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Abstract— In this paper we consider the problem of traffic
matrix estimation. As the problem is underconstrained, some
additional information has to be brought in to obtain a solution.
If we have a sequence of link count measurements available,
a natural candidate is to use the link count sample covariance
matrix under the assumption of a functional relationship between
the mean and the variance of the traffic. We propose two com-
putationally light-weight methods for traffic matrix estimation
based on the covariance matrix, the projection method and
constrained minimization method. The accuracy of these methods
is compared with that of other methods using second order
moment estimates by simulation under synthetic traffic scenarios.
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I. INTRODUCTION

The traffic matrix, which gives volume of traffic between
each origin/destination (OD) pair in the network, is a required
input in many network management tasks. Such tasks include
for instance traffic engineering and network capacity dimen-
sioning. In many cases the knowledge on the underlying traffic
volumes is assumed to be known. It is recognized that accurate
demand matrices are crucial for traffic engineering. However,
in reality, they are seldom available in current IP networks.

This raises the need to estimate the traffic matrix based
on information readily available. Traffic matrix inference
usually utilizes SNMP measurement data. While it has some
limitations, the attractive feature of SNMP is that it is usu-
ally available everywhere in an IP network and is the only
widespread tool to obtain link count data. We denote a set of
link count measurements by y. The routing matrix A is also
readily available.

In traffic matrix estimation, the basic relationship between
link counts y and origin-destination counts x can be written
as

y = Ax, (1)

where A is the routing matrix and x is the OD counts in vector
form, i.e. each component represents a traffic of one OD pair.
The above equation holds exactly and also the equation where
we take the expectations from y and x holds. The expected
valued of x is the traffic matrix λ, and we get the first moment
equation of traffic matrix estimation

y = Aλ, (2)

where y denoted the sample mean of the link counts.
Since in any realistic network there are many more OD pairs

than links, the problem of solving λ from A and y is strongly

underdetermined. This means that accurate explicit solutions
cannot be found, as there is an infinite number of solutions
for λ that satisfy equation (2). To overcome this ill-posedness,
some type of additional information has to be brought in to
solve the problem. Reviews of the proposed methods can be
found e.g. in [1], [2] and [3].

Typically, methods that need a prior distribution use the
gravity model to obtain one. However, the gravity assumption
that the traffic volume of an OD pair is proportional to
the total traffic sent by the origin node and the total traffic
terminating at the destination node, does not always hold. In
[4] the authors study real traffic matrix of a North American
backbone network and conclude that there are significant
errors concerning the estimation of the largest OD pairs, which
are the most important ones for traffic engineering purposes.
Therefore, in this paper we propose another way of obtaining
prior distribution based on the link count covariances and
a functional mean-variance relationship. Based on this, we
develop two computationally lightweight methods, similar in
principle to the tomogravity method of [5], in the sense that
they incorporate a starting point and link count measurements
to obtain an estimate.

The rest of the paper is organized as follows. In section II
we discuss methods relying on the link covariance as the ad-
ditional information. In section III we show how to solve OD
pair covariance matrix from the link count covariance matrix.
Section IV and V present our quick estimation methods, the
projection method and the constrained minimization method.
In section VI we compare the performance of these methods
to maximum likelihood estimation. And finally section VII
concludes the paper.

II. METHODS BASED ON LINK COUNT COVARIANCES

Maximum likelihood estimation (MLE) uses the second
moment statistic, the link count covariance, as the additional
information that is needed to yield an estimate. It is also
necessary to assume local stationarity for the measurements
considered, and a distribution which the stochastic fluctuation
of the traffic follows.

In [6], Vardi first proposed this kind of approach. The
Poisson distribution is assumed, meaning that variance is equal
to the mean, and the system becomes(

y
εS(y)

)
=

(
A
εB

)
λ, (3)
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where, as is explained in more detail in section III, S(y) is the
sample link covariance matrix and B is the matrix of element-
wise products of rows of A. Coefficient ε ∈ (0, 1] defines
how much weight is given to the second moment estimate in
the final solution, and λ is the estimator for the mean of x.
This is a linear inverse positive, or LININPOS, problem and
can be solved by numerical likelihood methods, such as the
EM-algorithm. The solution obtained this way minimizes the
Kullback-Leibler distance between the observed moments and
theoretical values. If we instead minimize (3) in least square
sense, the solution is easily obtained in closed form.

Vardi’s method, however, does not give very accurate es-
timates, as was discovered in [2] and [4]. This is due to the
fact that the Poisson assumption is not accurate in current IP
networks. Cao et al. [7] generalize the maximum likelihood
approach by assuming a Gaussian traffic distribution and
assuming that the variance is related to the mean through a
power-law. While this MLE approach is efficient and theo-
retically justifiable, the size of the problem in traffic matrix
estimation requires the use of iterative numerical methods,
such as the Expectation Maximization algorithm, which is
computationally quite heavy.

The MLE relies on the fact that the system of first and
second order link count statistics together make the system
identifiable with regard to the first order OD-pair statistics,
i.e. we are able to find solution for the likelihood equations
if there exists a functional relationship between the mean and
the variance of OD-pair traffic. The commonly used relation
is the power-law relation

Σ = φ · diag{λc}, (4)

where Σ is a diagonal matrix, because we assume indepen-
dence between OD pairs.

But, in fact, the second order statistic for OD-pairs is
identifiable based solely on the second order statistic of the
link counts, as long as we assume independence among OD-
pairs and a sensible routing scheme. This result is proven by
Soule et al. [8]. Since we can analytically solve the variance
of the OD-pairs by least squares method, and the power-law
relation between variance and mean is assumed, we can then
solve the traffic matrix from our variance estimate.

The benefit is that this does not call for numerical methods,
and is thus extremely quick to calculate. The problem with
this approach is that it does not take into account the first
moment equation 2, which is a stronger condition as opposed
to the mean-variance relation which is only an assumption.
Our methods incorporate this information into the solution
obtained through estimation of the variance yet maintaining
the computational simplicity of the model.

III. SOLVING OD-PAIR COVARIANCE MATRIX FROM LINK

COUNTS

Let us denote the number of links by J and the number
of OD-pairs by N . Then the vector form of traffic matrix x
has the dimension (N × 1), link loads y has the dimension
(J × 1).

First, let us define S(y) as a 1
2J(J + 1)-vector containing

diagonal and upper triangle elements of the link covariance
matrix Σ(y). Define S(x) as an N -vector containing the
diagonal elements of the OD-pair covariance matrix Σ(x).
A is the (J × N) routing matrix, whose element Ai,j is 1
if OD pair xj uses link yi, and 0 otherwise. Then define a
( 1
2J(J + 1)×N) matrix B that relates vector S(y) to vector

S(x). A row of B is indexed by a compound index (ij)
where i = 1, . . . , J ; j = i, . . . , J , meaning that the index
runs through 1

2J(J + 1) values,

B(ij),k = Ai,kAj,k i = 1, . . . , J ; j = i, . . . , J

k = 1, . . . , N.

In vector form this reads,

B =




A1 � A1

A1 � A2
...

A1 � Ac

A2 � A2

A2 � A3
...

Ac � Ac




,

where Ai denotes the ith row of A, and the componentwise
product is denoted with the star (�). Now the rows of B
indicate the elements of x contributing to covariance between
links i and j.

The measured link covariance matrix can be written as

Σ(y) =
∑

k

σ2
kakaT

k , (5)

where ai is the ith column of A. In component form we have

Σ(y)
i,j =

∑
k

σ2
kAi,kAj,k. (6)

Using vector notation, the equation becomes

S(y) = BS(x). (7)

This is in fact quite similar to (3) in the case where ε would
be set very large, leading to the part S(y) = Bλ to dominate
the equation. We just have a more general power-law relation
instead of the Poisson assumption, so we cannot now just
replace S(x) with λ.

Typically 1
2J(J + 1) > N and equation (7) is overdeter-

mined. The least square estimate (LSE) solution (see e.g. [9]),
to the equation is

S(x) = (BTB)−1BTS(y). (8)

IV. PROJECTION METHOD

Now that we have an estimate for the variances of each
OD-pair, it is trivial to find an estimate of the mean by using
the mean-variance relation (4).

λ0 = (φ−1S(x))
1
c . (9)
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The problem with this estimate is, that it does not require
the solution to satisfy the link count equation (2), which is
a stronger condition than the second moment relation. The
preliminary estimate λ0 can be improved by projecting the
result to the surface that satisfies the first moment condition.
This yields our estimate

λ = λ0 + AT(AAT)−1(y − Aλ0). (10)

Compared to the maximum likelihood approach, we do the
moment estimation sequentially: First obtaining an estimate
for the covariance matrix and then solving for the mean. This
does not yield quite as accurate estimates as MLE, but it is
many times faster.

The projection might yield negative values for smaller OD
pairs, as no positivity constraint is imposed in order to keep
the method as light-weight as possible. We simply substitute
the negative estimates by zero, concluding that these OD pairs
are negligibly small.

The projection method works for any fixed parameters φ
and c. In fact, we can try to estimate these parameters by
requiring that λ0 comes as close as possible to satisfying (2),
i.e. that they minimize

f(φ, c) = (y − Aλ0)T(y − Aλ0) (11)

= (y − A(φ−1S)
1
c )T(y − A(φ−1S)

1
c ).

The values of φ and c that realize the minimum, can now
be used in equation (9) to yield the estimate λ.

A. Estimating the parameters φ and c

In Cao et al. [7], the EM-algorithm is run after preselecting
a convenient value for the exponent parameter c in the
power law relation (4), while φ remains a parameter that the
algorithm optimizes. The authors point out that convergence
is guaranteed for the algorithm only for integer values of c,
namely 1 or 2. However, Gunnar et al. [4] in their study of
the Global Crossing data find out that the correct values for c
in those particular networks are 1.5 and 1.6 for the European
and North American core-networks respectively. Thus being
limited to integer values in the solution makes sense for only
computational reasons. The projection method, on the other
hand, works for any preselected c. And, in fact, we can relax
c to be a free parameter, though this means that we will no
longer be able to obtain a closed form solution.

Minimization of (11) with respect to φ is a simple quadratic
problem. So we can easily find the minimizing value φ̂(c).
Now we can either use a preselected value for c to yield the
optimal φ value, or insert φ̂(c) back to (11), which yields

f(φ̂(c), c) = (y − A(φ̂(c)
−1

S)
1
c )T(y − A(φ̂(c)

−1
S)

1
c ).(12)

Now we have a simple one parameter numerical optimiza-
tion to find the optimal value of c. Expression (12) as a
function of c is depicted in Figure 1. The figure is based on a
set of synthetic data that was generated by using the parameter
value c = 1.5. Figure 2 shows a histogram of estimated values
for the parameter c.
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Fig. 1. Values of the objective function (12) as a function of parameter c.
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Fig. 2. Estimated c-values for synthetic data sets of size 500, generated with
setting c = 1.5.

V. CONSTRAINED MINIMIZATION

Another approach is to require the condition y = Aλ to be
satisfied from the outset, and try to satisfy the mean-variance
relation in the least square sense. In general, this has to be
solved numerically. However, in the special case of c = 1 an
explicit solution can be derived.

This approach is equivalent to Vardi’s method, if we set
ε very small so that the first moment is the dominant factor
in the estimation, with the exception that we treat φ as a
parameter to be optimized, whereas in (3) it is fixed as 1 by
the Poisson assumption.

We get a constrained minimization problem

min
λ,φ

‖S(y) − Bφλc‖ (13)

subject to y = Aλ.

Introducing a vector of Lagrange multipliers α, the objective
function to be minimized can be written as

f(λ,α, φ)
= (S(y) − φBλ)T(S(y) − φBλ) + 2αT(y − Aλ)

= φ2λTBTBλ − 2φS(y)TBλ − 2αTAλ

+S(y)TS(y) + 2αTy. (14)
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Fig. 3. Six node Test topology

The above expression is quadratic in λ, and the minimum
with respect to λ can easily be found,

λ = φ−2(BTB)−1(ATα + φBTS(y)). (15)

The Lagrange multipliers α are then determined such that the
constraints are satisfied:

y = Aφ−2(BTB)−1(ATα + φBTS(y)), (16)

from which

α = (φ−2A(BTB)−1AT)−1 ·
· (y − φ−1A(BTB)−1BTS(y)). (17)

Minimizing f(λ,α, φ) with respect to φ yields

φ = (λTBTBλ)−1S(y)TBλ. (18)

Substitution of (17) into (15) gives λ as a function of φ

λ = Ky − φ−1
(
KA(BT B)−1BT S(y) + BT S(y)

)
,

where we use the notation

K = (BT B)−1AT (A(BT B)−1AT )−1.

Substituting λ further in (18) yields an quadratic equation for
φ, which is easily solvable. This solution can be then substi-
tuted back to (17) and (15) to obtain the explicit expression
for λ.

VI. COMPARISON WITH THE MLE METHOD

The accuracy of the quick methods are evaluated by com-
paring them against Maximum likelihood estimation. In the
following subsection we present the Maximum likelihood
estimation used. In the subsequent sections the results of
accuracy on synthetic data test cases is presented.

A. Maximum Likelihood Estimation

We follow the approach of Cao et al. [7] in using the
Expectation Maximization (EM) algorithm. For a review see
also [2].

The log-likelihood for estimating λ is given as

l(θ|Y ) = −τ

2
log |AΣAT| − (19)

− 1
2

τ∑
t=1

(yt − Aλ)T(AΣAT)−1(yt − Aλ),

LA
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Cl
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Fig. 4. Twelve node backbone test topology

where τ is the number of measurements and yt is the link
count vector for measurement t. In Cao et al. c is assumed to
be constant and the parameters of the model are thus

θ = (φ,λ).

We can write Σ as a function of θ according to (4). Now the
problem can be solved numerically with the EM-algorithm.
The complete data log-likelihood is of the form

l(θ|X) = −τ

2
log |Σ| − 1

2

τ∑
t=1

(xt − λ)TΣ−1(xt − λ).

The EM-equation is

Q(θ,θ(k)) = E[l(θ|X)|Y ,θ(k)]

= E[−τ

2
log |Σ| − 1

2

τ∑
t=1

(xt − λ)TΣ−1(xt − λ)|Y ,θ(k)]

Since

E[(x− λ)TΣ−1(x− λ)]

= E[Tr{Σ−1(x− λ)(x− λ)T}]
= Tr{Σ−1E[(x− λ)(x− λ)T]}
= Tr{Σ−1E[((x− m) + (m− λ))((x− m) + (m− λ))T]}
= Tr{Σ−1(R + (m− λ)(m− λ)T)}
= Tr{Σ−1R} + (m− λ)TΣ−1(m− λ)

we can write

Q(θ,θ(k)) = −τ

2
(log |Σ| + Tr(Σ−1R(k)))

−1
2

τ∑
t=1

(m(k)
t − λ)TΣ−1(m(k)

t − λ),

where

m
(k)
t = E[xt|yt,θ

(k)]
= λ(k) + Σ(k)AT(AΣ(k)AT)−1(yt − Aλ)

R(k) = Var[xt|yt,θ
(k)]

= Σ(k) − Σ(k)AT(AΣ(k)AT)−1AΣ(k).

According to [7], convergence to the maximum likelihood
estimate is guaranteed in the special cases of c = 1 and c = 2.
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Fig. 5. Errors for OD pairs in 6-node topology in ascending order of traffic amount for case c = 1.
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Fig. 6. Errors for largest OD pairs in 12-node topology in ascending order of traffic amount

B. Results

For the evaluation of the methods we use two topologies.
A small six-node topology, shown in Figure 3, has 14 one-
way links, two links between each connected pair of node.
Assuming traffic from each node to all other nodes, there
are 30 OD pairs in the network. In the more realistic size
fictitious backbone topology shown in Figure 4, there are
12 nodes, 38 links, and 132 OD pairs. For both topologies,
we generate synthetic Gaussian data sets, where the power-
law holds. Sample size is set to 500 measurements for each
simulation.

1) A Simple six node topology: In our synthetic OD pair
traffic the traffic varies so that the largest OD pairs are ten
times as large as the smallest ones.

Figure 5 shows the results for the maximum likelihood
estimates, projection method, the constrained minimization,
and Vardi’s method solved with the least square method, which
we call here Quick Vardi. The synthetic data used for the
evaluations is generated with parameters c = 1, φ = 1. This is
equivalent to the Poisson assumption made in Vardi’s method.

The OD pairs are presented in ascending order based on
the traffic volume, so that the smaller OD pairs are on the
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left and the largest on the right. We see that, as expected, the
MLE performs better on average, but not overwhelmingly so.
The mean relative errors are 15%, 26%, 34% and 35% for the
MLE, the projection method, constrained minimization and
Quick Vardi respectively.

2) A 12 node backbone topology: In this example case we
use synthetic data generated with the parameter value c = 1.5.
The traffic volumes for the OD pairs vary so that the largest
are approximately hundred times as large as the smallest ones.
This creates great difficulties for the quick methods regarding
the estimation of the smaller OD pairs. The estimates of the
projection method for the smallest OD pairs are far off the real
traffic volumes. Due to the fact that the estimates for some of
the smallest OD pairs have errors of several hundred percent,
the mean relative error is also affected greatly by these, and is
59% for the projection method and 110% for the constrained
optimization, while it is 29% for the MLE. The mean error
for the Quick Vardi method is several hundred percent, so it
is not considered here.

However, the most important thing is to estimate the largest
OD pairs. If we concentrate only on the largest OD pairs that
comprise 90% of total traffic in volume, the projection method
is more competitive. The errors for these OD pairs are shown
in Figure 6. The errors are 27% for the projection method,
46% for the constrained minimization and 19% for the MLE.

VII. CONCLUSION AND FUTURE WORK

This paper presented ways to obtain estimate for traffic ma-
trix by explicit calculations utilizing the link count covariance
matrix. We illustrated how one can obtain the OD pair traffic
variance estimates from empirical link count covariance ma-
trix, and developed computationally light weight methods, the
projection method and the constrained minimization method,
to obtain an estimate for the traffic matrix based on the link
count covariance matrix, in a way that would still be consistent
with the link counts.

The constrained minimization method was recognized, in
fact, to be a special case of Vardi’s method. We give an explicit
solution for it in the case c = 1 and also obtain an estimate
for the second parameter φ in the mean-variance relation. For
the projection method we have an even simpler and quicker
to compute solution. Also in this case we get estimates for
the parameters c and φ.

We evaluated the accuracy of the methods in a simulation
study by comparing them against the maximum likelihood
solution by Cao et al., and found that they perform reasonably
well, considering that they are much quicker and simpler to
calculate than the MLE, which requires the use of an iterative
numerical method, namely the EM-algorithm. In the worst

case, the errors in the estimate of a traffic matrix element
for the largest components given by the quick method were
three times as large as those by the MLE method, in many
cases they difference was smaller. As for the running time,
the difference between the MLE method and quick methods
was big. With our non-optimized Mathematica code running
the MLE method took of the order of tens of minutes, while
the quick methods yielded the result in a few seconds.

In this paper all comparisons were made with synthetic
data. Evaluation with real data would be very important to
assess the true effectiveness of the methods. For now, we
have used in our evaluations a sample size of 500, which
may be rather large in comparison to what is available in
reality. Accuracy of the estimated covariance matrix with
various sample sizes should be studied, as well as the effect
the measurement inaccuracies have on the subsequent traffic
matrix estimates.
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