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Abstract— We study the problem of balancing the traffic load
in a network by route selection. The traditional approach starts
from a given traffic matrix. However, as the traffic matrix is
seldom available, estimated traffic matrices have to be used.
Thus, the solution of the load balancing algorithm is not optimal
due to errors in traffic matrix estimate. In order to overcome
this, we present two variations of a robust load balancing scheme.
One where no knowledge of the traffic matrix is needed, and a
novel variant of the robust algorithm that does require a traffic
matrix estimate but takes into consideration the estimation error
involved. We compare the performance of these methods to that
of traditional load balancing by a simulation study.
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I. INTRODUCTION

Load balancing is a common traffic engineering task in
which the traffic in the network is routed in a way that
optimizes some performance criterion. In this paper we use the
minimization of the maximal link utilization in the network
as the target. This criterion leads to network usage which
minimizes the relative congestion on the links throughout the
network.

Traffic is moved from heavily congested links to other
routes and links in order to ease the congestion in that part of
the network. To do this, the traffic matrix is typically assumed
to be known. However, traffic matrices are not generally
readily obtainable. Estimated traffic matrices obviously are not
entirely accurate, but come with some estimation error. Thus,
the actual traffic load on a given link might significantly differ
from what is expected on the basis of to the estimated traffic
matrix.

On the other hand, a method which does not require
knowledge of the traffic matrix, or takes into consideration
the estimation errors in the traffic matrix estimate, would be
more robust. The basic idea of such a method is to balance the
load in a way that does not optimize the network utilization
for a single traffic matrix, but for a large polytope of matrices,
which is selected so that it surely includes also the real traffic
matrix. This kind of robust approach to traffic engineering has
therefore gained interest in recent years. In particularly with
regard to provisioning for Virtual Private Networks (VPN).
In the hose model proposed in [1] and used by [2] each
VPN endpoint specifies bounds for its traffic demand, and
the provisioning is done so that there is sufficient bandwidth
for any traffic matrix that is consistent with the specified
bounds. Ben-Ameur and Kerivin [3] generalize the hose model
and introduce the concept of routing a polytope. Johansson
[4] proposes the use of this concept for load balancing in
the network without a traffic matrix estimate. Applegate and

Cohen [5] study the performance of robust routing for different
size uncertainty sets.

In this paper we study the performance of robust load
balancing methods against traffic matrix based load balancing
methods. The traditional method is used with both gravity
model and maximum likelihood traffic matrix estimates. For
the robust methods, we study two variants. The first variant,
the Robust method, defines the demand polytope as the set
of all traffic matrices consistent with the link count mea-
surements, as in [4]. Thus, the method does not require any
traffic matrix estimate, instead it finds the optimal routing for
the entire polytope of possible traffic matrices. We study the
average and worst case performance of this approach through
an extensive simulation study, and compare it to traditional
load balancing methods.

While traditional load balancing relies on a single traffic
matrix and the Robust method on a polytope containing all
possible traffic matrices, these are obviously extreme points.
A middle ground between the two would be a polytope around
the estimated traffic matrix, that is smaller than the set of
all possible traffic matrices. Surely there are some cases so
implausible that we do not need to consider them, and on
the other hand it is unlikely that our traffic matrix estimate
is so accurate that no error margins are needed. To obtain
these bounded polytopes we propose a novel variant of the
robust approach, the Bounded Robust Method. We analytically
derive statistical standard error for the elements of the traffic
matrix estimate and use different confidence intervals to obtain
different size polytopes.

The differences in our approach compared to the insightful
work in [5] is that we do not assume the actual traffic
matrix and the estimated traffic matrix to coincide. We cannot
construct the uncertainty set around the real demand, since it
is unknown in reality. Only the estimate is available to us.
Also, our error margins are statistical confidence intervals
as opposed to multiples of the traffic amounts. As these
confidence intervals are larger for origin-destination(OD) pairs
that are difficult to estimate and smaller for those OD pairs
that are easier to estimate, we avoid making the polytope
unnecessarily large in directions where there is not that much
uncertainty.

The rest of the paper is organized as follows. In the next
section we introduce the general framework of the problem
and the notation. In Section III the traditional load balancing
approach is discussed. As this is based on a known traffic ma-
trix, we briefly review typical traffic matrix estimation meth-
ods. Section IV presents the robust load balancing scheme,

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.



and in section V we develop the modified Bounded Robust
method. Section VI gives results of simulation studies and
finally section VII concludes the paper.

II. GENERAL SETTING

We denote the measured link loads, available from SNMP
measurements, by y0, which is a vector of length L, the
number of links in the network. The elements of the vector
are the link load measurements for each link, with the links
indexed by l. The link - OD pair incidence matrix, or the
routing matrix, is denoted by L × K matrix A, where K is
the number of OD pairs in the network, indexed by k. The
element Al,k of the routing matrix gives the proportion of the
traffic of the kth OD pair that is routed through link l. If the
OD pair does not use the link in question, then Al,k = 0.

The routing matrix during the measurements is assumed
to be known and is denoted by A0. The traffic matrix x is
a vector of length K, composed of traffic flows xk between
origin-destination pairs. It must satisfy the link count relation

A0x = y0. (1)

Each non-negative vector x that satisfies the above relation
is a possible traffic matrix. Denote the set (polytope) of such
traffic matrices by D.

D = {x ≥ 0 : A0x = y0}. (2)

Let C denote the link capacity vector. Our performance
metric u refers to the relative utilization of the most heavily
congested link,

u = max
l

(Ax)l

Cl
= |Ax/C|, (3)

where in the latter form we have introduced the notation
|a/b| = maxl al/bl. In the starting situation the utilization
is

uinit = |y0/C|, (4)

Let L denote the node-link incidence matrix with element
Lnl = +1 and Ln′l = −1 if (directed) link l leads from node
n to node n′, and 0 otherwise, while R denotes the node
- OD pair incidence matrix with element Rno,k = +1 and
Rnd,k = −1 if OD pair k enters the network at node no and
exits at node nd, and 0 otherwise.

To ensure that all the traffic between nodes gets routed, the
routing matrix must satisfy the flow conservation condition

LA = R, (5)

where the routing matrix A is free variable to be optimized
by the load balancing algorithms.

III. TRADITIONAL LOAD BALANCING APPROACH

In the traditional approach, the traffic matrix is assumed
to be known. In reality we usually need to estimate it from
the available information and the estimate is always somewhat
erroneous. In this section we first review traffic matrix esti-
mation methods and then define the traditional load balancing
problem.

A. Traffic matrix estimation

Typically the routing matrix and link counts are the only
readily available information. We denote the link count mea-
surements by y0 and the routing matrix under which the mea-
surements were performed by A0. In order to be consistent
with the link counts the traffic matrix x has to satisfy the link
count relation (1). However, solving x from this equation is
an underconstrained problem. Thus, some extra information
needs to be brought in to the situation.

1) Maximum likelihood method [6]: This approach as-
sumes that there is a relation between the mean and variance
of the OD pair counts. In order to make use of the relation, a
time-series of measurements is required to obtain a sample
covariance of the link counts. The variance is then used
through the relation along with the link counts in a maximum
likelihood framework to calculate an estimate for the traffic
matrix. The fact that we can gain knowledge about the mean
from the sample variance makes the problem identifiable. The
accuracy of the maximum likelihood estimate (MLE) depends
on sample size and the validity of the mean-variance relation.

2) Gravity model method [7], [8]: The method makes the
assumption that source and destination are independent and
that the traffic between any two nodes is proportional to the
total traffic originating from the source node and terminating
to the destination node. This assumption can be used to obtain
a starting point estimate, which is then used together with the
link count information to yield the final estimate.

The accuracy of the method depends strongly on the validity
of the gravity model assumption. To obtain a realistic situation
we generate synthetic traffic in our simulation study so that the
goodness of fit in the sense of sum of squares error between
gravity model λg and actual traffic matrix λ is approximately
R2 = 0.84. This value was obtained from a study of the
Abilene1 network traffic properties in [9].

B. Load balancing algorithm

With the estimated traffic matrix, denoted by x̂, we can
formulate the load balancing problem as an LP problem

Problem 1 (Traditional Load Balancing Problem):

min
A≥0

u (6)

such that

u C ≥ Ax̂ (7)

LA = R (8)
which yields the routing matrix that minimizes the maximum
link utilization. The solution A(x̂) is a function of the
assumed traffic matrix x̂. This solution is optimal only with
regard to the maximum link load, and usually is not unique.
A second optimization is needed to ensure that traffic is
optimally balanced in less loaded links also, not just in the
bottleneck link.

min
A≥0

eTAx̂ (9)

1http://www.cs.utexas.edu/users/yzhang/
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such that

û C ≥ Ax̂ (10)

LA = R, (11)

where û is the solution of (6).
The above sequential optimization would result in the

lowest possible achievable value for u if the traffic matrix
estimate would be accurate. In reality, however, the estimate is
more or less inaccurate. This introduces error to this approach,
which leads to the real value of u being higher than the
algorithm lets to believe.

IV. ROBUST METHOD

In the Robust method, instead of using a fixed traffic matrix
estimate, we try to find a routing matrix such that the worst
case performance is optimized over all feasible traffic matrices
in the set D, defined in equation (2). By finding the routing
matrix that performs well over the whole set D we do not
have to estimate the traffic matrix.

This approach is proposed in [4] and uses the algorithm
introduced in [3]. Our formulation is different from these
in that we use the flow conservation constraints instead of
making use of the arc-path formulation. The optimization
problem in our framework is

min
A≥0

u (12)

such that

u C ≥ Ax ∀x ∈ D (13)

LA = R. (14)

Again a second step is needed to ensure that traffic is
optimally balanced in less saturated links also.

min
A≥0

eTAe (15)

such that

û C ≥ Ax ∀x ∈ D (16)

LA = R. (17)

Equation (13) defines the link constraints, stating that the
maximal link utilization u has to satisfy the link constraints for
each traffic matrix x belonging to the polytope D. Equation
(14) defines the flow conservation constraints.

This problem is difficult to solve because of the infinite
number of constraints in (13). Therefore, we use the demand
satellite approach, which was part of the iterative solution
by Ben-Ameur and Kerivin [3]. The problem is divided to
two optimization problems. The first one is the link load
optimization problem. It does not consider the whole set D.
This set of infinite number of constraints is substituted by a
finite set of constraints D∗, which are generated by the second
optimization problem. The link load optimization is now a
simple LP problem, with the flow constraints (20) just as (8)
in the traditional approach, and the set of constraints (19) in
the place of the link constraints (7).

Problem 2 (Link Load Optimization):

min
A≥0

u (18)

such that

u Cl ≥ (Ax)l ∀(l,x) ∈ D∗ (19)

LA = R, (20)

and such that a secondary objective function is used to obtain
optimal balancing throughout the network.

The set D∗ is initially empty. Problem 3 is solved to
obtain constraints. The iteration can be started using the
initial routing A0. For each link we find the traffic matrix
x∗ ∈ D that maximizes the traffic on that link. If the achieved
link utilization is larger than the current value for u, the
corresponding constraint

u Cl ≥ (Ax∗)l

is added to the set D∗ to be used as a constraint in (19) in the
next iteration of problem 2. As the constraint can be identified
by the pair (l, x∗) we denote

D∗ ← D∗ ∪ (l, x∗).

The problem is formulated as follows.
Problem 3 (Constraint Generation): For each link l solve

with current values A(i), u(i)

x∗ = arg max
x∈D

(A(i)x)l

If
u(i) Cl < (A(i)x∗)l

then
D∗ ← D∗ ∪ (l, x∗).

The iteration starts by generating constraints for the initial
routing matrix A0. Problem 2 is then solved with these
constraints. This yields a new routing matrix, denoted by
A(i) in the ith iteration. More constraints are generated using
this routing matrix and these constraints are added to the set
of constraints along with the previous constraints. Then the
Link Load Optimization problem is solved again. The iteration
continues until the Constraint Generation problem does not
yield any new constraints. The iteration is guaranteed to stop,
as each generated new constraint corresponds to an extreme
point of the polytope D, which, of course, constitute a finite
set. On a 12 node test topology the number of constraints in
D∗ is typically between 500 and 1000.

V. BOUNDED ROBUST METHOD

In this section we introduce a novel approach for load
balancing, the Bounded Robust Method, which combines the
idea of the Robust method with the use of the traffic matrix
estimate.

In Problem 3 we find the traffic matrix x∗ ∈ D that
maximizes the traffic on a particular link. This traffic matrix
is typically one with extreme values for OD pairs that use
the link in question and a lot of zero values for the OD pairs
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that do not use the link. These cases are in the set D, but
may, in reality, be very unlikely. If we are interested in a
plausible maximum link load, we might like to add some
more constraints to eliminate the cases which are practically
impossible. This can be achieved by setting an upper bound
on the value that an estimate for an OD pair may obtain.

We propose the Bounded Robust algorithm that is based
on the idea that we do utilize a traffic matrix estimate, but
also take into consideration the error of the estimator. We
calculate the upper bounds for the traffic matrix estimate and
the estimator’s confidence intervals. To obtain a confidence
interval we need to calculate the standard error of the estima-
tor. When we use the maximum likelihood estimator, this can
be achieved through the Cramér-Rao lower bounds (CRLB)
for the variance of an estimator, derived in [10].

In the next subsection we review the use of the CRLB, and
in the following subsection formulate the constraint generation
algorithm for the bounded case.

A. Confidence interval for estimator

The variance/covariance matrix of any unbiased estimator
cannot be lower than the inverse of the Fisher information ma-
trix I. This is the Cramér-Rao lower bound for the variance of
an estimator. As the maximum likelihood method is unbiased
and asymptotically efficient [11], it has the lowest variance
of any estimator and thus its variance coincides with the
bound. On the other hand, the gravity model based methods
are typically biased, and thus the bound does not necessarily
apply.

For the MLE we can calculate the variance/covariance
matrix of the estimator using the CRLB. The vector of the
standard errors SE is then the square root of the diagonal
elements of the CRLB matrix, and the confidence interval is
given by

x̂ − z · SE ≤ x ≤ x̂ + z · SE ,

where z defines the width of the confidence interval. For
instance, z = 1.96 is the 95% confidence interval.

B. Bounded constraint generation function

Now we can redefine the set D of traffic matrices to take
into consideration the confidence intervals. We have no need
to bound the low values, as we are looking for the maximal
link loads. Thus we define this new set as

D′ = {x : A0x = y0 , 0 ≤ x ≤ x̂ + z · SE}. (21)

The corresponding constraint generation problem is then
Problem 4 (Bounded Constraint Generation):

x∗ = arg max
x∈D′

(A(i)x)l (22)

If
u(i) Cl < (A(i)x∗)l

then
D∗ ← D∗ ∪ (l, x∗).

A similar iteration is performed as described in the previous
section with Problem 4 now in place of Problem 3. The result

of the algorithm gives the optimal routing matrix over all
reasonably conceivable traffic matrices.

VI. SIMULATION STUDY

Robust methods have lower worst case link utilizations,
while this provisioning for the worst case might have an
adverse affect on the mean utilization obtained. In this section
we evaluate this tradeoff between average link utilization
and robustness by a simulation study with the two different
topologies, shown in Figure 1.

A. Compared methods

In order to be able to use the Cramer-Rao bounds we
need to use the maximum likelihood method for the traffic
matrix estimation. Thus, it is natural to compare the traditional
method calculated with this estimate to the robust methods
using the same estimate. While specifically for small sample
sizes the gravity methods could outperform the MLE in traffic
matrix estimation [9], the behavior of the different metrics
defined below is similar regardless of the estimator used for
the traditional method. Therefore, we compare the following

1) The traditional load balancing with maximum likelihood
traffic matrix estimate

2) The Robust method
3) The Bounded Robust method,

and choose sample sizes T = 25 for the smaller topology and
T = 100 for the larger topology, so that the performance for
the traditional method is approximately the same with MLE
and gravity estimate.

B. Metrics

The algorithms yield a routing matrix Â. To evaluate the
performance of each algorithm, we define three performance
metrics.

1) The real case utilization of the most congested link.

urc = |Âx0/C|, (23)

where x0 is the real value of the traffic matrix during
the measurements.

2) The worst case maximal utilization.

uwc = max
x∈D

|Âx/C|. (24)

We consider the largest value for u with the routing ma-
trix Â, changing the traffic matrix within the polytope
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Fig. 1. Test topologies
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Fig. 2. Real case performance (lower curve) and worst case performance
(upper curve) of the Bounded Robust method in the small topology as a
function of the confidence interval coefficient

specified in (2). This is the criterion the Robust methods
aims to minimize.

3) The bounded worst case utilization is similar to the sec-
ond one except we exclude implausible traffic matrices
from consideration by finding the maximal u such that
the traffic matrix is within the bounded polytope given
in (21).

ubwc = max
x∈D′

|Âx/C|. (25)

This is the criterion the Bounded Robust methods aims
to minimize.

All the results in the sequel are given relative to the optimal
load balancing that would be obtained using the exact traffic
matrix for the traditional load balancing method.

C. Results for the smaller topology

The accuracy of the traffic matrix estimate is dependent on
the difficulty of the problem. The more OD pairs compared
to the number of links there are in the considered topology,
the more underconstrained the problem becomes. In heavily
underconstrained situations the estimates are naturally less
accurate.

We consider first the small topology depicted on the left
hand side of Figure 1. It has six nodes, and thus 30 OD
pairs. There are seven two-way links, so the number of links
is 14. This is a relatively easy situation. The standard error is
typically about 10% of the OD pair volume.

In this case our Bounded Robust method outperforms the
traditional method relying on a single traffic matrix estimate.
This is explained by the fact that while the estimate is
inaccurate, the polytope used in the Bounded Robust method
includes the real traffic matrix, and is not excessively large
due to small confidence intervals.

This is in line with the results reported in [5]. They find
that small error margins do not make the result worse. In their
study the margins are centered around the real values. Thus
the traditional method achieves optimal utilization. We use
a traffic matrix estimate instead of the actual traffic matrix
so the traditional method does not yield optimal utilization.

1 2 5 10 �
z

1.5

2.0

2.5

3.0

utilization

Fig. 3. Real case performance (lower curve) and worst case performance
(upper curve) of the Bounded Robust method as a function of the confidence
interval coefficient

1 2 5 10 �
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2.0

2.5
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Fig. 4. Bounded worst case performance of Traditional (the fast rising
curve), Bounded Robust (lower curve) and Robust methods (midlle curve) as
a function of the confidence interval coefficient.

Thus, as can be seen in Figure 2, not only does using the
Bounded Robust method make the utilization no worse, it
actually makes it better, while at the same time making the
routing more robust.

In the figure, the horizontal axis is the value of z defining
the width of the confidence interval in multiples of the
standard error, as given in equation (21). The vertical axis
gives the maximal link utilization u obtained in the network
by routing the corresponding polytope. The lower curve gives
the real case utilization and the upper curve gives the worst
case utilization. We can see that the real case utilization
is near optimal when using the Bounded Robust method
with moderate size confidence intervals. The case z = 0
corresponds to the traditional method and the case where z is
so large that it does not bound the polytope and D′ = D
corresponds to the Robust method. For traditional method
urc = 1.03 and for the Robust method urc = 1.06. The worst
case utilization is naturally highest with traditional method,
and becomes smaller as a function of the confidence interval
used.
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D. Results for the larger topology

We now consider the larger topology shown on the right
hand side of Figure 1. This is a more realistic size network
with 12 nodes, 132 OD pairs and 38 links. Clearly, the
situation is more underconstrained than the previous one, and
thus more difficult. The standard error is more than twice the
the standard error of the previous case.

Figure 3 depicts the real case utilization and the worst case
utilization obtained by the different methods. The utilization
is lowest with the traditional method with urc = 1.04. For
z = 0.5 it is still quite low, but then grows quickly when z
approaches 3. After that the utilization grows only moderately
from 1.17 to 1.22 which is the real case utilization for the
Robust method.

Figure 4 shows the bounded worst case utilizations for
the different methods. On the horizontal axis is the width of
the confidence interval, over which the bounded worst case
utilization ubwc is calculated. So, z = 0 corresponds to using
no confidence interval at all. In this case ubwc is exactly the
same as the real case utilizations, as we calculate the worst
case over a zero size polytope, which is the single point of the
estimate. Then, for instance at the point z = 1.96 the curves
give the bounded worst case utilizations for the polytope with
95% confidence intervals. Finally at z = ∞ ubwc coincides
with uwc as the confidence interval is so large that we take the
worst case over all possible traffic matrices. The highest curve
is the traditional approach. The curve for Bounded Robust
starts lower than the Robust, but they approximately coincide
after z = 3.

For example, let us consider the 95% confidence interval
for each element of the traffic matrix. We have three methods:
Traditional method, Bounded Robust method with z = 1.96
and Robust method. We can read from Figure 4 the bounded
worst case utilization for each. From Figure 3 we can read
the real case and worst case utilizations using z = 0 for
Traditional method, z = 1.96 for Bounded Robust and z = ∞
for Robust. These results are listed in Table I.

TABLE I

VALUES OF UTILIZATION FOR DIFFERENT METHODS WHEN z = 1.96.

urc ubwc uwc

Traditional 1.04 1.52 3.05
Bounded Robust 1.13 1.20 2.06
Robust 1.22 1.26 1.31

VII. CONCLUSION

In this paper we addressed new approaches for the network
load balancing task. Instead of relying on a estimated and
inaccurate traffic matrix we study methods that take a different
approach. The Robust method, which does not need any
traffic matrix at all, was found to perform sufficiently well.
The link utilization was in a less underconstrained situation
only marginally higher than that of the traditional approach.
The worst case utilization for the Robust method was only

one percent higher than its real case utilization. The Robust
method guarantees a maximal link utilization only 6% worse
than optimal in that scenario. For the more difficult scenario,
the utilizations were higher for the Robust method, but the
worst case utilization is still only 31% higher than optimal,
while worst case for the Traditional method is over three times
the optimal utilization.

We proposed a novel extension for the robust approach,
the Bounded Robust method, which requires a traffic matrix
estimate, but takes the uncertainty in the estimation into
account. The approach decreases the size of the polytope of
considered traffic matrices by introducing confidence intervals
for the estimator, thus eliminating the need to include the
next to impossible extreme cases in the provisioning. The
method uses maximum likelihood estimates for the traffic
matrix and makes use of the Cramer-Rao lower bounds to
obtain the confidence intervals. In some simulation scenarios
the Bounded Robust method was shown not only to add the
robustness that the traditional approaches lack, but actually
outperform them with regard of the real case maximal link
utilization. In any situation the method is close to the tradi-
tional method and outperforms the Robust method in real case
link utilization, while still maintaining the robust performance
over all plausible traffic matrices.
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