertheless, we can replace f with the truncated function $f_{i}=\min \{f, i\}$. The reverse Hölder inequality (3.1), Lemmas 3.5 and 3.6 as well as the preceeding analysis hold for f_{i}. In addition, $f_{i} \in L_{l o c}^{q}(X)$. We continue to denote the function f but remember that from now on we mean the truncated function.

With (3.14) we get now from (3.15)

$$
\begin{aligned}
\int_{B_{0}} f^{q} d \mu \leq & \left.c \alpha^{q} \mu\left(100 B_{0}\right) \cap\{M f>\alpha\}\right)+c \frac{q-p}{q} \int_{100 B_{0}}(M f)^{q} d \mu \\
& \left.+\alpha^{q} \mu\left(100 B_{0}\right) \cap\{M f \leq \alpha\}\right) \\
\leq & c \alpha^{q} \mu\left(100 B_{0}\right)+c \frac{q-p}{q} \int_{100 B_{0}}(M f)^{q} d \mu
\end{aligned}
$$

and furthermore

$$
f_{B_{0}} f^{q} d \mu \leq c \alpha^{q}+c \frac{q-p}{q} f_{100 B_{0}}(M f)^{q} d \mu
$$

This is true for all $q>p$. Let $\varepsilon>0$ and choose $q>p$ such that $c(q-p) / p<\varepsilon$. Then

$$
\begin{equation*}
f_{B_{0}} f^{q} d \mu \leq c \alpha^{q}+\varepsilon f_{100 B_{0}}(M f)^{q} d \mu \tag{3.16}
\end{equation*}
$$

Now that $f=f_{i}$ is locally q-integrable, the equation (3.16) gives

$$
\begin{equation*}
f_{B_{0}} f^{q} d \mu \leq c \alpha^{q}+c \varepsilon f_{100 B_{0}} f^{q} d \mu \tag{3.17}
\end{equation*}
$$

due to the well known boundedness theorem for maximal functions, see for example [2]. We have chosen α such that $\alpha \leq M f(x)$ for μ-a.e. x in B_{0}. Hence

$$
\begin{aligned}
\alpha^{p} & =f_{B_{0}} \alpha^{p} d \mu \leq f_{B_{0}}(M f)^{p} d \mu \leq c f_{100 B_{0}}(M f)^{p} d \mu \\
& \leq c f_{100 B_{0}} f^{p} d \mu \leq c\left(f_{100 B_{0}} f d \mu\right)^{p}
\end{aligned}
$$

where we use again the estimate for the Hardy-Littlewood maximal function and the reverse Hölder inequality. Moreover

$$
\begin{equation*}
\alpha^{q} \leq c\left(f_{100 B_{0}} f d \mu\right)^{q} \tag{3.18}
\end{equation*}
$$

From (3.17) and (3.18) we conclude that

$$
\begin{equation*}
f_{B_{0}} f^{q} d \mu \leq c \varepsilon f_{100 B_{0}} f^{q} d \mu+c\left(f_{100 B_{0}} f d \mu\right)^{q} \tag{3.19}
\end{equation*}
$$

for all balls B_{0} of X. If necessary, choose a smaller ε and thus also a q closer to p in (3.16) to make Lemma 3.4 hold true. Set $k=100$ in the lemma to obtain

$$
f_{B_{0}} f^{q} d \mu \leq c\left(f_{2 B_{0}} f d \mu\right)^{q}
$$

It remains to pass to the limit with $i \rightarrow \infty$ and the theorem follows.
The following proposition implies Corollary 3.2.
Proposition 3.7. Let (X, d, μ) satisfy the annular decay property and μ be doubling. Suppose that $f \in L_{l o c}^{1}(X)$ is a non-negative function satisfying (3.1). Then the measure induced by f is doubling, i.e.

$$
\int_{2 B} f d \mu \leq c \int_{B} f d \mu
$$

for all balls B of X. The constant c depends only on the constant in (3.1).
Proof. Define

$$
\nu(U)=\int_{U} f d \mu
$$

for $U \subset X \mu$-measurable. Fix a ball B in X and let $E \subset B$ be a μ-measurable set. Then

$$
\begin{aligned}
& \int_{B} f \chi_{E} d \mu \leq\left(\int_{B} f^{p} d \mu\right)^{1 / p} \mu(E)^{1-1 / p} \\
& \quad \leq c\left(\int_{B} f d \mu\right) \mu(B)^{1 / p-1} \mu(E)^{1-1 / p}=c \nu(B)\left(\frac{\mu(E)}{\mu(B)}\right)^{1-1 / p}
\end{aligned}
$$

The inequalities above follow from the Hölder and the reverse Hölder inequalities, respectively. For all $E \subset B$ this implies

$$
\begin{equation*}
\frac{\nu(E)}{\nu(B)} \leq c\left(\frac{\mu(E)}{\mu(B)}\right)^{1 / p^{\prime}} \tag{3.20}
\end{equation*}
$$

where p^{\prime} is the L^{p}-conjugate exponent of p. Since the set E in (3.20) is arbitrary, we can replace it by $B \backslash E$. Therefore

$$
\begin{equation*}
1-\frac{\nu(E)}{\nu(B)}=\frac{\nu(B \backslash E)}{\nu(B)} \leq c\left(\frac{\mu(B \backslash E)}{\mu(B)}\right)^{1 / p^{\prime}} \tag{3.21}
\end{equation*}
$$

for all $E \subset B$. If $E=(1-\delta) B$, then by choosing $0<\delta<1$ small enough we get

$$
\begin{equation*}
c\left(\frac{\mu(B \backslash(1-\delta) B)}{\mu(B)}\right)^{1 / p^{\prime}}<\frac{1}{2} \tag{3.22}
\end{equation*}
$$

by the annular decay property. It follows from (3.21) and (3.22) that

$$
1-\frac{\nu((1-\delta) B)}{\nu(B)}<\frac{1}{2}
$$

and hence $\nu(B) \leq 2 \nu((1-\delta) B)$. We are now able to iterate this. There exists $k \in \mathbb{N}$ such that $(1-\delta)^{k}<1 / 2$ and thus

$$
\nu(B) \leq 2 v((1-\delta) B) \leq 2^{k} \mu\left((1-\delta)^{k} B\right) \leq 2^{k} \nu\left(\frac{1}{2} B\right)
$$

for all balls B of X. This proves that ν is doubling. Remark that the doubling property of μ plays no role here.

For examples of spaces that satisfy the annular decay property the interested reader may see for example [1]. We mention here spaces supporting a length metric, that form a rather large subclass of such spaces. In other words, suppose that a metric space supports a doubling measure, and for all x and y in X it holds

$$
d(x, y)=\inf \text { length }(\gamma)
$$

where the infimum is taken over all rectifiable paths joining x and y. Then the space satisfies the α-annular decay property for constants α and c that depend only on the doubling constant, and $0<\delta \leq 1 / 2$. See 3 for the proof.

4 Self-improving property of Muckenhoupt weights

Throughout the section, let (X, d, μ) let be a metric space with a doubling measure μ.

Muckenhoupt weights form a class of functions that satisfy one type of a reverse Hölder inequality. More precisely, if $1<p<\infty$, a locally integrable non-negative function w is in A_{p} if for all balls B in X the inequality

$$
\left(f_{B} w d \mu\right)\left(f_{B} w^{1-p^{\prime}} d \mu\right)^{p-1} \leq c_{w}
$$

holds. The constant c_{w} is called the A_{p}-constant of w and $1 / p+1 / p^{\prime}=1$. Moreover, A_{1} is the class of locally integrable non-negative functions that satisfy

$$
f_{B} w d \mu \leq c_{w} \underset{x \in B}{\operatorname{ess} \inf } w(x)
$$

for all balls B in X. In this section we show that the A_{p}-condition is an open ended condition; every $w \in A_{p}$ is also in some $A_{p-\varepsilon}$.

In the following lemma number 2 is not important and it can be replaced by any positive constant.

Proposition 4.1. For all locally integrable non-negative functions the inequality

$$
\begin{equation*}
\left(f_{B} f^{-t} d \mu\right)^{-1 / t} \leq\left(f_{B} f^{1 / 2} d \mu\right)^{2} \tag{4.1}
\end{equation*}
$$

holds for all $t>0$ and all balls B in X.
Proof. Setting $g=f^{1 / 2}$ and replacing f by it in (4.1) gives an equivalent inequality

$$
f_{B} g^{-2 t} d \mu \geq\left(f_{B} g d \mu\right)^{-2 t}
$$

This holds by the Jensen inequality since $x \mapsto x^{-2 t}$ is a convex function on $\{x>0\}$.

Theorem 4.2. Let $1 \leq p<\infty$ and $w \in A_{p}$. Then there exist a constant c and $\varepsilon>0$ such that

$$
\begin{equation*}
\left(f_{B} w^{1+\varepsilon} d \mu\right)^{1 /(1+\varepsilon)} \leq c f_{B} w d \mu \tag{4.2}
\end{equation*}
$$

where the constant depends only on the A_{p}-constant of w and on the constants in the Gehring lemma.

Proof. Since $A_{1} \subset A_{p}$ for all $p>1$, we can assume $p>1$. Take an arbitrary ball B in X and $w \in A_{p}$ for some $p>1$. This implies

$$
\left(f_{B} w d \mu\right) \leq c\left(f_{B} w^{1-p^{\prime}} d \mu\right)^{1-p}
$$

where the right-hand side is well defined since either $w>0 \mu$-a.e. or $w \equiv 0$. By Proposition 4.1 this implies

$$
\begin{equation*}
\left(f_{B} w d \mu\right) \leq c\left(f_{B} w^{1 / 2} d \mu\right)^{2} \tag{4.3}
\end{equation*}
$$

Now from the Gehring lemma it follows that

$$
\left(f_{B} w^{1+\epsilon} d \mu\right)^{1+\epsilon} \leq c\left(f_{B} w^{1 / 2} d \mu\right)^{2}
$$

where we can use the Hölder inequality and get to

$$
\begin{equation*}
\left(f_{B} w^{1+\epsilon} d \mu\right)^{1+\epsilon} \leq c f_{2 B} w d \mu \tag{4.4}
\end{equation*}
$$

for some $\varepsilon>0$ and constant c. To see this, in (4.3) replace w by an auxiliarity function g such that $w=g^{2}$. Then we can rewrite (4.3) as

$$
\left(f_{B} g^{2} d \mu\right)^{1 / 2} \leq c f_{B} g d \mu
$$

i.e. the reverse Hölder inequality for g. Gehring's lemma provides us with $\delta>0$ such that

$$
\left(f_{B} g^{2+\delta} d \mu\right)^{1 /(2+\delta)} \leq c f_{2 B} g d \mu
$$

This leads to (4.4) with $\varepsilon=\delta / 2$. Finally, we recall that a Muckenhoupt weigth induces a doubling measure, and hence (4.2) follows.

Corollary 4.3. Let $1<p<\infty$ and $w \in A_{p}$. There exists $p_{1}<p$ such that $w \in A_{p_{1}}$.

Proof. Recall that $w \in A_{p}$ if and only if $w^{-p^{\prime} / p} \in A_{p^{\prime}}$. It follows from Theorem 4.2 that there are $\varepsilon>0$ and a constant c such that

$$
\begin{equation*}
\left(f_{B}\left(w^{-p^{\prime} / p}\right)^{1+\varepsilon} d \mu\right)^{1 /(1+\varepsilon)} \leq c f_{B} w^{-p^{\prime} / p} d \mu \tag{4.5}
\end{equation*}
$$

In addition,

$$
\frac{p^{\prime}}{p}(1+\varepsilon)=\frac{1+\varepsilon}{p-1}=\frac{1}{p_{1}-1}=\frac{p_{1}^{\prime}}{p_{1}}
$$

where $p_{1}=p /(1+\varepsilon)-1 /(1+\varepsilon)+1$. Since $p>1, p_{1}<p$. The equation (4.5) can now be written as

$$
\begin{equation*}
f_{B} w^{-p_{1}^{\prime} / p_{1}} d \mu \leq c\left(f_{B} w^{-p^{\prime} / p} d \mu\right)^{1+\varepsilon} \tag{4.6}
\end{equation*}
$$

On the other hand, $-p^{\prime} / p=1-p^{\prime}$ and thus the A_{p} condition of w implies

$$
\left(f_{B} w^{-p^{\prime} / p} d \mu\right)^{p / p^{\prime}} \leq c\left(f_{B} w d \mu\right)^{-1}
$$

Raising this first to the power p^{\prime} / p and then to $1+\varepsilon$, we get

$$
\begin{align*}
\left(f_{B} w^{-p^{\prime} / p} d \mu\right)^{1+\varepsilon} & \leq c\left(f_{B} w d \mu\right)^{-p^{\prime}(1+\varepsilon) / p} \tag{4.7}\\
& =c\left(f_{B} w d \mu\right)^{-p_{1}^{\prime} / p_{1}}
\end{align*}
$$

From (4.6) and (4.7) we finally conclude that

$$
f_{B} w^{-p_{1}^{\prime} / p_{1}} d \mu \leq c\left(f_{B} w d \mu\right)^{-p_{1}^{\prime} / p_{1}}
$$

This means that $w \in A_{p_{1}}$, where $p_{1}<p$.

References

[1] S. M. Buckley. Is the maximal function of a Lipschitz function continuous? Ann. Acad. Sci. Fenn. Math., 24(2):519-528, 1999.
[2] R.R. Coifman and G. Weiss. Analyse Harmonique Non-Commutative sur Certaines Espaces Homognes. Springer-Verlag, 1971.
[3] T.H. Colding and W.P. Minicozzi II. Liouville theorems for harmonic sections and applications. Comm. Pure Appl. Math., 2(51):725-747, 1997.
[4] L. D'Apuzzo and C. Sbordone. Reverse Hölder inequalities: a sharp result. Rend. Mat. Appl. (7), 10(2):357-366, 1990.
[5] A. Fiorenza. On some reverse integral inequalities. Atti Sem. Mat. Fis. Univ. Modena, 38(2):481-491, 1990.
[6] F. W. Gehring. The L^{p}-integrability of the partial derivatives of a quasiconformal mapping. Acta Math., 130:265-277, 1973.
[7] U. Gianazza. The L^{p} integrability on homogeneous spaces. Ist. Lombardo Accad. Sci. Lett. Rend. A, 126:83-92, 1992.
[8] M. Giaquinta. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, 1983.
[9] J. Heinonen. Lectures on Analysis on Metric Spaces. Springer, 2001.
[10] J. Heinonen and P. Koskela. Quasiconformal maps in metric spaces with controlled geometry. Acta Math., 181(1):1-61, 1998.
[11] J. Kinnunen. Minimal, maximal and reverse Hölder inequalities. In Papers on Analysis, number 83, pages 225-247. University of Jyväskylä, 2001.
[12] K. Kinnunen. Sharp results on reverse Hölder inequalities. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, (95):34, 1994.
[13] P. Mattila. Geometry of Sets and Measures in Euclidian Spaces - Fractals and rectifiability. Cambridge University Press, 1995.
[14] C. Sbordone. Some reverse integral inequalities. Atti Accad. Pontaniana (N.S.), 33:17-31, 1984.
[15] J-O. Strömberg and A. Torchinsky. Weighted Hardy Spaces, volume 1381 of Lecture Notes in Mathematics. Springer-Verlag, 1989.
[16] A. Zatorska-Goldstein. Very weak solutions of nonlinear subelliptic equations. Ann. Acad. Sci. Fenn. Math, 30(2):407-436, 2005.

[^0]: *Revised 15th Jan 2008

