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Abstract - In this paper we will derive a stochastic maximum 
likelihood method for estimating spatio-temporal channel pa- 
rameters. Such estimators are needed in propagation studies 
where extensive channel measurements and sounding are re- 
quired. These are seminal tasks in the process of developing 
advanced channel models. The proposed method employs 
angular Von Mises distribution model which is appropriate 
for directional data typically observed in channel measure- 
ment campaigns. The signal model is stochastic. The perfor- 
mance of the proposed method is compared to SAGE algo- 
rithm where the signal model is deterministic. The computa- 
tional complexity of the proposed method is lower and chan- 
nel parameters are estimated with higher fidelity because the 
underlying distribution model is well-suited for directional 
data. 
Keywords - Channel sounding, maximum likelihood, direc- 
tional data. 

I. INTRODUCTION 
Channel sounding and extensive channel measurement 

campaigns are needed in developing powerful multidimen- 
sional channel models. Such models are an important tool in 
developing transceivers structures and designing networks for 
future wireless systems with high spectral efficiency. For ex- 
ample, in the process of developing Multiple-Input Multiple- 
output (MIMO) communication systems, channel sounding 
using multiple transmit and receive antennas and subsequent 
estimation of the channel propagation parameters are needed. 

In this paper we are interested in estimating the parame- 
ters of MIMO channels via channel sounding. The channel 
sounder model used in this study is based on [l-31. It uses a 
time division approach to scan the outputs of the antennas. 

We adopt the MIMO channel covariance matrix model pre- 
sented in [4]. This matrix may be described analytically as 
a function of the parameters of the underlying random pro- 
cesses, and thus can be used to derive estimators for the 
channel parameters. In this work we will derive a stochastic 
maximum likelihood algorithm for estimation of the spatio- 
temporal behavior of MIMO channels. We will model the 
impinging waves as realizations of an underlying random pro- 
cess that characterizes the MIMO channel matrix. Hence, our 
estimation problem becomes the problem of estimating only 
the parameters of the distribution of this random process. Von 
Mises distribution model (see, [SI) is used because it is well 
suited for angular data. This approach leads to lower com- 
plexity and faster convergence in comparison to deterministic 

Fig. 1. Channel sounding environment. 

model based on Space Alternating Generalized Expectation- 
maximization (SAGE) algorithm [ 1,6]. These benefits are due 
to the smoother likelihood function and the reduced number 
of unknows. 

This paper is organized as follows. The signal model is 
presented in Section 11. The channel sounding principle is ex- 
plained in Section 111. The proposed channel parameter esti- 
mation method is developed in Section IV. Simulation results 
showing that the proposed method estimates the channel pa- 
rameters with high fidelity are presented in Section V. The 
results are compared to the SAGE algorithm in [ 1-31, and the 
proposed method is shown to outperform SAGE both in the 
root mean squared error of the estimates and in computational 
complexity. 

11. SIGNAL MODEL 

The transmitter is assumed to be elevated and therefore not 
obstructed by local scatterers, while the receiver is surrounded 
by a large number of local scatterers. No line-of-sight is as- 
sumed between the transmitter and the receiver. We consider 
that the waves are planar (far-field) and only single scattering 
occurs. This is what is called the "one-ring'' model [7], and 
has been used, e.g., in [4] to study the effect of fading cor- 
relation on the capacity of MIMO fading channels. Figure 1 
illustrates the propagation environment. 

Let us define the N x 1 vector y ( k )  with the output of 
the each antenna at the receiver, the M x 1 vector u(k) of 
the transmitted sequences, the N x M MIMO channel matrix 
Hw(k), and the N x 1 vector n(k)  with random noise. The 
signals thus defined are discrete-time versions of continuous- 
time signals sampled at time instants ICT,, where T, is the 
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sampling period. Using these definitions .we can model the 
received signal as 

(1) y ( k )  = Hw(k) * u(k) + n(k), 

where * denotes convolution. This corresponds to a frequency 
selective, or wideband, channel [7], as observed in previous 
measurement campaigns for typical urban scenarios [6]. We 
assume that Hw(k) can be represented as a combination of 
MIMO channel matrix that depends on the spatial structure of 
the channel (and possibly on time) and a complex scalar that 
is dependent on time only, i.e., Hw(k) = H ( k ) a ( k ) .  If we 
also assume the delay spread of the channel to be finite, we 
can rewrite (1) as 

L-1 

y ( k )  = H ( z ) ~ ( I ) u ( ~  - I )  -I- n(k), (2) 
l=O 

where L is the duration of the channel impulse response. 
The defined channel matrix represents the combination of 

all waves that impinge the receiver array after being reflected 
by the surrounding scatterers. In [ 1-3,6] the channel is mod- 
eled using a different approach, where the received signal is 
described as a combination of several waves with unknown 
parameters together with random noise. The received signal 
is then written as a function of the wave parameters, and es- 
timation techniques such as SAGE can be used to yield esti- 
mates of the parameters. However, since the parameters from 
several waves must be estimated, a search in a very high di- 
mensional space must be performed, and thus the algorithms 
often present convergence problems due to large number of 
local minima in the likelihood function. Consequently, we 
choose to use a more compact stochastic model for the pa- 
rameters. 

111. C H A N N E L  SOUNDING TECHNIQUE 

We consider the same channel sounding, technique used in 
[ 1-3,6], where the radio channel sounder is assumed to be 
equipped with switches at both transmit arid receive endings, 
as illustrated in Figure 2. 

A. Sounding signal 
The sounding signal is applied by means of Switch 1 during 

a period Tt at the input of each element of the transmit array. 
The time Switch 1 takes to switch all transmit antennas is 
called the sounding cycle and denoted by Tcy 2 MT,. The 
total duration of the sounding signal is ITcy, where I is the 
number of times the sounding cycle is repeated during one 
measurement shot. 

The sounding signal ~ ( k )  with power lPu is periodic with 
period Ti. Each period of the sounding signal can be de- 
scribed as a periodically repeated burst U ,  (k) of duration Tu 
and and a cyclic prefix of duration Tg, i.e., 

where Nu = T,/T,, Ng = T,/T,, and Nt = Tt/T,. The 
cyclic prefix is transmitted during the guard time T,, which 
must be greater than the maximum propagation delay in order 
to ensure that the signals from different antennas in Array 1 
do not interfere with each other in the receiver. 

B. Scanning of the receiver array outputs 

At the receiver side the switch is activated as depicted in 
Figure 2. The outputs of Array 2 are successively scanned 
during a period TSc. For each period Tt, corresponding to the 
transmission of the sounding signal by one element of Array 
1, one sensing cycle is performed, during which all elements 
in Array 2 are scanned once. In a practical implementation, a 
guard interval between two consecutive scans should be con- 
sidered to embody switching time and all transient effects, but 
these effects are not considered in this work. 

If the channel can be considered to be constant during one 
measurement cycle, the outputs of the channel sounder can 
be rearranged as in (1) by defining the n-th element of y ( k )  
as the output of the n-th antenna for the time during which it 
is active. The sensing windows also have to be synchronized 
with the transmit windows as in Figure 2, and the guard time 
has to be properly defined, i.e., Tg 2 LT,. If the channel is 
assumed to be time varying, then it is still possible to make 
a description similar to (l), but the elements of the channel 
matrix have to be properly defined in order to compensate for 
the time differences between the scanning windows. 

Iv. PARAMETER ESTIMATION 

For the derivation of the estimation method we will con- 
sider the transmission from one transmitter antenna at a time, 
as implemented in the channel sounder in Figure 2. However, 
the estimation method applies to MIMO systems in general, 
since after one cycle all transmit antennas have been switched, 
leading to an M-transmit, N-receive MIMO system. If one 
transmit antenna is considered at the time, the channel matrix 
H(k) in (2) is a N x 1 vector, henceforth denoted by lower- 
case h(k), and the transmitted signal u(k) is a scalar. We will 
assume that the channel is constant during one measurement 
cycle, in which case the signal model can be simplified to 

L-1 

y ( k )  = h a(I)u(k - I!) + n(k). (4) 
1=0 

We will assume that y ( k )  is a zero-mean complex Gaussian 
process. After removing the constant terms not dependent on 
the signal, the log-likelihood function can be rewritten as 

x { Y ( ~ ) }  K -log IC,/ - tr{c;'i?,}, (5) 

where Cy is the covariance matrix of the received signal, 
C ,  = ~ [ y ( ~ c > y H ( k ) l ,  i?, is the sample covariance matrix, 
defined as Cy = & y ( k ) y H ( k ) ,  and tr{.} denotes 
the trace. 

h 
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Fig. 2. Timing structure for channel sounding technique. 

From (4) we can write Cy as 

L-1L-1 

Cy=rF; E[hhHa(l)ct*(l’)]u(k - l)u*(k - l’)+C,, 
l = O  l ’=O 

(6) 

where C ,  is the noise covariance matrix. Noise is assumed 
to be zero mean and independent of h. The expression in 
(6) can be further simplified using the assumption that the 
complex gains a(1) and a*(l’) are uncorrelated for 1 # l’, 
and independent of h. Thus, 

L-1 

1=0 

As described in Section 111, the sounding sequence is pre- 
ceded by a time-guard interval whose duration is greater 
than or equal to the channel delay spread. Hence, for 
k 2 0 we can approximate the convolution term in (7) as 
E [ c k i l  la!(l)12]1u(k - Z ) I 2  M Pu, and finally rewrite (7) as 

C, = PuE[hhN] + C, (8) 

Using the channel model in [4] we can write E[hhH] as 
a function of the channel parameters. It is assumed that the 
receiver is surrounded by a large number of local scatterers, 
and that the waves reflected by different scatterers amve at 
the array with the same power. This situation can be repre- 
sented as a ring of scatterers around the receiver, as depicted 
in Figure 3 for any 2 antennas at the transmitter and receiver. 

Assuming that the angle spread at the transmitter is small 
and D >> R >> dl,, it is possible to show that the cross- 
correlation between any two sub-channels 1 and m is given 
by [41 

E[hlGl = s” exP(blm cos(4))f(dJ)ddJ, (9) 
-?T 

where f(4) is any angular PDF of 4, bl, = j2ndl,, and hl 
is the 1-th element of h. Equation (9) is a simplification from 
the more general expression derived in [4], obtained with the 
assumption that only one antenna is transmitting at a time. A 
suitable angular PDF is the Von Mises [5], defined as 

Rx 
,_-- - TX _-, 

I I I 
I I I 
I 
I* -{-I 
I D I R I  

Fig. 3. Illustration of the geometrical configuration of a 2x2 
channel with local scatterers at the receiver, where D is the 
distance between the transmitter and receiver arrays, R is the 
radius of the ring of scatterers around the receiver, and dl ,  is 
the distance between elements 1 and m in the receive array. 

where p is the mean angle and K can be chosen between 0 
(isotropic scattering) and 00 (extremely concentrated). Using 
the Von Mises PDF the cross correlation in (9) may be written 
as [4l 

We can now find the values for p and r; that maximize the 
log-likelihood function in (5), i.e., 

where tr{ .} denotes the trace. In order to optimize ( 1  2), we 
will use the Nelder-Mead simplex algorithm [8], as imple- 
mented by the fminsearch function of Matlab, but any 
maximization procedure can be used. 

We are also interested in the characterization of the behav- 
ior of the channel with respect to time. According to [6], the 
sequence la(1)I2, 1 = 0 , .  . . , L,  can be approximated by an 
exponential distribution, i.e., 

Thus, we only have to estimate the time of arrival (TOA) of 
the cluster and the decay factor g d  of the exponential. Using 
the properties of the M-sequence used for transmission we 
can derive the following algorithm for estimation of the time- 
dependent parameters: 
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1) Calculate 

SNR (dB) 10 

I N INu-1 l 2  

20 

where yn ( I C )  is the n-th element of y ( I C ) .  
2 )  Due to the noisy nature of p( l ) ,  it is not convenient in 

practice to set the estimate of the TOA as the sample 
corresponding to the highest peak in P(Z). Instead, we 
take the first sample such that P ( k )  2 E ,  where E is a 
fixed threshold. 

3) Calculate the decay factor using the ,sequence P ( l ) ,  1 = 

Although the optimization of (12) invollves the computa- 
tion of determinants and matrix inversions, in practice it is 
less complex than methods like the SAGE ,algorithm in 11-31. 
This happens because in [ 1-31 a big number of discrete waves 
must be estimated, each wave described by 3 to 6 parameters 
(depending on the model), leading to sevleral optimizations. 
In the proposed method, however, only one search over a 2- 
dimensional parameter space has to be carried out. The esti- 
mation of (13) is similar to one step of the initialization proce- 
dure used in the SAGE, and thus do not increase complexity. 

i, . . . , Nu - 1. 

I R M S E ~ ~ . ~ M ~ . I  I 0.89 

v. SIMULATION RESULTS 

The propagation channel is simulated as, a superposition of 
N ,  = 10000 discrete waves defined as 

0.77 

1 xn(k) = -ejGc(q5n)u(lc - T ~ ) ,  n == 1,. . . ,N,, (14) 
6 

~ , I - . - - , 
R M S E { K . . s M L )  

R M S E { ~ S A G E )  
RMSE{K.SAGE) 

R M S E { ~ ~ , ~ ~ ~ )  

RMSE{CJ,~,SAGE} 

where $ is a random phase, c(&) is the steering vector, and 
T~ is the delay of the n-th wave. The receiver has an uniform 
linear array (ULA) with N = 11 antennas. For the generation 
of each parameter a distribution function was selected follow- 
ing the conclusions from measurement campaigns in the lit- 
erature 161. The random phase, $, is unifo'rmly distributed in 
[ 0 , 2 ~ ] .  The angle of arrival & follows a Von Mises distribu- 
tion with parameters p = 75" and 6 = 26.9344, correspond- 
ing to a angular spread of 8". The delays were chosen from 
an exponential distribution with decay factor CJd = 2.34ps, 
corresponding to a 2ps delay spread. 

The sounding sequence is a complex length-127 M- 
sequence, with symbol duration Tp = 1/4.096 x lo6 and 
sampling period T, = Tp/2. The random noise is gener- 
ated from a complex white Gaussian proci:ss. The results are 
obtained during one sounding cycle, i.e., I = 1, and are av- 
eraged over 50 runs. In Table 1 the WISE are shown for 
different values of signal-to-noise ratio (SIVR), and compared 
to the results obtained by using the SAGE algorithm. The 
SNR is defined relative to the signal in each antenna at the 
receiver. A fixed number of 10 iterations were performed for 
each run of the SAGE algorithm, with the estimation of 30 
waves. Once the estimated angles of amval of the 30 waves 
are available, we estimate the Von Mises distribution that best 
fits the data, using a maximum-likelihood procedure. The ob- 
tained best fit is denoted by  SAGE and K S A G E .  The results 

2.86 0.36 

1.79 1.97 
15.48 17.68 

1.77 x 10-7 1.60 x 10-7 

5.30 x 1 0 - ~  5.65 x 1 0 - ~  ' 

show that the stochastic maximum likelihood approach out- 
performs the SAGE algorithm in terms of RMSE, for both 
the mean angle of arrival and the angular dispersion. For the 
SAGE algorithm in particular it was observed that the esti- 
mation errors actually increased together with the SNR. This 
may be caused by bias in the estimation due to modeling er- 
rors. 

Following the approach in [6], we will define the instanta- 
neous power azimuth-delay spectrum as 

1 Nw 

PI($% 7) = -6(4 - 4n, 7- - Tn), (15) 
n=l N,  

and the power azimuth-delay spectrum (PAD) as P(4,  r )  = 
E { P I ( ~ ,  T ) } .  The power azimuth spectrum and the power 
delay spectrum are derived as 

PA($)  = p(4, 71, pD(4) = P(4, 7) (16) 
T d 

Figure 4 shows the true PAD and the estimates obtained 
using the method described in this work. The estimated spec- 
tra closely match the true ones. In Figure 5 we also show 
the estimated PAD obtained using the SAGE algorithm. From 
Figure 5 and Table 1,  it is seen that the results of the SAGE al- 
gorithm were particularly poor for the K. parameter. This hap- 
pens because in the process of identifying the discrete waves 
those with highest power are selected to be estimated, and 
since these correspond to waves close to the mean DOA, the 
concentration of waves around the mean appears to be higher 
than in reality. 

VI. CONCLUSION 
We derived a stochastic maximum likelihood approach for 

estimation of the spatio-temporal behavior of MIMO chan- 
nels. We used the channel model derived in [4] in order to 
compute the channel correlation matrix that depends on the 
unknown parameters. The underlying distribution model is 
angular Von Mises distribution which is well suited for direc- 
tional data. This stochastic model leads more compact rep- 
resentation of the propagation model. Moreover, the compu- 
tational complexity of maximizing the likelihood function is 
reduced because fewer parameters are needed and the likeli- 
hood function is smoother. The obtained results were com- 
pared to the SAGE algorithm used in 11-31, and the pro- 
posed method outperformed the SAGE algorithm in the root 
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Fig. 4. Comparison between the true and estimated power 
azimuth and power delay spectra: (a) power azimuth spec- 
trum; (b) power delay spectrum. 

mean squared error of the estimates. The overall computa- 
tional complexity is also reduced compared to SAGE algo- 
rithm, since the model dimension is lower in the proposed 
method. 
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