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Abstract— For Internet traffic engineering purposes, it is im-
portant to characterize traffic volumes typically over 5-minute
intervals. Based on measurements made in a local network
at Lucent in winter 1999, Cao et al. [2] proposed a moving
IID Gaussian model for the characterization of 5-minute traffic
volumes, with a power-law relationship between the mean and the
variance. In this paper we analyze novel measurements gathered
from a 2.5 Gbps link in the Finnish university network (Funet)
in summer 2004. We investigate the validity of the moving IID
Gaussian model and the proposed mean-variance relationship
when the measurement interval is varying from 1 second to
5 minutes. As a result, we find that the Gaussian assumption
is much more justified with current core link rates. The mean-
variance relationship seems, indeed, to follow a power-law with
exponent approximately equal to 1.3 in our data set. However,
the IID assumption concerning the standardized residual is not
verified, but we find a clear positive correlation between adjacent
5-minute volumes, and only slightly weaker negative correlation
for traffic volumes with distance 20-30 minutes. In addition, we
demonstrate that the same phenomenon is already prevailing in
the Lucent data set.

I. INTRODUCTION

A basic concept in traffic engineering is a traffic matrix
representing traffic demands between traffic sources (origins)
and sinks (destinations). Thus, an entry in the traffic matrix
tells the traffic volume (the number of bytes transferred) for a
single OD pair over a specified time interval. In a standard
IP network, these figures are not available but should be
estimated, for example, from the link load measurements,
which the Simple Network Management Protocol (SNMP)
provides every 5 minutes.

The traffic volume for a single OD pair over a specified
time interval is a random variable, in fact, a stochastic process
varying randomly in time. Let Xn, n = 1, 2, . . ., denote these
traffic volumes in consecutive time intervals of length ∆. As
mentioned above, for traffic engineering purposes we typically
have ∆ = 300 s (i.e., 5 min). While there is a vast literature
of papers considering traffic characteristics of modern data
networks (starting from the well-known Bellcore measure-
ments reports [5]) in small time scales, from microseconds to
milliseconds and seconds, the longer time scales, from seconds
to minutes and hours, have not been explored that much.

Vardi [9] proposes a Poisson model, where Xn are Poisson
distributed. In particular, this would imply that the variance
equals the mean,

D2[Xn] = E[Xn].

As Cao et al. [2] notes, this is not scale-invariant. Using, for
example, bits per second (instead of bytes per second) leads
to another variable Yn = 8Xn, for which

D2[Yn] = 64D2[Xn] �= 8E[Xn] = E[Yn].

Cao et al. [2] propose a moving IID Gaussian model with
the following relationship between the variance and the mean,

D2[Xn] = φE[Xn]c. (1)

In this model the exponent c is scale-invariant while the factor
φ depends on the unit used. This can bee seen from our
previous example, where Yn = 8Xn. In this case,

D2[Yn] = 64D2[Xn] = 64φE[Xn]c = φ′E[Yn]c,

where φ′ = 82−cφ. Based on measured link counts from a
local network at Lucent with time scale ∆ = 300 s, Cao et
al. conclude that “a quadratic power law (c = 2) is more
reasonable than a linear law (c = 1).” The moving IID
Gaussian model captures the time-varying nature of real traffic
as demonstrated by typical diurnal patterns. In this model the
standardized residuals,

Xn − E[Xn]
D[Xn]

,

are assumed to be independent and identically distributed
according to a standard normal marginal distribution. Cao
et al. describe the agreement of the measured data with the
Gaussian assumption as sufficient. The IID property is verified
only visually by plotting the sample-standardized residuals as
a time series.

Medina et al. [6] report that while the power-law relation-
ship (1) seems to hold, the exponent c varies remarkably from
one link to another within bounds c ∈ [0.5, 4.0]. These ob-
servations are related to data collected from a tier-1 backbone
(i.e., from the Internet core) with time scale ∆ = 1 s. Note
that the time scale is very different from that used in [2].

Morris and Lin [7] find a linear relationship between the
variance and the mean (c = 1) for Web traffic. They base
the statement on traffic traces from Harvard’s campus network
(100 Mbps Ethernet) and a local network at Lucent (Ethernet).
The time scale used in this study is even shorter, ∆ = 0.1 s.

In a recent study, Gunnar et al. [3] confirm the validity of the
mean-variance relationship (1) and give values c = 1.5 and 1.6
based on data traces from a global operator’s backbone with
∆ = 300 s.
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In this paper we investigate the validity of the moving
IID Gaussian model with the mean-variance relationship (1)
when the time scale ∆ is varying from 1 s to 300 s. Our
measurement data comes from Finnish university network
Funet. More specifically, our measurement data consists of
link counts with 1-second resolution taken from an STM-16
link (2.5 Gbps) over a 13-day period in summer 2004. In
addition, we use the same data set as in [2] to demonstrate the
similarities/differencies in the characteristics of traffic coming
from two very different environments. Throughout the paper
we use bits per second (bps) as the unit of the link count.
Thus, for example, if the measurement gives the byte count
of 300 Mbytes over a 5-minute period, the corresponding link
bit count will be Xn = 8 Mbps.

The rest of the paper is organized as follows: Section II
studies analytically why the linear mean-variance relationship
may be reasonable. Section III describes the data sets used.
Section IV tests whether the Gaussian assumption is valid for
Funet data. The purpose of Section V is to investigate the
IID assumption of standardized residuals by autocorrelation
function. Section VI analyzes the mean-variance relation of
our data set. Finally, Section VII concludes the paper.

II. PRELIMINARY

In this section we give some simple and intuitive arguments
why the mean-variance relationship (1) with c = 1 might be
valid in current backbones.

Packet-level Bernoulli model: First we make a simple
investigation at packet level. Consider a link of capacity b
(e.g., b = 2.5 Gbps) loaded by traffic with average rate m
(e.g., m = 0.5 Gbps). In the shortest possible time scale the
link is either fully utilized, during packet transmissions, or idle.
Thus, Rp, which refers to the traffic rate at this packet time
scale, is a scaled Bernoulli random variable with distribution

P{Rp = b} =
m

b
, P{Rp = 0} = 1 − m

b
,

and satisfying the following mean-variance relationship

D2[Rp] = m(b − m) = bE[Rp] − E[Rp]2. (2)

For lightly loaded link (m � b), we have the following
approximative mean-variance relationship:

D2[Rp] ≈ bE[Rp]. (3)

To get some idea of the time scale, we note that it takes about
5 microseconds (µs) to transmit a typical IP packet of length
1500 bytes with link rate b = 2.5 Gbps.

Flow-level Poisson model: Enlarging the time scale to the
flow level, consider an overdimensioned backbone link of
Gbps-size. Single flows coming from Mbps-size access net-
works do not find the backbone link as a bottleneck. According
to recent studies [1], flow arrivals in such a link constitute
a Poisson process, which in a longer time scale is surely
time-varying but in a shorter time scale can be considered as
time-homogeneous. On the other hand, it is widely accepted
that the flow sizes follow a heavy-tailed distribution, such as

Pareto with shape parameter α ∈ (1, 2). These together imply
an M/G/∞ model according to which the instantaneous
number of active flows, Nf , follows a Poisson distribution with
property

D2[Nf ] = E[Nf ].

If all the flows had the same bottleneck bandwidth h, the total
instantaneous traffic rate at flow level would be Rf = Nfh
satisfying the following mean-variance relationship

D2[Rf ] = h2D2[Nf ] = h2E[Nf ] = hE[Rf ]. (4)

As an illustrating example, we mention that it takes 8
seconds to transfer a file of size 1 Mbyte with an access rate
h = 1 Mbps.

The model can easily be generalized by allowing each flow
i an IID bottleneck bandwidth Hi. In this case, the mean-
variance relationship reads as

D2[Rf ] = E[Rf ]E[H](1 + C2[H]), (5)

where C2[H] refers to the squared coefficient of variation,

C2[H] =
D2[H]
E[H]2

.

III. DATA SETS
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Fig. 1. Trace of the Funet data set (top, ∆ = 1 s) and 5 minutes aggregated
traffic (bottom, ∆ = 300 s), over one week.

In this section we describe our measurement data sets, one
from Finnish university network, Funet, and another from a
local network at Lucent [2]. For the new Finnish traffic traces,
we also describe the methodology needed to create these data
sets from the raw traffic traces.
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Fig. 2. The moving sample-average m∆
n of Funet trace, ∆ = 300 s.
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Fig. 3. The moving sample-standard-deviation s∆
n of Funet trace with ∆ =

1 s (top) and ∆ = 300 s (bottom).

A. Funet measurement methodology

Funet traces were captured between csc0-rtr and helsinki0-
rtr1 from 2.5 Gbps STM-16 link using Endance DAG 4.23
cards. The IP addresses on captured packet headers were
anonymized preserving prefix, and the headers were stored
to disk using flow-based compression [8]. Captured traffic
was transferred once an hour to an analysis machine where
statistics were calculated. Part of the traces were archived for
later analysis, but not all because of large volume of data
(about 10 Mbps average). For this study, bytes transferred each
second were calculated.

In our measurement data set, TCP accounts more than 98 %
of bytes transferred. During daytime 10-20 % of TCP traffic is

1For details about Finnish university network (Funet), see
http://www.csc.fi/suomi/funet/verkko.html.en
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Fig. 4. The sample-standardized residual z∆
n of Funet trace , with ∆ = 1 s

(top) and ∆ = 300 s (bottom).
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Fig. 5. The cumulative number of bits counted over 5-minute interval.

HTTP. There exists also considerable amount of peer-to-peer
traffic. Part of data points were missing because of transient
errors in data analysis.

B. Funet data

Original data: The Funet data set consists of link counts
(in bits) measured in one second intervals over two periods;
first one from 3am June 29th to 2pm July 6th, and the second
from 10am August 3rd to 12am August 10th of 2004 local
time. Denote this original measurement data by x = (xt; t =
1, 2, . . . , T ), where xt refers to the measured link bit count
at time t seconds (from the beginning of the measurement
period). These link bit counts for the first 7 days are shown as
a function of time at the top of Figure 1. From this figure, we
can see that the traffic has a strong diurnal pattern. The traffic
rates during the day time (around 500 Mbps) are larger than
during the night time (around 300 Mbps). Different days look
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Fig. 6. Typical OD-pair trace for Lucent data

very much the same. Only one day differs clearly from the
others having a slightly higher peak rate at the busy period.

Link bit counts over periods of length ∆: For each time
scale ∆ = 1, ..., 300 s investigated, we created the corre-
sponding time series of link bit counts x∆ = (x∆

n ;n =
1, 2, . . . , T/∆) by defining

x∆
n =

1
∆

(n+1)∆∑
t=n∆+1

xt.

Trace for a SNMP-like traffic, for which ∆ = 300 s, is
shown at the bottom of Figure 1.

Traffic components: As in [2], we separate different com-
ponents from the link bit counts x∆

n ,

x∆
n = m∆

n + s∆
n z∆

n ,

where m∆
n refers to the moving sample-average, s∆

n to the
moving sample-standard-deviation, and z∆

n to the sample-
standardized residual. Based on Figure 1, the averaging period
was chosen to be (about) 1 hour. Thus,

m∆
n =

1
3600/∆ + 1

n+1800/∆∑
k=n−1800/∆

x∆
k

and

s∆
n =

√√√√√ 1
3600/∆ + 1

n+1800/∆∑
k=n−1800/∆

(x∆
k − m∆

k )2

The moving sample-average, m∆
n , is depicted as a function

of time in Figure 2 for the first 7 days. The moving average
for a given time moment does not essentially depend on the
aggregation and thus only the curve for ∆ = 300 s is depicted.
The moving sample-standard-deviation is depicted for one day
period at two time-scales, ∆ = 1 s and ∆ = 300 s, in
Figure 3. The standard deviation seems to be time-dependent.
In addition, it decreases as the aggregation level increases.
Finally, the remaining component, the standardized random
fluctuation z∆

n is shown for the same time period in Figure
4. At the short time scale (∆ = 1 s) standardized residuals
seem to be random noise, which is not a case for 5 minute
aggregates (∆ = 300 s).

 

z

D
en

si
ty

−4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

 

z

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Fig. 7. Histograms of Funet data with ∆ = 1 s (top) and ∆ = 300 s
(bottom) against the normal distribution density function.

Variation within 5-minute intervals: The cumulative bit
count over a 5-minute is shown in Figure 5. The cumulative
bit count within this 5-minute period seems to be surprisingly
linear. In [4] similar counts are presented for both 15 years
and 2 years old traces and they indicate that traffic has been
much more non-stationary in this time scale.

C. Lucent data

The Lucent data set contains data from two routers, which
have 12 and 5 nodes, respectively, connected to them with
one-way links. The measurements consist of link bit counts
over 5 minute periods implying that ∆ = 300 s for this data.
In Figure 6 a typical example of the OD-pair traces is shown.
The trace is over five days, meaning 1440 values of five minute
averages. In some of the OD-pairs the traffic volumes are
much smaller over the first two days indicating different traffic
rates in the weekends as compared to working days. Another
obvious difference to the Funet data is variability, traffic rate
is many times close to zero in the Lucent routers.

IV. TESTING GAUSSIAN ASSUMPTION

In this section we test whether a Gaussian assumption is
valid for the data sets used. We concentrate on the stochastic
component, the standardized residual z∆

n as defined in Section
III, and study measurements of one second interval as well as
the five minute aggregates.

0-7803-8901-8/05/$20.00 (c) 2005 IEEE



−4 −2 0 2 4

−
4

−
2

0
2

4
6

a

x

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

a

x

Fig. 8. N-Q tests comparing the Funet-data with ∆ = 1 s (left) and ∆ =
300 s (right) against the normal distribution.

In Figure 7 the histograms of the Funet data are shown
comparing them against density function of the normal dis-
tribution. For the one second time scale the Gaussian density
function follows the data nicely. For the five minute aggregates
the curve does not follow the histogram as closely, but there
is a reasonably good fit.

A good way to evaluate the appropriateness of the Gaussian
assumption is the normal quantile (N-Q) plot. The original
sample vector x is ordered from the smallest to the largest
and plotted against vector a, which is defined as

ai = Φ−1(
i

n + 1
) i = 1, . . . , n,

where Φ is the cumulative distribution function of the normal
distribution. The values given for a are between 0 and 1, so
that the vector a contains the normal quantiles, having values
from approximately −3 to 3. If the considered data follows the
normal distribution, the plot should be linear. Goodness of fit
with respect to this can be calculated by the linear correlation
coefficient r, and the value r2 is used as a measure of the fit.

r(x, a) =
∑n

i=1(xi − x)(ai − a)√∑n
i=1(xi − x)2(ai − a)2

.

The N-Q plots shown in Figure 8 confirm the strong Gaussian-
ity observed in the histograms. The r2-values are 0.999 and
0.996 for the one second measurements and the five minutes
aggregates respectively. Thus we can conclude that the normal
approximation cannot be rejected based on this.

In [2] the N-Q plot for the Lucent data set is given. The
distribution of that data set has heavier tails than the normal
distribution and also high peaks around the mean, which
causes visible concavity for the N-Q plot. This seems to be
the case for most OD pairs in the data set. Cao et al. conclude
that the fit is still sufficient for the normal-approximation to
be used.

V. AUTOCORRELATION

In this section we study the autocorrelations of the data with
respect to different aggregation intervals. For the observations
truly to be considered IID, there should not be any significant
autocorrelations in the stochastic component z∆

n .
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Fig. 9. Autocorrelations of Funet data in one second measurement interval
(∆ = 1 s).
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Fig. 10. Autocorrelations of Funet data from one minute aggregate measure-
ments (∆ = 60 s).

Figure 9 shows autocorrelation in the one second measure-
ment intervals for one week of the Funet data. Clearly there are
positive autocorrelations, meaning dependency between con-
secutive measurements. In the case of one minute aggregates
for the Funet data, depicted in Figure 10, we notice significant
positive values up to a lag of little over five minutes, and then
a set of negative autocorrelation values after that is clearly
observable. In Figure 11 the autocorrelation of the five minute
aggregates of the Funet data as well as the autocorrelation of
a typical Lucent data OD-pair are shown. The autocorrelation
of the Funet data obviously corresponds nicely to the behavior
of the one minute aggregates of the same data set. Comparing
Lucent and Funet five minute measurements, a noticeable
result is that the autocorrelation function of these two very
different data sets seem to be surprisingly similar. In both
cases it is not until a lag of more than thirty minutes that
there is not any significant autocorrelation.
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Fig. 12. Mean Variance relation scatter plot and best functional fit for Funet data for sample intervals of one second (top left), 30 seconds (top-right), 60
seconds (bottom left) and 300 second (bottom right).

VI. MEAN-VARIANCE RELATION

In this section we consider whether the mean-variance
relationship defined in (1) applies to our data sets. It is
important to separate between relations over a set of OD-pairs
as studied in [2] and [3] and on the other hand relation within
an OD-pair or link over time as studied in [6]. We concentrate
mainly on the latter.

By taking the logarithm of (1), we see that

log D2[Xn] = c log E[Xn] + log φ.

Thus, in the logarithmic scale, the exponent c is a linear
coefficient, and its value may be obtained from the slope of the
line that fits the scatter best in the least square sense. Indeed
there is a noticeable linear dependence in the figures to be
shown below.

Funet data: The mean-variance relation is studied by di-
viding the data into non-overlapping one hour periods and
calculating the sample mean and sample variance for each of
the periods. The variances as a function of the mean at the log-
log scale, along with the lines depicting the best functional fit,
are shown in Figure 12 for original one second sample interval,
and for aggregated measurements with ∆ = 30, 60, 300 s. The
estimates of c and φ for different aggregation levels are given
in Table I. When the aggregation level is short, exponent c is
less than one. Increasing the level of aggregation also increases
c until it reaches c = 1.25 for the five minute aggregates.
Correspondingly, the estimate for φ decreases exponentially.

Lucent data: In the Lucent data we have the opportunity to
study mean-variance relation both within an OD-pair or link
but also between all the OD-pairs. In [2] a subset of the Lucent

TABLE I

THE ESTIMATES FOR c AND φ WITH DIFFERENT LEVEL OF AGGREGATION.

∆ c φ
1 0.75 8.8
2 0.92 7.2
3 1.01 6.42
4 1.07 5.82
5 1.11 5.44
10 1.19 4.71
30 1.23 4.26
60 1.23 4.23

300 1.25 3.89

data set is studied for the latter kind of relation. They find that
setting the power c = 2 is a good fit for the data set and our
studies yielded similar result for the whole Lucent set.

Here, we consider the relation within an OD-pair. As in the
previous section, each OD-pair is broken down into one hour
periods and sample mean and sample variance are calculated
for each of these periods. In Figure 13 the relation is shown
along with the lines depicting cases c = 1, c = 2 and the best
functional fit, which in this case is c = 1.73. However, the
value of c differs from OD-pair to OD-pair in the rather wide
range of [1.2, 4.1] for the 20 largest OD-pairs considered here.
A result similar to that was found by Medina et al. [6].

In Figure 14 sample points of these one hour periods are
plotted for all OD-pairs in the same figure. For this the best fit
is achieved with c = 1.96. This, of course echoes as much the
relation over the OD-pairs as the relation within the OD-pairs.
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Fig. 11. Autocorrelation of Funet data with five minute aggregation
measurements (top, ∆ = 300 s) and autocorrelation of a typical OD-pair
from the Lucent data on the right (bottom).

VII. CONCLUSION

In this paper we studied the validity of two common
traffic engineering assumptions concerning the OD counts:
the Gaussian IID model of observed measurements, and the
functional relation between mean and variance.

In section IV the normal distribution was found to be a
next to perfect fit for the distribution of measurements on
one second interval. For the SNMP-like five minute aggregates
the fit is not quite as good but still very satisfactory. We can
conclude that the Gaussian model is justifiable. In section V
the autocorrelation functions of the traces were studied. In
both Lucent and Funet data we found significant values of
autocorrelation for lags as long as half an hour. Strict IID
assumption is thus not valid, even for five minute aggregated
measurements, let alone for shorter intervals. It is left for
further research to find a better model reflecting these observed
correlations.

For the Lucent data we found out that regarding the mean-
variance relation within an OD-pair, the power law parameter
c varies between OD-pairs. This result is in line with those
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Fig. 13. Mean-variance relation of one hour periods over a single OD-pair
form the Lucent data set
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Fig. 14. Mean-variance relation of the Lucent data set with one hour periods
over all the OD-pairs combined

obtained by Medina et al. [6] stating that the parameter varies
from link to link. For the Funet data, we learned the value of
the parameter to be c = 1.25 for the five minute measurement
intervals, but smaller for shorter intervals.

ACKNOWLEDGMENT

The authors would like to thank CSC - the Finnish IT center
for science - for providing access to Funet network and for
computing and archive resources, and the Statistics Research
Department at Bell Labs for providing the Lucent data set.
The work for this paper is carried out as a part of IRoNet
project funded by TEKES.

REFERENCES

[1] C. Barakat, P. Thiran, G. Iannaccone, C. Diot, and P. Owezarski,
Modeling Internet backbone traffic at the flow level, IEEE Transactions
on Signal Processing, Vol. 51, No. 8, pp. 2111–2124, 2003.

[2] J. Cao, D. Davis, S. V. Wiel, and B. Yu, Time-varying network
tomography, Journal of the American Statistical Association, Vol. 95,
pp. 1063–1075, 2000.

[3] A. Gunnar, M. Johansson, and T. Telkamp, Traffic matrix estimation on
a large IP backbone – A comparison on real data, IMC’04, Taormina,
Italy, 2004.

[4] T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido, A nonstationary
Poisson view of Internet traffic, in IEEE Infocom, Hong Kong, 2004.

[5] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, On the Self-Similar
Nature of Ethernet Traffic (Extended Version), IEEE/ACM Transactions
on Networking, Vol. 2, No. 1, pp. 1–15, February 1994.

[6] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot,
Traffic matrix estimation: Existing techniques and new solutions, in
ACM SIGCOMM, Pittsburg, USA, 2002.

0-7803-8901-8/05/$20.00 (c) 2005 IEEE



[7] R. Morris and D. Lin, Variance of aggregated web traffic, in IEEE
Infocom, Tel Aviv, Israel, 2000.

[8] M. Peuhkuri, A method to compress and anonymize packet traces, in
IMW’01, San Francisco, USA, 2001.

[9] Y. Vardi, Network tomography: Estimating source-destination traffic in-
tensities from link data, Journal of the American Statistical Association,
Vol. 91, No. 433, pp. 365–377, 1996.

0-7803-8901-8/05/$20.00 (c) 2005 IEEE




