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Abstract— In this paper we study the traffic matrix estimation
problem. Based on the nature of additional information that
is used to make the problem solvable, we identify two major
groups among the estimation methods proposed in literature: The
gravity model based methods and the second moment methods.
All methods make some assumptions in order to deploy the extra
information in the estimation process. We study the sensitivity
of the estimation accuracy to these underlying assumptions. The
gravity model methods are found to be more accurate when
the assumptions hold, but on the other hand their accuracy
declines faster than that of the second moment methods when the
assumption is not exactly true. In addition, we propose a novel
estimation technique which incorporates both sources of extra
information. This method is shown in many cases to outperform
the current estimation methods relying only on one or the other.

Keywords: Traffic Matrix Estimation, Gravity model, mean-
variance relation

I. INTRODUCTION

The traffic matrix gives the volumes of traffic between each
origin/destination (OD) pair in the network and is a required
input in, for instance, traffic engineering tasks, where the
underlying traffic volumes are typically assumed to be known.
However, in reality, the traffic matrix is rarely readily available
in current IP networks.

Thus, the traffic matrix has to be estimated using infor-
mation that is available, typically link count measurements y
obtained from SNMP measurements and the routing matrix
A. The basic relationship between y and origin-destination
traffic volumes x can be written as

y = Ax. (1)

The above equation holds exactly in any given moment in
time, and also the equation where we take the expectations of
y and x holds. The expected value of x is the traffic matrix
λ, and we get the first moment equation of traffic matrix
estimation

y = Aλ, (2)

where y denotes the sample mean of the link counts.
Since in any realistic network there are many more OD

pairs than links, the problem of solving λ from A and y
is strongly underdetermined. Thus, explicit solutions cannot
be found as there is an infinite number of solutions for λ
that satisfy equation (2). To overcome this ill-posedness, some
additional extra information is needed to solve the problem.
Reviews of the proposed methods can be found e.g. in [1] and
[2].

The proposed methods use typically either the gravity
model or the mean-variance relation to bring the required extra
information to make the system identifiable. In this paper we
study how sensitive the methods are to the aforementioned
underlying assumptions, as well as the number of measure-
ments available. It is found that the gravity model methods
are rather sensitive to the gravity assumptions but not at all
sensitive to the size of the measurement sample. The methods
relying on the mean-variance relation on the other hand are
not as sensitive to how well the mean-variance relation holds,
but are very sensitive to the sample size.

We propose a novel estimation method combining two
sources of extra information and show that in many situations
this performs better than methods using only one or the other,
thus representing an improvement over current estimation
methods.

The rest of the paper is organized as follows. In section II
we give a brief overview of the methods proposed in literature
and introduce the two methods used later in the paper in
the simulation study and propose a novel estimation method
combining two sources of extra information. In section III we
study the performance of each of these methods when their
underlying assumptions do not hold, or hold only to some
degree. Section IV concludes the paper.

II. ESTIMATION METHODS

Based on a comprehensive literature review we found that
while several different estimation methods have been pro-
posed, an overwhelming majority of these fall into two main
categories with regard to the nature of the extra information
utilized to yield an estimate.

1) Gravity model based methods [1], [3], [4], [5].
2) Methods using second moment statistics through a

mean-variance relation [6], [7], [8], [9].

The accuracy of these methods depend strongly on the
validity of the assumptions, which obviously never hold
exactly in real data sets. The first group of methods make only
the gravity model assumptions. This is found to be accurate
for some networks, but inaccurate for others in [10]. The
second group makes the assumption of a functional relation
between the mean and the variance of an OD pairs traffic
volume. In addition, a traffic distribution, typically Gaussian
distribution, has to be assumed to formulate the maximum
likelihood equation.
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A fundamental difference between the groups is also that
gravity methods only require a snapshot of the link counts.
If there are several measurements available the link count
averages can be used. On the other hand, second moment
methods need several measurements of a locally stationary
process.

A. Gravity Model Methods

The first group of estimation methods uses the gravity
model assumption [3] to gain the extra information. The model
is named after Newton’s law of gravitation. In the law of
gravitation the force between two objects is proportional to the
masses of the objects and the inverse of the squared distance
between them

F ∝ m1m2

r2
.

In gravity models the quantity to be estimated is proportional
to the product of some readily available quantities. Gravity
models have been used in social science to model the move-
ment of people or goods between two cities, as well as in
telephone networks.

In gravity modelling for data networks the idea is that if
we have no knowledge of where a bit is coming or where it is
going, the best guess is to make the estimate proportional to
traffic volumes sent and received by each node in the network.
The traffic between a source node s and a destination node d
is assumed to be directly proportional to the product of the
total traffic sent by s and the total traffic received by d. This
estimate is not, however, always unbiased. (see the Appendix.)

Based on the gravity model it is possible to form a prior
estimate. This information is then combined with the link
count information to yield the final estimate [4].

1) Information Theoretic Approach: The gravity model
estimate must be incorporated with the link count mea-
surements to yield the final estimate. In [5] an information
theoretic approach is used. The gravity model is based on
independence between origin and destination of the traffic.
In information theoretic terms this can be expressed by the
mutual information I(S,D) between source and destination
addresses, where S and D are random variables with values
s and d for a specific source s and destination d.

The mutual information can be expressed in many different
ways, but the most useful interpretation for this problem is

I(S,D) = K(p(s, d)||p(s)p(d)),

where

K(f ||g) =
∑

i

fi log
(

fi

gi

)

is the Kullback-Leibler divergence, which measures the dis-
tance between distributions f and g. So we can write

I(S,D) =
∑
s,d

p(s, d) log2

(
p(s, d)

p(s)p(d)

)

The authors note that a typical way of solving ill-posed lin-
ear inverse problems is to solve the regularized minimization

problem with a penalty function. In this case

min
x

||y − Ax||22 + λ2J(x), (3)

where λ is a regularization parameter and J is a penalization
functional.

The authors use probabilistic terms in their notation of the
problem. Total traffic in the network is denoted by N , and
the traffic sent from source s to destination d is denoted by
N(s, d), where

N(s, d) = Np(s, d)

and p(s, d) is the probability that a random bit in the network
goes from node s to node d. The OD pairs are indexed by i,
and the origin and destination of the ith OD pair are denoted
by si and di, respectively. The gravity estimate gi for the OD
pair’s traffic is defined as the product of all traffic originating
from si and all traffic terminating at di. Thus the gravity
estimate

gi ∼ N(si)N(di),

and the traffic matrix x is the actual traffic going from source
node si to destination node di

xi = N(si, di).

In information theoretic terms the independence between
source and destination, implied by the gravity model, is
equivalent to the mutual information being zero. As the mutual
information I(si, di) is also always positive, it is thus an
appropriate penalty function.

J(x) = I(si, di) =
∑

i

fi log
(

fi

gi

)
=

∑
i

xi

N
log

(
xi

gi

)
.

Now equation 3 can be written as

min
x

||y − Ax||2 + λ2
∑

i: gi>0

xi

N
log

(
xi

gi

)
(4)

subject to xi ≥ 0

That is, we want a solution that is a tradeoff between satisfying
the link count relation and having an a priori plausibility,
which here means that the mutual information is small and the
solution is thus close to the gravity model. The final solution
depends on the selection of λ. The authors use value λ = 0.01,
but demonstrate that the accuracy of the method is not very
sensitive to the choice of λ.

B. Second moment methods

The second moment methods use the link count sample
covariance matrix as the source of the extra information. When
a functional relation

Σ = φ · diag{λc} (5)

is assumed between the mean and the variance of the traffic
matrix, it is possible to formulate a maximum likelihood
problem that becomes identifiable through the use of the
sample covariance.
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In maximum likelihood estimation method [7] the assumed
mean-variance relation is used to write the covariance matrix
in the likelihood equation as a function of the mean. Then the
system is identifiable and can be solved numerically by the
EM algorithm.

But, in fact, the second order statistics for OD-pairs are
identifiable based solely on the second order statistics of the
link counts. As long as we assume independence among OD-
pairs and a sensible routing scheme, we can solve analytically
the variances of the OD-pairs by least squares method.

S(x) is the unknown covariance matrix of the OD pair traffic
in vector form and S(y) is the covariance matrix of the link
counts in vector form. Now we can solve for S(x) using the
sample covariance matrix of the link counts.

S(x) = (BTB)−1BTS(y), (6)

where the matrix B is a function of the routing matrix A.
(See [9] for further details.)

As the power-law relation between variance and mean is
assumed, we can solve the traffic matrix from our variance
estimate. This technique was deployed in our Quick method
[9].

1) Regularization Quick method: In the Quick method
a starting point q is obtained from the variance estimates
through the mean variance relation.

q = (φ−1S(x))
1
c . (7)

Then, the final estimate is obtained taking into account both
the starting point and the link count measurements.

The projection from the starting point to the feasible sub-
space defined by the link counts was done by an analytical
expression,

λ = q + AT(AAT)−1(y − Aq). (8)

In this paper we use the regularization method in order to
bring both methods on the same footing and allow to identify
solely the effects that the nature of the extra information has
on estimation accuracy.

The optimization problem is now

min
x

||y − Ax||2 + λ2
∑

i

xi

N
log

(
xi

qi

)
, (9)

subject to xi ≥ 0.

The efficiency of the methods can be compared to the opti-
mal maximum likelihood method by simulation with synthetic
data. The sample variances of the estimators can be compared
to the Cramér Rao lower bound. The variance/covariance
matrix of any unbiased estimator cannot be lower than the
inverse of the Fisher information matrix. This is the Cramér-
Rao lower bound for the variance of an estimator. Since the
maximum likelihood method is asymptotically efficient [11],
it has the lowest variance of any estimator. Thus its variance
coincides with the bound and we can evaluate any estimator
against it by comparing the sample variance of the estimator

in question to the bound. (see [12] for a full derivation and
discussion of the Cramér-Rao bounds.)

The sample standard deviations of each OD pair is com-
pared to the bound, and the average of these is calculated.
The projection Quick method has a standard deviation which
is on average 2.02 times larger than the bound, while the
regularization Quick method has 2.07 times larger deviation.
Thus, they are approximately equally efficient and yield results
with about two times larger errors than the MLE. This differs
somewhat from the results in [9], where the errors of the
projection Quick method were 1.4 to 1.7 times larger than
those of the MLE. This is due to the fact that in this simulation
study we consider the access links. That is, we have the
knowledge of the traffic that enters and leaves the network
through each node. The MLE uses this information more
effectively than the Quick methods, and thus performs better.

C. Combining both sources of extra information

As stated before, the traffic matrix estimation problem
is underconstrained and some extra information has to be
brought into the situation to get an unique estimate. The
accuracy of this estimate depends on the relevance of the
extra information viz. the validity of the assumptions made
in order to use the information in the estimation. Above we
have reviewed the two common sources of extra information
and methods based on them. Current methods utilize one or
the other of these information sources. However, as both are
relevant information to the problem, it might be a good idea
to incorporate both into the estimate.

There are two ways to do this. We can write both starting
points into the regularization equation, and optimize them
simultaneously. The objective function becomes

min

{
‖y − Ax‖2 + λ2

∑ xi

N
log

(
xi

gi

)
+ µ2

∑ xi

N
log

(
xi

qi

)}
,

(10)

where g is the gravity model prior and q is the quick method
prior.

Another possibility is to just take a componentwise average
of the two priors and insert the resulting combined prior into
the regularization function. This yields

min

{
‖y − Ax‖2 + λ2

∑ xi

N
log

(
xi

wgi + (1 − w)qi

)}
(11)

as the objective function.
It turns out that the latter method which is computationally

simpler also outperforms the first method. Thus we con-
centrate on that approach. For the moment we use weight
w = 0.5. It is left as further work to see whether a weighted
average would be a better approach.

III. SIMULATION STUDY

A. Simulation methodology

We create synthetic data sets in which the assumptions
are true to various degrees, starting from a perfect fit and
then making it gradually worse. For any given situation, the
goodness of fit value of the mean-variance relation is placed
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on the vertical axis and the goodness of fit of the gravity model
on the horizontal axis of a diagram. Then, at each point of
this grid we can make a simulation study to find out which
method is more accurate with these particular goodness of fit
values for the assumptions.

We use the fictional backbone topology of Figure 1. The
generated traffic volumes of the OD pairs follow the gravity
model and are denoted by λg . Each OD pair traffic volume
is proportional to an assigned dummy variable, or mass,
of the origin node and the mass of the destination node,
with the mass variables in this case approximately follow
the population of the cities. This is somewhat different from
the way the gravity model approach is used in estimation,
where the link counts are used directly as the masses. In this
case, however, this would lead to an inconsistency making
it impossible to create a dataset with different size OD pair
traffic, as discussed in the Appendix.

For each simulation we draw identically and independently
distributed samples from a Gaussian distribution with param-
eter vector λ for the means of the OD pairs and covariance
matrix Σ defining the variances of the OD pairs.

To achieve data sets which follow the gravity model as-
sumption and the mean-variance relation only to some degree
we add a random component to the parameters λ,Σ.

The deterministic component for the mean is denoted by
λg , and follows the gravity model exactly. We add to this a
random component

ελ ∈ (−λg, λg).

As the traffic matrix λg follows the gravity model exactly
and the error term is random, we can produce synthetic data
with a desired goodness of fit value with regard to the gravity
model by changing the coefficient w ∈ [0, 1] which determines
the weight of the error term to the final parameter.

λ = λg + wελ.

The variance of the ith OD pair is the element Σ(i, i) of the
covariance matrix, denoted by σ2(i), or for shorter notation
just by σ2. Again, we have a deterministic component

σ2
m = φλc,
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Fig. 1. Twelve node backbone test topology

which follows the mean variance relation by definition, and a
random component

εσ ∈ (−σ2
m, σ2

m).

The final parameter value is taken as

σ2 = σ2
m + vεσ,

where v ∈ [0, 1].
To produce the synthetic data set we draw T samples

of traffic counts xt from a Gaussian distribution with the
parameter values obtained above.

xt ∼ N(λ,Σ).

For each parameter value the methods are used to obtain an
estimate for each sample. As the most important thing is to
estimate accurately the larger OD pairs, we assess the accuracy
by considering the mean relative error for the largest OD pairs,
comprising 80% of total traffic in the network. This is repeated
for one hundred times and the error of the method for the given
parameters is taken to be the average of the mean relative
errors over the 100 simulations.

1) Calculating the goodness of fit: We need some measure
to describe how close the synthetic OD pair means are to the
values the gravity model would suggest and how close the
synthetic OD pair variances are to the variance suggested by
the mean-variance relation.

The distance between the gravity model traffic matrix λg

and the actual traffic matrix λ is measured as the error sum
of squares over each OD pair i

ESS =
∑

i

(λ(i) − λg(i))2.

To make the quantity scale invariant we use the goodness of
fit value

R2 = 1 − ESS
TSS

,

where TSS is the total sum of squares of the OD pairs

TSS =
∑

i

(λg(i) − λg)2.

If the fit is perfect, then ESS is zero and R2 = 1. If the
traffic matrix is totally random, then ESS is approximately
same as TSS and R2 ≈ 0.

The R2-value for the mean-variance relation is calculated
similarly with

ESS =
∑

i

(σ2(i) − σ2
m(i))2.

B. Simulation results

1) Gravity model methods vs. Second moment methods:
We use the mean relative error of the largest OD pairs, that
comprise 80% of total traffic, as the performance metric. In
the sequel we refer to this as error for short.

On the left hand side of Figure 2 the mean relative er-
rors of the estimate of equation (4), which uses the gravity
model assumption as the extra information, are displayed as
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Fig. 2. Effect on estimation accuracy when assumptions goodness of fit deteriorates. Left: Gravity model assumption. Right: Mean-variance relation.

a function of the R2 value of the goodness of fit of the
gravity assumption. The estimates are very accurate when the
assumption holds but quickly grow worse when the fit of the
gravity model becomes less exact. We can also note that there
is no significant difference between the different sample sizes
used. This is due to the fact that even a smaller data set is
enough to yield accurate estimate for the mean of the link
counts, which is the only required input for the model.

On the right hand side of Figure 2 a similar situation is
shown regarding the method of equation (9) using the second
moment extra information. This time the goodness of fit value
on the horizontal axis is for the mean-variance relation. It can
be seen that the accuracy of the method depends strongly on
the sample size, since it is difficult to get accurate estimates
of the sample variance with small sample sizes. The accuracy
of the estimator does not deteriorate as quickly as that of
the gravity model estimator when the underlying assumption
does not hold. On the other hand, even with an exact fit, there
are significant errors. As the fit of the mean-variance relation
becomes worse, the sample size does not matter as much. This
is intuitively clear: if the extra information is not relevant to
the problem, having more of it does not help that much.

It is to be expected that if the gravity model holds well,
while the mean-variance relation does not, the gravity based
methods are more accurate, and vice versa. At some point
the methods are equally accurate. If we consider the diagram
where the fits of the mean-variance relation and gravity model
are set on the axis, we can find a equivalence curve through the
area comprised of the points where the comparison between
two methods yields a tie.

Figure 3 displays curves that show when the two estimators
are equally accurate. On the left side of the figure the gravity
assumption holds exactly and on the bottom of the figure
the mean-variance relation holds exactly. Thus, on the area
from the equivalence curve to the top left corner the gravity
model method is more effective and from the curve to the
bottom right corner the second moment methods yield better
results. As the latter method was dependent on the sample
size, also the equivalence curves depend on the sample size.
For example, if the mean-variance relation holds, the gravity
model assumption needs to have a R2-value of over 0.83 to
be more accurate if there are 500 measurements available. If

1 0.8 0.6 0.4 0.2
R^2 gravity1

0.8

0.6

0.4

R^2 mean�var

t�100

t�200

t�500

Fig. 3. Equivalence curves showing which R2 values of gravity model and
mean-variance relation yield similar estimation errors.

TABLE I

R2 VALUES CALCULATED FROM REAL DATA SETS

Mean-var relation Gravity model
Abilene 0.76 0.84
Funet 0.83 N/A
Lucent 0.76 0.96

there are only 100 measurements available a 0.50 goodness
of fit for the gravity model makes it the better choice of extra
information.

Typical R2 values for real data sets (Funet[13], Lucent[7]
and Abilene1) available are listed in Table I. The traffic in
Abilene and Lucent networks is considerably more bursty than
in internet backbone links and thus the values for the mean-
variance relation might not be representative.

We notice that these values fall onto the area in Figure 3
which is to the left of the equivalence curves. Thus, even
with sample size of 500 the Gravity model seems to be
the better choice for estimating the traffic matrix in these
networks. Furthermore, the sample size of 500 measurements
might be unrealistically large, considering that we need the
measured sample to be locally stationary. Thus the result of
our simulations seems to strongly indicate that the gravity
model is the better of the two approaches.

2) Accuracy of the Combined method: Figure 4 shows a
comparison of three methods. The gravity model method, the
second moment method using mean-variance relation to obtain

1http://www.cs.utexas.edu/users/yzhang/
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Fig. 4. Comparisons of using the combined prior vs. using one or the other.

a prior and the combined prior method. We have set sample
size to t = 500 and the mean-variance relation is set to a
realistic level based on Table I, so that R2

meanvar ≈ 0.8. The
method using the gravity model gives the best estimates when
the gravity model assumptions hold, but then deteriorates
quickly and the combined method becomes the best estimator
already when R2

gravity < 0.9. The second moment method
surpasses the gravity model when R2

gravity < 0.7. However,
it outperforms the combined method only when the gravity
model fit is exceptionally bad, and even then the two are pretty
much equally accurate. The second moment method becomes
slightly more accurate as the gravity model fit becomes worse.
This is most likely a byproduct of the simulation setup: as we
create data sets far from the gravity model, the error terms
have to be large. Thus, some of the OD pairs are close to
zero, and a smaller portion of the OD pairs comprise the 80%
of total traffic, and are included in the estimation error.

Calculating results similar to Figure 4 for different values
of R2

meanvar we can draw equivalence curves similar to the
ones of Figure 3. This time comparing the combined method
and the gravity method. The results are depicted in Figure
5. Again, the gravity model is the best one to the left of the
equivalence curves and the combined method is the best on the
right side of the curves. We notice that the combined method
is rather accurate, and the fit of the gravity model assumption
needs to be very good, or the fit of the mean-variance relation
needs to be bad, to justify using the gravity model as the lone
source of extra information.

IV. CONCLUSION

In this paper we studied the traffic matrix estimation prob-
lem, and especially the sensitivity of the two most common
methods to their underlying crucial assumptions. We found
that the gravity method’s accuracy deteriorates more quickly
as a function of the gravity model fit, than the second moment
method does as a function of the fit of the mean-variance
relation. However, when the assumptions hold, the gravity
method is significantly more accurate. Also it needs only
small sample sizes to achieve good accuracy, while the second
moment method needs to estimate the sample covariance
matrix, and thus is not very accurate with smaller samples.
It would appear that based on our study the gravity based
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R^2 gravity1
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Fig. 5. The equivalence lines for gravity prior vs combined prior

methods are superior to the second moment methods with
most realistic sample sizes.

We proposed a novel estimation method, which combines
these two competing sources of extra information. Since
typically both of them are relevant at least to some extent,
as shown by the study of the three real data sets in Table I,
it usually makes sense to use both. We showed that in many
cases the combined method is the most accurate estimation
technique.

APPENDIX

Gravity modeling is well known in social sciences. It is
used, for instance, to estimate the amount of people moving
from one city to another. This is done by assuming that
the amount is proportional to the populations of the two
cities, as well as the distance between them. In economy the
trade between nations can be estimated by gravity model by
considering it proportional to the GDP of the nations.

The use of the gravity modeling in communication networks
is slightly different. There are no easily obtainable natural
candidates to play the role of the masses, so the total traffic
volumes entering (leaving) the network through a node are
appointed to serve as the mass variables. If the traffic from the
node to itself is negligible, as in our simulation examples, this
leads to an inconsistency, which makes it next to impossible to
find a situation where the gravity estimate would be unbiased.
Let Nin(s) denote the traffic entering the network at node s
and Nout(d) the traffic going out of the network at node d.
The traffic of an OD pair sd is given by

xsd = Nin(s)
Nout(d)∑
i�=s Nout(i)

. (12)

and also by

xsd =
Nin(s)∑
i�=s Nin(i)

Nout(d) (13)

The only non-zero solution to these equations is one where
each OD pair has the same traffic volume. This is of course
extremely restricting, and thus hardly appropriate for real traf-
fic situations. It is also next to impossible to create synthetic
traffic in a simulation to be consistent with this gravity model.

We can revise the gravity model to be consistent with
gravity modeling in other fields by attaching to each node
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a mass variable so that the OD pair traffic between any two
nodes s and d is proportional to the product of these variables
instead of the total traffic entering/leaving the network through
that node.

xsd ∝ msmd (14)

When solving the traffic matrix, we can then first infer values
for the variables mi using measurements of Nin/out, and then
calculate the traffic volumes according to (14). This estimator
would be unbiased. However, the advantage gained in the
accuracy due to this unbiasedness concerns only the cases
where the gravity model holds in the data set almost perfectly.
In any realistic case the difference in the result of equation
(4) is negligible.

However, this approach allows us to create synthetic data
sets consistent with it, by assigning the mass variables to the
nodes, and then calculating the traffic. This is the approach
we have used in creating the data sets in our simulation study.
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