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Abstract—A method for estimating equivalent circuit models 

for deep-bar induction motor is presented. The method is based 

on the time-harmonic finite element analysis (FEA). The 

parameters of the studied motor depend strongly on the 

frequency and a single-cage equivalent circuit with constant 

parameters predicts the torque only at the same operation point 

where the parameters are defined. In the presented paper, the 

rotor is modelled with multiple branches and the same circuit 

model is capable of depicting a wider operation range of the 

motor.

Index Terms—finite element analysis, parameter estimation, 

equivalent circuit models 

I. INTRODUCTION

HE time-stepping finite-element analysis is accurate 

and widely applied method in the study and simulation of 

electrical machines. Electrical machines usually operate in 

connection with control circuits, power electronics, 

components of electrical grid and mechanics causing a 

complex interaction. The computation capacity often limits the 

use of comprehensive models, and a simpler analytical model 

for the machine is required in many applications. 

The basic single-cage equivalent circuit model with 

constant parameters is able to model the behaviour of the 

machine only at certain operation point. Because of the skin 

effect in the rotor bars, the parameters of the circuit model 

depend on the frequency. The values for the rotor resistance 

and leakage inductance vary the most. Several proposals have 

been made in order to include the skin effect into the circuit 

model, for example [1], [2]. Usually one or more additional 

rotor branches are included into the basic model, while the 

physical interpretation for the parameters is still preserved. 

In the proposed paper, a systematic method for extracting 

the equivalent circuit parameters from the two-dimensional 

time-harmonic FEA is presented. For the analytical model, the 

number of additional branches can be chosen depending on 

the requirements of the application.  

The authors are with the Laboratory of Electromechanics, Helsinki 

University of Technology, FI-02015 TKK, Finland (email: anna-
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II. METHOD OF ANALYSIS

A.  Two-dimensional time-harmonic model 

A radial-flux cage induction motor is studied assuming a 

two-dimensional magnetic vector potential A and current 

density J
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The z-axis is in the direction of the shaft of the machine. 

Assuming sinusoidal time variation, phasor variables are used 

for the field solution. The stator frequency is equal to the 

supply frequency ωs. The rotor frequency is the slip frequency 

sωs. The rotor is stationary, i.e. the effects of motion are 

modelled by assuming the slip frequency in the rotor, only. 

After these assumptions, the equation for the magnetic vector 

potential is 

eff( )ν∇× ∇× =A J  (2) 

where νeff is an effective permeability [3] and A is the vector-

potential phasor. This two-dimensional time-harmonic model 

can be used for the core region of a radial-flux machine but it 

does not model properly the magnetic field or winding 

connections in the end-winding space. The end effects are 

taken into account approximately by coupling the field 

equation with the circuit equations of the windings and using 

end-winding impedances. Winding currents or potentials or 

both of them are used as additional variables. For instance, the 

circuit equation for a stator phase is 

( )
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s s s ni
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nii

= j +j d
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N
u R L i

S
ω ω β+ ⋅A S  (3) 

where Rn
s and Ln

s are the resistance and end-winding 

inductance of the nth phase. The summation over i includes all 

the coil sides of phase n. Variable βni = ±1 defines whether a 

positive or negative coil side is considered. Nni is the number 

of turns and Sni the cross-sectional are of coil side i.  is the 

core length of the machine. The details of combining the field 

and circuit equations have been discussed among others in 

references [4]-[6]. A finite element method is used to solve the 

field and circuit variables numerically. 
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B.  Impedance matrix 

The aim is to present the circuit equations of the machine in 

matrix form 

=u Zi  (4) 

The dimensions of the impedance matrix Z are 

(m+Qr)×(m+Qr), where m is the number of phases and Qr the 

number of rotor bars. u is a voltage vector and i a current 

vector. The electromagnetic couplings between the windings 

can be uniquely defined only for a linear system. The 

linearization is done by solving the magnetic field in a chosen 

operation point and freezing the permeability of the iron core 

to this solution. Any of the field-circuit formulations referred 

to in Section II.A can be used to solve the linearization field. 

The coupling impedances are obtained by inserting a 

current one by one in each phase winding and rotor bar and 

computing the voltages produced by this current in all the 

windings and bars. The current density in (2) must be 

expressed as a function of the total current. For instance, a 

current ik in rotor bar k generates a magnetic vector potential 

A according to equation 

k

  k

0 s s

k k

1
( )+j j d  =z z

S

i
s s

S S
ν ω σ ω σ∇× ∇× − ⋅A A A S e e  (5) 

where ν0 is the linearised reluctivity, s the slip, ω the supply 

frequency and Sk the cross-sectional area of the bar.  The 

voltage induced in a stator phase winding is obtained from (3). 

The voltage over rotor bar n is 

n

n nk   k s

n

= +j d
S

u R i s
S

ω ⋅A S  (6) 

where the Kronecker symbol δnk assures that a resistive term is 

present only if the current and voltage are associated with the 

same conductor. 

A element znk of the impedance matrix Z is

n
nk

  k

u
z

i
=   (7) 

The rotor voltage equation (6) is not in proper form for the 

impedance equation (4) as it does not include the voltages 

induced at the ends of the rotor cage. The missing terms can 

be taken into account by applying Kirchhoff’s laws to the 

closed meshes of the cage. One possible method is discussed 

in [6]. When applied, the voltage equation for the rotor 

becomes 
r rs s rr re r( ) 0= + + =M Mu Z i Z Z i . (8) 

The elements of matrices Zrs and Zrr are obtained from (6) and 

(7). Matrix Zre is associated with the end-winding impedances 

of the rotor cage. Matrix M transforms the bar voltages to 

mesh voltages. 

C. Equivalent circuit for a single-cage motor 

Fig. 1 shows the conventional T equivalent circuit. It 

represents the coupling between a stator phase current and a 

somewhat fictitious rotor current. 
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Fig. 1.  Single-cage equivalent circuit model. 

As there are two currents, the related coupling matrix Z has 

dimensions 2×2. The approach of this study is to first compute 

the large impedance matrix including all the couplings as 

described in the previous section, and then reduce the large 

matrix to a 2×2 matrix associated with Figure 1. A method 

related to the symmetric components is used for the reduction. 

If the stator winding has m phases and the rotor bars are taken 

to form a poly-phase system with Qr phases, the positive 

phase-sequence stator voltage, stator current and rotor current 

are defined 
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The subscript + refers to the positive phase sequence. By 

substituting the stator voltages from (4) in the first expression 

of Eq. (9), the positive phase-sequence voltage is obtained as 

a function of the phase and bar currents 

r
2 (i-1) 2 (i-1)

j j
s ss s sr r
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i=1 k=1 i=1 k=1

1 1
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m mu z i z i
m m

π π

+ = +  (10) 

where zss
ik refers to an element of the impedance matrix that 

couples two stator windings and zsr
ik to an element that couples 

a stator winding to a rotor bar. 

The first sum in (10) is taken to be the voltage induced by 

the positive phase-sequence stator current and the second sum 

the voltage induced by the positive phase-sequence rotor 

current. Based on this assumption, the equation is written in a 

simple scalar form 
s ss s sr r

     u z i z i+ + += +  (11) 

where the impedances zss and zsr are obtained by dividing the 

sum containing the stator currents by is
+ and the sum 

containing the rotor currents by ir
+

r
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. (12) 

The positive phase-sequence rotor voltage is calculated in a 

similar manner as the stator voltage above
r rs s rr r

     0u w i w i+ + += + =  (13) 
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The coefficients are 
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Equations (11) and (13) define the relation between the 

positive phase-sequence stator voltage and stator and rotor 

currents. As the equations have been derived from the voltage 

equations of two magnetically coupled poly-phase windings 

having different phase numbers, the coupling coefficients zsr

and wrs are not equal. The equality is forced by rescaling (13) 

( )
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rs s rr r rs s rr r

        rs
0
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w i w i z i z i
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+ + + ++ = + =  (15) 

where
rs sr

sr
rr rr
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z
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=
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Equations (11) and (15) define a simple equivalent circuit of 

the single-cage induction motor. However, if leakage 

reactances are preferred, the rotor quantities have to be 

referred to the stator. A stator-referred rotor current flowing in 

the stator winding should induce a fundamental component of 

the air-gap flux that is equal to the fundamental component of 

the flux induced by the original rotor current. Using this 

criterion, a reference coefficient κ is obtained 
s 1 r

r 1 s

i

i

Φκ
Φ

+

+

=  (17) 

where Φ s1 and Φ r1 are the fundamental components of the air-

gap fluxes induced separately by the stator and rotor currents. 

The flux components are integrated from the air-gap vector 

potential. The parameters referred to the stator and marked by 

an apostrophe are 

r r
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The components of the equivalent circuit in Figure 1 are 

obtained from the impedances referred to the stator 
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The linearization of the machine was done to a given 

operation point. The circuit parameters obtained are, of 

course, associated with the same operation point. 

D. Multi-cage models 

The method above can be generalised for a multi-cage 

machine or to a model in which the deep bars are divided in 

several sub-conductors. Such a division is shown in Fig. 2. 

Fig. 2.  Rotor bar is divided into three parts. 

A positive phase-sequence rotor current is defined 

separately for each of the sub-conductor layers. If three sub-

conductors per bar are used, the large impedance matrix is a 

(m+3Qr)×(m+3Qr) matrix, and (10), as an example, includes 

one sum for the stator currents and three sums for the positive 

phase-sequence sub-conductor currents. The reduction of the 

large impedance matrix leads to a 4×4 coupling matrix. Each 

rotor current is separately referred to the stator using (17). The 

circuit equation for the three-cage induction machine is of the 

form 

=

s
s +11 12 13 14+

r1
21 22 23 24 +

r2
31 32 33 34 +

r341 42 43 44
+

0

0

0

iZ Z Z Zu

Z Z Z Z i

Z Z Z Z i

Z Z Z Z
i

. (20) 

Again, the 4×4 coupling matrix represents an equivalent 

circuit of the machine. However, multi-cage machines are 

often modelled using a ladder-type equivalent circuit. Such a 

circuit with three rotor branches is presented in Fig 3. 

Zs Zc1 Zc2
i

s

i i i i
s r1 r2 r3+ + + i

r1
i

r2
i

r3

u
s Zm Zr1 Zr2 Zr3

Fig. 3.  Three-cage equivalent circuit model. 

To fulfil Kirchhoff’s second law in the circuit of Fig. 3, the 

coupling matrix should be of the form defined by (21) or at 

least, it should be possible to transform the system of 

equations (20) so that a coupling matrix of type (21) is 

obtained. Obviously, this is not possible for a general case. A 

4×4 matrix has 12 elements but there are only 7 coefficients 

on the right hand side of (21). For the equality, the matrix on 

the left hand side must be symmetric. 
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Furthermore, the following constraints have to be fulfilled 
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The diagonal elements are 
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If the coupling matrix fulfils these constraints, the 

transformation to the ladder system is a straight forward 

process. If not, the ladder structure is too restrictive to 

describe the machine. When the coupling matrix (20) is 

constructed as described in Sections II-B–II-D, the conditions 

(22) are met very well, and the ladder-circuit parameters give 

almost exactly the same machine characteristics, i.e. stator 

current and torque, as the original FEM solution. This 

experience seems to apply for any division of the rotor bars to 

sub-conductors. Possible problems are discussed in Chapter 

IV.

III. RESULTS

A 37-kW cage-induction motor is studied. Fig. 4 shows the 

geometry of the rotor and stator slots. 

Fig. 4.  Geometry of the stator and rotor slots. 

Table I presents the rated values of the test motor. 

TABLE I RATED VALUES FOR THE TEST MOTOR.

First, the effects of saturation are neglected when a FE 

model with a relative permeability of 1000 in the iron is 

studied. The model is referred as the linear FE model. 

However, the eddy currents in the rotor bars are included and 

therefore the parameters change along with the frequency. In 

all the performed computations, the temperature of the stator 

winding is 98 °C and rotor 135 °C. 

The parameters of the single-cage circuit model are 

estimated at different slips. Using the obtained equivalent 

circuits, the torque versus speed curves are calculated. Fig. 5 

presents the curves given by the equivalent circuits with the 

parameters calculated at slips 0.02, 0.5 and 1.0. They are 

compared with the torque obtained from the time-harmonic 

FEA at different operation points. Clearly, the single-cage 

equivalent circuit model predicts the torque adequately only 

near the same operation point where the parameters are 

estimated. 
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Fig. 5.  Torque versus speed curves for the linearized motor. Solid line: 

s=0.02, dashed: s=0.5, dotted: s=1, circles: torque given by FEA. 

Dividing the bar into three parts, a circuit model with two 

additional rotor branches is obtained. Fig. 6 presents the 

torque versus speed curves given by the three-cage equivalent 

circuit with parameters calculated at the three slips. The 
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torque is modelled more accurately in a wider operation range. 
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Fig. 6.  Torque versus speed curves for the three-cage model (linear material). 

Solid line: s=0.02, dashed: s=0.5, dotted: s=1, circles: torque given by FEA. 

Next, the permeability of the iron is allowed to depend on 

the flux density. This model is referred as the nonlinear FE 

model. Fig. 7 presents the torque versus speed curves 

calculated using three-cage circuit models with parameters 

obtained from the nonlinear FE model at different slips. Fig. 8 

presents the corresponding stator currents.
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Fig. 7.  Torque versus speed curves for the three-cage model (nonlinear 

material). Solid line: s=0.02, dashed: s=0.5, dotted: s=1, circles: torque given 

by FEA. 
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Fig. 8.  Stator current given by the three-cage model (nonlinear material). 

Solid line: s=0.02, dashed: s=0.5, dotted: s=1, circles: torque given by FEA. 

When the parameters are calculated at the rated slip the 

torque is modelled well only at the speed range between the 

rated-load and no-load. The parameters calculated at slips 0.5 

and 1.0 provide more general results. 

The parameters of the single-cage and three-cage models at 

the rated operation point are presented in Table II. The values 

of the resistances and inductances correspond to the real and 

imaginary part of the impedances presented in Fig. 3. The 

values of the resistances are to be divided by the slip when 

placed to the circuit model. The rotor parameters of the single-

cage model (Fig. 1) are referred as Rr1 and X r1.

TABLE II PARAMETERS OF THE SINGLE-CAGE AND THREE-CAGE CIRCUIT 

MODEL AT RATED OPERATION POINT.

Since the saturation is modelled, the values of the 

parameters are affected by the supply voltage. Fig. 9 shows 

the magnetizing reactance of the three-cage circuit as a 

function of slip at supply voltages 240, 380, and 450 V. The 

voltage values correspond to the linear part of the 

magnetization curve, the rated operation point and a strongly 

saturated region. 
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Fig. 9.  Magnetizing reactance as a function of slip at the supply voltage 240 

V (circles), 380 V (asterisk) and 450 V (diamonds). 

The saturation affects mostly the value of the magnetizing 

reactance. Also, the values of the stator leakage reactance X s

and rotor reactance Xc1, the largest reactance on the rotor side, 
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decrease when the supply voltage is increased. However, the 

value of the rotor reactance Xc2 remains almost constant. The 

rotor reactance X r3 increases slightly along with the supply 

voltage, but in practice the change is negligible. The values of 

the resistances are not influenced by the supply voltage, as 

expected.

The torque given by the time-harmonic FE analysis is also a 

simplification of the torque produced by the real induction 

motor. The torque as a function of speed has been measured at 

a reduced voltage of 320 V. The measurements are compared 

with the results of the FEA in Fig. 10. 
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Fig. 10.  Measured (circles) and simulated (asterisk) torque versus speed 

curves at the supply voltage 320 V. 

IV. DISCUSSION

The equivalent circuit model with three rotor branches is 

capable of modelling the torque in a wide speed range when 

the permeability of the iron is assumed to be constant. 

However, in the case of the nonlinear FE model the circuit 

parameters still depend quite strongly on the frequency. Only 

if the circuit parameters are calculated at large slips 0.5…1.0, 

the equivalent circuit can model the torque within a reasonable 

accuracy in the speed range from stand-still to no-load. 

Adding the number of the rotor branches up to seven does not 

significantly seem to improve the performance of the circuit 

model. Also, in the case of the linear model, circuit models 

with more than three rotor branches do not provide 

significantly better results. 

When comparing the measured torque with the simulated 

one, the main difference is found at 150 rpm. The time-

harmonic analysis fails in torque computation if there is a 

synchronous torque at zero speed. Otherwise the results are 

close to each other, especially at small slips. The effect of the 

rotor angle was studied by estimating the parameters for the 

rated operation point at different rotor angles. The differences 

between the parameters were found to be negligibly small. 

When the impedance matrix is constructed the obtained value 

for the stator resistance is about 10 % higher than the one 

given to the FE model. The stator resistance is corrected to 

correspond to the original value by moving the excess 

resistance to the rotor side. The modification does not change 

the performance of the circuit model. 

The estimation results are difficult to evaluate through 

measurements since the parameters obtained from the 

conventional no-load and stand-still tests are not comparable 

with the parameters of the loaded operation point. However, 

the parameter estimates are physically reasonable in the sense 

how they behave as a function of supply voltage. The rotor 

resistances are not affected, but the reactances decrease along 

with the voltage, as expected. 

At the large values of slip or at the low supply voltages 

some of the imaginary parts of the diagonal elements in (20) 

are somewhat smaller than the adjacent elements. They are 

related to the couplings between the rotor currents and 

therefore the estimated rotor reactances X r2 and X r3 can have 

small negative values. In that case, they are considered to be 

zero since the values of the resistances fully dominate the 

contribution of the branch. The phenomenon is a subject for 

further studies. 

V. CONCLUSIONS

The parameters of the deep-bar induction motor are greatly 

influenced by the skin effect in the rotor bars. Therefore the 

traditional single-cage model fails in predicting the torque 

versus speed curves. The circuit model with additional rotor 

branches gives better results. However, if the saturation of the 

iron is modelled, the parameters become more dependent on 

the frequency. The parameters estimated at the large slips 

model the torque on a wider operation range. The parameters 

given by the presented method are related to the effective 

permeability of the iron. Therefore they are suitable for 

modelling the steady-state operation of the electrical machine. 

Such parameters can be used in design and simulation of 

electric drives. 
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