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In the third part of the thesis we study robust load balancing. Many traditional load balancing techniques assume the
availability of an accurate traffic matrix. However, robust load balancing takes a different approach, and thus does
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PL 1000, FIN-02015 TKK
http://www.tkk.fi/
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1 INTRODUCTION

1.1 Background

Originally the Internet was based on the idea of best effort delivery. This al-
lowed simple network nodes and efficient use of the network. In the current
Internet there are more and more applications, such as videostreaming, that
require large amounts of bandwidth or quality-of-service guarantees to work
properly. This calls for more control over the network so that these require-
ments can be met. Also, as peer-to-peer applications are used for down-
loading of large files such as movies or computer programs, these tend to
use whatever amount of bandwidth is available, no matter how abundantly
bandwidth is provisioned in the network.

Even in a network that is overprovisioned so that bandwidth is, on av-
erage, sufficiently large, there will still be congestion in some parts of the
network. Some links at some moment may get congested by a change in
traffic, due to random fluctuations or sudden interest in a particular web
page by a large number of users. Also, link failures and subsequent rerout-
ing of traffic can cause abnormally high traffic volumes in some other parts
of the network. Hence, a need to control the traffic in the network in order
to use the resources evenly in the network has arisen.

Traffic engineering [AMA+99, KKY03] is used to avoid and deal with
congestion in the network. If the whole network is congested, the reason
probably is insufficient capacity. If only some parts of the network are con-
gested, the reason most likely is non-optimal allocation of resources in the
network. This situation emerges when the dimensioning of the network is
no longer appropriate for current traffic volumes. The traffic has perhaps
changed due to a change in customer behavior or emergence of new ser-
vices, or the link capacities have been changed by new infrastructure being
built by the operator, or even a link failure somewhere in the network. Traf-
fic engineering techniques can be used to alleviate the congestion.

Congestion in the network can be addressed in several ways. One ap-
proach is the use of admission control, where restrictions are used in al-
lowing traffic to enter the network. Quality-of-service guarantees can be
given to traffic flows to ensure that they get sufficient bandwidth despite
the congestion in the network. This approach concentrates on the service
of individual users, instead of on the overall resource usage in the network.

Another approach is load balancing. Specifically in the cases where
the whole network is not congested, but only parts of it are, load balancing
is a useful method to deal with the congestion. This is a common traffic
engineering task where the traffic is routed in an optimal way according to
the input information and a performance criterion that describes the level
of congestion in the network. Load balancing aims at a situation where
some of the traffic contributing to the congestion is routed through another
path of the network so that it does not travel through the congested links
anymore. Thus, the traffic is distributed over the network in a balanced way
with regard to the resources available.
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Traffic engineering applications typically require information about
traffic volumes on the links and routing information. In addition to this,
often the traffic matrix is required as an input for load balancing and di-
mensioning tasks. The traffic matrix, or demand matrix, gives the traffic
volumes between each pair of nodes in the network. However, in cur-
rent IP networks the traffic matrix is not readily available. Instead it has
to be inferred by mathematical estimation techniques. This gives rise to
the need for the traffic matrix estimation field of research, where the aim
is to develop estimators that provide sufficiently accurate traffic matrices
when direct measurement of end-to-end traffic streams is not possible. The
measured link loads serve as a starting point for these estimators and are
combined with some other relevant information about the traffic to yield
an estimate for the traffic matrix.

1.2 Load Balancing

A traditional approach to load balancing would be to rely on the traffic ma-
trix in the optimization problem. As traffic is moved from congested links to
other links to alleviate congestion in that part of the network, the traffic ma-
trix is typically needed. The load balancing problem can be formulated as
an optimization problem that gets the traffic matrix as an input and yields
the optimal routing. The goal is to find optimal value for the objective
function. The maximal link utilization in the network is a good choice for
objective function. Minimizing the relative link load on the most heavily
congested link leads to a situation where there is free capacity on all links,
so that an increase of traffic can be accommodated. The decision variable
in the optimization problem is the routing matrix. An obvious constraint is
the non-negativity of the routing matrix. Another constraint is the require-
ment that all the traffic gets routed from the origin node to the destination
node of the traffic flow in question. Thus the optimization problem can be
formulated as follows.

Problem 1 (Load balancing) Given a traffic matrix, find the non-negative
routing matrix that minimizes the maximal relative link load and gets all
the traffic routed from their origin to their destination.

In wireless mesh networks [AW05] the situation is slightly more com-
plex, which allows also for more flexibility in the optimization. The link
capacities are not completely set by the infrastructure, but can be adjusted
within certain limits. This is achieved through scheduling. The restricting
factor is that nodes that are close to each other interfere with each others’
transmission. In the Boolean interference model, when one link is trans-
mitting, all the links within the interference range from this link cannot be
active at the same time. Thus, we have several transmission modes, each of
which constitutes one possible combination of simultaneously transmitting
nodes. By giving more time to some modes at the expense of other’s, we
can change the capacities of the links, as links belonging to the modes in
question can now send more traffic. This adds a new dimension to load
balancing, since, in addition to routing, the scheduling of the transmission
modes is also a decision variable in the optimization problems. The objec-
tive function remains the same, but the scheduling affects the capacities
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and hence the objective function, since we are optimizing the relative link
load.

Problem 2 (Load balancing in wireless network) Given a traffic matrix,
find the non-negative routing matrix and transmission schedule vector that
minimizes the maximal relative link load and gets all the traffic routed from
their origin to their destination.

The traditional approaches described above need the traffic matrix as
an input. If the traffic matrix is not available, a different approach can
be taken, namely the robust approach. Robust methods are typically used
when there is significant uncertainty involved in the problem. If, for in-
stance, the true value of a parameter is unknown, instead of finding a single
solution to optimize performance using an estimated value of the param-
eter, the robust approach finds a solution that works reasonably well over
the whole set of possible parameter values. In the present case the traffic
matrix is the unknown parameter. A robust load balancing approach can be
used taking into account a larger set of possible traffic matrices. The only
certainty is the link load measurements, which limit the range of possible
traffic matrices to those that are in line with the measurements. The goal
is, therefore, to achieve a situation where the optimized routing yields per-
formance that is satisfactory for all the possible traffic matrices that are in
line with the measured link loads. The robust problem can be formulated
as follows.

Problem 3 (Robust load balancing) Given a set of traffic matrices, find
the non-negative routing matrix that minimizes the worst case maximal rel-
ative link load over all the traffic matrices, and gets all the traffic routed
from their origin to their destination.

1.3 Traffic Matrix

In a communication network, the traffic that transits through the network
has a source where that particular traffic flow enters the network and a des-
tination where it exits the network. We can say that the traffic originates
from its source and terminates at its destination. These origin and desti-
nation points may be links, routers or so called points of presence (POP),
depending on the situation and scope within which we look at the network.
An origin and a destination point together constitute an origin-destination
(OD) pair. The knowledge of the amount of traffic in the network is rep-
resented by the traffic matrix, whose elements give the traffic volumes of
different OD-pairs. Thus, the traffic matrix describes the traffic of the net-
work.

There is some ambiguity in the definition of the term traffic matrix. If
we have only a single measurement, it can be interpreted to be the traffic
matrix. On the other hand, in the case where there is a time series of values
available, the measurements can be interpreted as samples from a stochastic
variable whose expected value is the traffic matrix.

It is widely recognized that traffic matrices accurately representing the
traffic demands in the network are crucial for dimensioning and traffic en-
gineering. For the traditional load balancing problem, for example, the
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traffic matrix is used as an input parameter and is typically assumed to be
known.

Obtaining the traffic matrix requires monitoring of the average bitrate
over a chosen measurement interval. Direct measurements of the OD-pair
bitrates in IP networks can be made by tools such as Netflow [Cis]. These
are not, however, typically available throughout the network, and there
would also be a significant overhead from the measurements. In Multi
Protocol Label Switching (MPLS) [RVC01] networks it is also possible to
obtain OD-pair measurement information.

Most commonly only the link load measurements are available. They
can be obtained through the Simple Network Management Protocol
(SNMP) [CFSD90], which provides the average traffic load on the links,
typically with a five-minute measurement interval. Thus, the traffic matrix
is not generally easily obtainable in current IP networks. It has to be es-
timated from the information that is available to us in the network. This
easily obtainable information typically consists of routing tables in addition
to the link load measurements.

1.4 Traffic Matrix Estimation

The OD-pair traffic loads and link loads are related through the routing ma-
trix. Given the OD-pair traffic loads and the routing matrix, the link loads
can be calculated in a straightforward manner. However, as the number
of OD pairs in any realistic network is many times larger than the number
of links, the reverse problem of inferring the OD-pair traffic from link traf-
fic measurements is heavily underconstrained. This means that estimates
are impossible to obtain with just the information that is readily available.
Some extra information need to be brought into the problem to make the
system identifiable.

While there are several estimation methods proposed in the literature,
most of them can be classified under two main approaches based on the
two commonly used assumptions that provide the extra information. These
are the gravity model assumption [KW95] and the mean-variance relation
[Var96, CDWY00]. The third approach is to use direct measurements in
the estimation [SLT+05] if they are available.

The gravity model assumes that traffic between two nodes is propor-
tional to the total traffic originating from the source node and terminating
at the destination node. This assumption states that no nodes in the network
communicate with each other more than their total traffic would allow us
to assume. If the assumption holds we can get an accurate prior estimate
using just the total traffic leaving from and terminating at each node. This
can then be used together with the link counts to yield the final estimate.

In the mean-variance relation the assumption is that the variance of a
traffic flow is dependent on the mean volume of that traffic flow through
a power-law function. This implies that larger traffic flows also have larger
variations in the traffic. Thus, we would be able to use the OD-pair vari-
ances in the process of estimating the mean of the OD-pair traffic. If a time
series of measurements is available, it is possible to obtain the sample co-
variances for the link loads. Starting from these, it is then possible to solve
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the OD-pair variances, which can be used to obtain estimates of the mean
of the OD-pair traffic based on the mean-variance relation. Both the first
moment (the actual link loads) and the second moment (the covariance
of the link loads) of the measurements are utilized. Thus, methods of this
kind are called second moment methods.

As mentioned above, there is also a third group of estimation methods.
These so-called third generation methods are, however, fundamentally dif-
ferent from the two classes described above, which start from the assump-
tion that direct measurements are not available. Third generation methods,
on the other hand, are based on the possibility of obtaining direct measure-
ments when necessary to calibrate the methods. The problem to be solved
then becomes a tradeoff between minimizing the overhead by minimizing
the time of measuring while still keeping the estimation error sufficiently
small.

Traffic measurements and traffic characterization are tightly linked with
the traffic matrix estimation problem. In order to be able to perform traf-
fic engineering tasks such as load balancing, we obviously first need to be
able to have measured information from the network telling us the state of
the network. But traffic measurements are also an integral part of traffic
engineering in another way, not just as input data for the estimators and al-
gorithms. Detailed direct measurements can be used in an offline analysis
for characterizing the Internet traffic in general. In particular they can be
used for testing the hypotheses related to the traffic matrix estimation prob-
lem, such as validity of the gravity model or existence of the mean-variance
relation.

1.5 Outline of the Thesis

In this thesis we study the traffic matrix estimation problem. The thesis con-
sists of three parts: traffic measurements and background assumptions, esti-
mation methods and specific traffic engineering applications. Each part is
presented in its own chapter. The first part studies measurements obtained
from an Internet backbone link. We characterize the traffic in order to gain
insight into the nature of Internet traffic and validate some key assumptions
involved in traffic matrix estimation. The second part develops estimation
methods and statistical performance bounds for estimation accuracy. We
also compare the different classes of estimation methods through a simula-
tion study. The last part concentrates on robust load balancing.

The structure of the thesis is as follows. In Chapter 2 we study the mea-
surements from a backbone link of the Finnish University and Research
Network (Funet) in different aggregation levels in order to characterize the
traffic with traffic engineering purposes in mind. In particular, the mea-
surement data is used to characterize the nature of the OD-pair traffic and
specifically to study how certain key assumptions in traffic matrix estima-
tion actually hold in real Internet traffic traces. First, we study the Gaus-
sian IID model, which states that stochastic fluctuations of the traffic can be
modeled by the Gaussian distribution and that consecutive measurements
are not correlated with each other. We also study cross-correlation between
origin-destination pairs. Finally, we explore the existence of a functional
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relation between the mean and the variance of the OD-pair traffic, as such
a relation is absolutely critical to certain estimation techniques.

In Chapter 3 we study the traffic matrix estimation methods. After a
review of the existing methods we derive the statistical Cramér-Rao bounds
for the well-known maximum likelihood estimation approach. The bound
states the lowest variance that can be obtained for an estimator and thus is
useful for evaluating performance bounds. We also use this result to pro-
pose a method for finding optimal places for direct measurements. A novel
quick estimation method is proposed. This uses the same framework as the
maximum likelihood estimator (MLE), but makes a tradeoff by sacrificing
some of the accuracy in order to be several times quicker than the MLE ap-
proach. Finally we divide the existing methods into two main classes based
on the assumptions they use in the estimation, and compare the accuracy
of these two groups of estimators in situations where their assumptions do
not hold exactly.

In Chapter 4 we propose methods for load balancing using a robust ap-
proach. In robust load balancing a traffic matrix is typically not used. Link
load measurements limit the possible traffic matrices to those that are in
line with the measurement results. The load balancing is then performed
so that the whole set of possible traffic matrices is taken into consideration.
We recognize that only an estimate of the traffic matrix is available, and it
has some estimation error. We propose a robust routing scheme that per-
forms well for all plausible traffic matrices, that is, the set of traffic matrices
within the confidence interval of the traffic matrix estimate. The Cramér-
Rao bounds are used to calculate the standard error and thus the confi-
dence intervals that define a polytope of traffic matrices. This approach to
optimize over all plausible, instead of all possible, traffic matrices improves
the performance of the robust method. Also, we propose a robust approach
for load balancing in wireless networks, where we use a cross-layer approach
that optimizes the transmission schedule and routing simultaneously with-
out knowledge of the traffic matrix.

Finally, Chapter 5 summarizes the thesis.
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2 CHARACTERIZATION OF TRAFFIC FOR TRAFFIC ENGINEERING

PURPOSES

2.1 Introduction

Measurements are necessary for traffic engineering and traffic matrix esti-
mation. The use of the measurements is twofold. First, we need the current
link measurements to get an idea of the traffic in the network and data with
which to begin the inference or optimization tasks. The link counts are
available through the Simple Network Management Protocol [CFSD90].
Second, we need direct measurements for off-line analysis of the traffic and
its nature. This is a much broader area for research purposes, and has been
given a lot of attention. We concentrate on traffic characterization for traffic
engineering purposes, and especially study the assumptions used in traffic
matrix estimation.

Various assumptions are commonly made in order to solve the traffic
matrix estimation problem. In this section we study the traffic from the
Finnish University and Research Network (Funet). The goal is to discover
the basic characteristics of Internet traffic and to test the validity of assump-
tions made in traffic matrix estimation techniques.

For statistical approaches, it is integral to assume a distribution that the
unknown traffic volumes are following. The classic method for telephone
networks was to use the Poisson distribution. However, there is lot of ev-
idence that this is not applicable to data networks. In particular for short
time scales more complex models are needed. For aggregates over longer
time scales, however, a simple Gaussian model might be a sufficient ap-
proximation. Another common assumption is the independence of consec-
utive measurements. Together these constitute the Gaussian IID model.

The mean-variance relation assumes a functional relationship between
the mean and the variance of an origin-destination (OD) pair. We differ-
entiate between two separate terms that are not to be confused with one
another. First, by spatial relation we mean a situation where we consider
the relation between OD pairs or links. That is, it is studied whether the
variance of an OD pair is larger for the OD pairs that have larger traffic
volumes. This is a key assumption, as it is the basis of a family of traffic ma-
trix estimation methods. By temporal relation we mean that the variance
of a particular OD pair’s traffic at a given time is related to the volume of
the traffic at that time. That is, when there is more traffic, the variation is
higher.

2.2 Review of related work

IP Traffic characteristics

There is a vast literature considering traffic characteristics of modern data
networks. Leland et al. [LTWW94, LW91] studied Ethernet traffic char-
acteristics of the well-known Bellcore measurements and found the traffic
to be bursty and self-similar in nature, meaning that variability is seen on
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a wide range of timescales. Aggregating traffic does not smooth the trace,
instead the aggregate also exhibits similar bursty behavior as the smaller
flows.

Paxson and Floyd [PF95, Pax97] discovered self-similarity also in wide
area networks, and conclude that Poisson-model while valid for user session
arrivals, cannot be used for modeling packet arrival.

Park et al. [PKC96, Par97] find a causal relationship between the
self-similarity of traffic and heavy-tail distribution of file size. They also
note that in TCP traffic this long-range dependency is visible, but in non-
flow-controlled traffic (UDP) little of the self-similar nature induced by the
heavy tail distribution is preserved in the aggregate.

Crovella et al. [CB96, CTB98] show that heavy-tailed file size distribu-
tion is also prevalent in WWW based traffic, and responsible for the self-
similar traffic behavior.

Models to capture the self-similar nature of the traffic in communica-
tion networks has been proposed since, starting from the Brownian motion
model by Norros [Nor94, Nor95].

Cao et al. [CCLS01] as well Molnar and Dang [MD00] point out that
the traffic is non-stationary, and that this has to be taken into account along
with the self-similar nature and long-range dependency in order to obtain
reliable estimations and conclusions of the characteristics of the traffic.

Karagiannis et al. [KMFB04] question the validity of the decade old
classic results, as both capacity and number of hosts in internet has largely
increased since then. They propose a non-stationary time-dependent Pois-
son model that models their newer data set well, and exhibits long range
dependence on longer time scales.

On longer time scales, Central Limit Theorem would let us assume that
the aggregated traffic could be approximately Gaussian. Kilpi and Norros
[KN02] study the aggregation of traffic in both space (number of flows)
and time. They use a simple correlation statistic based on the NQ-plot to
identify aggregation levels where the traffic can be considered Gaussian.
They note that both types of aggregations are needed to yield approximately
Gaussian traffic.

Van de Meent et al. [vdMMP06] also studied the approximate Gaus-
sian behavior of traffic. They discover that the number of users required
for traffic aggregates to be Gaussian, and found that “a few tens of users”
is typically sufficient. They also studied the NQ-plot correlation method,
and found that although simple, it is sufficiently accurate to determine the
validity of the approximate Gaussian assumption.

Origin-Destination pair traffic characteristics

Fewer papers have studied the origin-destination based traffic characteris-
tics, perhaps due to the relative unavailability of appropriate data sets. This
kind of analysis is, however, the basis for traffic matrix estimation, and thus
many traffic engineering applications.

Feldman et al. [FGL+01] characterize point-to-multipoint traffic and
find that a few demands account for 80% of total traffic and the traffic
volumes follow Zipf’s law. They also point out that daily profiles of the
greatest demands also vary significantly from each other.
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Bhattacharyya et al. [BDJT01] characterize Point of Presence-level
(POP) and access-link level traffic dynamics. They find that there are huge
differences in the traffic volumes of the demands. In addition, the larger
the traffic volume of an egress node, the larger also the variability of the
traffic during the day.

Lakhina et al. [LPC+04] present an interesting structural analysis of
the traffic demand matrix, based on sampled flow data from backbone net-
works in Europe and the US. By applying Principal Component Analysis
(PCA), they demonstrate that each OD flow can be well approximated by a
linear combination of a small number of so called eigenflows. In addition
they observe that these eigenflows fall into three categories: deterministic
exhibiting strong diurnal periodicity, spike eigenflows with clear outliers,
and noise eigenflows with a nearly Gaussian marginal distribution.

Soule et al. [SNC+04] observe from sampled flow data, collected from
a commercial Tier-1 backbone, that large and medium size OD flows con-
tain (at least) two sources of variability. This coincides with the eigen-
flows found by Lakhina et al., as the OD pairs have a deterministic cyclo-
stationary diurnal patterns along with a noise term with zero mean.

Cao et al. [CDWY00] propose a moving IID Gaussian model, consist-
ing of a deterministic term capturing the possible cyclo-stationary diurnal
pattern and a randomly fluctuating term.

Mean-variance relation

Vardi [Var96] proposed a Poisson model for traffic matrix estimation. This
would, in particular, imply that the variance of the traffic equals the mean
of the traffic. Thus, in essence, Vardi was the first to suggest a dependence
between the size and variability of the OD pair traffic. The Poisson model,
however, was too restrictive.

Cao et al. [CDWY00] propose a power-law functional mean-variance
relation, where the variance is proportional to the power of the mean.

D2[Xn] = φE[Xn]c. (2.1)

They concluded that a quadratic power law with c = 2 is a reasonable fit
for the local area network in their study to justify its use.

Morris and Lin [ML00] find a linear relationship between the variance
and the mean (c = 1) for Web traffic. They base the statement on traffic
traces from Harvard’s campus network (100 Mbps Ethernet) and a local
network at Lucent (Ethernet). The time scale used in this study is ∆ =
0.1 s.

In a recent study, Gunnar et al. [GJT04] confirm the validity of the
mean-variance relationship based on data traces from a global operator’s
backbone, and give values c = 1.5 and 1.6.

Soule et al. [SNC+04] also discover a value of similar size (c = 1.56)
but point out that the fit of the relation is poor in their case.

Concerning the temporal relation, results in literature are more in line
with each other.

Medina et al. [MTS+02] reported that while the power-law mean-
variance relationship (2.1) seems to hold, the exponent c varies remarkably
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from one link to another within bounds c ∈ [0.5, 4.0]. These observations
are related to data collected from a tier-1 backbone with time scale ∆ = 1 s.

Soule et al. [SNC+04] note that the parameter values as well as the
validity of the relation vary dramatically from OD pair to OD pair, with the
parameter being in range c ∈ [1.0, 4.0].

2.3 Contribution of the Thesis

Most of the measurement studies in literature concentrate on small time
scales, from microseconds to milliseconds and seconds. The longer time
scales, from seconds to minutes and hours, have not been explored that
much. However, traffic engineering and traffic matrix estimation typically
use the SNMP link load measurements, which is a five minute aggregate of
the link traffic. Therefore we are interested in traffic characteristics on the
time scale of minutes, instead of sub-second time scales.

In Publications 1, 2 and 3 we study measurements from Finnish Uni-
versity and Research Network (Funet) to this effect. The work is based on
measurements made in the Funet network in 2004 and 2006.

Publication 1 introduces the Funet measurements. We study the char-
acteristics of one link’s aggregate traffic. The Gaussian assumption as well
the IID (independent and identically distributed) assumption are studied
at different aggregation levels. The temporal mean-variance relation is also
studied.

In Publication 2 the traffic traces are divided into OD pairs. Thus we
are able to study the different OD pairs separately. We identify different
types of OD pairs and note that the traffic profiles are very different from
each other and from the aggregate. Again, the Gaussian IID model is stud-
ied, this time for the OD pair traffic. From this data set we are also able to
study the important spatial mean-variance relation.

Publication 3 extends the work in Publication 2 to include different
levels of spatial aggregation by using different resolutions to obtain the OD
pairs from the aggregate data. We study the patterns of diurnal variation of
OD-pair traffic. Due to the different levels of aggregation available we are
able to examine how spatial aggregation affects the validity of the Gaussian
and mean-variance assumptions.

2.4 Funet Measurements

Funet traces were captured between csc0-rtr and helsinki0-rtr1 from a 2.5
Gbps STM-16 link using Endance DAG 4.23 cards. The IP addresses on
captured packet headers were anonymized preserving prefix, and the head-
ers were stored to disk using flow-based compression [Peu01]. Captured
traffic was transferred once an hour to an analysis machine where statistics
were calculated. Part of the traces were archived for later analysis, but not
all because of large volume of the data (about 10 Mbps average). For this
study, bytes transferred each second were calculated.

1For details about Finnish university and research network (Funet), see
http://www.csc.fi/suomi/funet/verkko.html.en
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Of the measured traffic, TCP accounts more than 98 % of bytes trans-
ferred. During daytime 10-20 % of TCP traffic is HTTP. There exists also
considerable amount of peer-to-peer traffic. Part of data points were missing
because of transient errors in data analysis.

We divide the traffic of the link into origin-destination pairs by iden-
tifying the origin and destination networks of packets by the left-most bits
in the IP address. Let l denote the number of bits in this network prefix,
also called network mask. Different levels of aggregation are obtained by
changing the prefix length l. The maximum length of the network prefix is
24 bits. With this resolution, there are 224, or over sixteen million, possible
origin networks. On the other hand, with the prefix length l = 1 there are
only two networks and thus four possible OD pairs.

Our procedure for selecting OD-pairs for further analysis from the orig-
inal link traffic is the following. Combining both directions, the N most
active networks in terms of traffic sent are selected and an N×N traffic ma-
trix is formed, where N ≤ 100. This is enough to include all the significant
OD pairs. From the obtained traffic matrix at most M greatest OD pairs in
terms of sent traffic are selected for further analysis. We select M = 100,
except in section 2.6, where we use M = 1000. Note that for very coarse
level of aggregation the number of all OD pairs remains under 100.

The measurements capture the traffic of two days: November 30th 2004
and June 31st 2006, with the main focus being on the first day.

2.5 Gaussian IID Model

We test whether a Gaussian assumption is valid for the Funet traffic. The
traffic trace is separated into different components from the link bit counts
x∆

n ,
x∆

n = m∆
n + s∆

n z∆
n ,

where m∆
n refers to the moving sample-average, s∆

n to the moving sample-
standard-deviation, and z∆

n to the sample-standardized residual. The av-
eraging was done using a moving window over a one hour period. We
concentrate on the stochastic component of the traffic, the standardized
residual z∆

n .
A good way to evaluate the appropriateness of the Gaussian assumption

is the normal quantile (N-Q) plot. The original sample vector x is ordered
from the smallest to the largest and plotted against vector a, which is defined
as

ai = Φ−1(
i

n + 1
) i = 1, . . . , n,

where Φ is the cumulative distribution function of the normal distribution.
The vector a thus contains the normal quantiles, having values from ap-
proximately −3 to 3. If the considered data follows the normal distribution,
the plot should be linear. Goodness of fit with respect to this can be cal-
culated by the linear correlation coefficient r, and the value r2 is used as a
measure of the fit.

r(x, a) =

∑n
i=1(xi − x)(ai − a)√∑n
i=1(xi − x)2(ai − a)2

.
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Figure 2.1: Histogram and N-Q test comparing the Funet-data against the
normal distribution.

In Figure 2.1 the histogram and Normal-quantile (N-Q) plot of the 5-
minute time scale link aggregate are shown comparing them against density
function of the normal distribution. The curve does not follow the his-
togram exactly, but there is a reasonably good fit. The N-Q plot confirms
the observed Gaussianity as the goodness-of-fit value is 0.996. For the one
second time scale of the same trace it is 0.999.

However, when we study the origin-destination flows in Publications
2 and 3, only a small portion of them seem anywhere close to Gaussian,
typically only the larger flows. While it is impossible to set a strict threshold,
it seems that in our data majority of the OD pairs with at least 10 Mbps of
traffic are fairly Gaussian.

The Gaussianity of each OD pair is evaluated by the N-Q plot goodness
of fit, and the value r2 is used as a measure of the Gaussianity. In Figure 2.2
the size of the OD pair traffic volume (bits per second) is plotted against the
goodness of fit value r2 of the Gaussian assumption. We can see from the
figure that the larger flows are always close to Gaussian, with r2 values easily
over 0.90. The largest OD pair with r2 < 0.90 has traffic volume of 17.5
Mbps. The vertical line in the figure is located at 10 Mbps, which seems to
be an approximate threshold beyond which an overwhelming majority of
the OD pairs have r2 > 0.90. Indeed for many of the OD pairs r2 > 0.98.
For OD pairs of size from 1 Mbps to 10 Mbps there is still a lot of Gaussian
traffic, while for OD pairs smaller than 1 Mbps no Gaussian behavior is
observable.

For the measurement sample to be considered IID, there should not be
any significant autocorrelation observable in the stochastic component z∆

n .
The autocorrelation function is defined as:

rl(k) =

∑T/∆−l
i=1 (z∆

i,k − z̄∆
k )(z∆

i+l,k − z̄∆
k )

∑T/∆
i=1 (z∆

i,k − z̄∆
k )2

,

where T/∆ is the size of time series and l is the lag .
In Figure 2.3 the autocorrelation of the five minute link aggregate is

shown. Clearly there are positive autocorrelations, meaning dependency
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Figure 2.2: Testing Gaussianity: Goodness of fit values r2 as a function of
OD pair traffic volume.
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Figure 2.3: Autocorrelation of Funet data with five minute time scale

between consecutive measurements. We notice significant positive value
for a lag of five minutes, and after that a set of negative autocorrelation
values is clearly observable. It is not until a lag of more than thirty minutes
that there is no significant autocorrelation.

In Publication 2 the autocorrelation of OD pairs was studied. We notice
that not all of them exhibit long range autocorrelation, but some do.

We also examine whether the OD pairs are independent from each
other by studying the dependency between the residual components of the
OD pairs. To evaluate this, we have calculated cross-correlation between
the residuals z∆

n,k and z∆
n,k′ of different OD pairs k and k′ for the 20 largest
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Figure 2.4: Left: Correlation between 20 greatest OD pairs. Right: dis-
tribution of correlation coefficients, with 95% confidence interval de-
picted by dotted lines.

OD pairs:

r(k, k′) =

∑n
i=1(z

∆
i,k − z∆

k )(z∆
i,k′ − z̄∆

k′)√∑n
i=1(z

∆
i,k − z̄∆

k )2(z∆
i,k′ − z̄∆

k′)2
.

The correlation values are presented graphically in Figure 2.4, where we
have not considered the terms between the OD pair and itself, which would
obviously equal 1.0. The distribution of the various correlation terms in that
matrix is also shown in the figure, where the horizontal lines in the figure
depict the 95% confidence interval of the hypothesis that correlation would
be zero. Clearly there is a large number of statistically significant non-zero
values in our data.

2.6 Mean-Variance relation

The commonly used power-law relation between the mean and variance is

Σ = φ · diag{λc}, (2.2)

where Σ is a diagonal matrix, because we assume independence between
OD pairs. The relation for an individual OD pair i is

σ2
i = φ · λc

i ,

or for the logarithms

log σ2
i = c log λi + log φ.

Thus, if the relation held, the points would fall on a line with slope c and
intercept log φ in the log-log scale. This is a simple linear regression model
and we can measure the validity of the mean-variance relation with the
linear correlation goodness of fit value r2 used in the previous section.
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Figure 2.6: Testing mean-variance relation: Goodness of fit values r2 as a
function of prefix length l.

For each prefix length, the mean and the variance are calculated for
each one hour period in the 24 hour trace. In Figure 2.5 the values are
depicted for one selected hour and two selected prefix lengths, with one
point in the plot representing the mean and the variance of one OD pair
for that hour. For a longer prefix (l = 18) r2 = 0.80, which is in line
with previous results. It can be seen that the values deviate significantly
more from the regression line making the fit worse. However, for a shorter
prefix (l = 7), depicted in the same Figure, the fit is much better, about
r2 = 0.95.

In Figure 2.6 the average goodness of fits values are shown as a function
of the network prefix length l. As the prefix gets longer, there are more OD
pairs, with the average size of an OD pair obviously getting smaller. For the
longer prefixes the fit of the mean-variance relation is around 0.75 to 0.80.
As the resolution gets coarser, the goodness of fit values improve to over
0.90, in some cases as high as 0.95. The OD-pair traffic volumes at these
aggregation levels are still less than 100 Mbps, and as the growth is approx-
imately linear as a function of the aggregation level, we may conclude that
for larger traffic flows the fit is probably at least as good.

Table 2.1 shows the values of the exponent parameter c with different
aggregation levels. It can be said that the parameter stays relatively constant
and that the values fall between the results reported for the parameter values
in the literature.

We can conclude that there is a clear dependency between the mean-
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Table 2.1: Estimates for the mean-variance relations exponent parameter c
for different prefix lengths l.

l 4 6 8 10 12 14 16 18 20
c 1.64 1.60 1.66 1.72 1.77 1.75 1.73 1.67 1.71

variance relation fit and the aggregation level. Most importantly, there is
a strong functional mean-variance relation for the cases where aggregation
level is high.

2.7 Summary and Conclusions

In this chapter we studied the validity of two common traffic engineering
assumptions concerning the OD counts: the Gaussian IID model of ob-
served measurements, and the functional relation between mean and vari-
ance. Unfortunately we did not have suitable data from the Funet network
to enable the gravity model assumption to undergo similar scrutiny. This
key assumption cannot therefore be validated nor invalidated by these mea-
surements.

For the link aggregate traffic the normal distribution was found to be a
very satisfactory fit, while the small OD pairs are not close to it. We found
that the Gaussian assumption holds better when the aggregation level is
higher. An approximate threshold, after which all OD pairs are at least fairly
Gaussian, would appear to be around traffic volumes of 10 to 20 Mbps. This
means that for many traffic engineering and traffic modeling tasks where
we consider much larger traffic flows the Gaussian assumption is justified,
but it probably cannot be used for cases with smaller traffic volumes due
to low aggregation level. Typically traffic matrix estimation is performed
on backbone networks, where traffic volumes are larger than the threshold,
and the Gaussian distribution therefore seems appropriate.

The autocorrelation function of the Funet traffic shows significant val-
ues of autocorrelation for lags as long as half an hour. The strict IID as-
sumption is thus not valid, even for five-minute aggregated measurements,
let alone for shorter intervals. Also, the OD pairs are not independent of
each other. We found cross-correlation values of up to 0.30, and a large
number of smaller, yet still statistically significant non-zero values. Further
study is needed to assess whether the autocorrelation and cross-correlation
values found are large enough to affect the results when computations are
performed assuming independence.

Finally, we validated the spatial power law relation between mean and
variance of the OD pairs. The relation seems to hold rather well, particu-
larly with large aggregation levels, where the goodness of fit value is around
0.95. The validation of the mean-variance relation is an essential result
concerning many traffic matrix estimation techniques that rely on this very
assumption. Our results also show that the exponent parameter remained
about constant regardless of the aggregation, and was within the range of
values obtained for it in other studies in the literature.
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3 TRAFFIC MATRIX ESTIMATION

3.1 Introduction

The traffic matrix gives the volume of traffic traversing a network. Each
element of the matrix corresponds to an OD pair in the network. The traffic
matrix is a required input for the operator in many network management
tasks. Such tasks include for instance routing, traffic engineering problems
such as balancing the traffic load in the network as evenly as possible for all
links, as well as network capacity dimensioning.

In many proposed traffic engineering methods, knowledge of the un-
derlying traffic volumes is assumed to be known. However, in reality, they
are seldom readily available in networks. Instead the traffic matrix has to
be typically inferred from the link count measurements. There are several
estimation methods proposed to achieve this.

In this thesis we study the problem from several different viewpoints.
We derive bounds for the variance for the maximum likelihood methods
in order to get an analytical expression for the performance bounds of the
method’s accuracy. A simulation study is performed to compare the two
main classes of estimators. We study the sensitivity of these estimators to
their assumptions. Namely, how their accuracy decreases when the as-
sumptions do not hold exactly. We also propose two novel estimators. One
is a method that makes a trade-off of slightly more inaccurate estimates for
significantly reduced computation time. The other is the first method to
combine the two classes of additional information in the estimation pro-
cess.

3.2 Traffic matrix estimation problem

Each traffic flow in a network originates from some origin, and terminates
at some destination. These may be links, routers or so called points of
presence (POP), depending on the situation, but in the sequel we will refer
to these as nodes. Each origin (or source) node s and destination node d
constitute an OD pair. The traffic between the origin and destination of an
OD pair is denoted by xsd, which is the element (s, d) of the traffic matrix
x. For the computational purposes, the traffic matrix is always written as an
n-vector x, where n is the number of non-zero OD pairs. We refer to the
traffic of the ith OD pair by xi. The vector contains all nonzero elements
of the matrix, as zero elements are left out. The unknown traffic matrix is
a stochastic variable X and let x be some value of this variable, which are
the actual traffic volumes in the network. The traffic matrix, denoted by λ,
is the expected value of x.

E[X] = λ.

The vector λ is what we are trying to estimate in traffic matrix estimation,
although in many cases also x is estimated.
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Available Data

Although direct measurement of traffic matrices is possible with tools like
Netflow [Cis], they are typically not available over the whole network, and
network wide use of Netflow would be quite expensive. Hence, the infor-
mation about the OD-pair volumes x is typically not readily available, but
has to be estimated. What we do have available are the measurements of
the traffic in each link, and also the routing matrix specifying the path each
OD pair uses in the network between nodes s and d.

The link counts, or link loads, give the measured traffic volumes in each
link at a given time. They are denoted by the m-vector y. The element yj

of this vector gives the link count on a specific link j. When consecutive
measurements are used, we denote the tth set of measurements by vector
yt. The link counts are obtained from the measurement data available by
the Simple Network Management Protocol (SNMP) [CFSD90]. The at-
tractive feature of SNMP is that it is usually available everywhere in an IP
network. However, it has many limitations, such as possible inaccuracy and
unreliability as data may be lost in transport. See [CFT+02] for discussion
of problems in using SNMP for traffic measurements. Despite the prob-
lems, SNMP is the only widespread tool to obtain link count data. The
SNMP poller requests periodically each router for the amount of traffic re-
ceived and transmitted by its interfaces. Measurement periods vary from
one minute to few minutes, with five minutes being the typical value.

The Routing matrix A is of dimensions m×n and is usually assumed to
be known and fixed in traffic matrix estimation problems. Element Aj,i of
the routing matrix is 1 if OD pair i uses link j, and 0 otherwise. The routing
matrix is obtained from BGP configurations and through OSPF and IS-IS
link weight information gathered from the routers.

The Link Count Relation

Should we know the traffic between OD pairs and the routing matrix, the
link counts could easily be calculated through the link count equation

y = Ax. (3.1)

In order to be consistent with the link counts the traffic matrix estimate has
to satisfy this equation. The link count equation 3.1 will hold for any so-
called snapshot of the network. In any particular moment of time the link
loads are deterministically obtained from the OD loads by this equation. If
we have several measurements available we can use the sample average of
y as the expected value of the link loads and obtain an equation including
the traffic matrix λ.

E[y] = AE[x] (3.2)

or

y = Aλ. (3.3)

The Problem Formulation

The problem setting of traffic matrix estimation can be divided into two
different scenarios, depending on the amount of measurements available.
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Therefore, there is some ambiguity in the literature whether the term traffic
matrix refers to OD counts x or their expected value λ.

If only a single measurement snapshot of the link counts is available,
the goal of the estimation is to infer the OD counts x from the link counts
y. On the other hand, if there is a time-series of several link count mea-
surements yt (t = 1, . . . , T ) available, the problem usually is to infer the
expected value λ of the OD counts, although in some cases the goal is to
infer also the link count time series xt (t = 1, . . . , T ).

Problem 1 (Snapshot problem) Given a single set of link counts y and
routing matrix A, find the traffic matrix x such that conditions y = Ax

are satisfied.

Problem 2 (Time-series problem) Given independently and identically
distributed and locally stationary link counts yt (t = 1, . . . , T ) and rout-
ing matrix A, find the traffic matrix λ such that conditions yt = Aλ are
realized as close as possible.

Since in any realistic network there are many more OD pairs than links,
the problem of solving x or λ from A and y is strongly underdetermined
and thus ill-posed. This means that accurate explicit solutions cannot be
found, as there are infinite number of solutions that satisfy equation (3.1).

To overcome this ill-posed nature of the problem, some type of addi-
tional information has to be brought in before the problem can be solved.
This might be assumptions about the traffic distribution, additional mea-
surements or some prior knowledge about the traffic matrix. The estima-
tion methods can be classified into different groups based on the nature of
the additional information used. In the next section we review the methods
proposed in literature.

3.3 Classification of Methods

There are several possible ways to classify the different methods proposed
for the traffic matrix estimation problem. In this section we review the
different ways of classification.

The key element in making an estimate in an ill-posed situation is the
source of the extra information (or side information) brought in to make
the problem identifiable. The classification can thus be made based on
the extra information used in the method. While in recent years several
methods for the traffic matrix estimation problem have been proposed, it
is interesting to notice how strikingly few different approaches there really
are. The two most common approaches are the gravity model based meth-
ods and the second moment methods utilizing the mean-variance relation.
While these sources of extra information are not mutually exclusive, it is
logical classification in the sense that majority of first and second genera-
tion methods are based on the use of one or the other.

A broader classification can be made by the general nature of the extra
information. This can be IID model (includes the second moment meth-
ods), spatial (includes the gravity methods), temporal or spatio-temporal.
Thus the classes here are dependent on the nature of the side information
used.
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In [SLT+05] the methods are classified into three generations, where
the classification is based on the source of the side information. The use
of the term generation is inspired by the chronological order in which the
different approaches were proposed in literature, but the classification is, in
fact, based on the extra information used. First generation methods deploy
the second moment statistics of the link counts to obtain the extra informa-
tion. Second generation methods make use of additional side information
other than the SNMP link counts to make the problem identifiable. Most
commonly the gravity model is used. Third generation methods assume
that direct measurements are available on demand to calibrate the meth-
ods. The problem then becomes slightly different in the sense that the
traffic matrix is not unknown and the challenge is to build a model that
gives accurate real time approximations of the traffic matrix with minimal
calibration measurements.

An important distinction between different estimation methods is made
also based on what inference strategy they use. The most common strategies
are the maximum likelihood approach and the projection approach and its
variants, while some methods have tried to use linear programming.

3.4 Review of Proposed Methods

In this section we review the methods proposed in literature. Not all meth-
ods fall in a specified class within the classification used here. Therefore
we also include a section on other methods.

First Generation IID Model Methods

The first generation IID model methods use the functional mean variance
relation to make use of the second moment statistics, namely the covari-
ance matrix, of the link count measurements. To obtain a sample covari-
ance matrix we need a time series of measurements, instead of just a snap-
shot of the link counts which is sufficient with the gravity based methods.

The work by Vardi in [Var96] is one of the first papers on traffic matrix
estimation in computer networks. Vardi was the first to propose a method
using the second moments to serve as the additional information to make
the system identifiable, and coined the term network tomography, because
of the similarities in the problem to medical tomography. A Poisson distri-
bution is assumed, meaning that variance is equal to the mean. This allows
the sample covariance matrix of the link counts to be used to estimate the
traffic matrix. Thus, basically, the method uses the mean-variance relation
with parameters φ = 1, c = 1.

Cao et al. [CDWY00] formulate a maximum likelihood equation us-
ing Gaussian distribution and the mean variance relationship. The log-
likelihood function conditioned on τ measurements of the linkcounts y,
can be written as

l(λ, φ, c|y1, . . . , yτ ) = −
τ

2
log|φAΣ

′AT|

−
1

2

τ∑

t=1

(yt −Aλ)T(φAΣ
′AT)−1(yt −Aλ), (3.4)
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where the mean-variance relation has been used to write the covariance
matrix as a function of λ and φ, and we use the notation

Σ
′ = diag(λc).

Cao et al. propose a time varying method for network tomography,
where they take a short window of measurements, and use the Expectation
Maximization (EM) algorithm [MK97] to find the maximum likelihood es-
timate of the traffic matrix for that time slot. Once a time series of estimates
is obtained, additional smoothing is performed on those values.

The problem with the time-varying network tomography is that it is
rather time consuming. The authors conclude that it does not readily scale
for realistic size networks. In [CWYZ01] Cao et al. present a way to modify
their method in [CDWY00] in order to use it for realistic size networks.
They call the new method a divide-and-conquer approach, as the idea is to
form several smaller subproblems and solve them separately.

The Pseudo likelihood approach [LY03] is another scalable method for
likelihood estimation. The idea is to use a slightly modified EM algorithm.
The problem is divided into subproblems with each covering one OD-pair.
The solution of this calls for the use of Multiple-step Gradient EM algo-
rithm. The computational complexity of each EM step is now O(n3.5)
compared to the full likelihood method’s O(n5). The authors report that
for a small network studied the error in estimation accuracy increases only
from 8% to 9% when switching from the full likelihood to the pseudo like-
lihood method.

Second Generation Methods Using Spatial Correlation

This class of estimation methods use a model where the extra information
comes from a spatial model that describes the relationship between the
OD flows. This is most commonly the gravity model or some other form of
description for the nodes’ fanout.

The gravity model is named after Newton’s law of gravitation. As in
the law of gravitation the force between two objects is proportional to the
masses of the objects and the inverse of the square of the distance between
them.

Similarly in the gravity modelling for data networks the traffic between
two nodes is assumed to be proportional to the total traffic volumes of those
nodes. Gravity models have been used in social science to model the move-
ment of people or goods between two areas, as well as in telephone networks
[LaJW97, Pyh63, Tin62]. The idea is that if we have no knowledge of where
a bit is coming from or where it is going to, the best guess is to make the
estimate proportional to traffic volumes sent and received by each node in
the network.

The general form of the gravity model has a repulsion term and an
attraction term that are multiplied together and then divided by a distance
function. In the case of traffic matrix estimation it can be written in the
form proposed by Kowalski and Warfield [KW95] for teletraffic demands:

Xsd = ks
OsTd

dαs

sd

. (3.5)
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The repulsion term is Os which is the total traffic originating from node
s. The attraction term is Td, the total traffic terminating at node d. The
numerator dsd is a distance function between nodes s and d, where αs is
the distance parameter. Coefficient ks is a normalizing constant.

Zhang et al. [ZRDG03] use an approach where the normalizing co-
efficient and distance function are put together to form a friction factor
between origin and destination. However, they notice that the inference of
the friction factors is an equivalent problem to the traffic matrix inference,
and thus ill-posed. Hence they simplify their model to

Xsd = k · T in
s T out

d , (3.6)

where T
in/out
s is the amount of traffic entering/leaving the network through

node s and the normalizing constant is

k =
∑

i

T out
i or k =

∑

i

T in
i ,

with both yielding identical results.
Zhang et al. [ZRDG03] also generalize the gravity model to handle

additional information, specifically to use the knowledge that some of the
egress links are peering links to other ISPs while others are access links, to
differentiate between customer and peering traffic. They use this method
to obtain a starting point x0, and solve the quadratic programming problem
of the L2 norm of a vector, e.g., the euclidian distance

min ||(x− x0)/w|| (3.7)

so that ||Ax− y|| = 0,

where w is a weight vector. This tomogravity approach utilizes the link
count information.

In [ZRLD03] the tomogravity method is generalized using an infor-
mation theoretic approach. The gravity model is based on independence
between origin and destination of the traffic. In information theoretic terms
the independence between source and destination, implied by the gravity
model, is equivalent to the mutual information being zero. As the mutual
information is also always positive, it is thus an appropriate penalty function
to be used in a regularized minimization problem.

min
x

||y −Ax||2 + λ2
∑

i: gi>0

xi

N
log

(
xi/N

gi

)
(3.8)

subject to xi ≥ 0,

where gi is an element of g, the gravity model estimate.
That is, we want a solution that is a tradeoff between satisfying the link

count relation and having an a priori plausibility, which here means that
the mutual information is small and the solution is thus close to the gravity
model.

Medina at al. [MTS+02, MST+03, MST+04] introduce the choice
model for POP to POP traffic matrix estimation, where they combine the
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attraction term of the destination node with the distance function to form a
fanout term αsd that determines which portion of the traffic from a source
node s is going to each destination node d. The choice model is thus writ-
ten as

Xsd = Osαsd. (3.9)

The authors use a Discrete Choice Model (DCM) to estimate the fanouts.
Gunnar et al. [GJT04] analyze real traffic from the Global Crossing

backbone network. They find that the fanout factors remain constant over
time, even while the traffic amounts fluctuate due to a diurnal pattern.
The fanout αsd gives the percentage of traffic that source node s sends to
destination node d of its total traffic. Thus the fanouts sum to unity for each
source node. Assuming the constant fanouts they write

xt = Stα,

where St is a time dependent scaling term and α is the vector of fanout
terms, which sum to unity for each source node. The link count equations
get the form

yt = AStα,∑

d

αsd = 1 ∀s. (3.10)

With a time series of link counts, the above system will quickly become
overdetermined, and there will be a unique solution vector α.

Third Generation Methods Using Direct Measurements

Soule et al. [SLT+05] propose a principal component method that makes
use of the eigenflow representation by Lakhina et al. [LPC+04]. It is a spa-
tial model making use of direct Netflow measurements. While the traffic
matrix inference is ill-posed problem, the dimensionality of the aforemen-
tioned components is so much smaller that they can be estimated from the
link counts, and thus the traffic matrix can be estimated as well, as long as
the method is first calibrated by direct measurements.

Papagianniki et al. [PTL04] do not use the routing matrix, but rely on
measurements alone to obtain the traffic matrix. In their spatio-temporal
model the fanouts for each node are defined from calibration done by di-
rect measurements such as Netflow. These are then combined with SNMP
measurements to obtain an estimate. The nodes check periodically the va-
lidity of the fanouts by direct measurements and perform a new calibration
if necessary.

The Kalman Filtering method by Soule et al. [SLT+05, SSNT05] is an-
other approach using a spatio-temporal model. It also requires calibration
by direct measurement and the uses Kalman filter to model the traffic evo-
lution according to a linear system capturing both the temporal evolution
of an OD pair and cross-correlation between OD pairs, should any exist.
Re-calibration is performed whenever the theoretical link counts based on
the estimates deviate too much from the observed link counts.

Liang et al. [LTY06] propose a method, where calibration measure-
ments are done on one link only in each estimation interval. This method
is shown to provide accurate estimates with low measurement overhead.
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Other Methods

In the Bayesian approach the idea is to compute conditional probability dis-
tribution for OD pair traffic, given the link counts and a prior distribution.
While gravity estimate is the logical candidate for the prior distribution,
this is purely a computational technique and thus difficult to classify in the
above classes.

Tebaldi and West [TW98] use a Poisson-distribution, and the joint dis-
tribution of OD pair counts and their expectations is conditioned on the
observed link counts. Analytical computations are difficult in this case, and
thus Markov Chain Monte Carlo (see e.g. [RC99]) methods are used to
obtain the posterior distribution.

Vaton and Gravey [VG03] make use of several successive link count
measurements in their iterative Bayesian method that allows for modulated
process for the underlying traffic matrix distribution. The method consists
of iteration and exchange of information between two ”boxes” as depicted
in Figure 3.1. The first box follows the method by Tebaldi and West, and

E[x|y]Estimated traffic matrices

Estimated markovian regimes

Parameters of the OD flows

ylink counts

regimes
markovian
Bank of

estimation
Traffic matrix

Figure 3.1: The Vaton-Gravey iterative method

simulates the traffic matrix from the link counts at each fixed time period
using MCMC methods, and utilizing some prior distribution. The esti-
mated traffic matrices are then given to the second box, where the values
are fitted to the underlying model and the parameters for that model are
estimated using maximum likelihood estimation.

There have been some attempts to solve the problem by linear program-
ming methods [Gol00, EMH05, CL03]. These approaches work well on
some small examples, but not necessarily for realistic size networks. Rah-
man et al. [RSCA06] point out that while Conway and Li [CL03] achieve
good performance, the level graphs they use are not representative of any
realistic network.

The problem with these approaches is that any point on the plane y =
Ax gives the same value for the objective functions, as the whole feasible
region is pareto-optimal. So while the real answer does yield the maximum
value for the objective function with these weights, so would any other
feasible answer. We have not gained any new knowledge about the situation
by formulating it as an LP problem.

Vaton et al. [VBG05] note that a classical method to solve underdeter-
mined linear systems is to minimize the euclidian norm. However, they
conclude that this is not a realistic approach for the traffic matrix estima-
tion problem, as it finds the solution that has the OD pairs as close to same
size with each other as possible, which is not a realistic criterion.
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A reasonable use for LP is given in [GJT04], where the authors formu-
late worst case bounds for OD counts. That is, they use linear programming
to find bounds for possible values of OD counts. Obvious bounds are zero
for lower bound and the lowest link count on the OD pair’s path for upper
bound, but in many cases it is possible to find tighter bounds for some OD
pairs. This method, however, is quite heavy computationally, as two LP
problems need to be solved for each OD pair.

Soule et al. [SNC+04] propose a method that achieves accurate re-
sults by changing routing. The idea is that in different routing scenarios
different OD pairs are easier to estimate, as the links they use might be
less heavily populated by other flows in some routing schemes than others.
Each routing scheme is used for a period of multiple measurements, and
several different routings are used. The extra information needed in un-
derconstrained problems comes from the additional routing scenarios. The
problem of designing the weight changes to optimally generate the different
routings is tackled by the authors in [NCTD04].

3.5 Contribution of the Thesis

We study the traffic matrix estimation problem in Publications 4, 5, and 6.
The work consists of evaluation of methods, statistical calculation of per-
formance bounds of the likelihood method as well as two novel estimation
methods.

Publication 4 derives the statistical Cramér-Rao lower bounds (CRLB)
for the maximum likelihood approach of traffic matrix estimation. We de-
rive analytically the Fisher information matrix under this framework and
obtain the Cramér-Rao lower bound for the variance of an estimator of the
traffic matrix. Applications for the use of the CRLB are then demonstrated.
From the bounds we can directly obtain confidence intervals for maximum
likelihood estimates, which can be used to evaluate the efficiency of an
estimator, or to find an optimal location for direct measurements.

The proposed second moment methods in literature are computation-
ally very heavy and thus time consuming. A quicker way to obtain an esti-
mate using the mean variance relation was missing. Thus, in Publication 5,
a light-weight second moment method is proposed. It makes use of the fact
that not only is the system of first and second moment link measurement
statistics identifiable, but we can solve the OD-pair variances using only the
link count covariance matrix.

Publication 6 studies the effect of the two sources of extra information
on the estimate through a simulation study, evaluating the accuracy of the
estimates when the extra information is less than completely accurate. In
addition, a novel estimation technique is proposed, which incorporates both
sources of extra information.

3.6 Cramér-Rao Bounds for Maximum Likelihood Method

In general, we can say that there is a trade-off between the computational
complexity and the accuracy of the estimate. However, no matter how
elaborate the technique, there is a bound for the accuracy of the estimate.
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This is due to the stochastic nature of the traffic process, which makes it
impossible to obtain estimate accuracy better than a certain level.

The traffic volume can be considered a random variable. The Fisher
information matrix gives the amount of information that the observed traf-
fic volumes carry of the underlying parameter, namely the expected traffic
volume. For any unbiased estimate, the Cramér-Rao lower bound (CRLB),
which is the inverse of the Fisher information matrix, gives the limit of how
small variances it is possible to obtain for an estimator [Sha98]. In Publica-
tion 4 we calculate the Cramér-Rao bounds for the traffic matrix estimation
problem.

Cramér-Rao Lower Bound

In our model we assume that the OD-pair traffic follows Gaussian distri-
bution, that OD pairs are independent of each other, and also that suc-
cessive measurements for each OD pair are independently and identically
distributed and that the functional mean-variance relation holds. The link
counts have probability density function (pdf) p(y;Ψ), where Ψ is the vec-
tor containing the unknown parameters.

Theorem 3.6.1 Under regularity conditions the covariance matrix of any
unbiased estimator Ψ

∗ satisfies

CΨ
∗ − I−1(Ψ) ≥ 0, (3.11)

where “≥ 0” is interpreted so that the matrix is positive semidefinite, and
I(Ψ) is the Fisher information matrix evaluated at the true value of Ψ.

The above theorem gives the Cramér-Rao lower bound. It states that
CΨ

∗ , the variance/covariance matrix of any unbiased estimator cannot be
lower than the inverse of the Fisher information matrix.

The incomplete data is a multivariate Gaussian with mean µ = µ(Ψ)
and covariance matrix C = C(Ψ). The probability density function is

p(y;Ψ) =
1

(2π)m/2detC(Ψ)1/2
·

· exp

{
−

1

2
(y − µ(Ψ))TC(Ψ)−1(y − µ(Ψ))

}
.(3.12)

It follows that the log-likelihood is

l(y;Ψ) = − log(2π)m/2

−
1

2
log det(C(Ψ))−

1

2
(y − µ(Ψ))TC(Ψ)−1(y − µ(Ψ)). (3.13)

An element of the information matrix can be written as

I(Ψ)ij = E

[
∂l(y;Ψ)

∂Ψi

∂l(y;Ψ)

∂Ψj

]
. (3.14)

32



The following analytical expression for the information matrix is derived in
the appendix of Publication 4

I(Ψ)ij =
∂µ(Ψ)T

∂Ψi
C−1(Ψ)

∂µ(Ψ)

∂Ψj

+
1

2
tr

(
C−1(Ψ)

∂C(Ψ)

∂Ψi
C−1(Ψ)

∂C(Ψ)

∂Ψj

)
. (3.15)

For the traffic matrix estimation problem the link counts yt obey a mul-
tivariate Gaussian distribution with mean

µ(Ψ) = Aλ, (3.16)

and covariance matrix
C(Ψ) = φAΣ

′AT, (3.17)

where φ is a scaling parameter.
Using these, we can calculate the information matrix for the traffic ma-

trix estimation problem. The information matrix has the following structure

It(Ψ) =

(
I1 I2

I3 I4

)
, (3.18)

where I1 is a n × n matrix, I2 is a column vector of length n, I3 is a row
vector of the same length, and I4 is a scalar. To simplify the notation we
introduce the matrix

W = AT(AΣAT)−1A, (3.19)

which has the elements

wij = AjT
(AΣAT)−1Ai. (3.20)

Now the elements of the matrix are given as

(I1)i,j = wij +
c2λc−1

i λc−1
j

2
φ2w2

ij . (3.21)

For i = 1, · · · , n

(I2)i,(n+1) =
cλc−1

i

2
wii. (3.22)

Analogously, for j = 1, · · · , n

(I3)(n+1),j =
cλc−1

j

2
wjj . (3.23)

And finally,

(I4)(n+1),(n+1) =
m

2φ2
. (3.24)

We have now obtained an analytical expression for the Fisher informa-
tion matrix of the traffic matrix estimation problem. The Cramér-Rao lower
bound for the variance of an estimator is then just I−1, where the CRLB
for variances of the parameters are the diagonal elements.
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Figure 3.2: Left: Example topology. Right: Link BD is replaced by virtual
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Applications of CRLB

The asymptotic efficiency of the MLE is a well-known result [MK97]. It
follows that the asymptotic covariance matrix of the MLE is equal to the
inverse of the expected information matrix, that is, the CRLB.

Thus, when evaluating the performance of an estimation method in
simulation studies with synthetic traffic matrices, we can obtain sample
variances for the considered methods. Then calculating the Cramér-Rao
bounds it is possible to compare the sample variances to the bounds, and
thus to the variance of MLE. This way we can evaluate how much less
accurate the methods are than the full MLE, without having to run the full
likelihood method.

Another application is to use the bounds to analytically assess which
links would be most beneficial for a direct measurement location in the
sense of minimizing the uncertainty in the traffic matrix estimate. To in-
corporate the direct measurements of some OD flows to the traffic matrix
estimation framework we propose a model that creates a new linear sys-
tem. This can be interpreted as a virtual topology, where the link on which
the direct measurements are made is replaced by several virtual links, such
that each OD pair using the link would have its own virtual link, see Fig-
ure 3.2. This enables us to incorporate the direct OD-pair measurements
without changing the basic formulation of the estimation problem. The
Cramér-Rao bounds are calculated for the new system to find out the vari-
ance, and thus expected error, of the OD pairs. Comparing the average
errors of different situations enables us to select the measurement location
that decreases the error most.

A third application is to use the bounds to form a confidence interval
polytope for the estimate and use this in robust load balancing. This ap-
proach is studied in more detail in section 4.5.
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3.7 The Quick Method Based on Link Covariances

In Publication 5 we propose the quick method for traffic matrix estimation,
which uses the link count covariances as the extra information. Maximum
likelihood estimation (MLE) uses the second moment statistic, the link
count covariance, as the additional information that is needed to yield an
estimate. It is also necessary to assume local stationarity for the measure-
ments considered, and a distribution which the stochastic fluctuation of the
traffic follows.

The MLE relies on the fact that the system of first and second order link
count statistics together make the system identifiable with regard to the first
order OD-pair statistics, i.e. we are able to find solution for the likelihood
equations if there exists a functional relationship between the mean and
the variance of OD-pair traffic. As discussed in section 2.6, the commonly
used relation is the power-law relation

Σ = φ · diag{λc}. (3.25)

But, in fact, the second order statistic for OD-pairs is identifiable based
solely on the second order statistics of the link counts, as long as we assume
independence among OD-pairs and a sensible routing scheme. This result
is proven by Soule et al. [SNC+04]. Since we can analytically solve the
variance of the OD-pairs by the least square method, and the power-law
relation between variance and mean is assumed, we can then solve the
traffic matrix from our variance estimate.

Solving OD-pair covariance matrix from link counts

Let us denote the number of links by J and the number of OD-pairs by N .
Then the vector form of traffic matrix x has the dimension (N × 1), link
loads y has the dimension (J × 1).

First, let us define S(y) as a 1
2J(J + 1)-vector containing diagonal and

upper triangle elements of the link covariance matrix Σ
(y). Define S(x) as

an N -vector containing the diagonal elements of the OD-pair covariance

matrix Σ
(x). A is the routing matrix. Then define a ( 1

2J(J + 1) × N)

matrix B that relates vector S(y) to vector S(x). A row of B is indexed by a
compound index (ij) where i = 1, . . . , J ; j = i, . . . , J , meaning that the
index runs through 1

2J(J + 1) values,

B(ij),k = Ai,kAj,k i = 1, . . . , J ; j = i, . . . , J

k = 1, . . . , N.

The rows of B indicate the elements of x contributing to covariance be-
tween links i and j. In vector notation, we can write the relation as

S(y) = BS(x). (3.26)

Typically 1
2J(J + 1) > N and equation (3.26) is overdetermined. The

least square estimate (LSE) solution (see, e.g., [Lue69]), to the equation is

S(x) = (BTB)−1BTS(y). (3.27)
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Figure 3.3: Projection from prior distribution starting point to link con-
straint plain

Projection method

Now that we have an estimate for the variances of each OD-pair, it is trivial
to find an estimate of the mean by using the mean-variance relation (3.25).

λ0 = (φ−1S(x))
1

c . (3.28)

The problem with this estimate is that it does not require the solution to
satisfy the link count equation (3.3), which is a stronger condition than the
second moment relation. The preliminary estimate λ0 can be improved by
projecting the result to the surface that satisfies the first moment condition.
This yields our estimate

λ = λ0 + AT(AAT)−1(y −Aλ0). (3.29)

This is an unweighted projection, as depicted in Figure 3.3, in the sense
that uncertainty of the prior estimate is the same in all directions.

The projection might yield negative values for small OD pairs, as no
positivity constraint is imposed. In order to keep the method as light-weight
as possible, we simply substitute the negative estimates by zero, concluding
that these OD pairs are negligibly small.

Constrained minimization

Another approach, developed in Publication 5, is to require the condition
y = Aλ to be satisfied from the outset, and try to satisfy the mean-variance
relation in the least square sense. We get a constrained minimization prob-
lem

min
λ,φ

‖S(y) −Bφλc‖ (3.30)

subject to y = Aλ.

In general, this has to be solved numerically. However, in the special case
of c = 1 an explicit solution can be derived.

Introducing a vector of Lagrange multipliers α, the objective function
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to be minimized can be written as

f(λ, α, φ) = (S(y) − φBλ)T(S(y) − φBλ) + 2αT(y −Aλ)

= φ2λTBTBλ− 2φS(y)TBλ− 2αTAλ

+S(y)TS(y) + 2αTy.

(3.31)

The above expression is quadratic in λ, and the minimum with respect to
λ can easily be found,

λ = φ−2(BTB)−1(ATα + φBTS(y)). (3.32)

The Lagrange multipliers α are then determined such that the constraints
are satisfied:

y = Aφ−2(BTB)−1(ATα + φBTS(y)), (3.33)

from which

α = (φ−2A(BTB)−1AT)−1(y − φ−1A(BTB)−1BTS(y)). (3.34)

Minimizing f(λ, α, φ) with respect to φ yields

φ = (λTBTBλ)−1S(y)TBλ. (3.35)

Substitution of (3.34) into (3.32) gives λ as a function of φ

λ = Ky − φ−1
(
KA(BT B)−1BT S(y) + BT S(y)

)
,

where we use the notation

K = (BT B)−1AT (A(BT B)−1AT )−1.

Substituting λ further in (3.35) yields an quadratic equation for φ, which
is easily solvable. This solution can be then substituted back to (3.34) and
(3.32) to obtain the explicit expression for λ.

Simulation Results

We use a 12-node topology and synthetic traffic generated with the param-
eter value c = 1.5. The traffic volumes for the OD pairs vary so that the
largest are approximately hundred times as large as the smallest ones. This
creates great difficulties for the quick methods regarding the estimation of
the smaller OD pairs. The estimates of the projection method for the small-
est OD pairs are far off the real traffic volumes. Due to the fact that the
estimates for some of the smallest OD pairs have errors of several hundred
percent, the mean relative error is also affected greatly by these, and is
59% for the projection method and 110% for the constrained optimization,
while it is 29% for the MLE.

However, the most important thing is to estimate the largest OD pairs.
If we concentrate only on the largest OD pairs that comprise 90% of total
traffic in volume, the projection method is more competitive. The errors
are 27% for the projection method and 19% for the MLE.

37



3.8 The Combined Method

In Publication 6 we propose an estimation method combining two sources
of extra information. As stated before, the traffic matrix estimation problem
is underconstrained and some extra information has to be brought into the
situation to get a unique estimate. The accuracy of this estimate depends on
the relevance of the extra information, viz. the validity of the assumptions
made in order to use the information in the estimation. Current methods
utilize either gravity model or the mean-variance relation. However, as both
are relevant information to the problem, we propose the combined method
that utilizes both.

There are two ways to take both sources of extra information into ac-
count. We can write both starting points into the regularization equation,
and optimize them simultaneously. The objective function becomes

min

{
‖y −Ax‖2 + λ2

∑ xi

N
log

(
xi

gi

)
+ µ2

∑ xi

N
log

(
xi

qi

)}
,

(3.36)
where g is the gravity model prior and q is the quick method prior of (3.28).

Another possibility is to just take a componentwise average of the two
priors and insert the resulting combined prior into the regularization func-
tion. This yields

min

{
‖y −Ax‖2 + λ2

∑ xi

N
log

(
xi

wgi + (1− w)qi

)}
(3.37)

as the objective function.
It turns out that the latter method, which is computationally simpler,

also outperforms the first method. Thus we concentrate on that approach.

3.9 Sensitivity of Methods to Their Underlying Assumptions

The common sources of extra information in traffic matrix estimation are
the gravity model assumption and the mean-variance relation. Above we
have introduced methods based on these, as well as the combined method
using both sources of information. If these assumptions are inaccurate the
accuracy of the methods obviously suffers. In Publication 6 we study the ef-
fect that inaccuracies in these underlying assumptions have on the gravity
model method, second moment method and combined method, respec-
tively, to find out how much the inaccuracies in the assumptions affect the
accuracy of the traffic matrix estimates.

To remove the effect of different estimation techniques we use for each
method the regularized minimization problem with a penalty function. In
this case

min
x

[
||y −Ax||22 + λ2J(x)

]
, (3.38)

where λ is a regularization parameter and J is a penalization functional.
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The penalty function is given as

J(x) =
∑

i

xi

N
log

(
xi

fi

)
,

where fi is the quick prior, the gravity prior or a weighted average of these
as in (3.37).

Simulation Methodology

In the simulation study we create synthetic data sets in which the assump-
tions are true to various degrees, starting from a perfect fit and then making
it gradually worse. For any given situation, the goodness of fit value of the
mean-variance relation is placed on the vertical axis and the goodness of
fit of the gravity model on the horizontal axis of a diagram. Then, at each
point of this grid we can make a simulation study to find out which method
is more accurate with these particular goodness of fit values for the assump-
tions, and eventually find out where do the equivalence curves lie, which
indicate that the methods are equally accurate at those points.

We use a 12-node backbone topology and generate OD-pair traffic vol-
umes following the gravity model. For each simulation we draw identically
and independently distributed samples from a Gaussian distribution with
parameter vector λ for the means of the OD pairs and covariance matrix Σ

defining the variances of the OD pairs. To achieve data sets which follow
the gravity model assumption and the mean-variance relation only to some
degree we add a random component to these parameters.

The deterministic component for the mean is denoted by λg, and fol-
lows the gravity model exactly. We add to this a random component

ελ ∈ (−λg , λg),

and produce synthetic data with a desired goodness of fit value with regard
to the gravity model by changing the weight w ∈ [0, 1] of the error term

λ = λg + wελ.

For the variance, the final parameter value is taken similarly with a de-
terministic term following the mean-variance relation and an error term
multiplied by a weight coefficient

σ2 = σ2
m + vεσ .

To produce the synthetic data set we draw T samples of traffic counts
xt from a Gaussian distribution with the parameter values obtained above.

xt ∼ N(λ,Σ).

To measure how close the synthetic OD pair parameters are to the de-
terministic values we use the goodness of fit

R2 = 1−
ESS

TSS
,

where ESS is the error sum of squares and TSS the total sum of squares be-
tween the actual parameter values and the deterministic parameter values.
If the fit is perfect, then ESS is zero and R2 = 1. If the traffic matrix is
totally random, then ESS is approximately same as TSS and R2 ≈ 0.
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Figure 3.4: Effect on estimation accuracy when assumptions goodness of
fit deteriorates. Top: Gravity model assumption. Bottom: Mean-variance
relation.

Simulation Results

We use the mean relative error of the largest OD pairs, which comprise
80% of total traffic. On the top of Figure 3.4 the errors of the gravity model
estimate are displayed as a function of the R2 value of the goodness of fit
of the gravity assumption. On the bottom of Figure 3.4 a similar situation
is shown regarding the second moment method. For the gravity model
the sample size does not affect the accuracy. They are also very accurate
when the gravity model assumption holds but quickly grow worse when the
fit becomes less exact. On the other hand, the second moment method
depends significantly on the sample size, due to the fact that it is difficult to
get accurate estimates of the sample variance with small sample sizes. The
accuracy of the estimator does not deteriorate very quickly with a decreasing
goodness of fit of the mean-variance relation.

It is to be expected that if the gravity model holds well, while the mean-
variance relation does not, the gravity based methods are more accurate,
and vice versa. In Figure 3.5 equivalence curves are displayed, indicating
when the two estimators compared are equally accurate. On the left side of
the diagrams near the vertical axis the gravity assumption holds exactly, and
on the bottom of the diagram near the horizontal axis the mean-variance
relation holds exactly. Thus, on the area from the equivalence curve to the
top left corner the gravity model method is more effective and from the
curve to the bottom right corner the second moment methods yield better
results. As the latter method was dependent on the sample size, also the
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Figure 3.5: Equivalence curves showing which R2 values of gravity yield
similar estimation errors. Top: Gravity vs. 2nd moment method. Bottom:
Gravity vs Combined method.

Table 3.1: R2 values calculated from real data sets
Mean-var relation Gravity model

Abilene 0.76 0.84
Funet 0.83 N/A
Lucent 0.76 0.96

equivalence curves depend on the sample size.
Typical R2 values for real data sets (Funet, Lucent[CDWY00] and Abi-

lene1) available are listed in Table 3.1. We notice that these values fall onto
the area which is to the left of the equivalence curves. Thus, even with a
very large sample size of 500 the gravity model seems to be the better choice
for estimating the traffic matrix in these networks. This strongly indicates
that the gravity model is the better of the two approaches.

Equivalence curves comparing the combined method and the grav-
ity method are depicted on the bottom of Figure 3.5. Again, the gravity
model is the best one to the left of the equivalence curves and the com-
bined method is the best on the right side of the curves. We notice that
the combined method is rather accurate, and the fit of the gravity model
assumption needs to be very good, or the fit of the mean-variance relation
needs to be bad, to justify using the gravity model as the lone source of extra
information.

1http://www.cs.utexas.edu/users/yzhang/
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3.10 Summary and Conclusions

In this chapter we studied the problem of traffic matrix estimation. Our
work includes a theoretical statistical approach deriving performance bounds
for estimators, a novel computationally light estimation method and a com-
parative evaluation of the effect that the nature of the additional informa-
tion used has on estimation accuracy.

We derived an analytical expression for the Fisher information matrix
in the traffic matrix estimation framework. This result was used to yield
the Cramér-Rao lower bound for the variance of an estimator in the situa-
tion where we assume a functional mean-variance relationship for origin-
destination flows in the network. We demonstrated why this result is ex-
tremely useful in various ways. We can obtain variances, and thus con-
fidence intervals for the maximum likelihood estimate directly from the
Cramér-Rao lower bounds. This means that we can identify the OD pairs
whose estimates have large uncertainties. If the estimated traffic matrix is
used, for instance, in load balancing, it should prove beneficial to know for
which OD pairs the estimate might not be accurate. The CRLB can be
used also in evaluation of estimation techniques, as we can compare the
variance of the evaluated estimator to the lower bound to see how effective
it is. The drawback of the bounds is that they assume that all assumptions of
the maximum likelihood method hold. As we saw in the previous chapter,
these assumptions are not 100% accurate. It is unclear how such inaccu-
racy affects the usefulness of the result. Also the bounds apply only to the
second moment estimator framework, so comparison of several methods is
not possible using the Cramér-Rao bounds.

We presented ways to obtain an estimate for a traffic matrix by ex-
plicit calculations utilizing the link count covariance matrix. We illus-
trated how one can obtain the OD-pair traffic variance estimates from an
empirical link count covariance matrix, and developed computationally
lightweight methods, the projection method and the constrained minimiza-
tion method, to obtain an estimate for the traffic matrix based on the link
count covariance matrix in a way that would still be consistent with the link
counts. We evaluated the accuracy of the methods in a simulation study
by comparing them against the maximum likelihood solution by Cao et al.
The mean relative error for the quick method with projection was about
fifty percent higher than it was for the maximum likelihood estimate. This
is a reasonably good result, considering that the quick method is very sim-
ple to calculate, while the MLE is computationally too heavy for larger
networks.

We proposed a novel estimation method, which combines the two com-
peting sources of extra information: the gravity model and link covariances.
Since typically both of them are relevant at least to some extent, as shown
by the study of the three real data sets, it usually makes sense to use both.
We showed that in many cases the combined method is the most accurate
estimation technique.

Finally, we studied the sensitivity of the two most common methods to
their underlying crucial assumptions. We found that the gravity method’s
accuracy deteriorates more quickly as a function of the error in gravity
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model fit than the second moment method does as a function of the fit
of the mean-variance relation. However, when the assumptions hold, the
gravity method is significantly more accurate. Also it needs only small sam-
ple sizes to achieve good accuracy, while the second moment method needs
to estimate the sample covariance matrix, and thus is not very accurate with
smaller samples. It would appear that, based on our study, the gravity-based
methods are superior to the second moment methods with most realistic
sample sizes. As for the combined method, we showed that it is typically
rather accurate. The fit of the gravity model assumption needs to be very
good, or the fit of the mean-variance relation needs to be bad, to justify
using the gravity model as the lone source of extra information. If, for
example, a large sample of, say, 500 measurements is available, the gravity
model fit would have to be well over 0.90 to enable the gravity-model-based
methods to outperform the combined method.
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4 ROBUST LOAD BALANCING

4.1 Introduction

Load balancing is a common traffic engineering task in which the traffic in
the network is routed in a way that optimizes some performance criterion.
In this paper, we use the minimization of the maximal link utilization in the
network as the target. This criterion leads to network usage that minimizes
the relative congestion on the links throughout the network.

Traffic is moved from heavily congested links to other routes and links
in order to ease the congestion in that part of the network. To do this, the
traffic matrix is typically assumed to be known. However, as discussed in
Chapter 3, traffic matrices are not generally readily obtainable. Estimated
traffic matrices obviously are not entirely accurate, but come with some
estimation error. Thus, the actual traffic load on a given link might sig-
nificantly differ from what is expected on the basis of the estimated traffic
matrix.

On the other hand, a method which does not require knowledge of the
traffic matrix, or takes into consideration the estimation errors in the traffic
matrix estimate, would be more robust. Robust approaches in general aim
to achieve a situation where performance is good regardless of parameter
values. For instance, if a system is dependent on a stochastic variable, we
can optimize the system with all possible variable values in mind, not just
the current one, or the most probable one.

In this case, we take into account the fact that the traffic matrix estimate
is not accurate but contains error. The basic idea of the robust method is to
balance the load in a way that does not optimize the network utilization for
a single traffic matrix, but for a large polytope of matrices, which is selected
so that it surely includes also the real traffic matrix.

In this chapter, we propose robust load balancing approaches for both
IP and wireless multihop network frameworks.

4.2 Load Balancing

In this section we formulate the load balancing problem as well as the ro-
bust load balancing problem and define the objective function and vari-
ables.

The traditional load balancing approach relies on a known traffic ma-
trix. We denote this by x̂, denoting that it is typically an estimate of the
traffic matrix and not completely accurate. Let L denote the node-link in-
cidence matrix with element Lnl = +1 and Ln′l = −1 if (directed) link l
leads from node n to node n′, and 0 otherwise, while R denotes the node
- OD pair incidence matrix with element Rno,k = +1 and Rnd,k = −1
if OD pair k enters the network at node no and exits at node nd, and 0
otherwise.

Our performance metric u refers to the relative utilization of the most
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heavily congested link,

u = max
l

(Ax)l

Cl
. (4.1)

Now the load balancing problem can be formulated as an LP problem

min
A≥0

u (4.2)

such that

u C ≥ Ax̂, (4.3)

LA = R, (4.4)

which yields the routing matrix that minimizes the maximum link utiliza-
tion. The solution A(x̂) is a function of the assumed traffic matrix x̂. This
solution is optimal only with regard to the maximum link load, and usu-
ally is not unique. A second optimization is needed to ensure that traffic is
optimally balanced in less loaded links also, not just in the bottleneck link.

4.3 Review of related work

Traffic engineering and load balancing have received lot of attention in
the literature. For example MPLS networks give an excellent framework
for load balancing applications [AMA+99] but also modifications to OPSF
routing support traffic engineering [KKY03].

For instance Fortz et al. [FT00, FT02, FRT02] study extensively the
approach to change link weights in order to balance the load in the network.
Wang et al. [YW01] show that optimal routing can always be achieved by
shortest path routing with some positive link weights if arbitrary split among
the shortest paths is allowed. Fortz and Thorup extend their work in [FT03]
to achieve robustness over link failures.

The first step in robust approach over demand uncertainty is the hose
model proposed by Duffield et al. [DGG+99] and further developed by
Erlebach and Ruegg [ER04]. In the hose model each endpoint of a Virtual
Private Network (VPN) specifies bounds for its traffic demand. The provi-
sioning is done so that there is sufficient bandwidth for any traffic matrix
that is consistent with these specified bounds.

Ben-Ameur and Kerivin [BAK05] generalize the hose model and intro-
duce the concept of routing a polytope, where the bounds for the possible
traffic matrices are bounded on each link, not only the endpoints of the OD
pairs. Johansson [Joh05] proposes the use of this concept for load balancing
in the network without a traffic matrix estimate. While traditional load bal-
ancing relies on a single traffic matrix, the Robust method uses a polytope
that contains all possible traffic matrices. The routing is then selected so
that congested links are avoided for all traffic matrices of the polytope.

Applegate and Cohen [AC06] study the performance of robust routing
for different size uncertainty sets. They construct uncertainty sets which
are centered around the real demand and are sized by using multiples of
the traffic matrix elements.
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Roughan et al. [RTZ03] study the use of estimated traffic matrices in
traffic engineering. They conclude that the usefulness of an estimator de-
pends not only on the accuracy of the estimator, but also on the method
that uses the estimated matrix in traffic engineering. A combination of
tomogravity estimates and OSPF weight optimzation was found to work
particularly well together.

Optimization of resource usage in wireless networks has also gained
interest recently. Björklund et al. [BVY03] present mathematical program-
ming approach for optimizing resource usage with STDMA by finding op-
timal time slot allocation.

Johansson and Xiao [JX06] propose a cross-layer optimization approach
to find optimal routing, transmission schedule, power allocation for max-
imal throughput. Wu et al. [WCZ+05] also propose a cross-layer opti-
mization approach. Their goal is to minimize congestion for multicast ses-
sions. Jain et al. [JPPQ03] propose an interference aware routing protocol
to achieve greater throughput. Within the proposed framework they are
able to calculate lower and upper bounds for the optimal throughput.

Criteria other than throughput have also been addressed. Chen at al.
[CWL05] aim for delay minimizations. Lassila et al. [LPV06] propose a
cross-layer dimensioning approach for the wireless link capacities to ful-
fill flow level performance constraints. Susitaival [Sus07] proposes a load
balancing method relying on joint optimization of routing and transmis-
sion schedule to achieve optimally balanced traffic load throughout the
network.

4.4 Contribution of the Thesis

In Publication 7 we study the performance of robust load balancing meth-
ods against traffic matrix based load balancing methods. While traditional
load balancing relies on a single traffic matrix and the Robust method
on a polytope containing all possible traffic matrices, these are obviously
extreme points. A middle ground between the two would be a polytope
around the estimated traffic matrix, that is smaller than the set of all possi-
ble traffic matrices. Surely there are some cases so implausible that we do
not need to consider them, and on the other hand it is unlikely that our
traffic matrix estimate is so accurate that no error margins are needed. To
obtain these bounded polytopes we propose a novel variant of the robust
approach, the Bounded Robust Method. We analytically derive statistical
standard error for the elements of the traffic matrix estimate and use differ-
ent confidence intervals to obtain different size polytopes.

The differences in our approach compared to [AC06] is that we do not
assume the actual traffic matrix and the estimated traffic matrix to coin-
cide. We cannot construct the uncertainty set around the real demand,
since it is unknown in reality. Only the estimate is available to us. Also,
our error margins are statistical confidence intervals as opposed to mul-
tiples of the traffic amounts. As these confidence intervals are larger for
origin-destination(OD) pairs that are difficult to estimate and smaller for
those OD pairs that are easier to estimate, we avoid making the polytope
unnecessarily large in directions where there is not that much uncertainty.
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In Publication 8 we apply the robust approach to wireless mesh net-
works. We propose a robust approach which does not require knowledge of
the traffic matrix, but only link count measurements and routing informa-
tion. The idea behind the method is to balance the load for the worst case
traffic matrix included in a larger polytope of matrices, not just for a single
traffic matrix.

4.5 Robust Load Balancing with Estimated Traffic Matrices

In Publication 7 we introduce a novel approach for load balancing, the
Bounded Robust Method, which combines the idea of the Robust method
with the use of the traffic matrix estimate.

Robust Approach

In the Robust method, we assume that link count measurements and rout-
ing matrix is available, but do not use a traffic matrix estimate. Instead, we
try to find a routing matrix such that the worst case performance is opti-
mized over all feasible traffic matrices in the polytope

D = {x ≥ 0 : A0x = y0}. (4.5)

This approach is proposed in [Joh05] and uses the algorithm introduced
in [BAK05]. Our formulation is different from these in that we use the flow
conservation constraints instead of making use of the arc-path formulation.
The optimization problem in our framework is

min
A≥0

u (4.6)

such that

u C ≥ Ax ∀x ∈ D (4.7)

LA = R. (4.8)

Again, a second step is needed to ensure that traffic is optimally balanced
in less saturated links also.

This problem is difficult to solve because of the infinite number of con-
straints in (4.7). Therefore, a demand satellite approach [BAK05] has to be
used. The problem is divided into two optimization problems. The first
one is the link load optimization problem, where the set of infinite number
of constraints D is substituted by a finite set of constraints D∗. These con-
straints are generated by the constraint generation problem. The link load
optimization is now a simple LP problem, with the flow constraints just as
in the traditional approach, and a set of finite constraints in the place of the
link constraints.

Problem 3 (Link Load Optimization)

min
A≥0

u (4.9)
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such that

u Cl ≥ (Ax)l ∀(l, x) ∈ D∗ (4.10)

LA = R, (4.11)

and such that a secondary objective function is used to obtain optimal bal-
ancing throughout the network.

Problem 4 (Constraint Generation) For each link l solve with current val-
ues A(i), u(i)

x∗ = argmax
x∈D

(A(i)x)l.

If
u(i) Cl < (A(i)x∗)l,

then
D∗ ← D∗ ∪ (l, x∗).

The set D∗ is initially empty. Problem 4 is solved to obtain constraints.
The iteration can be started using the initial routing A0. For each link
we find the traffic matrix x∗ ∈ D that maximizes the traffic on that link.
If the achieved link utilization is larger than the current value for u, the
corresponding constraint

u Cl ≥ (Ax∗)l

is added to the set D∗ to be used as a constraint in (4.10) in the next iteration
of problem 3.

The Bounded Robust Method

In the constraint generation problem, the new constraints are obtained by
finding the traffic matrix x∗ ∈ D that maximizes traffic on a particular link.
This traffic matrix is typically one which has extreme values for OD pairs
that use this particular link and zero values for most other OD pairs. These
cases are in the set D, but in reality, are very unlikely. If we are interested
in a plausible maximum link load, we might like to add some more con-
straints to eliminate the cases which are practically impossible. This can
be achieved by setting an upper bound on the value that an estimate for an
OD pair may obtain.

In Publication 7 we propose the Bounded Robust algorithm that is
based on the idea that we do utilize a traffic matrix estimate, but also take
into consideration the error of the estimator. We calculate confidence in-
tervals for the estimates using the Cramér-Rao lower bounds (CRLB) for
the variance of an estimator, derived in Publication 4.

We redefine the setD of traffic matrices to take into consideration these
confidence intervals. Note that we have no need to bound the lower values,
as we are looking for the maximal link loads. Thus we define this new set
as

D′ = {x : A0x = y0 , 0 ≤ x ≤ x̂ + z · SE}, (4.12)

and the constraint generation problem is changed accordingly. An itera-
tion is performed as described for the robust method in section 4.5, with
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the new constraint generation problem now in place. The result of this
algorithm gives the optimal routing matrix over all reasonably conceivable
traffic matrices.

Simulation Results

Robust methods by definition have lower worst case link utilizations. But
this provisioning for the worst case might have an adverse effect on the
mean utilization obtained. We evaluate this tradeoff between average link
utilization and robustness by a simulation study comparing the following
approaches

1. The traditional load balancing with maximum likelihood traffic ma-
trix estimate,

2. The Robust method,

3. The Bounded Robust method.

To evaluate the performance of each algorithm, we define three perfor-
mance metrics.

1. The real case utilization of the most congested link.

urc = |Âx0/C|, (4.13)

where x0 is the real value of the traffic matrix during the measure-
ments.

2. The worst case maximal utilization.

uwc = max
x∈D

|Âx/C|. (4.14)

We consider the largest value for u with the routing matrix Â, chang-
ing the traffic matrix within the polytope specified in (4.5). This is
the criterion the Robust methods aims to minimize.

3. The bounded worst case utilization is similar to the second one ex-
cept that we exclude implausible traffic matrices from consideration
by finding the maximal u such that the traffic matrix is within the
bounded polytope given in (4.12).

ubwc = max
x∈D′

|Âx/C|. (4.15)

This is the criterion the Bounded Robust methods aims to minimize.

All the results in the sequel are given relative to the optimal load balancing
that would be obtained using the exact traffic matrix for the traditional load
balancing method.

Figure 4.1 depicts the real case utilization and the worst case utiliza-
tion obtained by the different methods. The utilization is lowest with the
traditional method with urc = 1.04. For a small confidence interval with
coefficient z = 0.5 it is still quite low, but then grows quickly when the
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Figure 4.1: Real case performance (lower curve) and worst case perfor-
mance (upper curve) of the Bounded Robust method as a function of the
confidence interval coefficient
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Figure 4.2: Bounded worst case performance of Traditional (the fast rising
curve), Bounded Robust (lower curve) and Robust methods (middle curve)
as a function of the confidence interval coefficient.

multiplying coefficient z approaches 3. After that the utilization grows only
moderately from 1.17 to 1.22 which is the real case utilization for the Ro-
bust method.

Figure 4.2 shows the bounded worst case utilizations for the different
methods. On the horizontal axis is the width of the confidence interval,
over which the bounded worst case utilization ubwc is calculated. So, z =
0 corresponds to using no confidence interval at all. In this case ubwc is
exactly the same as the real case utilizations, as we calculate the worst case
over a zero size polytope, which is the single point of the estimate. Then,
for instance at the point z = 1.96 the curves give the bounded worst case
utilizations for the polytope of 95% confidence intervals. Finally, at z =∞,
ubwc coincides with uwc as the confidence interval is so large that we take
the worst case over all possible traffic matrices. The highest curve is the
traditional approach. The curve for Bounded Robust starts lower than the
Robust, but they approximately coincide after z = 3.
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Table 4.1: Values of utilization for different methods when z = 1.96.

urc ubwc uwc

Traditional 1.04 1.52 3.05

Bounded Robust 1.13 1.20 2.06

Robust 1.22 1.26 1.31

For example, let us consider the 95% confidence interval for each el-
ement of the traffic matrix. We have three methods: Traditional method,
Bounded Robust method with z = 1.96 and Robust method. We can read
from Figure 4.2 the bounded worst case utilization for each. From Figure
4.1 we can read the real case and worst case utilizations using z = 0 for
Traditional method, z = 1.96 for Bounded Robust and z = ∞ for Robust.
These results are listed in Table 4.1.

The Bounded Robust method achieves better performance for all plau-
sible traffic matrices compared to the Robust method. By eliminating the
cases that are, though still in line with the measurements, extremely un-
likely, it is possible to obtain clearly better performance for the most prob-
able cases, as well as slightly better for the range on plausible cases.

4.6 Robust Load Balancing in Wireless Networks

Publication 8 studies load balancing in a wireless mesh network [AW05].
We present a robust approach that enables cross-layer optimization of both
transmission schedule and routing without the knowledge of traffic matrix.

Modeling the Wireless Network

The MAC layer is modeled by Spatial TDMA [NK85], where the transmis-
sion resources are divided into time slots. The links that are not interfering
each other can transmit in the same time slot. A set of links that are able to
transmit simultaneously is called a transmission mode.

The interference model assumes that interference restricts the links that
can transmit simultaneously, but does not affect capacity of those that are
able to transmit. The communication range of node i is denoted by Ri and
the distance between nodes i and j by dij . Now, if

dij ≤ Ri

there is a link between nodes i and j. The interference range is denoted by
R′

i. For transmission to be successful on link ij, there cannot be a node k
transmitting such that

dkj ≤ R′
k.

Based on this criterion we can determine all possible transmission modes.
That is, the sets of links that can transmit simultaneously. Finding all fea-
sible modes requires extensive calculations, but if the topology is not large,
the maximal transmission modes can be generated by the algorithm pro-
posed in [Sus07].
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Let b be a vector of length L denoting the nominal link bandwidths.
The elements of the vector are the link bandwidths for each link, with the
links indexed by l. There are M different transmission modes, which are
represented in the L ×M matrix S. It has an element Sl,m = bl if link l
transmits in mode m and Sl,m = 0 otherwise.

The M -vector t, whose elements sum to unity, denotes the fraction of
time spent in each transmission mode. The actual capacities of the links is
then denoted by

C = St. (4.16)

Further, we define vector q such that

qm = utm, (4.17)

where the elements of q sum to u, which represents the fraction of time
spent in any transmission mode, with the rest of the time the network being
idle.

As in the previous section, we denote the polytope of feasible traffic
matrices by D.

MAC Layer Optimization

Optimizing only the MAC layer transmission schedule based on the link
counts is a straightforward approach to achieve load balancing in the net-
work without the knowledge of the traffic matrix. In essence, the link ca-
pacities are changed to fit the traffic volumes on the links by changing the
scheduling. We denote the current routing matrix, for instance the shortest
path routing, by A0, and the corresponding link counts are denoted by y0.
The optimization problem is

Problem 5 (MAC Layer Optimization)

min
q≥0

eT q (4.18)

such that S q ≥ y0. (4.19)

The result gives the optimal schedule for the fixed routing which yielded
the link counts y0.

Optimizing the Layers Separately

One load balancing approach would be to first balance the load using
the nominal link capacities, and then optimize the transmission schedule.
However, as we assume that the traffic matrix is not available, we cannot
use the traditional approach for the load balancing. Instead, we have to use
the robust approach. Another major drawback is that we would then need
to make new measurements to obtain the link counts associated with the
new routing matrix in order to optimize the transmission schedule.

Cross-Layer Robust Load Balancing

To optimize the layers at the same time we have to modify the approach of
section 4.5 to wireless framework by incorporating the transmission sched-
ule variables q to the optimization problem. The minimization problem is
now
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Problem 4 (Cross-layer Robust Load Balancing)

min
A≥0 , q≥0

eT q (4.20)

such that S q ≥ Ax ∀x ∈ D, (4.21)

LA = R. (4.22)

Again, we use the iterative approach described above.

Simulation Results

To validate the above approach we performed a simulation study with syn-
thetic traffic, using a 12-node topology.

Table 4.2 compares the results of the robust methods, that do not use a
traffic matrix. The results are normalized such that 1.00 is the theoretical
optimal, which is the value obtained by the cross-layer optimization us-
ing the accurate traffic matrix. The initial utilization is given by using the
shortest path routing and a transmission schedule that assigns equal time
for each transmission mode.

Table 4.2: Values of u for different methods, with 1.00 being the optimal
solution

Initial 3.17
MAC layer only (shortest path routing) 1.19
Two-layer robust approach 1.18
Cross-layer robust approach 1.10

It can be seen that the cross-layer approach performs clearly best of the
robust methods. Although it has to optimize the routing for all traffic matri-
ces in the polytope, there is still enough information about the traffic matrix
so that it is beneficial to optimize routing also instead of just the transmis-
sion schedule. The two-layer approach is only marginally more accurate
than the MAC layer only optimization and thus probably not useful.

If a traffic matrix estimate is available, the accuracy of an optimization
based on this estimate would obviously depend on the accuracy of the es-
timate. Therefore we evaluated the performance of this method using dif-
ferent estimates. Figure 4.3 shows how the performance of this approach
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Figure 4.3: Performance of traffic matrix optimization approaches.
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deteriorates compared to the cross-layer Robust and MAC layer only ap-
proaches as the accuracy of the estimate gets worse. It can be seen that
the approach using estimates quickly becomes worse than the robust ap-
proaches. With an estimation error larger than 10% it is already worse than
the cross-layer robust approach. This size of error is considered typically
rather small in traffic matrix estimation. In fact, in IP networks this is often
considered the target value which estimation methods strive for. Only third
generation methods that use extensive Netflow measurements achieve typ-
ically errors from 5% to 15%, while traditional methods relying on SNMP
measurements cannot usually do better than 20% [SLT+05].

4.7 Summary and Conclusions

In this chapter, we address new approaches for the network load balanc-
ing task. Instead of relying on an estimated and inaccurate traffic matrix,
we study methods that use the robust approach, where the optimization
is made so that the performance is satisfactory in any situation. This is
achieved by optimizing the maximal link load over all possible, or, alterna-
tively, all plausible, traffic matrices.

In fixed networks, this robust approach, which does not need any traffic
matrix at all, was found to perform sufficiently well. The strength of the
approach is that the worst case link utilizations is only 31% higher than
optimal, while the worst case for the Traditional method is over three times
the optimal utilization.

In Publication 7, we proposed a novel extension for the robust ap-
proach: the Bounded Robust method, which requires a traffic matrix es-
timate, but takes the uncertainty in the estimation into account. This
approach decreases the size of the polytope of considered traffic matrices
by introducing confidence intervals for the estimator, thus eliminating the
need to include the next-to-impossible extreme cases in the provisioning.
The method uses maximum likelihood estimates for the traffic matrix and
makes use of the Cramér-Rao lower bounds to obtain the confidence in-
tervals. In some simulation scenarios the Bounded Robust method was
shown not only to add the robustness that the traditional approaches lack,
but actually outperform them with regard to the real case maximal link
utilization. In all situations the method is close to the traditional method
and outperforms the Robust method in real case link utilization, while still
maintaining the robust performance over all plausible traffic matrices.

While the results are encouraging, it may be impossible to implement
this kind of approach in current networks, where the routing possibilities
and use of excessive multipath routing are not available. However, this
approach does give an idea of the theoretical possibilities of such a routing
scheme.

In Publication 8, we adapted the robust load balancing approach to
wireless networks. We proposed a cross-layer approach, where the transmis-
sion schedule and routing are optimized simultaneously.

We studied the performance of the methods by a simulation study and
found that the cross-layer robust method was the best of the studied meth-
ods. It yielded maximal link utilization of only 10% worse than optimal
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and outperformed the other approaches. It was shown that the traditional
load balancing method using an estimated traffic matrix performed worse
than the cross-layer robust method unless it had an exceptionally accurate
traffic matrix estimate.

In the light of these results, it is highly questionable whether it is worth
the trouble to try to estimate the traffic matrix in a wireless environment,
since in real networks there is no way of knowing the actual accuracy of
the given estimate, and most likely the robust approach outperforms the
method using the estimate.

However, we must note that this method is a straightforward generaliza-
tion of the robust method for fixed networks. It depends on the fact that link
measurements and routing tables are readily available. While this is true in
fixed IP networks, in wireless multihop networks, the nodes might disap-
pear or new nodes may appear, so it is not clear whether such information
that is in line with the current state of the network is always available.
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5 SUMMARY

This thesis studied the problem of traffic matrix estimation. The scope
covered Internet traffic characterization, different techniques for traffic ma-
trix estimation, performance evaluation of these estimation methods with
simulation studies, as well as analytical calculations and load balancing ap-
plications of the estimation methods.

The traffic characterization part of the thesis was based on the study of
the Finnish University and Research Network traffic measurements. The
traffic on a backbone link between Helsinki and Espoo was captured and
analyzed. We analyzed the link aggregate traffic and also divided the trace
into origin-destination pair traffic for several different aggregation levels.
Each of these data sets was analyzed under different time-scale granulari-
ties. This enabled a thorough characterization of OD-pair traffic qualities
and of how the traffic characteristics and validity of assumptions about the
nature of the traffic behave when the aggregation level changes both tempo-
rally and spatially. We were able to confirm that the Gaussian distribution
is a relatively good fit for the stochastic fluctuation of the traffic, noting that,
the larger the traffic flow, the better the fit of the distribution. We also con-
firmed that the assumption about a functional relation between the mean
and the variance of the traffic is at least reasonable, while not perfectly accu-
rate. These results are important in the context of traffic matrix estimation,
as the second moment methods would be worthless without the assump-
tion about a mean-variance relation and the maximum likelihood method
needs an accurate traffic distribution model with which to construct the
likelihood equation.

The derivation of the Cramér-Rao lower bounds was one of the key re-
sults of the second part of the thesis. The bounds give the lowest possible
variance for the non-biased second moment estimator. This makes it pos-
sible to calculate the best accuracy that can be achieved by the estimator
in a given situation. The maximum likelihood estimator is efficient and
its variance coincides with the bound. The Cramér-Rao lower bounds are
an important theoretical concept, but we showed that they also have many
practical uses, such as finding the optimal places for direct measurements.
We also utilized the bounds in a load-balancing problem later in the thesis.

Concerning the estimation methods, the key observation that most of
the methods can be classified into two classes based on the source of ex-
tra information used emerged. One class uses the gravity model, which
assumes that traffic between two given nodes is proportional to the total
traffic originating from the source node and terminating at the destination
node. These assumptions restrict the possible traffic matrix values enough
to make the system identifiable. The other class uses the variance of the
traffic as the extra information by utilizing a functional mean-variance re-
lation to make use of the variances in the estimation of the mean. The
variances are solvable from the link sample covariances. Thus there are
basically two approaches: the gravity model estimators and the second mo-
ment estimators. Both approaches also obviously take the measured link
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loads into account. A key difference is that the gravity model methods only
need a single measurement snapshot of the network to yield an estimate.
The second moment methods, on the other hand, need a time series of
locally stationary measurement samples, which has to be large enough to
yield reliably accurate sample covariances.

The differences between methods within the same class are mostly in
the mathematical implementation. The exception to this are the approaches
called third generation methods, which use occasional direct OD-pair mea-
surements as the source of the extra information and thus cannot be classi-
fied into the classes of the traditional methods.

The thesis also proposed two novel estimation methods. Both of these
are computationally fast but yield reasonably accurate results. The idea be-
hind the quick method was to make use of the assumptions in the maximum
likelihood estimation framework while getting rid of the exhaustive calcu-
lations that are too time consuming for large networks. This was achieved
by sacrificing some of the accuracy of the maximum likelihood method.
We used a two-stage method where the first part obtains a prior estimate us-
ing the link covariances and mean variance relation, while the second part
projects this estimate onto the plane where the link count equation holds.

The combined method is the first step in combining the two classes of
extra information that had been used separately thus far. The method itself
is as simple as the quick method, but the idea of incorporating relevant
information from both sources might lead to something more substantial.

The final part draws from a fact that was evident throughout the thesis:
the traffic matrices we have available for traffic engineering are typically
just estimates. Estimation always includes error, and thus traffic engineer-
ing tasks performed with estimated traffic matrices should take this error
into account. We therefore studied robust approaches, where the perfor-
mance is optimized for a range of possible traffic matrices, not just a single
estimate. First, we studied the robust approach for fixed networks. Robust
approaches in the literature guaranteed robust performance over all possi-
ble traffic matrices. We introduced a new approach where the robustness is
only over a polytope of plausible traffic matrices. We used the Cramér-Rao
bounds to construct this polytope, binding the second and third parts of
the thesis even more closely together. Secondly, we applied the robust ap-
proach to wireless networks and proposed a robust cross-layer optimization
approach for load balancing.

The thesis spanned the traffic engineering framework from measure-
ments to load balancing. Our emphasis was on the traffic matrix estimation.
We can conclude that the estimation problem is a difficult one because of
its highly underconstrained nature. The assumptions that provide the extra
information were validated to be reasonable but not totally accurate. This
introduces inaccuracy and bias to the estimators. Adding to this the fact that
any estimator of a stochastic variable has some minimum variance and thus
comes with an estimation error, it is safe to say that an accurate traffic ma-
trix often assumed in traffic engineering is not obtainable in reality. Having
said this, we must note that the estimates are by no means useless. The es-
timators proposed in this thesis provide, without heavy calculations, a fairly
accurate estimate of the traffic matrix. Some of the methods in the liter-
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ature that have a longer running time yield even more-accurate estimates.
This can very well be used in traffic engineering tasks. However, it would
seem sensible to recommend that the inaccuracy of the estimator be taken
into account, or perform some sort of sensitivity analysis when designing
applications that use an estimated traffic matrix.
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