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Abstract

This article presents a 2D-1D time-stepping finite-element model to evaluate the magnetodynamic rotational hysteresis effects in electrical

machine laminated cores. The 1D model is at first validated separately and then incorporated into the 2D model using an efficient iterative

fixed-point procedure. A viscosity-based hysteresis model is applied in the lamination to account for the dynamic losses while the rotational

field quantities are handled by a modified inverted vector hysteresis model. The 2D-1D model is evaluated by computing the core losses of an

induction motor and experimental data of the motor are used for verification. 
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1. Introduction 

Modeling the characteristics of magnetic materials in

electromagnetic field solvers has been commonly limited to

the inclusion of simple magnetization curves with single-

valued data. This limitation is attributed to the efficiency and

simplicity such elementary models often provide as well as the

stability of the iterative methods involved in the field solution.

Recently, however, quite a few endeavors have been made to

integrate advanced models that can adequately characterize the

real magnetization behavior. These advanced models

commonly employ macroscopic hysteresis models, but rarely

consider the eddy currents in the laminations. The eddy

current in the lamination is intrinsically a 3D problem but it

can be reduced to 2D by using another 1D model for the

lamination depth as was proposed by a few researchers [1, 2].

In the latter works, either two separate iterative procedures

were applied [1] or reformulation of the problem was

introduced [2], rendering the methods more complicated and

less efficient. Furthermore, numerical modeling of rotational

eddy-current effects together with hysteresis has recently been

reported in the literature [3]. There is a rigorous desire among

the electrical machine users and designers to consider these

effects in the analysis and consequently evaluate the resultant

iron losses accurately.

In this paper, two iterative procedures using the fixed-point

method are coupled and simultaneously applied in an efficient

scheme in which the 1D lamination model is considered to be

a nonlinear subproblem in the domain of the 2D model. The

1D model is adequately integrated in the 2D model, and it

does not, in principle, exhibit any further computation except

for its field solution, which adds to the problem. The fact that

the eddy current in the lamination naturally creates a strong

nonlinear problem is another independent matter. The locally

convergent fixed-point method [4] is applied to the 1D and 2D

models, allowing remarkably fast convergence. The rotational

field quantities are handled by modifying the inverted vector

hysteresis model [5, 6] so that rotational eddy currents are

properly modeled. A viscosity-based model is applied in the

lamination depth in each direction of the vector model [7].

The lamination model is incorporated and implemented

into a 2D finite-element code, which is specifically made for

analysis and design of rotating electrical machines. A

comparative study with experimental data is conducted. 
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2. The 2D-1D Finite-Element Model

The 1D lamination model and the 2D finite-element model

are formulated using the fixed-point method (see [4-8] for

detailed descriptions of each model). The flowchart of Fig. 1

summarizes the applied equations in which the small letters

stand for the 1D quantities and the capital for the 2D.  Only

the iterative procedures of the field equations are shown in the

chart while solving them by the Crank-Nicholson time-

stepping scheme is not. The vector field quantities are

interfaced by the magnetodynamic vector hysteresis model

[6], which is based on the well-known Mayergoyz model. The

1D dynamic model is applied in each direction specified by

the vector model. The fixed-point coefficients ν1D and ν2D for

the 1D and 2D models, respectively, are calculated efficiently

at each time-step using the locally convergent method [4]. 

The 2D model controls the overall iteration scheme

including the stopping criterion because the 2D model plays

the main role in modeling the electrical machine. The 1D

lamination model can be viewed as the source of nonlinearly

of the 2D model, manifesting itself as a nonlinear function.

Therefore, the iteration procedure of the two models is

conducted in a parallel manner while their solutions are made

in series, making the overall scheme highly efficient. 

The iteration procedure is carried out in the following

steps:

1. Initialize the magnetization-like quantities M and m  at

the time-step n and the iterate k=0;

2. Put k=k+1;

3. At each iterate k, solve the 2D field for the magnetic

vector potential  A and subsequently the flux density B;

4. Insert the iteration index k and the flux density B1 to the

1D model;

5. If k=1, set the boundary conditions on the surface of the

1D  model as a1
s=2dB1, where d is the sheet thickness;

6. For the same iterate k, solve the 1D field for the

magnetic vector potential  a and subsequently the flux

density b;

7. Apply the dynamic hysteresis model in the lamination to

calculate hk and mk;

8. Feed back the surface trajectory of the magnetic field

strength hk
s to the 2D model, where Hk =hk

s;

9. Determine Mk from Bk and Hk and check whether the

iteration is convergent or not. If yes, go to the next time-

step (step 1) ; if not, go to the next iterate (step 2).

Thus, the nonlinear relation of the 2D model between the

magnetic field strength H and the magnetic flux density B is

served through the 1D model. The algorithm guarantees that

when the 2D model converges, it automatically means that the

1D model has converged, or otherwise the 2D model would

not converge. The boundary condition of the 1D model

calculated from the 2D model is assumed to remain fixed

during the iteration. The 1D and 2D field equations are

discretized using first-order finite-elements and solved by the

Crank-Nicholson time-stepping scheme.

3. Verifying the Magnetodynamic Hysteresis Vector Model 

The magnetodynamic vector hysteresis model has been

validated by the 1D lamination model. Experimental data

obtained from a modern digital setup, which allows measuring

dynamic hysteresis loops in two directions at various flux

orientations, have been used to identify the model. The 1D

lamination model used for the validation of the

magnetodynamic vector hysteresis model is the same model

described in the previous section (see Fig. 1), except that in

this case the 1D model is not integrated into the 2D model.

The averaged values of the flux density B are now imposed

from the measured flux waveforms. The calculated quantity H

=h
s on the surface is used as the output of the model.
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Fig. 1. Flowchart of the 2D-1D model. 
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The identification method of the magnetodynamic vector

hysteresis model has been described in [6]. Unlike the

identification process of the vector hysteresis model [9], which

is difficult and may lead to rather tedious calculations,

identifying model [6] is simple and straightforward. In

principle, only a few parameters need to be identified to best

fit the simulated dynamic loops to the measured ones. Fig. 2

illustrates dynamic loops measured under elliptic excitation at

50 Hz in the x- and y-directions and compared with the

modeled ones. 
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Fig. 2. The 1D model prediction (dotted) verified by experimental data (solid).

It is observed that the vector hysteresis model gives rather

reasonable results in general. The four rising convex shapes in

the loci of the magnetic field strength (which also appear in

the rising wings in the B-H loop) occurred in the measurement

because only four coils, and four sensors, vertically placed,

were used in the measuring setup. This phenomenon is

commonly occurring in most of the 2D measuring setups [10],

but yet has not been well reported. In the modeling stage, the

convex shapes in the loci of the magnetic field strength are

achieved by using the generalized Mayergoyz model [11],

which coincidentally, it should be said, exhibits the same

behavior of the measurement. Such a study on the

phenomenon is currently being conducted [12].

4.  Simulation of Induction Motor

The 2D-1D finite-element model developed in this work

has been applied to predict iron losses in a 400-V, 50-Hz, 4-

pole, 37-kW squirrel-cage induction motor. The core losses of

the motor were measured at no load with various voltage

levels and they have been segregated from the total

electromagnetic loss using a rigorous method [13]. The

method enforces the motor to run at the synchronous speed

ensuring that no friction or windage mechanical losses are

apparent in the measurements. Furthermore, the method

suppresses the negative torque caused by the harmonics. The

iron losses are then separated from the total electromagnetic

losses by subtracting the resistive loss of the stator. The result

of the subtraction can be assumed to be purely associated with

the core losses.  

The induction motor is in general considered to be one of

the most difficult nonlinear problems, especially when its

stator and rotor are slotted. The slotting of the motor causes

significant problems to the time-stepping scheme, and thus to

the iterative procedures because of the high harmonics

induced.

For a comparison purpose, the same 2D time-stepping

finite-element model without the 1D model has been applied

to predict the core losses using a single-valued magnetization

curve. Although the iron losses in the single-valued model are

not considered in the field solution and their effect cannot be

evaluated, such a model is the most common numerical tool

available nowadays in commercial and research software to

predict core losses in electrical machines. The iron losses are

calculated from the statistical loss law using a post-processing

Fourier analysis of the field solution. 

To avoid modeling the transient of the motor starting, a

time-harmonic model was applied to calculate the initial

values of the steady-state solution before the time-stepping

model has been used. Then, the time-stepping analysis using

the 2D-1D model or the 2D single-valued model is run over

several periods T of the supply voltage to ensure that the

steady state is reached. (5 periods were used in our simulation

with 600 time-steps per period.) In the case of the 2D-1D

model, the total iron losses in the machine are computed from

the Poynting vector using the following integral:

c

d1 d 1 d
. d . . d

d d d

yx
x y

T T
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p t H H t

T t T t t
= = +B
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The total iron losses are separated into two components

according to Atallah’s theory [14].  The first one is resulted

from the effect of the flux rotation and the second from the

flux alternation. Furthermore, the magnetodynamic effects are

separated into hysteresis, excess, and eddy-current losses

according to the systematic method proposed in [15]. The

viscosity-based model automatically allows for the separation

of the iron losses. 

5. Results 

This section presents the numerical results of the iron

losses obtained by implementing the finite-element procedures

described above.  Fig. 3 shows the calculated total iron losses

by the 2D-1D model compared with the measured iron losses

obtained from the synchronous no-load test. The small

discrepancies between the measured and modeled results

could be associated with the harmonics.  The negative-torque

harmonics induced in the iron and copper of the rotor are

modeled in the field solution; thus, their effect is evaluated in

the computation (but not in the measurements). The single-

valued model gives relatively acceptable results at lower level

of voltages (lower flux densities) but becomes remarkably

inaccurate at higher induction.  

The stator core losses are separated as shown in Fig. 4. It is

observed that, although the voltage increases in the stator, the

static hysteresis losses decrease because at saturation the

rotational losses drop. The hysteresis loss is predominant in

the motor stator. However, the eddy-current losses are

predominant in the rotor core (see Fig. 5) and they sharply

increase with the increase of the supply voltage.  The high-

harmonics resulted from slotting have a direct influence on the

eddy-current losses. In Fig. 6, the total core losses of the

motor are separated into alternating and rotating components.
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The rotational loss component contributes by ∼30% of the

total core losses at the rated voltage. 

The dynamic B-H loops and their loci at a point in the

stator yoke where the flux is noticeably rotational are plotted

in Fig. 7.  The sum of the area of the B-H loops in the x- and y-

directions represents the core losses dissipated at that point.
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Fig.4. Separation of the stator core losses computed by the 2D-1D model.
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Fig.5. Separation of the rotor core losses computed by the 2D-1D model.
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Fig.6. Separation of the motor core losses computed by the 2D-1D model.
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Fig.7. Dynamic B-H loops and their loci at a point in the stator yoke.

6. Conclusions 

This article proposed a new technique for calculating the

magnetodynamic iron losses in electrical machine laminated

cores. The proposed 2D-1D model has been applied to predict

iron losses in an induction motor. The comparison of the

computed and measured data reveals that the model is fruitful

and can be used for design purposes. Although the 2D-1D

model is efficient comparing with its peers, for example 3D

modeling, integrating the 1D model into the 2D model

increases the overall computation time rather significantly.

The number of iterates increases because of the strong eddy-

current nonlinear problem. Furthermore, the solution of the 1D

model adds to the computation time at each iterate and for

each direction of the vector hysteresis model. Further

improvement and study regarding the model is the goal of

future work. 
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