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Abstract— In this paper, we derive a method for the detection
and estimation of specular propagation paths that takes the
correlation in both, angle and delay domain, of the distributed
scattering into account. The method is based on an iterative pro-
cedure that alternates between the estimation of specular paths
and of distributed scattering. The computational complexity is
reduced compared to deterministic methods, which are based on
the estimation of parameters of a large number of specular paths.
The results show that the proposed method is able to detect and
estimate the propagation parameters of specular paths that have
low power, which would not be distinguished from distributed
scattering by existing techniques.

I. INTRODUCTION
In channel parameter estimation from channel sounding

measurements mainly two types of models have been em-
ployed so far. A widely used model approximates the observed
radio channel with a large number of discrete (deterministic)
waves, see e.g. [1], [2]. The other approach describes the radio
channel as a zero-mean circular complex Gaussian process [3],
[4]. The first model is well suited to describe dominant con-
centrated (specular) propagation paths, i.e., paths with a small
delay- and angular spread, each contributing significantly to
the wave propagation between transmitter (TX) and receiver
(RX). The second model is well suited to describe distributed
(diffuse) scattering (DDS). It has been shown in [5] that both
mechanisms contribute significantly to the wave propagation.
In [2] a data model for channel parameter estimation is pro-
posed, which combines these two models. It is shown that
an estimator that accounts for both concentrated propagation
paths and distributed scattering outperforms estimators that
ignore either of the channel components. However, in [2]
the estimator is derived assuming that the contribution of the
distributed scattering is an i.i.d. process in the angular domain
at TX and RX.

An approximate ML estimator has been derived in [6],
[7] for channel parameter estimation from channel sounding
measurements, which also takes the angular distribution of
the distributed scattering component into account. The power-
delay profile of the scattering component is modeled using
an exponential distribution, which is typically observed in
measurement campaigns [8]. The angular power profile is
modeled using a mixture of angular von Mises distributions.
The mixture distributions are employed in order to estimate
the propagation parameters in scattering environments with
multiple clusters of scatterers with high fidelity [9]. The von
Mises distribution is described in detail in [10]. The estimator
is based on a two step procedure that alternates between the
estimation of the parameters of the concentrated propagation
paths and distributed scattering.

In this paper we propose an approximate ML method for
the detection and estimation of specular paths. The estimator is
particularly useful for detection of paths that have low power

and may not be easily distinguished from distributed scattering
by techniques based on deterministic models. The method is
based on the estimator derived in [6]. After each iteration
of the estimator, a search is performed for the new specular
paths using the information of the previously estimated diffuse
scattering and specular component. The estimation procedure
is based on the maximum likelihood criterion.

While the full search is optimum in the sense that it maxi-
mizes likelihood function, it can be computationaly intensive
if each specular path is characterized by a relatively large
number of parameters. In order to avoid this problem, we
derive a computationaly efficient method that is based on serial
interference cancellation and sequential parameter estimation.
The simulation results show that the proposed method is able
to detect and estimate specular paths, even those whose power
is lower than the power of the diffuse scattering component
itself.

The paper is organized as follows: in Section II we de-
scribe the signal model considered throughout the paper. In
Section III we describe the parameter estimator for the diffuse
scattering component. In Section IV we describe the proposed
method for detection of specular paths. Finally, in Section V
we present simulation results to assess the performance of the
algorithm.

II. SIGNAL MODEL
Assuming a channel sounding arrangement with Mr anten-

nas at the receiver and Mt antennas at the transmitter, the
signal at the receiver in frequency-domain is given by

y(f) = s(f) + nd(f) + n(f), (1)
where s(f) represents the specular component of the propaga-
tion paths, nd(f) represents the diffuse scattering component,
and n(f) represents the zero-mean complex Gaussian mea-
surement noise. The specular paths are modeled as

s(f) =

Nsp∑

l=1

sl(f) =

Nsp∑

l=1

γlb(ϕR,l, ϕT,l)e
−j2πfτl

u(f), (2)

where u(f) is the transmitted signal, γl is the complex gain,
b(ϕR,l, ϕT,l) is the array response to receive azimuth angle
ϕR,l and transmit azimuth angle ϕT,l, and τl is the nor-
malized delay for path l = 1, . . . , Nsp. The array response
is given as a function of the receive and transmit array re-
sponses, b(ϕR,l) and b(ϕT,l), respectively, as b(ϕR,l, ϕT,l) =
b(ϕR,l) ⊗ b(ϕT,l), where ⊗ denotes the Kronecker product.

The diffuse scattering component (DSC), nd(f), is de-
scribed as

nd(f) = hw(f)u(f), (3)
where the vector h of dimension MrMt × 1 represents the
spatial content of the DSC and is a function of the array



response, w(f) represents the frequency-dependent content
of the DSC. We assume that the excitation signal u(f) is a
multi-carrier spread spectrum signal (MCSSS) [2], which is
designed such that u(f) is constant over the bandwidth of
interest. Hence, (1) can be rewritten as

y(f) = s(f) + hw(f) + n(f). (4)
Let Mf be the number of observed frequency samples. We
then define the Mo × 1 vector Y as

Y =
[
y

T (0) · · · y
T (Mf − 1)

]T
= s + w ⊗ h + n, (5)

where Mo = MrMtMf , and

s =
[
s
T (0) . . . s

T (Mf − 1)
]T (6)

w = [w(0) . . . w(Mf − 1)]
T (7)

n =
[
n

T (0) . . . n
T (Mf − 1)

]T
. (8)

From (2), s can be written as

s(f) =

Nsp∑

l=1

γlc(τl) ⊗ b(ϕR,l, ϕT,l), (9)

where the Mf × 1 vector c(τl) is defined as

c(τl)=[exp(−j2π0τl) · · · exp(−j2π(Mf−1)τl)]
T
. (10)

Deterministic maximum likelihood estimation techniques
such as the SAGE based method in [11] model the received
signal as a combination of a large number of discrete waves.
Consequently, parameters from each wave must be estimated.
Hence, the algorithms experience convergence problems and
the estimates contain artifacts due to local maxima in the
likelihood function and high dimensionality of the parameter
space.

The following assumptions are employed throughout this
article:

(a) the process nd(f) in (3) is zero-mean complex tempo-
rally white circular Gaussian;

(b) the channel can be treated as constant during the time
it takes to measure the channel;

(c) w and h are uncorrelated, and we assume E[h] = 0 and
E[w] = 0;

(d) the additive noise n is an i.i.d. zero-mean circular com-
plex Gaussian process with known covariance matrix,
Cn = E[nnH ] = σ2

nI, and independent of w ⊗ h and
s.

Based on the assumptions above, the PDF of the received
signal Y is completely characterized by its mean, E[Y ] = s,
and its Mo ×Mo covariance matrix
Cy =E[(Y − s)(Y − s)H ]=E[wwH ] ⊗E[hhH ] +E[nnH ]

= Cw ⊗Ch + σ2
nI,

(11)
where I is the Mo ×Mo identity matrix.

A. Delay and Frequency Domain Characterization
For the delay domain we use the model in [2], which is

based on the observation that the power delay profile (PDP)
has an exponential decay over time and a base delay which
is related to the distance between the transmitter and receiver.
The PDP for infinite bandwidth is given by

ψ(τ) = E[|w(τ)|2] =





0, τ < τ ′d
α1/2, τ = τ ′d
α1e

−Bd(τ−τ ′

d), τ > τ ′d

, (12)

where Bd is the coherence bandwidth, α1 denotes the maxi-
mum power, and τ ′d is the base delay.

The sampled version of the correlation function v(θw),
θw = {α1, βd, τd}, of dimension 1×Mf is given in frequency-
domain as

v(θw)=
α1

Mf

[
1

βd

e−j2πτd

βd + j 2π
Mf

· · ·
e−j2π(Mf−1)τd

βd + j2π
Mf−1

Mf

]
, (13)

where βd = Bd/Bm is the normalized coherence bandwidth,
Bm is the measurement bandwidth, and τd is the normalized
base delay.

Since the process is stationary, the correlation between
components at different frequencies is characterized by f1−f2.
Hence, the covariance matrix of the diffuse scattering (assum-
ing the received signal is spatially-white) may be modeled as
a Toeplitz matrix

Cw = toep
(
v(θw),v(θw)H

)
, (14)

where toep(a,bH ) denotes a Toeplitz matrix with a as its first
column and bH as its first row, with a1 = b∗1.

B. Angular Domain Characterization
Using the extended Saleh-Valenzuela (SVA) channel model

in [3] we can write E[hhH ] as a function of the angular
parameters. A similar model is obtained in [4] following
a different approach that is related to the geometry of the
distribution of scatterers. For simplicity, we will limit the
discussion to uni-directional estimation, but the results can
be naturally extended to the double directional case. We also
assume for simplicity that an uniform linear array (ULA) is
used at the receiver. Then the correlation at the receiver side
is given by

Ch,m1m2
(Θh) =

∫ π

−π

exp(bm1m2
cos(φ))f(φ,Θh)dφ, (15)

where f(φ,Θh) is any angular PDF of φ, characterized by
parameters Θh, bm1m2

= j2πdm1m2
, and dm1m2

is the
distance between elements m1 and m2 in the receive array.
An angular PDF must at least satisfy f(φ,Θh) = f(φ +
2πk,Θh) ∀ k ∈ Z, with φ ∈ [φ0, φ0 + 2π), φ0 ∈ R. Hence,
a Gaussian PDF which has an infinite support is not suitable.
The von Mises distribution [10] defined in angular domain is
more appropriate. It is defined as follows:

f(φ,Θh) =
1

2πI0(κ)
exp(κ cos(φ − µ)), (16)

where µ is the symmetry center or “mean angle” and I0(·) is
the modified Bessel function of the first kind of order zero.
The parameter κ is related to the variance of the von Mises
distribution, i.e. how scattered about the symmetry center the
data are. It can be chosen between 0 (isotropic scattering) and
∞ (extremely concentrated).

In channel measurements it is often found that signals are
arriving from a number of different clusters, which may lead
to multimodal angular PDFs. This can be modeled using a
mixture of angular PDFs,

f(φ,Θh) =
P∑

p=1

εpfp(φ,θh,p), (17)

where P is the number of mixture components,
∑P

p=1 εp = 1,
εp are unknown mixture proportions, and fp(φ) is any valid



angular PDF. With this definition of the angular PDF, the angu-
lar domain parameters are defined as Θh = {θh,1, . . . ,θh,P },
with θh,p = {µp, κp, εp}, p = 1, . . . , P .

Using (16), the cross correlation in (15) may be written
analytically as [4], [9]

Ch,m1m2
(Θh)=

P∑

p=1

εp
I0({κ

2
p+b2m1m2

+2κpbm1m2
cos(µl)}

1

2)

I0(κp)
.

(18)

III. JOINT ESTIMATION OF DSC AND SPECULAR PATHS
Let us denote by Ym the m-th observation of Y , m =

1, . . . ,Ms. Assuming Y is circular complex Gaussian and that
the realizations Ym are i.i.d., we can write the log-likelihood
function as
L(Y1, . . . ,YMs

) = −MoMs logπ −Ms log |Cy|−

−

Ms∑

m=1

(Ym − s)HC−1
y (Ym − s),

(19)

where Ms is the number of observations. We will also assume
that the noise is circular complex white Gaussian with variance
σ2

n.
Direct optimization of the likelihood function using (11) is

not feasible due to the high dimensionality of the matrices
involved. In current sounding systems, typical values for Mf

and MrMt are in the range Mf = [100, 2000], and MrMt =
[4, 64]. But with the rapid development of the channel sounders
this values may grow. This leads to a dimension of Cy ranging
from 400× 400 to 128000× 128000, or even higher.

An estimation method has been proposed in [6], [7] that
reduces the computational complexity by using the following
iterative procedure:

(1) Optimize for the parameters of the specular components
such as azimuth and elevation angle of arrival/departure,
time delay, doppler spread etc., using the previously
estimated covariance matrix.

(2) Remove the contribution of the specular components
from data and optimize for the covariance matrix of the
diffuse scattering components plus noise variance.

(3) Repeat the procedure until convergence or a maximum
number of iterations is reached.

Step 2 can be further decomposed into two steps:
(2.a) Optimize for the frequency-domain parameters and noise

variance.
(2.b) Optimize for the angular-domain parameters, with Cw

as calculated in the previous step.
The further decomposition of step (2) into steps (2.a) and

(2.b) is important due to the high dimensionality of the ma-
trices involved. With this two step procedure it is possible to
exploit the Toeplitz structure of Cw for the computation of
the approximate ML estimates. Also, the covariance matrix
manipulated in step (2.b) is only Ch, which is typically much
smaller in dimension than Cw.

In the sequel we will briefly describe the implementation of
the estimator. The reader is referred to [6], [7] for its detailed
derivation and computationaly efficient implementation.
A. Specular Component

A prewhitening transform is applied to the data such that
its covariance matrix becomes a constant times the identity
matrix [12]. We then define the matrix U, such that
E[(U−HY −U−Hs)(U−HY −U−Hs)H ]

= U−H(Cw ⊗Ch + σ2
nI)U−1 = I.

(20)

Therefore, U−HY can be used to estimate the parameters
of the specular-alike propagation paths using any well-known
algorithm, such as the SAGE based procedure in [1], [11].

A convenient implementation of U is given by the eigen-
value decomposition of Cy. Define Vw and Λw as the ma-
trices containing the eigenvectors and eigenvalues of Cw,
respectively. Define also Vh and Λh as the matrices containing
the eigenvectors and eigenvalues of Ch, respectively. We can
then write

Cy = (Vw ⊗Vh)(Λw ⊗Λh + σ2
nI)(VH

w ⊗VH
h ). (21)

Hence, U−H is given by [6]

U−H = (Λw ⊗Λh + σ2
nI)−1/2(VH

w ⊗VH
h ). (22)

B. Frequency-Domain Parameters
Prior to estimaton of DSC parameters, the specular paths

that have been estimated in previous step are removed from
the observation, and hence the likelihood function is given by

L(Y1, . . . ,YMs
) = −MoMs logπ

−Ms log |Cy| −

Ms∑

m=1

YH
mC−1

y Ym.
(23)

In [7] it is shown that maximizing the likelihood function
given the angular-domain parameters are fixed during the
estimation of the frequency-domain parameters is equivalent
to maximizing

L(Y1, . . . ,YMs
)∝−

Mo∑

j=1

log λj−
1

Ms

Ms∑

m=1

Y
H

m(IMf
⊗Vh)Λ

−1

· (IMf
⊗VH

h )Ym.
(24)

where
Ym = (IMf

⊗Λ
−1/2
h VH

h )Ym, (25)

and
Λ = (Λw ⊗ IMrMt

+ σ2
nIMf

⊗Λ−1
h ). (26)

The ML estimates of θwn = {θw, σ
2
n} = {α1, βd, τd, σ

2
n},

are those values that maximize the likelihood function in (24).

C. Angular-Domain Parameters
In [7] it is shown that maximizing the likelihood function

given the frequency-domain parameters are fixed during the
estimation of the angular-domain parameters is equivalent to
maximizing

L(Ỹ1, . . . , ỸMs
)∝−

Mo∑

j=1

log λ̃j−
1

Ms

Ms∑

m=1

ỸH
m (IMf

⊗Vh)Λ̃
−1

· (IMf
⊗VH

h )Ỹm,
(27)

where
Ỹm = (Λ−1/2

w FH ⊗ IMrMt
)Ym, (28)

and
Λ̃ = (IMf

⊗Λh + σ2
nΛ−1

w ⊗ IMrMt
). (29)
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Fig. 1. Iterative procedure for joint optimization of specular component and
diffuse scattering parameters, including the search for new specular paths.

IV. DETECTION AND ESTIMATION OF SPECULAR PATHS

In this section, we propose a procedure for detection and
estimation of parameters of specular paths that is based on
the estimator described in Section III. The proposed method
is particularly useful for the estimation of specular paths
with low power, which may not be easily distinguished from
distributed scattering by techniques based on deterministic
models. Typically, such techniques require a large number of
discrete waves to be estimated in order to characterize the
channel, and it is not straightforward to identify which of
the esimated waves are actual specular paths and which are
an attempt to describe the diffuse component. The estimator
described in Section III assumes a stochastic model, where the
DSC is modeled by a random process. Hence, the specular
paths can be easily identified as the deterministic part of
the model, while the DSC corresponds to the stochastic part.
Moreover, this model requires a reduced set of parameters
to be estimated, which usually results in estimates with lower
variance. Figure 1 shows how the procedure for searching new
paths is inserted into the estimator described in Section III.

The proposed procedure is based on the maximum like-
lihood estimator for the model described in Section II. We
assume that at least one iteration of the estimator described
in Section III has been executed. Hence, an estimate of the
strongest specular paths is assumed to be available, as well as
an estimate of the diffuse scattering component. We estimate
the new specular paths following the approach in Section III-
A, where the data is multiplied by a whitening transformation.
The likelihood function for the whitened signal Y ′ = U−HY
is given by

L(Y ′

1, . . . ,Y
′

Ms
)∝ −

Ms∑

m=1

(Y ′

m −U−Hs)H (Y ′

m −U−Hs)

∝2<{

Ms∑

m=1

sHU−1Y ′

m}−

Ms∑

m=1

sHU−1U−Hs.

(30)

A serial interference cancellation approach is employed.
Hence, we assume the previously estimated concentrated
paths have been already removed from data, and that there is
only one specular path in s to be detected, with parameters
θs = {γ, ϕR, ϕT , τ}.

Let us define

A(τ, ϕR, ϕT)=(Λw⊗Λh+σ2
nI)−

1

2 (VH
w c(τ)⊗VH

h b(ϕR, ϕT)).
(31)

Substituting (9) and (22) in (30), and using the definition in

(31), we obtain

L(U−HY) ∝ 2<{γ∗
Ms∑

m=1

AH(τ, ϕR, ϕT )Y ′

m}

−Ms|γ|
2AH(τ, ϕR, ϕT )A(τ, ϕR, ϕT ).

(32)

The ML estimates for a single wave are then given by

θ̂s = argmax
θs

|
∑Ms

m=1 AH(τ, ϕR, ϕT )Y ′

m|2

|A(τ, ϕR, ϕT )|2
, (33)

and
γ̂ =

∑Ms

m=1 AH (τ, ϕR, ϕT )Y ′

m

Ms|A(τ, ϕR, ϕT )|2
. (34)

Based on the initialization procedure proposed in [1], [11],
we can simplify the search in equation (33). First, we estimate
the base delay as

τ̂ = argmaxτ

|
∑Ms

m=1 A
H

(τ)Y ′

m|2

|A(τ)|2
, (35)

where A(τ) = (cH
τ Vw ⊗ 1HVh)(Λw ⊗ 1 + σ2

nI)−1/2, and
1 = [1 · · · 1]T . With the estimated τ̂ , we estimate the angular
parameters as

ϕ̂R = argmaxϕR

|
∑Ms

m=1 AH(τ̂ , ϕR, ϕT )Y ′

m|2

|A(τ̂ , ϕR, ϕT )|2
, (36)

and

ϕ̂T = argmaxϕT

|
∑Ms

m=1 AH (τ̂ , ϕ̂R, ϕT )Y ′

m|2

|A(τ̂ , ϕ̂R, ϕT )|2
. (37)

The main advantage of this approach is that only 1-D
searches are performed, hence reducing the computational
complexity. However, the 1-D searches are suboptimal, and the
detection performance is reduced compared to the full search.

V. SIMULATION RESULTS
In this Section simulations examples are presented in or-

der to illustrate the performance of the described parameter
estimation procedure. The receiver is equipped with an ULA
having Mr = 8 antennas and the transmitter uses Mt = 1
antenna. The number of frequency points is Mf = 128,
and the number of channel realizations is Ms = 5. For the
frequency-domain parameters, typical values often observed
in channel sounding experiments are used: σ2

n = 0.1, α1 = 1,
β = 0.07, and τ = 0.1. The angular-domain parameters are
defined as φ = {60◦, 120◦}, κ = {10, 50}, ε = {0.4, 0.6},
corresponding to two clusters in the angular domain.

Two specular paths are present, and modeled as

s(k) =

1∑

l=0

γlb(ϕl) exp(−j2πkτl), (38)

where γl is the complex gain, b(ϕl) is the steering
vector for receive azimuth angle ϕl, and τl is the
normalized delay. For the simulation, the values are set
as γl = {0.2ej∗π/5, 0.02ej∗π/3}, ϕl = {80◦, 150◦}, and
τl = {0.12, 0.42}.

The received signal is generated as

y(k) = s(k) + R1/2n2(k) + n(k), (39)
where n2(k) is a circular complex white Gaussian process and
R1/2 is obtained by, e.g., the Cholesky decomposition of Cw⊗
Ch. This implies that the covariance matrix of R1/2n2(k) is
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given by Cw ⊗ Ch. The vector n(k) is a circular complex
white Gaussian process representing the measurement noise.

Figures 2 and 3 show the output of the 1-D correlations
in (35) and (36). The second specular path can be clearly
identified and its parameters can be estimated. Finally, Fig-
ures 4 and 5 show the power delay profile (PDP) and power
angular profile (PAP) obtained using the estimation procedure
described in this article, and compares them to the actual PDP
and PAP, respectively. The curves overlap almost perfectly.

VI. CONCLUSIONS
In this paper, we derive a method for the detection and

estimation of specular propagation paths that takes the cor-
relation in both, angle and delay domain, of the distributed
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Fig. 4. Comparison of estimated power delay profile and actual power delay
profile. The curves overlap almost perfectly.
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Fig. 5. Comparison of estimated power angular profile and actual power
angular profile. The curves overlap almost perfectly. Also shown is the output
of the Bartlett beamformer.

scattering into account. The method is based on an iterative
procedure that alternates between the estimation of specular
paths and of distributed scattering. After each iteration, a
search is employed to detect specular paths that had not been
observed before. The search is based on serial interference
cancellation, and the strongest specular paths are estimated
and removed from data.

The simulations show that the method is able to detect
and estimate properly waves that are difficult to detect using
estimators based on deterministic models. We also show that
the method is able to estimate concentrated paths with low
power, which are unlikely to be detected by estimators that
take only the frequency domain correlation of the diffuse
scattering into account.
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