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Abstract

Rankings of items are a useful concept in a variety of applications, such as
clickstream analysis, some voting methods, bioinformatics, and other fields of
science such as paleontology. This thesis addresses two problems related to such
data. The first problem is about finding orders, while the second one is about
analyzing sets of orders.

We address two different tasks in the problem of finding orders. We can
find orders either by computing an aggregate of a set of known orders, or by
constructing an order for a previously unordered data set. For the first task we
show that bucket orders, a subclass of partial orders, are a useful structure for
summarizing sets of orders. We formulate an optimization problem for finding
such partial orders, show that it is NP-hard, and give an efficient randomized
algorithm for finding approximate solutions to it. Moreover, we show that the
expected cost of a solution found by the randomized algorithm differs from the
optimal solution only by a constant factor. For the second approach we propose a
simple method for sampling orders for 0–1 vectors that is based on the consecutive
ones property.

For analyzing orders, we discuss three different methods. First, we give an
algorithm for clustering sets of orders. The algorithm is a variant of Lloyd’s
iteration for solving the k-means problem. We also give two different approaches
for mapping orders to vectors in a high-dimensional Euclidean space. These
mappings are used on one hand for clustering, and on the other hand for creating
two dimensional visualizations (scatterplots) for sets of orders. Finally, we discuss
randomization testing in case of orders. To this end we propose an MCMC
algorithm for creating random sets of orders that preserve certain well defined
properties of a given set of orders. The random data sets can be used to assess
the statistical significance of the results obtained e.g. by clustering.
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Tiivistelmä

Alkioiden järjestykset ovat hyödyllinen käsite useissa sovelluksissa, kuten verk-
kopalvelun lokien analysoinnissa, tietyissä äänestysjärjestelmissä, bioinformatii-
kassa ja muissa luonnontieteissä, kuten esimerkiksi paleontologiassa. Tässä työssä
tarkastellaan kahta järjestyksiin liittyvää ongelmaa. Ensimmäinen ongelma kos-
kee järjestysten etsintää ja toinen järjestysjoukkojen analysointia.

Tarkastelemme kahta eri järjestysten etsintää koskevaa tapausta. Järjestyksiä
voidaan etsiä joko laskemalla yhteenveto potentiaalisesti suuresta joukosta tun-
nettuja järjestyksiä, tai konstruoimalla järjestys aiemmin järjestämättömälle ai-
neistolle. Ensimmäiseen tapaukseen liittyen esitämme, että sankojärjestykset,
eräs osittainjärjestysten luokka, ovat hyödyllinen tapa esittää järjestysjoukkoja.
Muotoilemme optimointitehtävän kyseisten osittainjärjestysten löytämiseksi, osoi-
tamme että se on NP- kova ja esitämme tehokkaan satunnaisalgoritmin jolla voi-
daan laskea likimääräisiä ratkaisuja. Lisäksi näytämme, että satunnaisalgoritmin
palauttaman ratkaisun kustannuksen odotusarvo on vakiokertoimen päässä op-
timiratkaisun kustannuksesta. Toiseen tapaukseen liittyen esitämme yksinkertai-
sen peräkkäisten ykkösten ominaisuuteen perustuvan menetelmän, jolla voidaan
poimia järjestyksiä 0–1 vektoreille.

Järjestysjoukkojen analysointia varten käsittelemme kolmea eri menetelmää.
Ensin esitämme algoritmin järjestysjoukkojen klusterointia varten. Algoritmi on
variantti Lloyd:in iteraatiosta k-means onglman ratkaisemiseen. Annamme myös
kaksi eri tapaa kuvata järjestyksiä korkeaulotteiseen euklidiseen avaruuteen. Näitä
kuvauksia voidaan toisaalta soveltaa klusterointiin, ja toisaalta niiden avulla
voidaan laatia kaksiulotteisia visualisointeja (sirontakuvioita) järjestysjoukoille.
Lisäksi käsittelemme satunnaistustestausta järjestysten tapauksessa. Tätä tar-
koitusta varten esitämme MCMC algoritmin jolla voidaan luoda satunnaisia
järjestysjoukkoja, jotka säilyttävät annetun järjestysjoukon tietyt, hyvin määri-
tellyt ominaisuudet. Satunnaisia aineistoja voidaan käyttää arvioimaan esimer-
kiksi klusterointimenetelmillä saatujen tulosten tilastollista merkitsevyyttä.
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Chapter 1

Introduction

This thesis is about orders. It is not about the kind of orders one places at, say,
a restaurant or online bookstore. Neither is it about orders given by superiors to
subordinates. This thesis is about orders that reflect a certain mutual relationship
between some objects in a finite set. Given two objects from the set, an order tells
us which one of the two objects precedes the other one, or that this information
is not available. For example, if the objects in the set are movies released in 2008,
an order might place movie A before movie B because a larger number of people
have seen movie A than movie B. There can be several orders reflecting different
properties of the same set of objects. Another order might place movie B before
movie A because movie B has a higher rating at the Internet Movie Database1

than movie A. An order is thus always related to some property of the objects
that we are ordering.

More precisely, this thesis is mostly about chains. A chain is a special kind
of order. Simply put, a chain is a list of objects that belong to the set we are
interested in. It does usually not contain all objects in the set, but only concerns
a subset of it. For each pair of objects that both belong to this subset, the chain
can tell us which of the two objects precedes the other one. But for any pair
where one or both of the objects do not belong to the subset, the chain can not
tell us which of the objects comes first. A chain is thus a partial order. In the
special case where the subset happens to be equal to the entire set of objects, we
say the chain is a total order.

Finally, this thesis is about algorithms both for finding and analyzing orders.
By finding we refer to the problem of using a given data set for constructing
a previously unknown order for the set of objects. For example, in a certain
paleontological application the objects in the set are geographical locations, and
to each location is associated a list of fossils that were found there. We can use

1http://www.imdb.com
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1. Introduction

this information to construct a temporal order for the locations. In this case,
given two locations the order tells us which one of them is older than the other.
Note that the problem of finding an order is not to be confused with sorting,
where the task is simply to arrange the set of objects according to some known
order.

By analyzing we refer to the problem of gaining previously unknown infor-
mation from a data set that contains many, possibly up to thousands of different
orders on the set of objects. Continuing with the movie example, maybe we have
asked thousand people to order some movies they have seen recently from best to
worst, and want to divide the people to groups so that respondents with similar
preferences are put into the same group, while respondents with different prefer-
ences are put into different groups. Of course the problem of finding an order can
be seen as an analysis problem as well. Given the thousand responses we might
want to combine them into a single previously unknown order that reflects the
preferences of the entire set of respondents.

Motivation Orders are an interesting research topic from a computational
point of view. For instance, the relatively mundane task of computing the mean,
which is trivial if we are analyzing numbers (or vectors), becomes a very chal-
lenging problem with orders. What is the mean of a set of orders? Or, what is
a good clustering algorithm for sets of orders? Clustering is a well known prob-
lem and can be solved efficiently for inputs that consist of numerical data only.
Also, many techniques exist for visualizing sets of high-dimensional vectors. How
should we visualize sets of orders? We address all these questions in this thesis.

Moreover, the problem of finding a previously unknown order is probably
even more difficult. There are n! possible solutions when the set we are studying
contains n objects. Even for seemingly small sets, say n = 20, there are already
about 2.4·1018 different ways of ordering the objects. Thus efficient algorithms are
needed. If we would blindly go through every possible order and check if it indeed
is the “best” solution, the time required for computing the answer increases to
unreachable magnitudes very quickly. For example, if our computer is able to
check one million orders for the 20 objects per second, the computation would take
more than seventy-five thousand years to complete. As a consequence, finding
an exact solution to a problem that involves orders is probably not possible in
many interesting cases. This calls for algorithms that can quickly find a solution
that may not be perfect, but is “good enough”.

We can also motivate the research from a practical point of view. Orders
are in some applications a natural approach to representing the data. In surveys
people are usually asked to evaluate some objects on a fixed scale. The five-star
system for rating movies is a typical example of this. Suppose that Alice and
Bob have both seen movies A and B, and that Alice has given movie A one star
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and movie B three stars, while Bob gave movie A three stars and movie B five
stars. If we compare the preferences of Alice and Bob based on the ratings alone,
they seem fairly different: one star versus three stars in case of movie A, and
three stars versus five stars in case of movie B. However, Alice and Bob would
still agree that movie B is better than movie A.

Analyzing the ratings as such is problematic because Alice, Bob, You, and me
tend to have different scales for evaluating the movies. In the previous example
Alice may be a very critical viewer while Bob is less demanding. When we
compare the orders to which Alice and Bob place the movies, we only make
use of information that is independent of the absolute ratings, and hence the
individual scales of the respondents.

In addition to preference surveys, orders occur in other application domains
as well:

1. Clickstreams: Web server log files can be used to construct sequences in
which a user (identified by a HTTP session or IP address) browsed through
different pages on a web site. These sequences can be viewed as orders,
provided they are modified so that each sequence does not contain multiple
instances of the same page.

2. Voting systems: In some voting systems a vote is an order of set of the
candidates or a subset thereof.

3. Bioinformatics: Gene expression data has become abundant with the pop-
ularity of microarray technology. This data is usually produced in an ex-
periment where the expression level of a number of genes is measured under
different environmental conditions. For each gene we have a list of expres-
sion values, one for each condition. Instead of using the expression values
directly, we can sort the conditions in increasing (or decreasing) level of
expression for each gene and use this order for further analysis.

Contributions of this thesis. We summarize the results of this thesis in the
following points:

• In Chapter 3 we propose Bucket orders as an alternative model for rank ag-
gregation. We give an algorithm motivated by [ACN05] for finding bucket
orders. We show that this algorithm has a expected constant factor ap-
proximation guarantee.

• In Chapter 4 we give a simple variant of Lloyd’s algorithm for clustering
chains. We also present two techniques for representing chains as high
dimensional vectors. We report results on experiments that demonstrate
that the algorithm can find interesting clusters from real data sets. We also
compare our algorithm with those of [KA06].

3



1. Introduction

• In Chapter 5 we demonstrate empirically how the high dimensional repre-
sentations discussed in Chapter 4 can be used to create informative two-
dimensional scatterplots of sets of chains.

• In Chapter 6 we give a MCMC based algorithm for sampling random sets of
chains that share certain properties of an initial set of chains. We demon-
strate experimentally that the random sets of chains can be used for ran-
domization testing.

• In Chapter 7 we present a method for finding a partial order for a set of
0–1 vectors. We also discuss a simple test for assessing the “orderability”
of a set of 0–1 vectors. We demonstrate empirically that the method can
find meaningful orders from real data sets.

Some of the results have appeared in previous publications of the author. This
thesis is an attempt to discuss the previous work in more detail using a common
terminology and notation. The algorithm for finding Bucket Orders and the the-
orem on the approximation guarantee appeared without proofs in [GMPU06]. In
Chapter 3 we present the proof for the approximation ratio and discuss alterna-
tive algorithms in more detail. Chapter 5 is mostly based on [Ukk07]. Also, some
of the concepts discussed in Section 4.3 are very briefly presented in [Ukk07].
The claim of Theorem 4.3.2 appeared in [Ukk07] but again the proof was omit-
ted due to space constraints. The MCMC sampling algorithm of Chapter 6 was
originally discussed in [UM07]. The problem of finding a partial order for 0–1
vectors appeared first in [UFM05]. This discussion is extended in Chapter 7.

4



Chapter 2

Preliminaries

Raw data as such is rarely very informative. In order to make useful conclusions
based on data one typically needs to summarize the information it contains some-
how. For example, given a cloud of points in an n-dimensional space we could
compute the center of the cloud and the expected distance of a point from this
center. If the data happens to consist of real valued vectors, computing these
estimators can usually be done in a computationally efficient manner.

The same approach can be taken also when the data contains rankings of some
set of items. However, it is no longer obvious what a “mean” of a set of rankings
would look like, or how to compute it efficiently. For example, suppose we have
conducted a survey about people’s preferences towards recently released movies.
Each respondent has named a number of movies and ranked them best to worst
according to his/her preferences. Such a ranking is a chain on the set of movies,
and the data contains one chain for each respondent. Given this data the goal
is to compute a global ranking of all movies mentioned by the respondents, so
that this ranking reflects the preferences of the entire population. Intuitively this
means that if a movie was ranked high by many of the respondents, it’s position
in the global ranking should be higher than the position of a movie that was
ranked low in many of the responses.

In this chapter we discuss the background of the so called rank aggregation
problem outlined above. Many definitions that are needed throughout this thesis
are given here. We also discuss data sets that we use in later chapters when
performing experiments. In Section 2.2 we will give a formal definition of rank
aggregation, discuss its complexity and describe some possible solutions. We
also consider vertex ordering problems in graphs and their connections to rank
aggregation.

5



2. Preliminaries

2.1 Basic definitions

In this section we define some of the basic concepts this thesis deals with. Here
we also describe a model for generating random data sets and four real data sets
that are used in the experiments in later chapters. Let M be a finite set of items
that we are ordering. Elements of M are typically denoted by letters u, v, w, . . .,
while orders are denoted by small Greek letters π and τ .

Order relations and chains

A partial order π on M is a subset of M ×M , i.e., it is a binary relation on M .
We require that π is asymmetric and transitive. If the pair (u, v) belongs to π,
we say that u precedes v according to π. If the pair (u, v) does not belong to π,
we say the items u and v are unordered by π.

If for all u, v ∈ M we have either (u, v) ∈ π or (v, u) ∈ π, we say π is a total
order. We say a total order τ is compatible with a partial order π if all (u, v) that
belong to π also belong to τ . A total order that is compatible with a partial order
π is called a linear extension of π. The set of all linear extensions of π is denoted
by E(π). In the examples we will denote total orders by comma separated lists
of items in parenthesis, i.e., π = (2, 3, 1) denotes the total order where item 2
precedes items 1 and 3, while item 3 precedes item 1.

Next we define chains and bucket orders. These are two special cases of partial
orders that play an important part in this thesis.

Chains: The partial order π on M is a chain, if for some M ′ ⊆ M π defines
a total order, and we have {M ′ × (M \M ′) ∪ (M \M ′)×M ′} ∩ π = ∅.

Bucket orders: A bucket order B consists of an ordered partition of M , i.e.,
a sequence M1,M2, . . . ,Mb of b disjoint subsets of M such that

⋃
i Mi = M . We

write B = {M1 ≺M2 ≺ · · · ≺Mb}. A bucket order is thus a partial order on M .
The item u precedes the item v, or equivalently (u, v) ∈ B, if and only if u ∈Mi

and v ∈Mj and i < j.

A generating model for sets of chains

In this section we discuss a generating model for sets of chains. This model
is used in some of the empirical sections to evaluate the proposed algorithms.
Using the model we can create artificial data sets of which certain properties
are known. This allows us to create controlled experiments for investigating the
effect of different parameters to the performance of the algorithms. Note that
the algorithms themselves do not make any use of this model.

We explain the model with an example related to movie preferences, but the
same model can also be used in other application domains. Recall, that M is the
set of items that are ordered by the chains. In this case, we let M be the set of

6



Basic definitions

SUSHI MLENS DUBLIN MSNBC
n 5000 2191 5000 5000
m 100 207 12 17
min. l 10 6 4 6
avg. l 10 13.3 4.8 6.5
max. l 10 15 6 8

Table 2.1: Key statistics for different real data sets. Number of chains: n, number
of items m, length of a chain l.

movies that were released in 2008. Each chain will be a list of movie titles. The
model generates a set of such chains.

We assume the chains are generated by a population of individuals, moviegoers
in this case. This population can be segmented to groups j = 1, . . . , k so that
members of a certain group j have similar preferences regarding the movies.
These common preferences are modeled by a group specific partial order πj on
M .

Suppose an individual i from group j has access to all of M , i.e., has seen all
movies that came out in 2008. Then i can in theory specify a total order τi on
the items according to his preferences. As i belongs to group j, we assume τi is a
linear extension of πj . However, since in general an individual can only evaluate
a subset of the items (those movies he has seen), i can specify only the chain τ ′i
that covers the subset known to him, but ranks those as τi would.

The generating model works as follows: initialize the model by picking k
partial orders πj , j = 1, . . . , k, on M . Then for each individual i, first pick one
πj , then pick one linear extension τi of πj , and finally pick a subset of l items and
create the chain by projecting τi on this subset. In each case we use a uniform
distribution on the respective sample space.

To simplify matters computationally, we select the πjs from a restricted class
of partial orders that we call bucket orders (see Section 2.1 above). One parameter
of the model is thus the number of buckets in a bucket order, denoted b. The
other parameters are the number of groups, denoted by k, the number of items in
each chain, denoted by l, and the number of chains generated by each component.

Data sets

In addition to artificial data generated using the model given above, we will use
the following four real data sets in the empirical sections of this thesis. All data
sets are based on publicly available sources. Their key statistics are summarized
in Table 2.1.

7



2. Preliminaries

Voting data In a simple voting system each voter gets to place one vote for one
candidate. The candidate with the highest number of votes is the winner of the
election. However, in some instances more complex methods are used. From the
perspective of this paper, voting systems where the voters rank the candidates
in order of preference are of interest. This data can be used to segment the
population of voters based on their views of the candidates, for example.

We made experiments with voting data of this type from the 2002 general
election held in Ireland.1 The data (dublin) contains votes in form of chains of
12 candidates from the electoral district of northern Dublin. We selected a subset
of the votes that ranked at least 4 and at most 6 candidates. This left us with
17737 votes in total. Of this we picked a random subset of 5000 votes.

Clickstream data By clickstream data we mean the sequence in which a user
has visited different sections of a web site. The data set (msnbc) we use was
collected at msnbc.com on September 28th 1999.2 For each user the data gives
the categories the user visited and the order in which this took place. We pruned
the original data to create chains by using only the first occurrence of a category
in each sequence. In total there are 17 categories. We selected a subset of the
users whose chain had at least 6 and at most 8 different categories. The total
number of chains left was 14598. Also in this case we used a random subset of
5000 chains.

Movie preference data The MovieLens data3 was originally collected by the
GroupLens research group at University of Minnesota. It contains 106 ratings for
about 3900 movies from over 6000 users. The ratings are given on a scale of 1-5.

Before turning the ratings into chains we preprocess the data as follows. First
we discard movies that have been ranked by less than 1000 users. This is done
to reduce the number of different movies to 207. As many movies have been seen
by only very few users the data does not contain enough information about their
relation to the other movies. Next we prune users who have not used the entire
scale of five stars in their ratings. This way the resulting partial rankings are
more useful as they all reflect the entire preference spectrum from “very bad”
to “excellent”. This leaves us with 2191 users. For each user we create a chain
by picking a sample of movies at random, so that at most three movies with the
same number of stars are included in the sample, and order them according to
the number of stars, with better movies appearing before the worse ones. The
mutual order between two movies with the same number of stars is arbitrary. We
call the resulting data set mlens.

1http://www.dublincountyreturningofficer.com/ (21.1.2008)
2http://kdd.ics.uci.edu/databases/msnbc/ (21.1.2008)
3http://www.movielens.org (21.1.2008)
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Rank aggregation

Sushi preference data The sushi data set is from a Japanese survey that
studied people’s preferences towards different type of sushi4. The number of
different sushi flavors was 100, of which each respondent was asked to rank a ran-
domly chosen subset of size ten in order of preference. The number of respondents
in this data set is 5000.

2.2 Rank aggregation

We now turn our attention to the problem of computing a “mean” for a set
of permutations. This is an interesting problem itself, but it also is relevant
background information for the algorithm discussed in the next chapter.

Given n permutations of a fixed set M (e.g., n permutations of |M | movie
titles), the rank aggregation problem is defined as follows:

Problem (rank-aggregation) Let D = {π1, π2, . . . , πn} be a set of permuta-
tions of the set M . Find the permutation π∗, such that

π∗ = arg min
π

n∑
i=1

d(π, πi), (2.1)

where d(π, πi) is a distance between π and πi.

Clearly this definition is similar to the case of computing the center of a set of
points in a vector space. In practice we want to summarize the collection of per-
mutations with one permutation that disagrees as little with the permutations in
the collection as possible. Here disagreement is measured by a distance function.
Two commonly used distance measures for permutations are Kendall’s tau and
Spearman’s footrule. Let π and π′ be two permutations of the set M .

Kendall’s tau (or the Kendall distance) dK between permutations π and π′ is
defined as

dK(π, π′) =
∑
i∈M

∑
j∈M

I{i ≺π j ∧ j ≺π′ i},

where i ≺π j denotes that item i ∈M precedes item j ∈M in the permutation π,
and I{·} is the indicator function, i.e., I{X} = 1 when X is true and I{X} = 0
when X is false.

Intuitively the Kendall distance between two permutations is the number of
pairs (i, j) such that the permutations disagree on the order of i and j. It is
also the number of swaps made by the bubble-sort [CLRS01] sorting algorithm
if either π or π′ is the natural ordering of the items.

4http://www.kamishima.net/sushi (22.1.2008)
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Spearman’s footrule (or the footrule distance) dS between permutations π and
π′ is defined as

dS(π, π′) =
∑
i∈M

|π(i)− π′(i)|,

where π(i) denotes the position of the item i in π. (E.g., if i appears as the first
item in π, we have π(i) = 1.)

Unlike Kendall distance, the footrule distance does not concern the pairwise
relations between items, but their actual positions in the permutations. Even
though this is a fundamental difference between the distance functions, the mea-
sures are closely related, as shown by the following theorem from [DG77].

Theorem 2.2.1 [DG77] For any two permutations π and π′, we have

dK(π, π′) ≤ dS(π, π′) ≤ 2dK(π, π′).

Note that it is also fairly easy to construct cases where the two distance measures
give inconsistent results, that is dS(π, π1) < dS(π, π2) and dK(π, π1) > dK(π, π2).
For example, let

π = [1, 2, 3, 4, 5, 6],
π1 = [3, 2, 1, 6, 5, 4],
π2 = [6, 1, 2, 3, 4, 5].

Now we have dS(π, π1) = 8 and dS(π, π2) = 10, meaning that π1 is closer to π in
terms of the footrule distance. However, dK(π, π1) = 6 and dK(π, π2) = 5, which
puts π2 closer to π. This example suggests that the footrule distance is in some
sense more sensitive to “outliers” (item 6 in π2) than the Kendall distance. Hence,
Theorem 2.2.1 does not imply that dK and dS would give the same solution for
Equation 2.1.

It is easy to see that the footrule distance can be computed in time linear
in the size of M . Computing the Kendall distance by iterating over all possible
(i, j) pairs is obviously quadratic in the size of M , but it is possible to improve
the complexity to O(|M | log |M |) for instance by using an algorithm similar to
mergesort.

Rank aggregation has turned out to be a computationally interesting problem.
It has been shown that finding the π∗ defined by Equation 2.1 is NP-hard when
d = dK for n ≥ 4 [DKNS01]. However, when d = dS , it is easy to construct
a weighted bipartite graph G = (V1, V2, E, W ), so that the optimal aggregation
is given by the min-cost perfect matching in G [DKNS]. The construction is
simple: let the vertices in V1 correspond to the items in M and the vertices in
V2 correspond to all possible positions, i.e., V2 = {1, 2, . . . , |M |}. The weight
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W (u, j) for all u ∈M and j ∈ V2 is defined

W (u, j) =
n∑

i=1

|j − πi(u)|,

which is simply the cost of putting item u to position j in the aggregate permu-
tation. In the perfect matching each vertex of V1 (an item) is matched with a
vertex of V2 (a position). Hence we can represent the matching as a permutation
π∗ : V1 → V2. Since π∗ is a minimum cost perfect matching, it is defined by

π∗ = arg min
π

∑
u∈M

W (u, π(u)),

which is exactly the same as Equation 2.1 when d = dS . [DKNS]
Constructing the graph G takes time O(n|M |2) and computing the matching

with a simple algorithm is of order O(|M |3 log |M |) [KT06]. Using a more sophis-
ticated approach the problem can be solved in O(|M |2) expected time [SSW05].
Hence, the footrule distance leads to a problem that belongs to P, whereas the
Kendall distance seems to be hard. This may be somewhat surprising given the
result of Theorem 2.2.1 and that the complexity of computing the distances dS

and dK differs only by a factor of order O(log |M |). Note that this construction
no longer works if the input consists of chains instead of permutations.

Connections to voting theory

Combining individual preferences is a key problem in group decision making, of
which elections are probably the most common example. Voting systems have
been studied extensively already for over two centuries. The oldest and probably
still the most relevant approaches are those of Condorcet and Borda. In both
cases a vote is a permutation of the set M of all candidates (or possibly a subset
thereof) and the objective is to determine which of the candidates is the winner
of the election given the set D of votes. What differs is the definition of a winning
candidate.

In the Condorcet method (see Definition 9.2 in [Mou91]) the candidate c∗ is
the winner if for all c′ 6= c∗

|{π ∈ D : c∗ ≺π c′}| > |{π ∈ D : c′ ≺π c∗}|.

Less formally, c∗ is the candidate that has the most “wins” in pairwise compar-
isons of the candidates. It is easy to construct an example where there is no
unique Condorcet winner. Let the votes be π1 = [c1, c2, c3], π2 = [c3, c1, c2], and
c3 = [c2, c3, c1]. This example shows what is known as Condorcet’s paradox: a
majority prefers c1 to c2 (votes π1 and π2), another majority prefers c2 to c3
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(votes π1 and π3) while a third majority prefers c3 to c1 (votes π2 and π3), all in
the same set of votes.

The method proposed by Borda, also known as the Borda Count (see Defi-
nition 9.1 in [Mou91]), is a positional voting method. Each candidate c ∈ M is
given a score that depends on the positions in which c appears in the votes. The
winner c∗ of the election is defined using the Borda count as follows

c∗ = arg max
c

∑
π∈D

s(π(c)),

where s is a function from positions to scores. Thus, c∗ is the candidate with the
highest sum of scores. A common choice is to have s(x) = |M |−x, i.e., the score
of a candidate c in vote π is the number of other candidates that are placed after
c in vote π.

Note that the methods do not necessarily select the candidate ranked first in
a majority of the votes. However, the Borda method reduces to simple majority
voting if we have s(x) = 1 when x = 1 and s(x) = 0 when x 6= 1.

2.3 Vertex ordering problems

We can formulate an instance of the rank aggregation problem as an instance of
a vertex ordering problem in directed graphs. Let Gu = (V,E, C) be a weighted,
directed graph. To each edge (i, j) ∈ E is associated a cost C(i, j). An ordering
of the vertices V is a mapping π : V → N. The problem we consider here is about
finding the minimum weight feedback-arc set (min-fas), which can be formulated
as an ordering problem.

Problem (min-fas) Given G = (V,E, C), find a subset E′ of E of minimum
weight such that E \ E′ is acyclic. Edges in E′ are the feedback arcs. The
problem can be formulated as the task of finding a permutation π∗ of V , defined
as

π∗ = arg min
π

∑
(u,v)∈E

I{v ≺π u}C(u, v).

In less formal terms, we want to arrange the vertices left-to-right on a line so
that the sum of the weights of the edges that point to the left (to the “wrong”
direction) is minimized.

The min-fas problem is known to be NP-complete for general graphs (see
Problem GT8 in [GJ79]), and also for tournaments, as shown recently in [Alo06].
We also note that min-fas is very similar to the maximum-acyclic-subgraph
problem, where the input is also a directed graph G = (V,E), and the task is to
find a subset of E that is acyclic and of maximum size (of all acyclic subsets of
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E). Indeed, an optimal solution for the other yields an optimal solution for the
other one.

A special case of the min-fas problem is where G is a complete directed graph
with a weighted edge from u to v and v to u for all vertices u and v. This special
case is interesting from the point of view of rank aggregation, as it turns out that
the rank-aggregation problem when using the Kendall distance is the same
as the min-fas problem in G. An instance of the rank aggregation problem can
be cast into a min-fas instance in G by letting each item correspond to a vertex,
and having C(u, v) = |{πi ∈ D : u ≺πi v}|. To see this, consider Equation 2.1
with d = dK . We have:

π∗ = arg min
π

n∑
i=1

dK(π, πi)

= arg min
π

n∑
i=1

∑
u∈M

∑
v∈M

I{u ≺π v ∧ v ≺πi u}

= arg min
π

∑
u∈M

∑
v∈M

I{u ≺π v}
n∑

i=1

I{v ≺πi u}

= arg min
π

∑
u∈M

∑
v∈M

I{u ≺π v}|{πi ∈ D : v ≺πi u}|

= arg min
π

∑
(u,v)∈E

I{u ≺π v}C(v, u).

Above the third equality is obtained by seeing that the second indicator function
merely counts the number of permutations in D where v precedes u. The last
equality follows from the fact that E contains both (u, v) and (v, u) for all u, v ∈
M .

Both rank-aggregation and min-fas are computationally hard problems.
The min-fas problem has been studied extensively and a lot is known about its
approximability. Moreover, using min-fas as a starting point makes it possible
to study the problem of aggregating a possibly very large number of rankings
using only the weights C(u, v), the number of which is only |M |2, possibly a lot
less than the number of rankings in our input. To this end we still need one
important definition before we can move on to the next chapter.

The pair order matrix: Let D be a set of rankings. The pair order matrix CD

associated with D is an |M | × |M | matrix, where

CD(u, v) = |{π ∈ D : u ≺π v}|.
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The normalized pair order matrix ĈD is an |M | × |M | matrix, where

ĈD(u, v) =
CD(u, v)

CD(u, v) + CD(v, u)
.

If D contains chains, it might be that some u and v never occur together in a
chain π ∈ D. In this case we let ĈD(u, v) = ĈD(v, u) = 0.5.

In the regular pair order matrix CD we only store the counts of how many
times u precedes v in the input rankings for all u and v. The normalized matrix
can be interpreted as a set of probabilities. Therefore we say it satisfies the
probability constraint given by

ĈD(u, v) + ĈD(v, u) = 1. (2.2)

The pair order matrix will be a key concept in Chapters 3, 4, and 6.
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Chapter 3

Algorithms for Finding Bucket
Orders

The main result of this chapter is a randomized algorithm with an expected
approximation guarantee for the problem of computing a global ranking of a set
of items given a pair order matrix on the same items. This global ranking can
be a total order, but we also argue why it might be better to use a partial order
as the aggregate representation. The algorithm we propose can be used to find
certain types of partial orders called Bucket orders by tuning a single parameter.
We also discuss some alternative algorithms for finding good bucket orders. These
are computationally considerably more inefficient than the randomized algorithm
but may lead to better solutions under some circumstances.

3.1 The bucket order model

In the previous chapter we discussed the problem of finding a total order on the
items in M given a set of rankings. This is a natural approach, but has some
drawbacks. First of all, our assumption that there actually exists a total order
for the items may be incorrect. This is a question of selecting the correct model
family, if one uses learning theoretic concepts.

The second issue concerns actual usefulness of a total order. In some cases
we might argue that a total order is too complex for this task, especially if the
number of items in M is large. Remember that one of our original intentions is
to find a concise representation for the entire set of rankings, not necessarily rank
them for the sake of finding the best or worst alternative.

A natural approach would be to use arbitrary partial orders instead of total
orders. This is has been done previously [MM00, UFM05, RY06], but it is even
easier to say that an arbitrary partial order does not meet the requirements of a
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u1 u2 u3 u4 u5 u6 u7 u8

u1 0.5 0.5 1 1 1 1 1 1
u2 0.5 0.5 1 1 1 1 1 1
u3 0 0 0.5 0.5 0.5 1 1 1
u4 0 0 0.5 0.5 0.5 1 1 1
u5 0 0 0.5 0.5 0.5 1 1 1
u6 0 0 0 0 0 0.5 0.5 1
u7 0 0 0 0 0 0.5 0.5 1
u8 0 0 0 0 0 0 0 0.5

Figure 3.1: Matrix representation B of the bucket order B = {{u1, u2} ≺
{u3, u4, u5} ≺ {u6, u7} ≺ {u8}}.

concise representation. For instance, in practical situations with a large number
of ranked items, users are likely to find that comparing two partial orders is
difficult. Moreover, it is not obvious to give a precise definition for a partial
order that “fits the data in the best possible way”. On one hand all important
aspects of the available information should be covered, on the other hand we
may not let the partial order become too simple or too complex. Specifying a
clear definition that does not make use of additional parameters or regularization
components based on the structure of the partial order is nontrivial.

We argue that bucket orders, as defined in Section 2.1, are a better model.
The idea is to combine good properties of total and partial orders by having a
simply defined structure that is still flexible enough to account for cases where the
input lacks information to make exact conclusions about the order. Moreover,
total orders are a special case of bucket orders. Recall, that given the set D
of orders, we can compute the normalized pair order matrix ĈD. We define an
analogous structure for bucket orders.

Matrix representation of bucket orders: Let B = {M1 ≺ . . . ≺ Mk} be a
bucket order on the set M . The pair order matrix B associated with B is defined
as follows:

B(u, v) =

 1 if (u, v) ∈ B,
0.5 if (u, v) 6∈ B ∧ (v, u) 6∈ B,
0 if (v, u) ∈ B.

Note that B(u, v)+B(v, u) = 1 for all u and v. An example of a bucket order
in matrix representation is given in Figure 3.1.

The matrix representation of a bucket order B is convenient when defining the
optimal bucket order given D. The bucket order B is optimal, when its matrix
representation B is close to the normalized pair order matrix ĈD in terms of the
L1 norm. We define the cost of a bucket order as follows:
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Cost of a bucket order: The cost of a bucket order B given the normalized
pair order matrix ĈD is

c(B, ĈD) =
∑
u∈M

∑
v∈M

|ĈD(u, v)−B(u, v)|,

where B is the bucket matrix associated with B.
Note that this resembles the min-fas (and hence rank-aggregation) prob-

lem if we let B be a total order. The difference is that we do not only count the
sum of the costs of backward edges, but also assign a cost to the forward edges
that depends on their weight. Ideally the edge (u, v) should have zero weight if
it ends up being a backward edge and unit weight if it ends up being a forward
edge. In this case its cost would be zero, because for backward edges B(u, v) = 0
and for forward edges B(u, v) = 1.

Problem (optimal-bucket-order) Let ĈD be a normalized pair order matrix.
The bucket order B∗ is an optimal bucket order for D when

B∗ = arg min
B

c(B, ĈD).

Note that we have defined B∗ without using any parameters or additional reg-
ularization terms that penalize for too complex models. Simplicity of this def-
inition is one of the reasons to use bucket orders instead of arbitrary partial
orders. However, as stated in the next theorem, finding the optimal bucket order
is computationally hard. Therefore we propose an approximation algorithm in
Section 3.2 that finds solutions with an expected cost within a constant factor of
c(B∗, ĈD).

Theorem 3.1.1 [GMPU06] optimal-bucket-order is NP-hard.

Proof The proof is a reduction from min-fas-tournament. In that problem,
given a complete directed graph G = (V,E) (without cycles of two vertices) the
task is to find a total order T ∗ for the vertices V on a line so that the number
of edges that point to the left is minimized. This problem was recently shown
to be NP-hard [Alo06]. For the adjacency matrix A of G we have A(u, v) = 1 if
(u, v) ∈ E and A(u, v) = 0 if (u, v) 6∈ E. Note that G is complete, and thus we
have (v, u) ∈ E whenever (u, v) 6∈ E for u 6= v. Thus, A has the same structure
as a pair order matrix.

Next we show that given G, the cost cG(B∗) of the optimal bucket order B∗ is
the same as the cost cG(T ∗) of the optimal total order T ∗. As the class of bucket
orders contain total orders as a special case, it is obvious that cG(B∗) ≤ cG(T ∗),
because we can always set B∗ = T ∗. It remains to be shown that cG(B∗) ≥
cG(T ∗).

17



3. Algorithms for Finding Bucket Orders

Suppose that B∗ is not a total order. We show how to convert B∗ to a total
order T ∗ so that the cost does not increase. First, note that the vertices belonging
to a single bucket Mi can be considered independently of vertices belonging to
the other buckets. That is, we can order the vertices in Mi arbitrarily without
affecting the cost that is incurred by vertices in other buckets.

Let |Mi| = s. For all u, v ∈ Mi, the matrix B∗ associated with B∗ has
B∗(u, v) = 0.5. As there are s(s − 1) edges between the s vertices, and for all
of them the pair order matrix A associated with G has either A(u, v) = 0 or
A(u, v) = 1, it is easy to see that the total cost of Mi given B∗ is 0.5s(s − 1).
Now, let us assign some arbitrary total order π to the vertices in Mi. Denote
by πR the reverse order of π. If the cost of Mi given π, denoted cπ, is less than
0.5s(s−1) we are done. If the cost is higher, we must have cπR ≤ 0.5s(s−1). To
see this, remember that all edges between vertices in Mi incur a cost of 1 given
either π or πR. As there are s(s− 1) edges in total, we have cπ + cπR = s(s− 1).
If now cπ ≥ 0.5s(s− 1), then it trivially follows that cπR ≤ 0.5s(s− 1). Hence we
can find a total order for vertices in Mi that does not increase the cost of Mi. We
can repeat this for all buckets, and obtain a total order T ∗ with cG(T ∗) ≤ cG(B∗).

Thus, for matrices Ĉ that correspond to tournament graphs, the problem of
finding B∗ is equivalent to the problem of finding the optimal total order T ∗. As
finding T ∗ is NP-hard, finding B∗ is also NP-hard. [GMPU06] �

The basic idea of the proof warrants a further comment. Even though for un-
weighted tournaments finding the optimal bucket order is equivalent to finding
the optimal total order, and the costs of these are the same, this is not the case
for arbitrary pair order matrices. In fact, for a pair order matrix with a clear
bucket structure, such as the one shown in Figure 3.1, a bucket order will have
a cost of zero while a total order has a significantly higher cost. To see this,
consider the L1 norm between the matrix in Figure 3.1 and a square matrix T
of the same size with 0.5s on the diagonal, 1s in the upper triangle and 0s in
the lower triangle. Such a matrix corresponds to a total order. This matrix will
induce a cost of 1 for the bucket {u1, u2}, since

|ĈD(u1, u2)− T (u1, u2)|+ |ĈD(u2, u1)− T (u2, u1)|
= |0.5− 1|+ |0.5− 0| = 1.

Likewise, we get a cost of 3 for bucket {u3, u4, u5} and a cost of 1 for bucket
{u6, u7}. The total cost of T is thus 5, while the cost of a bucket order is 0 in
this simple case.

Of course, typically the normalized pair order matrices corresponding to a set
of rankings do not have a bucket structure as clear as the matrix of Figure 3.1.
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3.2 The Bucket-Pivot algorithm

Given the result of Theorem 3.1.1, it seems very unlikely that we could find the
optimal bucket order B∗ in polynomial time given an arbitrary pair order matrix.
However, turns out that the problem admits a constant factor approximation
algorithm that we describe in this section. The algorithm is a modification of
the method of Ailon et. al. [ACN05], who gave an approximation algorithm for
the min-fas problem. We show that the same approach can be used for finding
bucket orders and that a similar proof technique yields similar bounds for the
approximation.

We start by formally defining constant factor approximation algorithms.
Approximation algorithm: Let I be an instance of the problem P and SI a

set of feasible solutions for I. An algorithm A is a mapping from I to SI . To
every s ∈ SI we associate a cost with the objective function f : SI → R. Let
s∗ = arg mins∈SI f(s) be the optimal solution for instance I and denote by f(s∗)
it’s cost. We say the algorithm A is a constant factor approximation algorithm
for problem P when there is an α > 1 such that

f(A(I)) ≤ αf(s∗)

for all instances I. In case of a randomized algorithm A the definition is

E[f(A(I))] ≤ αf(s∗),

where E[X] denotes the expectation of the random variable X. Thus, an algo-
rithm is a constant factor approximation algorithm if the cost of the solution
found by the algorithm deviates from the optimal solution at most by a constant
factor.

The Bucket Pivot -algorithm is a randomized algorithm with an expected
constant factor approximation guarantee. The algorithm can be characterized as
a “probabilistic quicksort”. Recall, that quicksort is a (randomized) algorithm
that sorts a set of items M in ascending order given an order relation on M . The
idea of quicksort is to pick one of the items as a pivot, and place all other items
either on the left or right side of the pivot based on the given order relation,
and then recursively sort the left and right subsets. This will lead to a correct
ordering of the items when the order relation is known.

In our case, however, the order relation is not known. What we do have, is
the pair order matrix ĈD. As the values in ĈD are normalized so that ĈD(u, v)+
ĈD(v, u) = 1, we can interpret them as probabilities of the items to precede one
another. Given two items u and v and a known and correct order relation on
M , we can say with certainty which of the two items comes first in the ordering.
Given ĈD we have only a (possibly inaccurate) estimate of the probability for one
of the items to precede the other. But if we set a threshold on this probability
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we can still run quicksort as usual. The intuitive choice is to place u before v if
ĈD(u, v) > 0.5, v before u if ĈD(v, u) > 0.5 and choose the order arbitrarily when
ĈD(u, v) = 0.5. This is precisely what is done in [ACN05], where it is shown that
this quicksort like algorithm has an expected approximation guarantee. If the
probabilities are estimated from a set of rankings, this approach can be used for
solving rank-aggregation with the Kendall distance.

One of the motivations we listed for using bucket orders as a good model
for summarizing a set of rankings was that a total order, as given by quicksort,
can in some cases be too strict. Especially if the probabilities in ĈD are only
rough estimates, a total order τ constructed based on them may lead to incorrect
conclusions. Recall the example where an input as shown in Figure 3.1 is ap-
proximated with a total order. Not only does the total order have a higher cost,
but also the order of some of the items is completely random and not backed by
the data. For instance, a total order produced quicksort might have placed item
u4 before items u3 and u5 and item u3 before item u5. However, saying that
item u4 precedes item u5 input is not meaningful in this case. A better model
should reflect the uncertainty present in the data and avoid making any arbitrary
selections.

To overcome these problems we make a simple modification to quicksort,
and call the resulting algorithm Bucket Pivot. Bucket Pivot works exactly like
quicksort, with the exception that when the probability of an item u to precede
the pivot item is close to 0.5, we do not place u to the left or right side of the pivot,
but instead use a third set, denoted S, that means u is on the “same” level as
the pivot. Again we recursively find a bucket order for the left and right subsets
while the set S forms a single bucket. These are then combined to produce the
final bucket order.

Pseudocode for Bucket Pivot is given in Algorithm 1. The parameter β > 0
is used to control the size of the buckets. Smaller values of β lead to many small
buckets, whereas large values lead to a few large buckets. Choosing the optimal
β depends on how much evidence we expect there to be for an item to precede
another. If lots of evidence is required, then we should assign β a larger value
than in the case when already a small difference in the probabilities ĈD(u, v)
and ĈD(v, u) is enough. Note that by setting β = 0 the Bucket Pivot algorithm
reduces to the algorithm of [ACN05]. The default value of β is 1

4 , this is also
used in the later proof for showing the approximation guarantee of Bucket Pivot.

Randomized quicksort has worst-case running time O(m2) but the average
case complexity is O(m log m) [CLRS01]. Bucket Pivot differs from randomized
quicksort only by constructing the S in addition to the sets L and R. This can
only cause Bucket Pivot to stop the recursion earlier than quicksort, meaning
the worst case and expected running times of Bucket Pivot are the same as with
randomized quicksort. Of course the running time is also affected by β. If we set
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Algorithm 1: The Bucket Pivot Algorithm. By default, we use β = 1
4 .

1: BP(M ,CD,β) {Input: M , set of items; CD, pair order matrix; β ≥ 0, param-
eter. Output: Bucket order.}

2: if M = ∅ then
3: return ∅
4: end if
5: Pick a pivot p ∈M uniformly at random.
6: L← ∅
7: S ← {p}
8: R← ∅
9: for all items u ∈M \ {p} do

10: if CD(p, u) < 1
2 − β then

11: Add u to L.
12: else if 1

2 − β ≤ CD(p, u) < 1
2 + β then

13: Add u to S.
14: else if 1

2 + β ≤ CD(p, u) then
15: Add u to R.
16: end if
17: end for
18: return order 〈BP(L, CD, β), S,BP(R, CD, β))〉

β = 1
2 Bucket Pivot will have a worst case running time of O(m), but the result

produced is also not very useful as all items are placed in one single bucket.
An important consequence of the expected O(m log m) running time is that

we only need to inspect O(m log m) elements of the matrix ĈD. Under some
circumstances this can be used to speed up the total running time of finding the
model, as we do not need to estimate all pairwise probabilities.

Approximation guarantee

Next we show that Bucket Pivot is an expected constant factor approximation
algorithm. The proof follows the technique used in [ACN05] with some mod-
ifications to accommodate the case when the output is not restricted to be a
total order. Note that for now we fix the parameter β = 1

4 . We also rewrite
the expected cost E[c(BBP , ĈD)] in terms of a complete, weighted directed graph
G = (M,M ×M, ĈD), where M is the set of vertices, and the weight of the edge
e = (u, v) is given by ĈD(u, v). We let

E[c(BBP , ĈD)] = E[c(BBP , G)] =
∑

(u,v)∈M×M

E[|BBP (u, v)− ĈD(u, v)|].
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Note that as (u, v) and (v, u) both belong to M ×M , the above equation counts
the cost of each pair twice; once for (u, v) and once for (v, u). Their costs are the
same since ĈD(u, v) = 1− ĈD(v, u) and BBP (u, v) = 1−BBP (v, u) for all u and
v. To simplify this, we let A denote the set of all unordered pairs of items in M
and write

E[c(BBP , G)] =
∑

{u,v}∈A

2E[|BBP (u, v)− ĈD(u, v)|] =
∑
e∈A

E[c(BBP , e)]. (3.1)

The key of the approximation result is to find a proper expression for the expected
cost of a pair, E[c(BBP , e)]. To do this we consider the possible cases that can
happen to e during the execution of the algorithm. Crucial here is to see how e
is related to the pivot vertex p.

First of all, we claim that when p is one of the endpoints of e, the cost
c(BBP , e) will always be optimal. Indeed, let e = {p, u} and consider the following
cases:

1. ĈD(p, u) ∈ [0, 1
4 ): The algorithm will put u in the set L, and hence u will

appear before p in the final output. Thus, we will have BBP (p, u) = 0 and
BBP (u, p) = 1.

2. ĈD(p, u) ∈ [ 14 , 3
4 ]: The algorithm will put u in the set S, and u will appear in

the same bucket as p in the final output. Thus, we will have BBP (p, u) = 0.5
and BBP (u, p) = 0.5 as well.

3. ĈD(p, u) ∈ ( 3
4 , 1]: The algorithm will put u in the set R, and u will ap-

pear after p in the final output. Thus, we will have BBP (p, u) = 1 and
BBP (u, p) = 0.

In every case the absolute value |BBP (u, v) − ĈD(u, v)| will be minimized and
the cost c(BBP , e) is optimal.

Thus, the only possibility of c(BBP , e) to be nonoptimal is when the pair e is
assigned a cost without the pivot p being a part of e. This can only happen when
e is opposite to the pivot in a triangle of three vertices. See the figure below for
an example:

vu

p

The arrows indicate which direction has a large weight in ĈD, i.e., when the
arrow points from u to p, we have ĈD(u, p) > 3

4 . In this case if p is chosen as the
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pivot and e = {u, v}, the cost c(BBP , e) will be nonoptimal. The vertex u will
be put to the set L and v will be put to the set R. As a result u will precede v in
the final output, and we will have BBP (u, v) = 1, although it actually is the case
that ĈD(u, v) < 1

4 , and the optimal placement of u and v would place v before
u.

The weights in ĈD can be used to define other kinds of triangles as well.
In addition to the directed cycle shown above, we have also six other classes of
triangles. These are:

We define them as follows: two vertices u and v are connected by a line whenever
ĈD(u, v) is either less than 1

4 or larger than 3
4 . The direction of the arrow indicates

what vertex is likelier to precede the other if the values of ĈD are interpreted as
probabilities. If ĈD(u, v) is in the range [14 , 3

4 ] we do not draw a line between the
points.

We already argued that the cost c(BBP , e) will be smallest when either end-
point of e is chosen as the pivot, and claimed that the cost of an edge e can only
be nonoptimal when it is opposite to the pivot vertex. However, this is only a
necessary condition, it is not sufficient. Consider the triangle classes , ,
and . It is easy to see that in every case, no matter what vertex is chosen as
the pivot, the edge opposite to it will always either

a) have the smallest possible cost, i.e., it’s orientation in the final output will
be concordant with ĈD, or

b) both of its endpoints will be put to the set L (or R), and hence it’s cost
will be defined in a following recursive call of the algorithm.

For example, in case of , if we choose the vertex with two outgoing (or incoming)
edges as the pivot, the opposite edge will be put to the set R (or L) and it’s cost
is not yet defined. If we choose the vertex with one incoming and one outgoing
edge as the pivot, the edge opposite to it will be oriented in the correct way
according to ĈD.

This leaves us with only the classes , and . In the example above
we considered . Since it is completely symmetric, it is obvious that no matter
what vertex is chosen as the pivot, the edge opposite to it will always incur a
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nonoptimal cost. The remaining cases are and . In case of , if we choose
the vertex that is adjacent to the undirected edges, both endpoints of the directed
edge (u, v) will be put to the set S and hence we will have BBP (u, v) = 0.5 even
though ĈD(u, v) ∈ ( 3

4 , 1]. If either of the vertices adjacent to the directed edge
is chosen as the pivot, one of the vertices of the undirected edge (u, v) that is
opposite to it will be put to the set S, while the other one is put to the set R (or
L). This means BBP (u, v) = 1 or BBP (u, v) = 0, even though ĈD(u, v) ∈ [ 14 , 3

4 ].

In case of the following occurs: If the vertex with one outgoing (or incom-
ing) edge is chosen as the pivot, the other vertex of the opposite edge will be put
to the set R (or L) while the other one is put to the set S. In both cases the
arrow will end up pointing the “wrong” way. If the vertex with one incoming
and one outgoing edge is chosen as the pivot, the edge on the opposite side will
be assigned a direction even though both of its endpoints should belong to the
same bucket.

Define the set T = { , , }; these are the triangle classes that will always
cause a nonoptimal cost c(BBP , e) when the vertex opposite to e is chosen as the
pivot. Let cT (e) denote the cost that e incurs given that it appears in a triangle
of class T opposite to the pivot in a recursive call of the algorithm. Denote the
probability of this with pT (e). Furthermore, let copt(e) denote the cost incurred
to e when it either is adjacent to the pivot or appears opposite to the pivot in
one of the triangle classes not belonging to T . Note that we have

copt(e) = min
x∈{0,0.5,1}

2|x− ĈD(u, v)|,

where e = {u, v}. Finally, let c∗(e) denote the cost of the edge e in the globally
optimal solution B∗. Obviously we have copt(e) ≤ e∗(e), since in the optimal
solution the cost of an edge might sometimes be higher than the locally optimal
cost copt(e). For instance in case of the directed cycle ( ) one of the edges always
has to pay a nonoptimal cost.

Using the above, we can write the expected cost of e as follows:

E[c(BBP , e)] =
∑
T∈T

pT (e)cT (e) +
(
1−

∑
T∈T

pT (e)
)
copt(e). (3.2)

Either e pays the nonoptimal cost as it ends up opposite to the pivot in some
of the triangles belonging to T , or it pays copt(e) in the remaining cases. When
Equation 3.2 is substituted into 3.1, we get

E[c(BBP , G)] =
∑
e∈A

∑
T∈T

pT (e)cT (e)︸ ︷︷ ︸
HBP

+
∑
e∈A

(
1−

∑
T∈T

pT (e)
)
copt(e)︸ ︷︷ ︸

LBP

, (3.3)
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where HBP is the part with the nonoptimal (“high”) costs, and LBP the part
with the locally optimal (“low”) costs.

The next task is to derive pT (e). Define the events XT (t, e) and B(e). The
event XT (t, e) means that all vertices of the triangle t ∈ T , one side of which is
e, appear in a recursive call of the algorithm, and one of t’s vertices is chosen as
the pivot. The event B(e) happens when the pivot chosen is the vertex opposite
to edge e. Given that XT (t, e) happens, the probability of B(e) is just 1

3 as each
of the three vertices has equal probability of becoming the pivot. If pt is the
probability of XT (t, e), we can write

Pr(XT (t, e) ∧B(e)) = Pr(B(e)|XT (t, e))Pr(XT (t, e)) =
1
3
pt.

This is the probability of one t ∈ T causing e to pay a nonoptimal cost. For the
entire class T we have

pT (e) =
∑

t:e∈t∈T

1
3
pt. (3.4)

This must be a probability (≤ 1), since the events XT (t, e)∧B(e) and XT (t′, e)∧
B(e) are disjoint for all t, t′ ∈ T . If e is charged to triangle t, it can not be
charged to triangle t′. In fact, the same goes for all triangles in the input graph.
Any edge e can only cause a nonoptimal cost with one triangle, no matter what
class this triangle belongs to. This means that for all e∑

T∈T

∑
t:e∈t∈T

1
3
pt ≤ 1.

When Equation 3.4 is substituted into HBP , we obtain

HBP =
∑
e∈A

∑
T∈T

∑
t:e∈t∈T

1
3
ptcT (e)

=
∑
T∈T

∑
e∈A

∑
t:e∈t∈T

1
3
ptcT (e)

=
∑
T∈T

∑
t∈T

1
3
pt

∑
e∈t

cT (e)

HBP =
∑
T∈T

∑
t∈T

1
3
ptcT (t),

where cT (t) =
∑

e∈t cT (e). Based on the discussion above we are now able to
state the following result:

25



3. Algorithms for Finding Bucket Orders

vu

w

1−e1 1 − e2

vu

w

1−e1 1 − e

1 − e

2

3

vu

w

1−e1 0.5 + e

0.5 + e

2

3 0.5 + e3

Figure 3.2: Triangle classes leading to suboptimal alignment of the edge opposite
to the pivot. To each edge we have associated its possible value of ĈD. For the
cases where the weight is 1− ei, we have ei ∈ [0, 1

4 ]. If the weight is 0.5 + ei, we
have ei ∈ [− 1

4 , 1
4 ].

Theorem 3.2.1 The Bucket-Pivot algorithm is randomized α-approximation al-
gorithm, meaning

E[c(BBP , ĈD)] ≤ αc(B∗, ĈD),

if for all triangle classes T ∈ T we have

cT (t) ≤ αc∗(t),

where c∗(t) =
∑

e∈t c∗(e) is the cost of the edges belonging to t in the globally
optimal solution B∗.

Proof We decompose the optimal cost as follows: Let c(B∗, ĈD) = H∗ + L∗,
where

H∗ =
∑
T∈T

∑
t∈T

1
3
ptc

∗(t) and (3.5)

L∗ =
∑
e∈A

(
1−

∑
T∈T

pT (e)
)
c∗(e). (3.6)

If we assume there exists an α so that cT (t) ≤ αc∗(t) for all T ∈ T , then we
obtain that HBP ≤ αH∗, which implies the claim of the theorem, as it must be
the case that LBP ≤ L∗, since copt(e) ≤ c∗(e) for all e. �

The exact value of α is determined next. To do this we will consider all triangle
classes in T separately. See Figure 3.2 for a graphical representation of all three
classes with the possible weights (values of ĈD) for each edge. The weights are
given as deviations from 1

2 and 1. The weight of a directed edge deviates from 1
by the amount e, where e ∈ [0, 1

4 ], and the weight of an undirected edge deviates
from 1

2 by an amount in the range [− 1
4 , 1

4 ].

We will start with , which is the leftmost triangle in Figure 3.2. In the
table below we have collected the cost of every edge for every possible choice of
the pivot.
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pivot {v,w} {u,w} {u,v}
u 1

2 + e2 e1 |e3|
v |e2| 1

2 − e1 |e3|
w |e2| e1

1
2 + e3

That is, if u is chosen as the pivot, both {u, v} and {u, w} are placed optimally
and only pay the costs e1 and |e3|, respectively. The undirected edge {v, w}
is opposite to u and will become a directed edge in the solution, and is hence
charged the locally nonoptimal cost of |0− ( 1

2 + e2)| = 1
2 + e2. Now we must find

an α so that cT (t) ≤ αc∗(t), where T = . By definition we have that cT (t)
equals the sum of the nonoptimal costs of each edge, hence

cT (t) =
3
2
− e1 + e2 + e3.

In this case the best possible configuration is obtained when v is chosen as the
pivot. We have

c∗(t) =
1
2
− e1 + |e2|+ |e3|,

where e1 ∈ [0, 1
4 ] and e2, e3 ∈ [− 1

4 , 1
4 ]. If we let e1 = 1

4 and e2 = e3 = 0, we get

α =
cT (t)
c∗(t)

=
5
4
1
4

= 5.

Note that having e2 and e3 less than 1
4 would only make α smaller, as cT (t) would

decrease but c∗(t) increase.
We continue with T = . The costs for different choices of the pivot have

been again tabulated below.

pivot {v,w} {u,w} {u,v}
u 1− e2 e1 e3

v e2 1− e1 e3

w e2 e1
1
2 + e3

Now we have
cT (t) =

5
2
− e1 − e2 + e3,

and
c∗(t) =

1
2

+ e1 + e2 + e3,

where e1, e2 ∈ [0, 1
4 ] and e3 ∈ [− 1

4 , 1
4 ]. Clearly it makes sense to set e1 = e2 = 0,

as any other values would decrease cT (t) and increase c∗(t), which we do not
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want. If e3 ≥ 0, we have cT (t)c∗(t)−1 ≤ 5, and when e3 = − 1
4 , we have cT (t) = 9

4
and c∗(t) = 1

4 which gives α = 9.

Finally, we still need to cover the class . Again, the edge costs are tabulated
below.

pivot {v,w} {u,w} {u,v}
u 1− e2 e1 e3

v e2 1− e1 e3

w e2 e1 1− e3

Now e1, e2, e3 ∈ [0, 1
4 ]. We have

cT (t) = 3− e1 − e2 − e3,

and the optimal pivot depends on the precise values of the ei. Without loss of
generality we let

c∗(t) = 1 + e1 + e2 − e3.

Again we let e1 = e2 = 0 to maximize the ratio. This gives

α =
cT (t)
c∗(t)

=
11
4
3
4

=
11
3

.

We conclude the discussion of the approximation ratio by summarizing the
above results. For we have α ≤ 5, for α ≤ 9 and for α ≤ 11

3 . Thus,
Theorem 3.2.1 holds when α = 9 and we obtain the following corollary.

Corollary 3.2.2 Bucket-Pivot is a randomized 9-approximation algorithm.

Bucket Pivot with Pruning

Note that in general the Bucket Pivot algorithm does not compute the cost
c(B, ĈD), otherwise it’s running time would be quadratic in the number of items.
However, with small data sets we can afford to compute the entire cost and use
this as a heuristic to improve the solution. We now discuss a situation where
Bucket Pivot, as described in Algorithm 1, does not always compute the intuitive
solution.

Consider the case where the normalized pair order matrix satisfies the prob-
ability constraint of Equation 2.2 but does not contain any other structure. We
can generate such a matrix for instance by assigning uniformly distributed ran-
dom values from the range [0, 1] to the upper triangle and set the lower triangle
so that the probability constraint is satisfied. Intuitively the correct solution for
this kind of input would be to put everything into the same bucket. But when
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noise matrix “snowflake”

Figure 3.3: When Bucket Pivot is run with the noise matrix on the left as the
input and β = 1

4 we obtain the “snowflake” structured bucket order shown on
the right.

Bucket Pivot is run with this matrix as the input and β = 1
4 , we obtain the

“snowflake” shaped bucket order shown in Figure 3.3.
To see why this occurs, consider what happens at each level of the recursion.

No matter which row we pick as the pivot, roughly half of the elements on the
row lie between 1

4 and 3
4 . These are put into a single big bucket. The remaining

elements for which the value is either less than 1
4 or larger than 3

4 are put into
the L and R sets, respectively. In these sets we pick new pivots, but the fraction
of elements in the ranges [0, 1

4 ], [ 14 , 3
4 ] and [34 , 1] remains the same. Hence, the

resulting bucket order has a fractal-like structure.
Clearly this is not a desirable property. If there is no structure in the in-

put, the algorithm should not artificially introduce it either. To overcome the
problem we propose the following simple modification to Bucket Pivot. Let
BPL = BP(L, ĈD, β) and BPR = BP(R, ĈD, β). On line 18 in Algorithm 1,
instead of simply returning the bucket order 〈BPL, S,BPR〉, we first compute the
cost of both BPL and BPR. These are simply the L1 norms between the matrices
corresponding to BPL (and BPR) and ĈD projected to L (and R), respectively.
We also compute the cost of using only one bucket for representing the L and R
sets. The alternative with the smaller cost is used in the final solution returned
by the algorithm.

With this modification Bucket Pivot no longer outputs the “snowflake” orders
with inputs as shown on the left in Figure 3.3. Instead, the algorithm returns a
solution with only one bucket that contains all of the items as expected. Also

29



3. Algorithms for Finding Bucket Orders

note that this modification can only make the solutions returned by the algorithm
better; the approximation bounds obtained for the original algorithm still hold.

3.3 Alternative algorithms

The Bucket Pivot algorithm described in the previous section has several nice
properties. The approximation guarantee is foremost of theoretical interest due to
the fairly large constant factors. Even though the algorithm does use a parameter,
one does not need to specify the exact number of buckets in advance, which makes
model selection easier. And finally, the algorithm is very fast in practice.

One problem of Bucket Pivot is that its output may vary considerably between
individual runs of the algorithm due to the randomization. One approach would
be to run the algorithm a number of times and select the solution with the
smallest cost. This strategy, however, leads to a quadratic time complexity, as
we must access each element of an m×m matrix when computing the total cost
of a the bucket order BBP . In this section we discuss an alternative approaches
that are not as computationally efficient, but can lead to more robust results.

Instead of finding the bucket order directly, we can use a two-step method.
First we compute a total order on the items M , and then find the bucket bound-
aries in a second step. This way we can obtain a fully deterministic algorithm
for finding bucket orders. Alternatively, we can first try to group the items to
form the buckets, and then find an order for the buckets. We describe these two
approaches that take the pair order matrix ĈD and a number k as input. The
algorithms will output a bucket order with k buckets.

An approach based on segmentation

Next we will consider the method where one first orders the items and then finds k
buckets by placing bucket boundaries at k−1 positions in the order. As discussed
in Section 2.2 in the context of vertex ordering problems and rank aggregation,
finding the optimal total order for M given ĈD is hard. By optimal we mean a
total order that minimizes the sum of the edge weights pointing to the “wrong”
direction. An order that approximates this can always be found, however. In
fact, we can use Bucket Pivot to do this simply by setting β = 0. This will
yield a constant-factor approximation. Alternatively, we can rank the items in
decreasing order of the sums of each row of ĈD. This was shown in [CFR06] to
be a 5-approximation for the same problem.

Once we have obtained the total order τ , we must find k− 1 locations for the
bucket boundaries. If τ is a linear extension of the true bucket order B∗, it is
possible to find B∗ in polynomial time by using dynamic programming. We will
discuss this shortly. However, there is no guarantee that any polynomial time
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algorithm will in fact find such a τ , so the problem of finding B∗ remains hard.
Finding the bucket boundaries can be seen as a segmentation problem.

Problem (time-series-segmentation) Let X(1, n) = (x1, x2, xn) be a time-
series of length n, where each xi is a h dimensional vector. A segment of X is
defined by its begin and end points ib and ie, respectively. The segment X(ib, ie)
contains all such xi where i ∈ [ib, ie]. A segmentation Sk of X is a set disjoint
set of k segments so that every xi belongs to one and only one segment. The
optimal segmentation S∗k is defined as

S∗k = arg min
Sk

∑
X(ib,ie)∈Sk

c(X(ib, ie)),

where c(X(ib, ie)) is a cost associated with the segment starting from ib and
ending at ie.

The precise definition of the cost c(X(ib, ie)) depends on the model we use to
represent a segment. The optimal segmentation S∗k can be found in polynomial
time by using dynamic programming. Essentially we must solve the following
equation, which states that the cost of the optimal segmentation for X(1, n)
using k segments, denoted c(S∗k , X(1, n)), satisfies

c(S∗k , X(1, n)) = min
i<n
{c(S∗k−1, X(1, i)) + c(X(i + 1, n))}. (3.7)

That is, the optimal k-segmentation of X(1, n) is given by the optimal k − 1-
segmentation of X(1, i) plus the cost of having X(i + 1, n) as a single segment,
minimized over all i < n. We first compute the cost c(X(ib, ie)) for all ib, ie pairs
where 1 ≤ ib < ie ≤ m. Then the optimal segmentation is found levelwise for
each k starting from k = 2 up to k = K. The running time of this is O(n2K).
To run this in practice we must define the cost c(X(ib, ie)) of a single segment.

Let ĈD(τ) denote the pair order matrix ĈD after rearranging both its rows
and columns according to the total order τ . We can find the bucket boundaries
by solving time-series-segmentation with ĈD(τ) as the input. To do this we
simply view ĈD(τ) as an m-dimensional time series of length m. That is, we let
X = (x1, . . . , xm), where xi is the ith column of ĈD(τ).

The cost c(X(ib, ie)) of a segment is defined as follows. Consider a submatrix
of ĈD(τ) that only contains the columns from ib to ie. Denote this matrix by
ĈD(X(ib, ie)). The cost c(X(ib, ie)) is simply the L1 norm between ĈD(X(ib, ie))
and the matrix B of the same size, where for all v

B(u, v) =

 1 iff u < ib,
0.5 iff ib ≤ u ≤ ie,
0 iff u > ie.
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Figure 3.4: When segmenting ĈD(τ), the cost of a segment starting at ib and
ending at ie is defined as the L1 norm between ĈD(X(ib, ie)) and the matrix
shown here between ib and ie.

This is because items u < ib appear before every item in the segment X(ib, ie)
and items u > ie appear after every item in X(ib, ie). See Figure 3.4 for an
illustration of this.

The drawback of dynamic programming is that it is very slow. We must
compute the cost for every possible segment, which is inefficient, considering how
the cost of a single segment is defined in this case. More efficient techniques have
been proposed, such as Global Iterative Replacement [HKM+01] and Divide &
Segment [TT06]. In the experiments we use Global Iterative Replacement (gir)
instead of dynamic programming when computing the bucket boundaries.

An approach based on clustering

Instead of first ordering all m items and then finding the bucket boundaries, we
can take the opposite approach and first find items that should be put into the
same bucket and subsequently order the buckets obtained this way.

We use the pair order matrix ĈD to find the buckets simply by clustering
the columns of ĈD with some known clustering algorithm, such as k-means or a
hierarchical clustering algorithm. To see how this works, remember that if two
items u and v in fact belong to the same bucket Mi, their columns in ĈD will
be similar. For all items w that belong to buckets Mj such that j < i we should
have ĈD(w, u) ≈ ĈD(w, v) ≈ 1. And likewise for items w that belong to buckets
Mj such that j > i we expect to have ĈD(w, u) ≈ ĈD(w, v) ≈ 0. See Figure 3.1
on page 3.1 for an example. This is the pair order matrix of a bucket order, but
ĈD should have a similar structure if it can be approximated well by a bucket
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order. Clearly columns that belong to the same bucket are similar to each other
but different from columns belonging to other buckets.

Once we have obtained the clusters c1, . . . , ck we have to order them. An
easy way of doing this is based on the mean vectors of each cluster. Recall, that
by sorting the rows in increasing order of the column sums of ĈD, we obtain a
5-approximation for the min-fas problem in weighted tournaments [CFR06]. We
use the same approach and sort the clusters in increasing order of the sums of
their centroid vectors. If ĈD has a bucket structure as the matrix in Figure 3.1,
then this will result in the correct order for the buckets.

3.4 Experiments

In this section we compare the methods discussed above with real data sets from
a paleontological application. We will use the following notation to refer to the
individual algorithms:

bp This is the regular Bucket Pivot algorithm as described in Al-
gorithm 1.

bp-pr This is the Bucket Pivot algorithm extended with pruning of
unnecessary buckets as described in Section 3.2.

bp-gir This is an algorithm based on segmentation, see Section 3.3.
We first compute a total order using the Bucket Pivot algo-
rithm (by setting β = 0) and subsequently place the bucket
boundaries using Global Iterative Replacement [HKM+01].

cs-gir This is another algorithm based on segmentation. We first
compute a total order on the items with the column-sum
method, and find the bucket boundaries again using Global
Iterative Replacement.

km-cs This is an algorithm based on clustering, see Section 3.3. We
first cluster the columns of the normalized pair order matrix
with k-means, and then order the clusters based on the sums
of the centroid vectors.

The application that first motivated bucket orders as potentially interesting
models was that of biostratigraphy. This is the problem of determining the age
of a sediment based on the fossils it contains. In our case we want to find the
temporal order of a number of sites where fossils have been found.

We use two data sets called g10s10 and g5s5. They are both based on a
public database1, and are freely available as supplementary material to [PFM06].
The data contains a 0–1 matrix with sites on the rows and genera on the columns.

1http://www.helsinki.fi/science/now/index.html (25.1.2008)
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Figure 3.5: The normalized pair order matrices of the paleontological data sets.
Left: g10s10, right: g5s5. Black corresponds to the value 1, white to 0, inter-
mediate values are shown in shades of gray.

A row has ones on columns that correspond to genera whose fossils have been
found at the site.

In g10s10 there are 124 distinct sites, while g5s5 has 273 sites. Each of the
sites is either simply a geographical location, or a certain sediment at a certain
location. The difference in the age of the youngest and oldest site is in the order
of millions of years. Some of the sites are known to belong to the same era, i.e.,
in a bucket order model they should be placed in the same bucket. Currently the
domain experts use a so called MN classification to evaluate the age of a given
site. When two sites belong to the same MN class they are approximately of the
same age.

To use the algorithms discussed in this chapter we need the normalized pair
order matrix of the sites. These are shown in Figure 3.5 for both g10s10 and
g5s5. The matrices are obtained by using the method of [PFM06]. This is
a MCMC algorithm that computes a set D of permutations on the sites, we
compute the pair order matrix based on these as explained earlier. (Later, in
Chapter 7, we discuss an alternative method for computing pair order matrices
from data sets such as g10s10 and g5s5.)

In Figure 3.5 the sites are ordered according to their age estimated by domain
experts. There is a surprisingly clear bucket order structure to be seen in both
matrices, indicating that bucket orders indeed are a suitable model class for this
data set. However, we acknowledge that this structure might also have been
introduced as a side effect by the MCMC algorithm of [PFM06].

In our experiment we ran each of the aforementioned algorithms 100 times
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Experiments

bp bp-pr bp-gir km-cs cs-gir
avg. cC 315.20 314.67 278.16 369.51 277.08
min. cC 287.59 283.86 277.05 304.52 277.08
max. cC 368.00 355.17 280.49 516.63 277.08
std. cC 18.41 17.64 0.75 27.50 0.00
avg. cMN 356.03 358.85 232.64 337.52 228.00
min. cMN 229.50 240.50 220.50 244.50 228.00
max. cMN 490.00 485.00 259.00 481.50 228.00
std. cMN 65.86 59.01 7.56 34.68 0.00
avg. Nb 17.54 16.86 17.16 17.00 17.00
min. Nb 14.00 14.00 14.00 17.00 17.00
max. Nb 20.00 19.00 20.00 17.00 17.00
std. Nb 1.43 1.22 1.42 0.00 0.00

Table 3.1: Results on the g10s10 data set using different algorithms. The results
are based on 100 independent trials. Here cC denotes the cost of the solution
with respect to the pair order matrix, cMN is the cost with respect to the bucket
order given by the MN-classes, and Nb is the number of buckets in the found
solution.

with the matrices of Figure 3.5 as the input. For the Bucket Pivot based algo-
rithms we used β = 1

4 , with the exception of bp-gir, where we let β = 0 to
obtain a total order. We evaluated the results using the cost function c(B, C),
where C is either the pair order matrix given as the input (as usual) or a bucket
order matrix that equals the MN-classification2 of the sites. We denote the first
cost with cC and the second one with cMN . We also show the number of buckets
found (Nb) for those algorithms that do not have this as a parameter. For km-cs
and cs-gir we set the number of buckets to 17 to get comparable numbers with
the Bucket Pivot based algorithms.

Results for g10s10 are shown in Table 3.1. The segmentation based algo-
rithms (bp-gir and rs-gir) are very stable, that is, they tend to return the same
bucket order on every trial. The clustering based approach clearly gives the worst
results, both in terms of cC and cMN . And as expected, there is also considerable
variance in the results produced by bp and bp-pr. However, the best solutions
(those with the smallest cost) obtained with the Bucket Pivot based approaches
are almost as good as the best ones produced by the segmentation algorithms
bp-gir and cs-gir. Running bp or bp-pr is several orders of magnitude faster
than running e.g. cs-gir, meaning we can run Bucket Pivot a number of times
and pick the best solution. Of course this means one has to evaluate the cost

2A classification system used by domain experts for comparing the ages of rock sediments.
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bp bp-pr bp-gir rs-km rs-gir
avg. cC 1787.97 1764.40 1557.32 2035.22 1545.77
min. cC 1590.97 1607.47 1549.45 1874.18 1545.41
max. cC 2191.56 2069.72 1576.73 2391.84 1546.25
std. cC 97.11 97.21 5.71 78.85 0.42
avg. cMN 1929.17 1895.63 1592.67 1715.98 1581.60
min. cMN 1419.50 1562.50 1523.00 1531.50 1573.00
max. cMN 2501.00 2520.50 1700.50 2170.50 1593.00
std. cMN 222.48 197.09 36.01 90.65 9.95
avg. Nb 17.98 16.40 16.17 17.00 17.00
min. Nb 15.00 13.00 13.00 17.00 17.00
max. Nb 22.00 21.00 20.00 17.00 17.00
std. Nb 1.50 1.64 1.53 0.00 0.00

Table 3.2: Results on the g5s5 data set using different algorithms. The results
are based on 100 independent trials. Here cC denotes the cost of the solution
with respect to the pair order matrix, cMN is the cost with respect to the bucket
order given by the MN-classes, and Nb is the number of buckets in the found
solution.

function which is not of order O(m log m), but with relatively small data sets
such as the ones used here it is a feasible approach. The results for g5s5 are
shown in Table 3.2. There are no obvious qualitative differences to Table 3.1.

3.5 Conclusion

We have discussed the problem of computing a bucket order on a set of items
given the pair order matrix ĈD. This problem can be seen as a variant of the
rank aggregation problem with a different model class; we compute a bucket
order instead of a total order. We proposed a number of algorithms for the
problem. The first one is a randomized quicksort-like algorithm, for which we
give a constant factor approximation bound. This algorithm is conceptually easy
and runs fast. The other algorithms are based on time-series segmentation and
clustering.
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Chapter 4

Clustering chains

4.1 Introduction and background

Clustering is a traditional method for data exploration and analysis. The task is
to partition a given set of points to homogenous groups, so that points belonging
to different groups are less similar than points belonging to the same group.
Scientific literature about the topic is abundant and there exist a myriad of
different clustering algorithms for different purposes.

In this chapter we consider the problem of clustering chains. We describe
a technique similar to Lloyd’s algorithm [DH73, Llo82, BH67], also known as
k-means, and conduct a number of experiments to study the algorithm’s perfor-
mance with real and artificial data sets. We start the discussion by characterizing
typical approaches to clustering, and give arguments whether or not they are suit-
able for use with chains. In Section 4.2 we describe our algorithm in more detail.

A brief overview of clustering algorithms

A clustering of a set D of points is a disjoint partition of D, denoted C =
{D1, . . . , Dk}, where every x ∈ D belongs to one and only one Di, where i ∈ [1, k]
is the cluster number of x, and Di ∩ Dj = ∅ for all i 6= j. We abuse notation
slightly and denote by C(x) the cluster number of point x ∈ D in clustering C.
The aim is to have similar points belonging to the same cluster Di, while putting
dissimilar points to the other clusters Dj with j 6= i.

Clustering algorithms can be organized to groups based on their operation.
Hierarchical clustering algorithms construct a tree, also called a dendrogram, with
the points as leaves. All leaves belonging to the same subtree are considered to
belong to the same cluster. This tree can be constructed either in a top-down or
bottom-up fashion. To obtain the clustering C from the dendrogram, one has to
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4. Clustering chains

Algorithm 2: Lloyd’s algorithm

k-means(D, k) {Input: D, set of points; k, number of clusters. Output: The
clustering C = {D1, . . . , Dk}.}
{D1, . . . , Dk} ← PickInitialClusters( D, k );
e←

∑k
i=1

∑
x∈Di

d(π,Centroid(Di));
repeat

e0 ← e;
C0 ← {D1, . . . , Dk};
for i← 1, . . . , k do

Di ← {x ∈ D|Di = arg minj d(x,Centroid(Dj)};
end for
e←

∑k
i=1

∑
x∈Di

d(x,Centroid(Di));
until e ≥ e0 ;
return C0;

define on what level to cut the subtrees. A higher level results in a clustering
with fewer clusters, whereas a low level can result in a clustering with very many
clusters.

In a top-down approach all points first belong to the same cluster, which
is then split to two smaller clusters according to some criteria. These clusters
will from two subtrees of the final tree. The algorithm proceeds by recursively
clustering both of the smaller clusters.

The bottom-up approach operates in an opposite fashion. Given a clustering,
a bottom-up algorithm finds two clusters that are similar enough to be merged
into one cluster. In the beginning all n points form a clustering of n clusters, and
in the first step the algorithm finds two points that are closest to each other and
combines them to form a cluster of two points.

In the top-down approach the hard part is to find a good split of a cluster,
whereas in the bottom-up strategy the final result is considerably affected by the
choice of criteria for combining two clusters. In general the top-down approach
is considered more difficult, as finding the best split is harder than finding the
best two clusters to merge. To find the two clusters to merge one only needs to
keep a structure with the distances between every pair of clusters and update it
when a merge occurs. Turns out this is relatively simple to do when compared
to finding the optimal split.

Lloyd’s algorithm, or k-means [DH73, Llo82, BH67], is based on a different
approach. It computes a clustering to k clusters without using distances between
points. Instead, it finds a partitioning C of the input points to k groups Di so
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that the cost
k∑

i=1

∑
x∈Di

d(x, centroid(Di)) (4.1)

is minimized. Here d is a distance function and centroid(Di) refers to a “center
point” of the cluster Di. Typically one uses the mean as the centroid and squared
Euclidean distance as d. This is also called the reconstruction error. The algo-
rithm is given in Algorithm 2. On every iteration k-means updates the clustering
by assigning each point x ∈ D to the cluster with the closest centroid. The al-
gorithm terminates when the clustering error no longer decreases. Note that the
resulting clustering may not be a global optima of (4.1), but the algorithm can
end up at a local minimum.

Problems with chains

Both hierarchical approaches and Lloyd’s algorithm require a distance function.
In the case of hierarchical clustering we must be able to compute distances be-
tween two points in the input, while with k-means we have to compute a distance
to a centroid, which is usually a point as well.

Defining a good distance function for chains is not straightforward. For exam-
ple, if we have the chains 1 < 4 < 5 and 2 < 3 < 6, it is not easy to say anything
about their similarity, as they share no common items. We will return to this
problem later in Section 4.3, for now it is sufficient to remember that defining
the distance between two chains is not trivial.

This makes the use of agglomerative techniques hard. Lloyd’s algorithm is
more interesting, as we do not need to compute distances between two chains,
but only consider the distance to the cluster centroid. This centroid does not
have to be a chain, which makes defining a good distance function easier.

Thus, instead of using a chain for the cluster centroid, we can use a total
order. This is the approach taken in [KA06]. Recall that the Kendall distance
between permutations π1 and π2 is defined as the number of disconcordant pairs
(u, v) normalized by the total number of pairs. For permutations of M (with m
items) this is

dK(π1, π2) =
(1
2
m(m− 1)

)−1 ∑
u∈M

∑
v∈M

I{(u, v) ∈ π1 ∧ (v, u) ∈ π2}.

If either of π1 or π2 is a chain, we can still use almost the same definition. Let
M(π) denote the subset of M that is covered by the chain π. Now we can only
compare the items in M̃ = M(π1) ∩M(π2), and have

dK(π1, π2) =
(1
2
h(h− 1)

)−1 ∑
u∈M̃

∑
v∈M̃

I{(u, v) ∈ π1 ∧ (v, u) ∈ π2}, (4.2)
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where h = |M̃ |. This definition is of course meaningful only if h ≥ 2. When
h < 2 we can either say that dK(π1, π2) is not defined, or let dK(π1, π2) = d′,
where d′ ∈ [0, 1] is some predefined constant. If either of π1 or π2 is a total
order we always have l common items as the total order is guaranteed to contain
everything in M .

The problem of using a total order for representing the centroid is that one
basically has to solve the rank aggregation problem discussed in Chapter 2. Given
all chains belonging to the cluster Ci, we have to compute a total order that is
the “average” of Ci. This is not trivial, but can be solved by several different
approaches, some of which have theoretical performance guarantees, and some of
which are just heuristics that happen to give reasonable results in practice. One
option is to use the Bucket Pivot algorithm presented in the previous chapter.
By setting β = 0 the algorithm outputs a total order instead of a bucket order. In
[KA06] two different approaches are proposed for computing the centroid. They
perform in practice almost equally well in the experiments given in [KA06]. It
is not very well understood how the quality of the resulting clustering is affected
by the method used to compute the centroid.

Our main objective, however, is to consider the case where the centroid is not
a total order. The main motivation for this is that we want to avoid having to
solve the rank aggregation problem for each cluster on each iteration of Lloyd’s
algorithm. The details of our approach are discussed next.

4.2 Distances and centroids

The algorithm we propose for clustering chains is a variant of Lloyd’s algorithm
(see Algorithm 2), adopted for chains. As pointed out in the previous section,
there are some problems associated with using traditional clustering techniques
with chains. The distance between two chains and the centroid of a set of chains
are both not easily defined. Lloyd’s algorithm can be implemented without a
distance function for the items that are clustered, but requires the computation
of a cluster centroid to which the distances can be efficiently calculated. We
discuss next the choice of the centroid, and how this depends on the distance
measure we use.

First consider the following general definition of a centroid. Given a set D of
items and the class Q of centroids for D, we want to find a X∗ ∈ Q, so that

X∗ = arg min
c∈Q

∑
x∈D

d(x, c), (4.3)

where d(x, c) is the distance between x and c. Intuitively X∗ must thus reside at
the “center” of the set D.
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We let Q be set of all |M |×|M |matrices that satisfy the probability constraint
(X(u, v) + X(v, u) = 1 for all u, v ∈ M). Given a matrix X ∈ Q and a chain π,
the distance d(π,X) of π and X is defined by

d(π,X) =
∑

(u,v)∈π

X(v, u). (4.4)

Note that a total order τ can be represented as a matrix X ∈ Q simply by letting
X(u, v) = 1 and X(v, u) = 0 for all (u, v) ∈ τ . In this case Equation 4.4 is
equivalent to Equation 4.2.

To find the centroid of a given set D of chains, we must find now a matrix
X ∈ Q such that the cost

c(X, D) =
∑
π∈D

∑
(u,v)∈π

X(v, u)

is minimized. By writing the sum in terms of pairs of items instead of chains, we
obtain

c(X, D) =
∑
u∈M

∑
v∈M

CD(u, v)X(v, u),

where CD(u, v) denotes the number of chains in D where u appears before v. Let
U denote the set of all unordered pairs of items from M . Using U the above can
be written as

c(X, D) =
∑

{u,v}∈U

(
CD(u, v)X(v, u) + CD(v, u)X(u, v)

)
.

As X must satisfy the probability constraint, this becomes

c(X, D) =
∑

{u,v}∈U

(
CD(u, v)(1−X(u, v)) + CD(v, u)X(u, v)

)
.

To minimize this it is enough to independently minimize the individual parts
of the sum corresponding to the pairs in U . These are convex combinations of
CD(u, v) and CD(v, u), and will be minimized when we let X(u, v) = 1 when
CD(u, v) > CD(v, u) and X(u, v) = 0 (meaning X(v, u) = 1) when CD(u, v) <
CD(v, u). Or, in other terms, we get X by rounding the values in the normalized
pair order matrix ĈD to 0s and 1s. Note that the resulting matrix does not
necessarily represent a total order, as cycles can be introduced by the rounding.

A drawback when using X as defined above is that the distances are all integer
valued. This may increase the probability that two centroids are of equal distance
from a chain, and we have to make the assignment to one of them arbitrarily (see
statement inside the for-loop of Algorithm 2). This can be avoided by using the
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matrix ĈD directly as the cluster centroid. If instead of the distance given in
Equation 4.4 we use the definition

d′(π,X) =
∑

(u,v)∈π

X(v, u)2, (4.5)

X∗ = ĈD will satisfy Equation 4.3. This is easily seen by noting that now we
must minimize

c(X, D) =
∑

{u,v}∈U

(
CD(u, v)(1−X(u, v))2 + CD(v, u)X(u, v)2︸ ︷︷ ︸

c(X,{u,v})

)
.

Again the individual parts of the sum can be minimized independently. The first
derivative of c(X, {u, v}) with respect to X(u, v) is

−2CD(u, v)(1−X(u, v)) + 2CD(v, u)X(u, v).

Setting this equal to zero gives

X(u, v) =
CD(u, v)

CD(u, v) + CD(v, u)
= ĈD(u, v).

4.3 Mappings to vector spaces

So far we have approached the problem of by suggesting ways to make Lloyd’s
algorithm usable directly with the chains in our input. In this section we use
a different strategy and discuss two ways to represent chains in a vector space.
This makes it possible to compute the clustering using any algorithm that works
with vectors. A clustering obtained in this way does obviously not minimize the
same objective function as the algorithm discussed in the previous section. If this
is not desired, we can use the vector space representation to compute an initial
clustering of the chains, and then refine this with Lloyd’s algorithm using the
centroid and distance function discussed above.

Note that this is only one possible application of the vector representation. In
Chapter 5 we make use of the vectors for creating scatterplots of sets of chains.
Also other tasks, for example nearest neighbor queries or classification problems,
can be solved for inputs that consist of chains using these representations.

The first mapping we describe in Section 4.3 is based on using the adja-
cency matrices of two graphs with the chains in the input D as vertices. These
graphs can be seen as special cases of the so called Planted Partition Model (see
e.g. [CK01, ST02]). In Section 4.3 we discuss an alternative technique that maps
chains to points on the surface of a high-dimensional hypersphere.
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Graph representation

Motivation

We start the discussion by returning to the question of computing the distance
between two chains. Both Spearman’s footrule and Kendall distances can be
modified for chains so that they only consider the common items. If the chains
π1 and π2 have no items in common, we have to fix some distance between π1 and
π2. This is done for example in [KF03], where the distance between two chains
is given by 1− ρ, where ρ ∈ [−1, 1] is Spearman’s rank correlation. For two fully
correlated chains the distance becomes in this case 0, and for chains with strong
negative correlation the distance is 2. If the chains have no common items we
have ρ = 0 and the distance is 1.

We could use the same approach also with the Kendall distance: The distance
of the chains π1 and π2 is the Kendall distance of the permutations induced by
the common items in π1 and π2 normalized to the interval [0, 1]. If there are
no common items we set simply the distance to 0.5. Now consider the following
example. Let π1 = (1 2 3 4 5), π2 = (6 7 8 9 10), and π3 = (4 8 2 5 3). By
definition we have dK(π1, π2) = 0.5, and a simple calculation gives dK(π1, π3) =
0.5 as well. Without any additional information this is a valid approach.

However, as we are clustering the chains, we can take into account the un-
derlying orders (total or partial) that have generated the set of chains D. See
Section 2.1 for a description of the model that we assume has generated the set
of chains. For example, let us assume that the components are total orders,
and that π1 and π2 have been emitted by the same component, the total order
(1 2 3 4 5 6 7 8 9 10), and that π3 is generated by another component, the
total order (6 7 9 10 4 8 2 5 3 1). Under this assumption it no longer appears
meaningful to have dK(π1, π2) = dK(π1, π3), as the clustering algorithm should
separate chains generated by different components from each other. We would
like to have dK(π1, π2) < dK(π1, π3) in this case. Of course we can a priori not
know the underlying components, but when computing a clustering of the set of
chains we are implicitly assuming that they exist.

Agreement and disagreement graphs

Next we propose a method for mapping the chains to Rm so that the distances
between the vectors that correspond to π1, π2 and π3 satisfy the inequality above.
In general, we would like to have chains that are generated by the same component
to have a shorter distance to each other than to chains that are generated by other
components. To this end, we define the distance between two chains in D as the
distance between their neighborhoods in appropriately constructed graphs. If the
neighborhoods are similar, i.e., there are many chains in D that are (in a sense
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to be formalized shortly) “close to” both π1 and π2, we consider also π1 and π2

similar to each other. Note that this definition of distance between two chains
is dependant on the input D, i.e., we obtain different distances for π1 and π2 by
changing the other chains in D.

We say that chains π1 and π2 agree if for some u and v we have (u, v) ∈ π1

and (u, v) ∈ π2. Likewise, the chains π1 and π2 disagree if for some u and v we
have (u, v) ∈ π1 and (v, u) ∈ π2. Note that π1 and π2 can simultaneously both
agree and disagree. We define two graphs as follows: Let Ga(D) be the agreement
graph of the set D, and let Gd(D) be the disagreement graph of the set D. Both
Ga(D) and Gd(D) are undirected graphs with chains in D as vertices. In the
agreement graph Ga(D) two vertices are connected by an edge if their respective
chains agree and do not disagree. In the disagreement graph Gd(D) two vertices
are connected by an edge if their respective chains disagree but do not agree.

The Planted Partition Model

Consider the following stochastic model for creating a random graph of n ver-
tices. First partition the set of vertices to k disjoint subsets denoted V1, . . . , Vk.
Then, independently generate edges between the vertices as follows: add an edge
between two vertices that belong to the same subset with probability p, and add
an edge between two vertices that belong to different subsets with probability
q < p. This specific model was first discussed in [CK01] and subsequently in
[ST02].

Under some simplified conditions both the agreement graph Ga(D) and dis-
agreement graph Gd(D) can be seen as instances of the planted partition model.
Consider the graph Ga(D), and let the chains be generated by a mixture of k
random total orders on the set of items M , so that each chain is the projection
of one of the total orders on some l-sized subset of M . In this case we have

p =
(

m

l

)−1 l∑
i=2

(
l

i

)(
m− l

l − i

)
, and (4.6)

q =
(

m

l

)−1 l∑
i=2

(
l
i

)(
m−l
l−i

)
i!

. (4.7)

These can be derived as follows. Consider the case where we first pick the chain π1

from component j. This is a subset of M of size l ordered according to component
j. The probability p that a second chain π2 generated by component j agrees with
π1 is the probability that π1 and π2 share at least two items. That is, p is given
by the sum of the possible choices of items into π2 that have at least 2 items in
common with π1, divided by the total number of choices of l-sized subsets of M .
In the case of q the chain π2 is picked from the component j′ 6= j. It can happen
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Figure 4.1: Minimum size n of the input as a function of m for different l when
using the algorithm of [ST02] for computing the clustering. (Assuming the clus-
ters are of equal size.) The numbers on the y-axis are not absolute, instead the
purpose of the curves is to indicate how the minimum input size behaves as m
increases.

that π2 agrees with π1, but in that case all the common items must be ordered
exactly as in π1. To take this into account we divide the product of the binomial
coefficients with the factorial of i, as only one of the possible permutations of the
common items is allowed.

Both [CK01] and [ST02] present algorithms that find the correct clustering
with high probability, provided the gap ∆ = p − q is not too small. According
to [ST02], for input D of size n, the gap ∆ must be Ω(n−

1
2+ε), for the algorithm

of [CK01] to work, and of order Ω(kn−
1
2 log n) for their improved algorithm to

find the correct partitioning. Moreover, these bounds hold only for equal sized
clusters.

Using Equations 4.6 and 4.7 we can compute the value of the gap ∆ = p− q
for different values of m and l. Moreover, we can check for what value of n (size
of the input) the algorithm of, say, [ST02] will work with the given value of ∆.
In Figure 4.1 we have plotted n as a function of m for different values of l. For
instance, if m = 200 and l = 10 (still a reasonable combination of the parameters
in practical applications) we need tens of thousands of chains in the input for
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the algorithm of [ST02] to find the correct partitioning with high probability. In
practice n can be one or two orders of magnitude smaller. The effect of l is also
considerable; when m is about 100, n increases by an order of magnitude when l
decreases by 2.

We can also study how the gap ∆ behaves as a function of m and l. Since we
have

∆ = p− q =

∑l
i=2

(
l
i

)(
m−l
l−i

)(
1− 1

i!

)
(
m
l

) ,

where (1 − 1
i! ) is significantly less than 1 only for very small i (say, i ≤ 3), it is

reasonable to bound ∆ by using an upper bound for p. We obtain the following
theorem:

Theorem 4.3.1 For the simple model under which Equations 4.6 and 4.7 hold,
we have

∆ < p = O
( l2

m

)
.

Proof See Appendix A. �

This bound partially explains the strong effect of l in Figure 4.1. Also, it gives
some intuition how the density of the agreement graph behaves when we modify
m and l.

Using Ga(D) and Gd(D)

In the agreement graph, under ideal circumstances the chain π is mostly con-
nected to chains generated by the same component as π. Also, it is easy to see
that in the disagreement graph the chain π is (again under ideal circumstances)
not connected to any of the chains generated by the same component, and only
to chains generated by the other components. This latter fact makes it possible
to find the correct clustering by finding a k-coloring of Gd(D). Unfortunately
this has little practical value as in real data sets we expect to observe noise that
will distort both Ga(D) and Gd(D).

Above we argued that representations of two chains emitted by the same
component should be more alike than representations of two chains emitted by
different components. Consider the case where k = 2 and both clusters are of
size n/2. Let fa(π) ∈ Rn be the row of the adjacency matrix of Ga(D) that
corresponds to chain π. Let chain π1 be generated by the same component as
π, and let π2 be generated by a different component. If the similarity s between
fa(π) and fa(π′) is simply the number of elements where fa(π) = fa(π′) = 1, we
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have the following:

E[s(fa(π), fa(π1))] =
n

2
p2 +

n

2
q2 =

n

2
(p2 + q2),

E[s(fa(π), fa(π2))] =
n

2
pq +

n

2
qp = nqp.

If we let p = cq, with c > 1, it is easy to see that E[s(fa(π), fa(π1))] >
E[fa(π), fa(π2)]. This is true if p and q are defined as in Equations 4.6 and
4.7. Therefore, at least under these simple assumptions the expected distance
between two chains from the same component is always less than the expected
distance between two chains from different components.

In practice we can combine the adjacency matrices of Ga(D) and Gd(D) to
create the final mapping. Let Gad = Ga(D)−Gd(D), where Ga(D) and Gd(D)
denote the adjacency matrices of the agreement and disagreement graphs. The
representation of the chain π in Rn is simply the vector of Gad that corresponds
to π.

Using the agreement and disagreement graphs has the obvious drawback that
the adjacency matrices of Ga(D) and Gd(D) are both of size n×n, and computing
one entry takes time proportional to l2. Even though Ga(D) and Gd(D) have the
theoretically nice property of being generated by the Planted Partition Model,
using them in practice can be prohibited by the scalability issues. In Section 4.4
we consider an approach where the matrix Gad is not computed fully, but only a
fraction of it’s columns are used for clustering.

Hypersphere representation

Next we discuss a method for mapping chains to an m-dimensional vector space.
The mapping can be computed in time O(|D|). This method has a slightly
different motivation than the one discussed above. Let f be the mapping from
the set of all chains to Rm and let d be a distance function in Rm. Furthermore,
let π be a chain and denote by πR the reverse of π, i.e., the chain that orders the
same items as π, but in exactly the opposite way. The mapping f and distance
d should satisfy

πR = arg max
π′

d(f(π), f(π′)) for all π, (4.8)

d(f(π1), f(πR
1 )) = d(f(π2), f(πR

2 )) for all π1 and π2. (4.9)

Less formally, we want the reversal of a chain to be furthest away from it in the
vector space (4.8), and the distance between π and πR should be the same for all
chains (4.9). We first define a mapping for total orders and then generalize this
for chains. In both cases the mappings have a nice geometrical interpretation.
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A mapping for total orders

We define a function f that maps total orders to Rm as follows: Let π be a
permutation of M , and let π(u) denote the position of u ∈ M in π. Define the
vector fπ so that

fπ(u) = −m + 1
2

+ π(u) (4.10)

for all u ∈M . We define the mapping f such that f(π) = fπ/‖fπ‖ = f̂π.
For example, if M = {1, . . . , 8} and π = (5, 1, 6, 3, 7, 2, 8, 4), then according

to Equation 4.10

fπ = (−2.5, 1.5,−0.5, 3.5,−3.5,−1.5, 0.5, 2.5),

and as ‖fπ‖ = 6.48, we have

f(π) = f̂π = (−0.39, 0.23,−0.08, 0.54,−0.54,−0.23, 0.08, 0.39).

When d is the cosine distance between two vectors, which in this case is simply
1 − f̂T

π f̂π′ as the vectors are normalized, it is straightforward to check that f̂π
satisfies equations 4.8 and 4.9. This mapping has a geometrical interpretation: all
permutations are points on the surface of an m-dimensional unit-sphere centered
at the origin. Moreover, the permutation π and its reversal πR are on exactly
opposite sides of the sphere. That is, the image of πR is found by mirroring the
image of π at the origin.

A mapping for chains

To extend the above for chains we employ the technique used e.g. in [Cri85] and
also in [Zha04]. The idea is to represent a chain τ on M by the set of permutations
on M that are compatible with τ . That is, we view τ as a partial order on M and
use the set of linear extensions of τ to construct the representation f(τ). More
precisely, we want f(τ) to be the center of the points in the set {f(π) : π ∈ E(τ)},
where f is the mapping for permutations given in the definition above, and E(τ)
is the set of linear extensions of τ . Despite the fact that the size of E(τ) is(
m
l

)
(m− l)!, we can compute f(τ) very efficiently. We start by giving a definition

for f(τ) that is not related to E(τ) in any way. Then, in Theorem 4.3.2 we show
that this definition indeed leads f(τ) to be the center of E(τ).

We define a function f that maps chains to vectors in Rm as follows: Let τ
be a chain and let fπ be defined as in Equation 4.10. Define the vector fτ so that

fτ (u) =
{
− |τ |+1

2 + τ(u) iff u ∈ τ ,
0 iff u 6∈ τ ,

(4.11)

for all u ∈M . Finally, we define the mapping f such that f(τ) = fτ/‖fτ‖ = f̂τ .

48



Mappings to vector spaces

It is not trivial to see that a mapping based on Equation 4.11 indeed results
in what we outlined above. We give the following theorem.

Theorem 4.3.2 If the vector fτ is defined as in Equation 4.11, then for some
constant Q we have

fτ (u) = Q
∑

π∈E(τ)

fπ(u) (4.12)

for all u ∈M .

Before looking at the proof, let us comment what the statement of the theorem
means. We want f(τ) to be the mean of the points that represent the linear
extensions of τ , normalized to unit length. Theorem 4.3.2 states that this mean
has a simple explicit formula that is given by Equation 4.11. Thus, when normal-
izing fτ we indeed get the normalized mean vector without having to sum over
all linear extensions of τ . This is very important, as E(τ) is so large that simply
enumerating all its members is not computationally feasible.

Proof (of Theorem 4.3.2) We start by showing that the claim of Equation 4.12
holds for all u that belong to τ . Basically we will show that∑

π∈E(τ)

fπ(u) = Q
(
−|τ |+ 1

2
+ τ(u)

)
. (4.13)

First, note that
∑

π∈E(τ) fπ(u) can be rewritten as follows

∑
π∈E(τ)

−m + 1
2

+ π(u) =
m−|τ |+τ(u)∑

i=τ(u)

#{π(u) = i}
(
−m + 1

2
+ i

)
, (4.14)

where #{π(u) = i} denotes the number of times u appears at position i in the
linear extensions of τ . The sum is taken over the range τ(u), . . . ,m− |τ |+ τ(u),
as π(u) can not be less than τ(u), because the items that appear before u in τ
must appear before it in π as well, likewise for the other end of the range.

To see what #{π(u) = i} is, consider how a linear extension π of τ is struc-
tured. When u appears at position i in π, there are exactly τ(u) − 1 items
belonging to τ that appear in the i − 1 indices to the left of u, and |τ | − τ(u)
items also belonging to τ that appear in the m − i indices to the right of u.
The ones on the left may choose their indices in

(
i−1

τ(u)−1

)
different ways, while

the ones on the right may choose their indices in
(

m−i
|τ |−τ(u)

)
different ways. The

remaining items that do not belong to τ are assigned in an arbitrary fashion to
the remaining m− |τ | indices. We have thus,

#{π(u) = i} =
(

i− 1
τ(u)− 1

)(
m− i

|τ | − τ(u)

)
(m− |τ |)!.
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When this is plugged into the right side of (4.14), and after rearranging the terms
slightly, we get

∑
π∈E(τ)

fπ(u) = (m− |τ |)!
m−|τ |+τ(u)∑

i=τ(u)

(
i− 1

τ(u)− 1

)(
m− i

|τ | − τ(u)

)(
−m + 1

2
+ i

)
.

This can be written as ∑
π∈E(τ)

fπ(u) = (m− |τ |)!(S1 + S2), (4.15)

where

S1 = −m + 1
2

m−|τ |+τ(u)∑
i=τ(u)

(
i− 1

τ(u)− 1

)(
m− i

|τ | − τ(u)

)
, and

S2 =
m−|τ |+τ(u)∑

i=τ(u)

i

(
i− 1

τ(u)− 1

)(
m− i

|τ | − τ(u)

)
.

Let us first look at S2. The part i
(

i−1
τ(u)−1

)
can be rewritten as follows:

i

(
i− 1

τ(u)− 1

)
=

i (i− 1)!
(τ(u)− 1)!(i− τ(u))!

· τ(u)
τ(u)

= τ(u)
i!

τ(u)!(i− τ(u))!

= τ(u)
(

i

τ(u)

)
.

This gives

S2 = τ(u)
m−|τ |+τ(u)∑

i=τ(u)

(
i

τ(u)

)(
m− i

|τ | − τ(u)

)
= τ(u)

(
m + 1
|τ |+ 1

)
,

where the second equality is based on Equation 5.26 in [GKP94]. Next we must
show that

(
m+1
|τ |+1

)
will appear in S1 as well. We can rewrite the sum as follows:

m−|τ |+τ(u)∑
i=τ(u)

(
i− 1

τ(u)− 1

)(
m− i

|τ | − τ(u)

)
=

m−|τ |+τ(u)−1∑
i=τ(u)−1

(
i

q

)(
r − i

p− q

)
,
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Figure 4.2: Permutations in S(I) have the positions I occupied by items that
belong to the chain τ , while permutations in S(Ī) have the positions Ī occupied
by items of τ . See proof of Theorem 4.3.2.

where q = τ(u)− 1, r = m− 1 and p = |τ | − 1. Again we apply Equation 5.26 of
[GKP94] to get

S1 = −m + 1
2

(
r + 1
p + 1

)
= −m + 1

2

(
m

|τ |

)
,

which we multiply by |τ |+1
|τ |+1 and have

S1 = −|τ |+ 1
2

· m + 1
|τ |+ 1

(
m

|τ |

)
= −|τ |+ 1

2

(
m + 1
|τ |+ 1

)
.

When S1 and S2 are plugged into (4.15) we have

∑
π∈E(τ)

fπ(u) = (m− |τ |)!
(
−|τ |+ 1

2

(
m + 1
|τ |+ 1

)
+ τ(u)

(
m + 1
|τ |+ 1

))
,

which is precisely Equation 4.13 when we let Q = (m− |τ |)!
(

m+1
|τ |+1

)
.

To complete the proof we must still show that Equation 4.12 also holds for
items u that do not appear in the chain τ . For such u we have fτ (u) = 0 by defini-
tion, and as we showed above that Q > 0, we have to show that

∑
π∈E(τ) fπ(u) = 0

to prove the claim.
It is simple to see that fπ(u) + fπ′(u) = 0 when π′(u) = m − π(u) + 1;

the values at π(u) and m − π(u) + 1 cancel each other out. We’ll partition
E(τ) to disjoint groups defined by index sets I. Let S(I) denote the set of
all linear extensions of τ , where the items that belong to τ appear at indices
I = {i1, . . . , i|τ |}. Furthermore, let Ī = {m − i1 + 1, . . . ,m − i|τ | + 1}. Note
that these are the positions that would cancel out the values incurred by an item
appearing in a position in I. See Figure 4.2 for an illustration of the structure of
S(I) and S(Ī).
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First, consider the positions not in {I ∪ Ī}. Every item u 6∈ τ appears equally
many times in each of these positions in S(I). To see this, remember that in all
permutations of m − |τ | items, each item appears equally many times at every
position. Hence, item u appears as many times at position π(u) 6∈ {I ∪ Ī} as it
appears at position m− π(u) + 1, meaning that for these positions the terms of∑

π∈S(I) fπ(u) cancel each other out.

The problem is that in S(I) an item that does not belong to τ an appear
at a position in Ī as well, but terms corresponding to these occurrences are not
canceled out as the positions in I are occupied by items belonging to τ . Now
consider the set S(Ī). Here the situation is reversed: items not in τ appear also at
positions I, but are not canceled out because the positions Ī are again “blocked”
by items in τ . However, it is easy to see that the number of times an item u 6∈ τ
appears at a position i ∈ Ī in S(I), is the same as the number of times u appears
in position j ∈ I in S(Ī). Thus, the occurrences in S(I) and S(Ī) cancel each
other out. For an u 6∈ τ we can write

∑
π∈E(τ)

fπ(u) =
1
2

∑
I

∑
π∈{S(I)∪S(Ī)}

fπ(u),

and we argued above that the inner sum on the right-hand side is always zero,
the desired result follows. This concludes the proof of Theorem 4.3.2. �

One advantage of the hypersphere representation over using the mapping
based on the agreement and disagreement graphs is speed. To compute the
vectors fπ for all chains in the input is of order O(nl), which is considerably less
than the requirement of O(n2l2) for the graph based approach. Of course we lose
the property of having a shorter distance between chains generated by the same
component than between chains generated by different components. The second
advantage is size. Storing the full graph representation requires O(n2) memory,
while storing the hyperspere representation needs only O(nm) of storage. This
is less than O(n2) as we usually have m� n.

4.4 Experiments

In this section we discuss experiments based on both artificial and real data sets.
We use the following combinations of techniques:
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graph Compute the graph representation of the input and use any
implementation of k-means on this to obtain a clustering.

graph, rf Same as graph but the returned clustering is refined using the
iteration described in Section 4.2.

hyper Compute the hypersphere representation of the input and use
any implementation of k-means on this to obtain a clustering.

hyper, rf Same as hyper but the initial clustering is refined using the
iteration described in Section 4.2.

With graph and hyper we used the k-means implementation found in the
Statistics Toolbox of Matlab with the cosine distance for both representations.

A comparison of the algorithms

We compare the algorithms first using the real data sets described in Section 2.1.
The sushi and mlens data sets are likely to be more difficult to cluster, as the
total number of items is larger than in case of dublin and msnbc. In addition
to our own algorithm we also run the same experiments with the algorithms
presented in [KA06]. These algorithms, denoted TMSE and EBC, are similar
clustering algorithms for sets of chains, but they are based on slightly different
distance functions and type of centroid. Our algorithm was implemented in
Matlab, while TMSE and ECB are the original C implementations obtained from
the authors of [KA06].

We used the algorithms to compute a 2-way clustering of each data set, and
computed the clustering error as defined in Equation 4.1. The experiment was
repeated 25 times. The results given in Table 4.1 are averages of these. Estimates
of the standard deviation of the error are given in parenthesis. The best perform-
ing algorithm is indicated in bold for each data set. The dummy algorithm on
the top row is the error we obtain when all chains are put into the same cluster.

sushi mlens dublin msnbc
dummy 94138 71092 21407 36964
graph (99.90) 86122 (347.9) 66300 (46.40) 18636 (0.000) 34350
graph, rf (137.0) 85113 (342.7) 66285 (510.9) 17116 (472.1) 32473
hyper (77.70) 86179 (441.5) 66406 (272.7) 17219 (0.000) 33307
hyper, rf (136.6) 84996 (445.7) 66376 (26.30) 16848 (46.40) 32363
EBC (427.6) 85761 (21.70) 65846 (545.8) 17723 (182.6) 32888
TMSE (338.4) 85058 (28.30) 65847 (150.6) 17202 (195.5) 32797

Table 4.1: Averages of the clustering cost (of 25 rounds with k = 2) for different
algorithms and data sets. The smallest error for each data set is indicated in
bold.
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Of our algorithms graph, rf and especially hyper, rf outperform both TMSE
and EBC in every case except mlens, where TMSE and EBC have a smaller
error. Also, the estimated standard deviation is smaller with our algorithms in
the cases where they perform better than the algorithms of [KA06].

Correctness of the returned clustering

The notion of “correctness” is difficult to define when it comes to clustering
models. With real data we do in general not know the correct clusters. When
comparing two different clusterings of the same data one typically considers the
clustering with the smallest reconstruction error (as defined in Equation 4.1)
as the better model. However, this is not guaranteed to be more correct than
any other clustering. With artificial data we can generate the data so that it
contains a known clustering and then compare this with the clusterings found by
the algorithms.

To this end we need a way of measuring the similarity of two clusterings. One
alternative is to compute all pairwise similarities between clusters in the first and
second clustering. The similarity of two clusters can be defined simply as the
fraction of points they have in common. Then these similarities are used to com-
pute the best matching between the clusters in the first and second clustering.
The similarity of the clusterings is given by the weight of this matching. Ideally,
when the clusterings are identical and the similarity between two clusters is de-
fined as above, there exists a matching with weight equal to k. This is because
the similarity of all pairs of clusters in the matching is 1.

While this is a reasonable approach, it has the drawback of not being very
elegant. One has to first compute all pairwise similarities and then find the
optimal matching based on these. Alternatively we can compare two clusterings
C1 and C2 by considering pairs of points {xi, xj}, xi, xj ∈ D. Let Ps(C) =
{{xi, xj}|C(xi) = C(xj)} be the set of pairs where both points belong to the same
cluster in clustering C. Likewise, let Pd(C) = {{xi, xj}|C(xi) 6= C(xj)} be the set
of pairs where the points belong to different clusters in clustering C. We now
define the similarity of two clusterings C1 and C2 as follows:

sim(C1, C2) =
|Ps(C1) ∩ Ps(C2)|+ |Pd(C1) ∩ Pd(C2)|

0.5n(n− 1)
, (4.16)

where n = |D|. This is the fraction of pairs that behave in the same way in both
clusterings. Note that Ps(C) + Pd(C) = 0.5n(n− 1) for any C.

We create artificial sets of chains with the procedure described in Section 2.1
on page 6. Parameters that we vary are l, the number of items m, and cs, which
is the number of chains generated by a single component. The total size of the
input is thus k · cs. Additional parameters are the number of components k and
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the number of buckets in a bucket order, denoted b. We fix k = 2 and b = 10,
and let cs ∈ {200, 400, 800}, l ∈ {3, 4, . . . , 9} and m ∈ {20, 50, 100}. Of each
combination we create a random set of chains, compute a clustering of it using
the three different algorithms, and record the similarity of the found clustering
with the true clustering as defined in Equation 4.16. This is repeated 25 times
for every combination.

Results are shown in Figure 4.3. Performance of the algorithm based on a ran-
dom initialization (graph representation, hypersphere representation) is plotted
with a dotted (dashed, solid) line, respectively. The first observation is that in
every case the performance of the algorithms increases considerably as the length
of the chains increases. With l = 9 the algorithms find the original clustering
almost always independent of the values of m and cs. Also m and cs have an
effect on the quality of the found clustering. The problem becomes more diffi-
cult as m increases, and slightly easier when there is more data available (as cs
increases). The second observation is that the hypersphere representation seems
to lead to the best results in every case. Also, the effect of the parameters to it’s
performance is not as strong as it is to the two other approaches. Also, maybe
somewhat surprisingly the random initialization leads to equally an good perfor-
mance as using the graph representation for computing the initial clustering.

Reducing the size of the graph representation

The graph representation requires O(n2) space if implemented as described in
Section 4.3. This will in practice lead to a poor performance since we have to
cluster n-dimensional vectors. Dimension reduction algorithms are discussed later
in Chapter 5, for now we are satisfied with a very simple approach to speed up
the clustering.

Recall that Gad is the matrix we obtain when the adjacency matrix of the
disagreement graph is subtracted from the adjacency matrix of the agreement
graph. Let xi be the ith row of Gad; this is the graph representation of the ith
chain in the input. Every dimension of xi corresponds thus to a chain in the
input. We have xi(j) = 1, xi(j) = −1, or xi(j) = 0, if the ith and jth chain
of the input D agree, disagree, or have no relation to each other, respectively.
When comparing two chains, we compare the vectors xi and xj. We are thus
comparing the two chains by considering how they relate to every other chain in
the input. An easy way of reducing the dimensionality of xi and xj is to use only
a subset of the input when comparing the chains. That is, we use only a subset
of the columns of the matrix Gad. This subset is chosen uniformly at random.

In this experiment we investigate how the running time of the clustering and
the quality of the output (in terms of the error function) behave when we decrease
the fraction of columns of Gad that are used. The fraction of retained columns
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Figure 4.3: Curves showing the similarity of a clustering found by the algorithms
with the true clustering (Equation 4.16) as a function of the length of the chain.
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Figure 4.4: Clustering the SUSHI and MSNBC data sets with the graph rep-
resentation using a random fraction of 1/f of the columns of the matrix Gad.
Left: Running time of k-means in seconds as a function of f . The time required
for constructing Gad is not included. Right: Clustering error as a function of f
for using only the graph representation (solid line) and subsequently refining the
model with Lloyd’s algorithm (dashed line).
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Figure 4.5: Clustering the MLENS and DUBLIN data sets with the graph rep-
resentation using a random fraction of 1/f of the columns of the matrix Gad.
Left: Running time of k-means in seconds as a function of f . The time required
for constructing Gad is not included. Right: Clustering error as a function of f
for using only the graph representation (solid line) and subsequently refining the
model with Lloyd’s algorithm (dashed line).
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is given by 1/f where f ∈ {1, 2, 4, 8}. We use the two phased algorithm graph,
rf, where an initial clustering is computed by applying regular k-means to the
graph representation of the input, and this is further refined by applying Lloyd’s
iteration with the distance and centroid described in Section 4.2. The errors
of the initial and final clustering are both considered. For each value of f the
experiment is repeated 25 times. The reported results are averages over these
runs. In Figures 4.4 and 4.5 we can see how the running time and error behave
for different values of f with the four data sets described in Section 2.1.

The computation time is reduced by an order of magnitude in every case
when the fraction of used columns is decreased to 1/8. We observe three differ-
ent behaviors of the error. In case of msnbc and dublin the number of columns
seems to have no effect on the resulting clustering. In every case the error of the
final clustering is smaller than the error of the initial clustering, but the error is
independent of f . With the sushi data the error of the initial clustering increases
marginally as f increases, whereas the error of the final clustering remains con-
stant (after a small increase at f = 2). Finally, with mlens both errors increase
with f .

Using only a random subset of the columns is obviously a very simple way
of reducing the dimensionality. Most more sophisticated methods, such as the
ones we discuss in Chapter 5, come with a higher computational cost. Random
projections can be fast to compute, especially if the projection matrix is sparse.
The approach we use here can be seen as a random projection that simply discards
a number of the original dimensions. For a more elaborate, yet computationally
efficient technique see for example [Ach03].

4.5 Conclusion

We have discussed the problem of clustering chains. We considered two ap-
proaches and their combination. First we gave simple definitions of a distance
and a centroid that can be used together with Lloyd’s algorithm for computing
a clustering directly using the input D. In Section 4.3 we gave two methods for
mapping chains to a high-dimensional vector space. These representations can
be used with any clustering algorithm. The output of such an algorithm can still
be further refined using the technique of Section 4.2.

Mapping chains to vector spaces is an interesting subject in its own right and
can have many other uses in addition to clustering. In the next chapter we will
use the mappings to create two dimensional scatterplots of sets of chains. They
have also some theoretical interest, as the first mapping we discuss is related to
the so called Planted Partition Model [CK01, ST02], for which some clustering
algorithms have been developed. We gave some theoretical arguments why these
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algorithms might fail when the input is based on sets of chains. However, studying
experimentally whether this really is the case may also be of interest.
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Chapter 5

Visualizing sets of chains

5.1 Introduction

The human visual system is very efficient in finding patterns and structure from
appropriately constructed images. Visual problems that are very tricky to solve
using a computer are sometimes remarkably easy for humans. For example, the
idea of a captcha [vBHL03] is based on the fact that it is hard to algorithmically
recognize digits and letters that have been distorted in a certain way, while hu-
mans can still (fairly) easily see what the displayed characters are. Captcha’s are
used by many online services to prevent automated robots to, e.g., create user
accounts or perform other possibly malicious tasks.

Also, what is understood by visualization in the first place depends on the
task at hand. A graph with the price of a stock over some period of time is an
obvious example, but one can also consider the fuel level indicator in a car as a
visualization of the amount of gasoline in the tank. We use the word visualization
to mean a single static figure that represents a finite set of data. The stock price
example fits this definition, while the fuel level indicator doesn’t.

Visualization can play an important part in explorative data analysis. For
example, given a set of points in a vector space, a human can easily see from a
suitable visualization if the points from clusters and how many clusters there are
in total. These questions are rather nontrivial to answer even using elaborate
algorithmic techniques.

In the previous chapter we looked at the problem of clustering a set of chains.
To this end we proposed in Section 4.3 two techniques for representing chains in
a vector space. In this chapter we make use of these representations to create
visualizations of sets of chains. Given a set of chains, the task is to create a two
dimensional scatterplot where each chain is represented by a single point, and
points corresponding to similar rankings are plotted close to each other.
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Figure 5.1: Example visualization of the chains shown on the left. The rankings
are generated by a model with two components (C1 and C2). In the visualization
rankings originating from the same component are indicated by the same color.
The two components appear as two clouds of points in the scatterplot. Figure
from [Ukk07].

In short our approach can be summarized as follows: map all chains in D
to a high-dimensional space with one of the mappings of the previous chapter,
and then apply some known dimension reduction algorithm to create a set of two
dimensional points, one point for each chain. These points are plotted on a plane
to construct the final visualization. See Figure 5.1 for an example. Here the set
of items is the set of integers 1, 2, . . . , 12, and each chain contains 6 items. The
chains in column C1 tend to have a 7 or a 9 in the first position and a 6 or a 4
in the last. On the other hand, the chains in column C2 have typically a 2 or a 5
in the first position and mostly end with a 1 or an 11. Clearly the chains can be
divided to two clusters. The scatterplot in Figure 5.1 shows two well separated
groups of circles, which correspond to the chains in columns C1 and C2. The
data in Figure 5.1 was generated using the model discussed in Section 2.1.

5.2 Dimension reduction techniques

Let X = {x1, . . . ,xn} be a set of vectors in Rm. In dimension (or dimensionality)
reduction the task is to construct a mapping g : Rm → Rk, where k � m, that
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tries to minimize some distortion measure δ(X, g(X)) between X and g(X). We
abuse notation slightly and denote by g(X) the set of k-dimensional vectors
obtained when g is applied to every vector x ∈ X. Some typical choices for δ are

δ(X, g(X)) =
n∑

i=1

n∑
j=1

(d1(xi,xj)− d2(g(xi), g(xj)))2, (5.1)

or
δ(X, g(X)) = V ar[X]− V ar[g(X)], (5.2)

where V ar[X] is defined as the trace of the covariance matrix of X. Using Equa-
tion 5.1 we are basically trying to find a mapping that preserves the interpoint
distances as well as possible. Here d1 and d2 are some distance measures in Rm

and Rk, respectively. Multidimensional scaling (MDS) is an example of a di-
mension reduction technique that minimizes (5.1). In case of Equation 5.2 the
mapping tries to preserve as much of the variance in X as possible. In dimen-
sion reduction based on Principal Component Analysis (PCA) we construct a
mapping that minimizes Equation 5.2.

Another way of classifying dimension reduction algorithms is to consider if
the mapping g is linear or nonlinear. A linear mapping can be written as

g(x) = Wx, (5.3)

where W is an k × n matrix. PCA is an example of a linear mapping, whereas
MDS uses a nonlinear mapping. Below we discuss PCA, MDS and some other
dimension reduction techniques in more detail.

Principal Component Analysis
Principal Component Analysis (PCA) (see for example [Sha95]) is a traditional
method in statistics to reduce the number of variables in a data set. The task
is to find a (preferably small) set of new variables that are linear combinations
of the original variables and form an orthogonal basis, so that when the data is
projected onto the new variables as much as possible of the variance is preserved
as stated in Equation 5.2. In practice this is done by first computing the covari-
ance matrix of the data and using the eigenvectors of this as the basis. Thus,
the mapping g is formed by picking the k eigenvectors that correspond to the k
largest eigenvalues of the covariance matrix and using them as the rows of the
matrix W in Equation 5.3. The amount of variance preserved by the projec-
tion can be computed by summing the eigenvalues that correspond to the chosen
eigenvectors and comparing this to the total variance V ar[X] given by the trace
of the original covariance matrix.
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Multidimensional Scaling and some variants
Multidimensional scaling (MDS) [BG97] is another traditional technique for cre-
ating low dimensional representations of data sets. In its simplest form MDS
finds a mapping g such that the distortion defined by Equation 5.1 is minimized.
The framework can be easily extended by modifying the cost function. Curvi-
linear Component Analysis (CCA) [DH97] is a method very similar to MDS. It
introduces an additional component in the objective function that can be used
to adjust how distances of different magnitudes affect the final outcome. The
function minimized is of the form∑

i

∑
j

(
d1(xi,xj)− d2(g(xi), g(xj))

)2
F (d2(g(xi), g(xj)), λy), (5.4)

where F is a bounded and monotonically decreasing (in d2(g(xi), g(xj))) function.
The idea is to reduce the effect of long distances in the output space to enhance
the conservation of local neighborhoods. The parameter λy can be constant or
varied over time.

Continuing the work of [DH97], the authors of [VK06] recently proposed a
parameterized version of Equation (5.1). This is∑

i

∑
j

(
d1(xi,xj)−d2(g(xi), g(xj))

)2((1−λ)F (d2(g(xi), g(xj)), σi)+λF (d1(xi,xj), σi)
)
,

(5.5)
where F is again bounded and monotonically decreasing. The parameter λ can
be used to control whether the neighborhood of a point in the projection or input
space is considered more important. The size of the neighborhood is adjusted by
the parameter σi, which is typically slowly decreased during the optimization.
The method that optimizes Equation (5.5) for a given value of λ is called Local
MDS [VK06]. Note that when λ = 0, equations 5.5 and 5.4 are the same.

Isomap
Isomap [TdL00] employs a technique called manifold embedding. Where PCA and
other linear projections assume that the data in fact resides on a hyperplane in
the high dimensional space, Isomap assumes that this low dimensional subspace is
not a (hyper)plane, but a manifold with an arbitrary structure. An easy example
is to consider a set points on a piece of paper that resides in a three dimensional
world. When the paper lies flat on a table, the points occupy a planar two
dimensional subspace of the three dimensional space. If we take the piece of
paper and wrap it to a roll, the points still occupy a two dimensional subspace,
but it is no longer a plane. The idea of a manifold embedding is to discover how
the paper has been rolled and then “unfold” it.

Isomap does this by first constructing the k-nearest neighbors graph, and then
optimizing a function similar to Equation (5.1) where d1(xi,xj) is determined by
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the graph distance (shortest path) between data points xi and xj in the k nearest
neighbors graph.

A number of algorithms for dimension reduction exist in the literature ([BN02,
HR02, Koh82, QY04, RS00, WSZS07] to mention a few), but most of them employ
same techniques as the ones discussed here. For a very nice summary of different
dimension reduction techniques the reader is referred to [Ven07].

5.3 Example visualizations

At this point we show some examples that are obtained by the algorithms de-
scribed above. The data sets are the ones described in Section 2.1. We first
computed a clustering with k = 3 using the algorithm described in Chapter 4.
The clusters were initialized at random, that is, the vector representations where
not used when computing the clustering. This clustering is indicated by the
colors red, green and blue in the figures below. In this section we evaluate the
scatterplots qualitatively. A quantitative approach is taken in the next section.

Figures 5.2 and 5.3 show plots created from the data sets sushi and mlens.
With these the clusters seem to be mostly overlapping. None of the methods pre-
serve global structure, but the Local MDS based approaches show some preser-
vation of local structure. Chains belonging to the same cluster form several small
homogenous groups, that seem to be located almost randomly next to each other.
Even though the clusters are not separated, this kind of visualizations may be use-
ful if the task is to “classify” unlabeled examples based on the nearest neighbors
of an unlabeled point in the visualization. In the LMDS 0.0 based scatterplots a
large number of the closest neighbors of a point belong to the same cluster as the
point itself. Note that the reason for overlapping clusters may also be a problem
with the clustering itself. Both sushi and mlens are data sets where the length
of the chains is short when compared with the total number of items. With this
kind of data sets Lloyd’s algorithm as started from a random initialization may
lead to suboptimal results as discussed in Chapter 4.

Figures 5.4 and 5.5 show the data sets msnbc and dublin. Here the clusters
are still slightly overlapping, but nonetheless much better separated than with
the two other data sets. Almost all methods seem to work equally well. In some
cases, such as msnbc with PCA (hypersphere representation), or dublin with
Isomap (hypersphere representation), the clusters are even separated reasonably
well.

5.4 Evaluating visualizations

Factors that affect the quality of a visualization depend strongly on the intended
application of the visualization. If a visualization is supposed to provide accurate
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Figure 5.2: Scatterplots for the sushi data based on various algorithms.
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Figure 5.3: Scatterplots for the mlens data based on various algorithms.
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Figure 5.4: Scatterplots for the msnbc data based on various algorithms.
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Figure 5.5: Scatterplots for the dublin data based on various algorithms.
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real-time information about a relatively simple phenomenon, such as the speed of
a car, the evaluation criteria must be different than when assessing a visualization
of a system that is more complex, such as the structure of a large software ap-
plication. Naturally in both cases the information presented in the visualization
must be accurate and truthful. However, in the latter case we can expect the
user of the visualization to be prepared to aquire additional knowledge in order
to properly understand the visualization. If understanding the speedometer of a
car requires training, the visualization (the meter) is badly designed, but even
well crafted UML-diagrams (Unified Modeling Language, a set of visual tools for
representing e.g. the structure and operation of computer programs, see [ISO05])
require the user to have knowledge of UML.

One can look at the quality of a visualization from different perspectives. On
one hand we can investigate how well a visualization performs in terms of qualities
related to human perception and truthfulness with respect to the data. This is
mostly related to the practical preparation of a figure: whether to use colors or
not, what shapes to use, how to lay out the figure, etc., but also how well the
contents match the actual data. There exist measures proposed by Tufte such as
lie-factor and data-ink ratio [Tuf01] that can be used to assess visualizations from
this point of view, but they should be considered more as general guidelines and
thought experiments instead of rigorous quality measures. In practice evaluating
the perceptual quality of a visualization is not trivial.

On the other hand we can evaluate how well a visualization fits the purpose
it is intended for. Let us imagine we have two visualizations for the daily tem-
perature outside during the last three months. The first one is a graph with time
on the x-axis and temperature on the y-axis. The second one is a pie-chart, with
one slice for every day, with the size of the slice being proportional to the actual
temperature. Both figures can be prepared well in terms of Tufte’s qualities men-
tioned above, but still most would consider the pie-chart a very bad visualization
for the task of depicting trends in temperature.

We evaluate the visualizations more from the latter perspective. In ex-
ploratory data analysis the purpose of the visualization is to present the possibly
large data set in a concise way. Most importantly the two (or in some cases
three) dimensional visualization should be as similar as possible to the original
high dimensional data. As we are visualizing a set of points in a high dimensional
space with a set of points in a low dimensional space, a simple approach would be
to use one of the distortion measures presented earlier. They are mostly rather
difficult to interpret, however. For example, consider Equation 5.1. If this error is
zero for some mapping g, we can be sure the resulting visualization has preserved
all interpoint distances. This is very unlikely to happen. In a realistic setting we
observe some error given by Equation 5.1, but this value might not have anything
to do with the problem the user tries to solve using the visualization.
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Visualization as Information Retrieval

Scatterplots can be used for identifying the number and shape of clusters, to
detect outliers, and to study the neighborhood of a given point. We are interested
in the last task. Suppose we are given a set of chains and create a scatterplot
using the mapping g. Furthermore, suppose that we have additional information
related to each chain. Given a new chain π without this information, we can
use the plot to see to what “region” π is mapped by g. For this process to be
reliable, the neighborhood of a point in the visualization must be similar to its
neighborhood in the high dimensional space.

This can be seen as an information retrieval (IR) task, as done in [VK07] for
example. Given a query point, we map it to the low dimensional space using g and
observe its neighborhood. The set of relevant points is defined by the query point’s
neighborhood in the high dimensional space, while the set of retrieved points is
defined by it’s neighborhood in the visualization. Traditionally in IR one wants
the set of retrieved documents (points, in this case) to contain every relevant
document, and no irrelevant documents. In practice one can only retrieve a subset
of the relevant documents, and the results contain also irrelevant documents.

We follow the approach of [VK07] and define the sets of relevant and retrieved
points as follows: The set Hr(π) is the set of r closest neighbors of π in the original
high dimensional space. These are the relevant points. The set Pk(π) is the set
of k closest neighbors of π in the low dimensional projection. These are the
retrieved points.

Precision and recall

In a good visualization Pk(π) contains most of Hr(π) and not much else. This
can be measured with precision and recall. Precision is the fraction of relevant
documents in the set of retrieved documents, while recall is the fraction of relevant
documents returned. Obviously we could design a system that always returns
every document in the collection and hence achieves the best possible score in
terms of recall, but has a very low precision as the results contain mostly irrelevant
documents. We define precision and recall as

preck(π) =
|Hr(π) ∩ Pk(π)|
|Pk(π)|

, (5.6)

recallk(π) =
|Hr(π) ∩ Pk(π)|
|Hr(π)|

. (5.7)

These definitions are for a single chain π. In practice when evaluating the visu-
alizations we compute averages of both precision and recall over all chains and
denote the measures preck and recallk.
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An established way of combining precision and recall is to use the F -measure.
This is the harmonic mean of preck and recallk, and it is defined as

Fα =
(1 + α) · preck · recallk

α · preck +recallk
, (5.8)

where α is a parameter that can be used to adjust the effect of precision and
recall. Setting α = 1 weights both evenly.

We can also study the dependency between precision and recall by using
precision-recall -curves. They are constructed by computing preck and recallk
for all values of k and plotting a curve with recall on the x-axis and precision on
the y-axis.

ROC curves

As alternatives to precision and recall we also use so called ROC (Receiver Oper-
ating Characteristic) curves (see e.g. pages 173–174 in [TK03]) for evaluating the
visualizations. They show the true positive rate (TPR) at a given false positive
rate (FPR). In case of dimension reduction these can be used like precision and
recall to study how the neighborhoods are preserved by the projection. The true
positive rate (false positive rate) tells us what fraction of the relevant (irrelevant)
points is found in the set of retrieved points. The set of retrieved points corre-
sponds to the neighborhood of the query point in the visualization. They are
defined using the parameter k as follows. Remember that n is the total number
of points, r is the number of relevant points and k is the number of retrieved
points. We let

TPRk(π) =
|Hr(π) ∩ Pk(π)|
|Hr(π)|

, (5.9)

FPRk(π) =
k − |Hr(π) ∩ Pk(π)|

n− r
. (5.10)

Note that TPRk is the same as recallk, but FPRk is not equivalent to precision.
Just as with precision and recall there is a trade-off between these measures.
Obviously we aim at a high true positive rate under a low false positive rate,
but in general when we increase k to have a higher TPR we also increase the
false positive rate. The ROC curve of a single point is obtained by computing
TPRk(π) and FPRk(π) for all values of k. The curve of the entire visualization
is the average of the ROC curves of every point.

ROC curves of two visualizations can be compared simply by inspecting the
figures. Note that a “dummy” algorithm that simply places the points to two
dimensions at random will have a ROC curve that is a straight line from the
origin to (1, 1). To obtain a single number for a visualization we can compute
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the so called AUC (Area Under Curve) statistic. This is simply the size of the
area between the ROC curve and the x-axis. As both TPR and FPR range from
0 to 1, the maximum AUC is 1. This is only obtained when TPRk = 1 at a zero
false positive rate. For the dummy algorithm AUC is obviously 0.5.

5.5 Experiments

In this section we describe empirical results with both artificial and real data sets.
The artificial data was generated with the model described in Section 2.1. The
real data sets are the ones described in Section 2.1. The algorithms we consider
are Isomap (IM), Principal Component Analysis (PCA) and Local MDS (LMDS)
with λ = 0.0 (which corresponds to CCA) and λ = 0.5. We test every algorithm
with both the graph and hypersphere representations (see Section 4.3) giving
eight different combinations in total. Implementations for Isomap1 and LMDS2

are obtained from the authors of [TdL00] and [VK06], respectively.

Results on artificial data

We generated four artificial data sets described in the table below:

n m l b k
easyl7 5000 100 7 100 2
easyl10 5000 100 10 100 2
hardl7 5000 100 7 2 2
hardl10 5000 100 10 2 2

Thus, we say a data set is “easy” if it was generated by a permutation (b = m),
and “hard”, if it was generated by a bucket order with two buckets only. Also
based on the clustering results we assume that data sets with l = 7 are in some
sense harder to visualize than the ones with l = 10.

In Figure 5.6 are the precision-recall curves for the different artificial data sets.
In general the results show that preserving the neighborhoods is not easy with any
of the four data sets. The choice of the projection technique (graph vs. hyper)
seems to have only a marginal effect. Overall the best performing algorithm is
LMDS with λ = 0.0 when we are interested in having a high precision. If recall is
more important the other algorithms seem to have a small advantage. Especially
pronounced this difference is in the case of easyl10 and the graph representation.
In this case LMDS with λ = 0.5 has a recall over 0.75 with precision above 0.4.

We also use the F1 measure for comparing the algorithms. We compute the
F1 measure for each of the eight combinations with k = 10, k = 100 and k = 250.

1http://isomap.standord.edu/ (24.4.2008)
2http://www.cis.hut.fi/projects/mi/software/dredviz/ (24.4.2008)
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Figure 5.6: Precision-Recall curves for different artificial data sets and visualiza-
tion techniques.
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Table 5.1: Values of F1 when k = 10 for different artificial data sets and visual-
ization techniques.

EASYL7 EASYL10 HARDL7 HARDL10
PCA, g 0.086 0.105 0.071 0.084
PCA, hs 0.097 0.096 0.082 0.086
IM, g 0.084 0.104 0.070 0.084
IM, hs 0.088 0.096 0.078 0.076
LMDS00, g 0.145 0.154 0.130 0.127
LMDS00, hs 0.163 0.164 0.153 0.153
LMDS05, g 0.082 0.107 0.064 0.077
LMDS05, hs 0.098 0.102 0.089 0.085

With k = 10 we only look at a very small neighborhood around the query point,
whereas with k = 250 the idea is to consider the “general region” where the query
point is located. These results are given in tables 5.1, 5.2 and 5.3. In every table
the best performing combination is indicated in bold for every data set.

In general when looking at the numbers we observe that the data sets with
l = 10 are easier to visualize than the ones with l = 7. Also, when l is fixed the
data sets labeled as easy have higher values of F1 than the ones labeled hard.
However, it seems that easyl7 is in many cases at least as hard as hardl10,
indicating that the length of the chains has a stronger effect on the quality of the
visualizations than the number buckets in the generating components.

When k = 10 LMDS with λ = 0.0 combined with the hypersphere repre-
sentation clearly outperforms the other approaches. As k is increased to 100 the
differences between the algorithms become smaller and it is not obvious that they
are statistically significant. With k = 250 Local MDS is no longer the best per-
former, Isomap using the graph representation outperforms the other algorithms
with three data sets. However, the difference to using the graph representation
and LMDS with λ = 0.5 is in practice negligible. Interestingly PCA gives the
best result with k = 250 in case of the hardl7 data which we consider the most
difficult case.

We now turn our attention to the ROC curves in Figure 5.7. Again we observe
that the visualization task is not easy. Recall, that for a dummy algorithm the
ROC curve would be a straight line from the origin to the upper right corner.
Especially with the hardl7 data the algorithms have only a marginally better
performance than this. In general the curves indicate that the algorithms behave
very much alike, with LMDS (λ = 0.0) being an exception. In every case it
shows a slightly better true positive rate at very small false positive rates than
the other algorithms. If higher false positive rates are allowed, LMDS 0.0 has
consistently a lower true positive rate. When we look at the AUC statistic in
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Table 5.2: Values of F1 when k = 100 for different artificial data sets and visual-
ization techniques.

EASYL7 EASYL10 HARDL7 HARDL10
PCA, g 0.360 0.464 0.299 0.365
PCA, hs 0.355 0.396 0.330 0.347
IM, g 0.364 0.459 0.296 0.364
IM, hs 0.342 0.384 0.313 0.330
LMDS00, g 0.382 0.462 0.321 0.366
LMDS00, hs 0.371 0.418 0.349 0.369
LMDS05, g 0.361 0.488 0.290 0.363
LMDS05, hs 0.335 0.393 0.315 0.337

Table 5.3: Values of F1 when k = 250 for different artificial data sets and visual-
ization techniques.

EASYL7 EASYL10 HARDL7 HARDL10
PCA, g 0.422 0.531 0.366 0.433
PCA, hs 0.394 0.432 0.390 0.415
IM, g 0.429 0.535 0.363 0.438
IM, hs 0.388 0.441 0.374 0.405
LMDS00, g 0.391 0.451 0.350 0.397
LMDS00, hs 0.364 0.395 0.357 0.372
LMDS05, g 0.422 0.532 0.363 0.431
LMDS05, hs 0.382 0.436 0.376 0.403

Table 5.4 we see that LMDS 0.0 has typically a significantly smaller AUC than
the other algorithms. This, however, does not mean that we should always prefer
for instance Isomap to Local MDS (λ = 0.0). In some applications we might only
consider the few points that are closest to the query point, and need to have a
high true positive rate in this setting.

Tables 5.5, 5.6, and 5.7 show the true positive rate at three different levels
of FPR. When we fix FPR = 0.05 (Table 5.7) Local MDS (with λ = 0.0) has
a considerably higher performance than any of the other algorithms. Also, in
every case the hypersphere representation leads to a better preservation of the
neighborhoods. For FPR = 0.1, LMDS 0.0 still has a higher true positive rate,
but now the graph representation leads to better results in most cases. For a
false positive rate of 0.2 the differences between the best performing algorithms
are very small, and most likely not statistically significant. The easyl10 data
seems to be an exception in this respect.
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Figure 5.7: ROC curves for different artificial data sets and visualization tech-
niques.
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Table 5.4: AUC statistic for different artificial data sets and visualization tech-
niques.

EASYL7 EASYL10 HARDL7 HARDL10
PCA, g 0.713 0.827 0.621 0.707
PCA, hs 0.652 0.706 0.651 0.686
IM, g 0.718 0.822 0.609 0.714
IM, hs 0.647 0.719 0.634 0.673
LMDS00, g 0.682 0.759 0.606 0.686
LMDS00, hs 0.641 0.688 0.628 0.647
LMDS05, g 0.708 0.835 0.605 0.712
LMDS05, hs 0.650 0.718 0.630 0.671

Table 5.5: True positive rate (at false positive rate of 0.2) for different artificial
data sets and visualization techniques.

EASYL7 EASYL10 HARDL7 HARDL10
PCA, g 0.451 0.621 0.337 0.442
PCA, hs 0.391 0.457 0.378 0.414
IM, g 0.458 0.604 0.325 0.449
IM, hs 0.381 0.463 0.351 0.398
LMDS00, g 0.455 0.570 0.352 0.450
LMDS00, hs 0.407 0.475 0.383 0.408
LMDS05, g 0.449 0.671 0.312 0.453
LMDS05, hs 0.387 0.482 0.349 0.393

Table 5.6: True positive rate (at false positive rate of 0.1) for different artificial
data sets and visualization techniques.

EASYL7 EASYL10 HARDL7 HARDL10
PCA, g 0.264 0.374 0.192 0.260
PCA, hs 0.245 0.285 0.224 0.243
IM, g 0.262 0.346 0.185 0.255
IM, hs 0.234 0.271 0.200 0.230
LMDS00, g 0.318 0.407 0.239 0.295
LMDS00, hs 0.308 0.365 0.274 0.291
LMDS05, g 0.258 0.402 0.170 0.256
LMDS05, hs 0.232 0.296 0.202 0.228
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Table 5.7: True positive rate (at false positive rate of 0.05) for different artificial
data sets and visualization techniques.

EASYL7 EASYL10 HARDL7 HARDL10
PCA, g 0.153 0.218 0.110 0.149
PCA, hs 0.156 0.177 0.129 0.144
IM, g 0.147 0.193 0.106 0.144
IM, hs 0.146 0.155 0.114 0.131
LMDS00, g 0.228 0.291 0.169 0.195
LMDS00, hs 0.245 0.293 0.212 0.218
LMDS05, g 0.146 0.227 0.090 0.138
LMDS05, hs 0.150 0.185 0.120 0.134

Overall the results on artificial data indicate that visualizing sets of chains in
this way is not easy, at least not in terms of the chosen performance measures.
There is always a clear difference between the easiest (easyl10) and hardest
(hardl10) data sets, but this difference is not as big as one might expect. Es-
pecially surprising is the relatively poor performance of all algorithms even with
the easyl10 data. In practice we would expect all real data sets to have less
structure than easyl10, and hence to be more difficult to visualize.

Results on real data

We conducted the same set of experiments also with the data sets sushi, mlens,
msnbc and dublin described in Section 2.1. Again it is not clear what algorithm
is the best and what the worst; the results seem to have a strong dependence on
the data set in question.

In Figure 5.8 are the precision-recall curves. First we note that mlens is
difficult for all algorithms. The sushi data is slightly easier, but leads to worse
performance than dublin or msnbc. We believe this is largely a consequence of
the fact that the size of M is considerably smaller in dublin and msnbc than
sushi and mlens.

LMDS (λ = 0.0) yields the best results with all data sets and both represen-
tations if we prefer precision. If recall is more important Isomap and PCA seem
to have an advantage, although this only occurrs in case of DUBLIN and to
some extent with MSNBC. Also, with these two data sets the difference between
setting λ = 0.0 and λ = 0.5 with LMDS leads to a considerably smaller difference
than in case of sushi and mlens.

Tables 5.8, 5.9, and 5.10 show the F1 measure for k = 10, k = 100, and
k = 250. When k = 10 (Table 5.8) LMDS 0.0 outperforms the other approaches
by a clear margin. Also, the difference between using the graph and hypersphere
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Figure 5.8: Precision-Recall curves for different real data sets and visualization
techniques.
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Table 5.8: Values of F1 when k = 10 for different data sets and visualization
techniques.

SUSHI MLENS DUBLIN MSNBC
PCA, g 0.090 0.071 0.128 0.107
PCA, hs 0.095 0.078 0.119 0.115
IM, g 0.087 0.066 0.115 0.114
IM, hs 0.086 0.066 0.116 0.113
LMDS00, g 0.141 0.119 0.172 0.160
LMDS00, hs 0.155 0.143 0.175 0.168
LMDS05, g 0.080 0.064 0.149 0.121
LMDS05, hs 0.096 0.071 0.166 0.153

Table 5.9: Values of F1 when k = 100 for different data sets and visualization
techniques.

SUSHI MLENS DUBLIN MSNBC
PCA, g 0.358 0.288 0.506 0.434
PCA, hs 0.363 0.290 0.477 0.452
IM, g 0.362 0.276 0.477 0.480
IM, hs 0.342 0.283 0.478 0.453
LMDS00, g 0.426 0.310 0.562 0.532
LMDS00, hs 0.425 0.338 0.531 0.504
LMDS05, g 0.363 0.273 0.516 0.480
LMDS05, hs 0.360 0.287 0.528 0.492

representations is more pronounced for sushi and mlens when this algorithm
is used. In general the hypersphere representation leads to better results for
k = 10. When k is increased to 250 (Table 5.10) the situation is reversed, and
the graph representation gives almost always a better score. Finally, when we
compare k = 100 (Table 5.9) and k = 250, we observe that for “medium-sized”
neighborhoods (k = 100) Local MDS tends to work better when λ = 0.0, whereas
for very large neighborhoods (k = 250) λ = 0.5 should be preferred.

The ROC curves in Figure 5.9 indicate a similar behavior. All curves for the
mlens data are almost straight, indicating that the projection is almost the same
that one would obtain with the dummy algorithm. Just as with artificial data
LMDS 0.0 has a slightly higher true positive rate at the very small false positive
rates, and a slightly lower true positive rate at the higher false positive rates.
When we look at the AUC statistics in Table 5.11 the differences between the
best performing algorithms are again small. Also the difference between the best
and worst algorithm is in most cases not very big. For the more difficult data
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Table 5.10: Values of F1 when k = 250 for different data sets and visualization
techniques.

SUSHI MLENS DUBLIN MSNBC
PCA, g 0.393 0.352 0.486 0.454
PCA, hs 0.378 0.341 0.478 0.467
IM, g 0.413 0.346 0.483 0.490
IM, hs 0.392 0.347 0.482 0.470
LMDS00, g 0.409 0.347 0.457 0.477
LMDS00, hs 0.392 0.349 0.434 0.442
LMDS05, g 0.416 0.350 0.490 0.490
LMDS05, hs 0.405 0.358 0.473 0.466

sets (sushi and mlens) LMDS 0.0 also has a higher AUC. For these data sets it
seems that LMDS 0.0 is consistently better than the others.

When looking at Tables 5.12, 5.13, and 5.14 that show the true positive rate at
a false positive rate of 0.2, 0.1, and 0.05, respectively, the results are remarkably
consistent. In every case LMDS 0.0 leads to the best results. Moreover, the
hypersphere representation outperforms the graph representation usually by a
clear margin, with the data set dublin being an exception as there the situation
is reversed.

5.6 Conclusion

We investigated how the vector representation techniques of Section 4.3 can be
used for creating two dimensional scatterplots of sets of chains when combined
with a dimension reduction algorithm. The algorithms we employed were PCA,
Isomap, and Local MDS with two different parameter settings. We used precision
and recall, together with ROC curves as a quantitative performance measure for
evaluating the obtained scatterplots. Effectively we measured how well the neigh-
borhoods of individual chains are preserved by the projection to two dimensions.

The main result is that the proposed techniques are suitable for the purpose
of visualization, but the quality of the resulting scatterplots strongly depends on
the characteristics of the input. Especially crucial is the total number of items
and the length of the chains. Shorter chains are harder to visualize while having
a smaller number of items in total leads to better performance, at least in terms
of the chosen measures.
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Figure 5.9: ROC curves for different real data sets and visualization techniques.
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Table 5.11: AUC statistic for different real data sets and visualization techniques.

SUSHI MLENS DUBLIN MSNBC
PCA, g 0.662 0.587 0.804 0.765
PCA, hs 0.640 0.595 0.796 0.771
IM, g 0.668 0.597 0.803 0.807
IM, hs 0.653 0.599 0.790 0.786
LMDS00, g 0.681 0.616 0.797 0.789
LMDS00, hs 0.674 0.624 0.784 0.782
LMDS05, g 0.675 0.597 0.814 0.805
LMDS05, hs 0.672 0.612 0.815 0.804

Table 5.12: True positive rate (at false positive rate of 0.2) for different real data
sets and visualization techniques.

SUSHI MLENS DUBLIN MSNBC
PCA, g 0.399 0.313 0.634 0.564
PCA, hs 0.390 0.339 0.621 0.563
IM, g 0.398 0.309 0.645 0.629
IM, hs 0.385 0.323 0.606 0.602
LMDS00, g 0.462 0.365 0.683 0.628
LMDS00, hs 0.483 0.388 0.669 0.641
LMDS05, g 0.405 0.301 0.663 0.639
LMDS05, hs 0.415 0.321 0.676 0.630

Table 5.13: True positive rate (at false positive rate of 0.1) for different real data
sets and visualization techniques.

SUSHI MLENS DUBLIN MSNBC
PCA, g 0.245 0.183 0.508 0.393
PCA, hs 0.258 0.219 0.469 0.399
IM, g 0.239 0.177 0.475 0.434
IM, hs 0.236 0.188 0.408 0.434
LMDS00, g 0.329 0.237 0.572 0.488
LMDS00, hs 0.375 0.287 0.545 0.513
LMDS05, g 0.236 0.161 0.502 0.456
LMDS05, hs 0.261 0.184 0.535 0.487
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Table 5.14: True positive rate (at false positive rate of 0.05) for different real
data sets and visualization techniques.

SUSHI MLENS DUBLIN MSNBC
PCA, g 0.153 0.109 0.391 0.264
PCA, hs 0.172 0.151 0.343 0.280
IM, g 0.145 0.103 0.328 0.280
IM, hs 0.143 0.112 0.272 0.305
LMDS00, g 0.233 0.158 0.475 0.374
LMDS00, hs 0.289 0.221 0.439 0.417
LMDS05, g 0.131 0.086 0.376 0.307
LMDS05, hs 0.161 0.105 0.418 0.377
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Chapter 6

Sampling sets of chains

6.1 Introduction

So far we have looked at techniques for analyzing sets of chains. In this chapter
we address the question of the validity of the found results. Our work falls in
the field of randomization testing, which is a useful approach for evaluating the
results of data-analysis algorithms [GMMT07, HMT07, UM07, OVK+08]. In
short, the idea is to compare the results obtained from real data with those that
are obtained (using the same algorithm) from random data. It is important that
the random data share some well defined properties with the real data. Having
considerably different results for real data than random data suggests that the
phenomenon we observe in real data is statistically significant.

Unlike in Bootstrap methods, we are not only sampling the original data with
replacement, but have to generate a truly different data set that satisfies a number
of given properties. This can be rather trivial, if we can assume the data follows
some known distribution. In this case the process of randomizing a new data set
is a matter of estimating the parameters of the distribution, and then picking
a sample from the distribution given the estimated parameters. However, if no
assumptions of the distribution can be made, we have to employ some other
techniques.

To do this we must define the properties of the data we want to preserve by
some other means. For example, consider market basket data represented as a 0–
1 matrix. Each row represents a shopping basket, while each column represents a
product. If an entry of the matrix is 1, the shopping basket represented by the row
contains the product represented by the column. This type of data is typically
used when mining frequent itemsets and association rules [AIS93, MTV94]. In
this case it might be interesting to preserve the sizes of the shopping baskets, and
the “popularities” of individual products. More formally, we want to preserve the
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row and column frequencies (sums) of the 0–1 matrix. Note that this approach
does not preserve itemsets. To do randomization testing, we must thus pick
uniformly at random a number of matrices from the set of all 0–1 matrices that
share the row and column sums with the real data matrix. A Markov Chain
Monte Carlo algorithm for this was proposed in [CC03]. This approach was
extended to real valued matrices in [OVK+08], where the properties to maintain
are the means and variances of every row and column.

Furthermore, we must also define the test statistic that we compare across the
real and random data sets. This obviously depends on the model we are using.
For example in [GMMT07] the authors used the number of frequent itemsets
as a statistic when assessing the significance of the frequent itemsets, and the
reconstruction error of k-means when testing clustering models.

In this work we consider the randomization of sets of chains. The properties
we want to preserve are the number of chains, the lengths of all chains, occurrence
frequencies of every itemset, and most importantly the unnormalized pair order
matrix CD. Given the set of chains D, the problem is to uniformly sample from
the set of sets of partial rankings that share the above properties with D. We use
the framework for testing the clusterings found using the algorithms in Chapter 4.

6.2 Randomization testing for chains

Empirical p-values

We start with some definitions. Let D be a set of chains as usual, and denote
by A a data analysis algorithm that takes D as the input and produces some
output, denoted A(D). We can assume that A(D) is in fact the value of the test
statistic that we are interested in. Denote by D̃1, . . . , D̃h a sequence of random
sets of chains that share certain properties with D. These will be defined more
formally later.

If the value A(D) considerably deviates from the values A(D̃1), . . . ,A(D̃h),
we have some evidence for the results obtained by A to be statistically significant.
In practice this means we can rule out the common properties of the real and
random data sets as the sole causes for the results found. As usual in statistical
testing we can speak of a null hypothesis H0 and an alternative hypothesis H1.
These are defined as follows:

H0 : A(D) = E[A(D̃i)]
H1 : A(D) 6= E[A(D̃i)],

where E[A(D̃i)] denotes the empirical mean estimated from the valuesA(D̃1), . . . ,
A(D̃h).
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In statistics the p-value of a test usually refers to the probability of making
an error when rejecting H0 (and accepting H1). In order to determine the p-
value one typically needs to make some assumptions of the distribution of the
test statistic. In general, if we cannot, or do not want to make such assumptions,
we can compute the empirical p-value based on the randomized data sets. This is
defined simply as the fraction of cases where the value of A(D̃i) is more extreme
than the value A(D). Or more formally, for the one-tailed case where A(D) is
expected to be small according to H1, we have

p̂ =
|{D̃i : A(D̃i) ≤ A(D)}|+ 1

h + 1
. (6.1)

The one-tailed case with A(D) being large is obtained simply by flipping the ≤
sign above. One problem with using p̂ is that in order to get a reasonable estimate
the number of randomized data sets must be fairly high. For instance, to have
p̂ = 0.001 we must sample at least 999 data sets. Depending on the complexity
of generating one random data set this may be difficult. Of course, already with
99 data sets we can obtain an empirical p-value of 0.01 if all random data sets
have a larger value of the test statistic. This should be enough for most practical
applications.

Equivalence classes of sets of chains

The random data sets must share some characteristics with the original data D.
Given D, we define an equivalence class of sets of partial rankings, so that all
sets belonging to this equivalence class have the same properties as D.

Let D1 and D2 be two sets of chains on items of the set M . We say that D1

and D2 belong to the same equivalence class whenever

1. The number of chains of length l is the same in D1 as in D2 for all l.

2. Frequencies of all itemsets in D1 and D2 are the same.

3. The pair order matrices CD1 and CD2 are equivalent.

Here an itemset has the same meaning as in frequent pattern mining literature.
An itemset I is a subset of M , and the frequency of I is the number of chains
that contain I as a subset (the order of the items is not considered).

Given a set D of chains, we denote the equivalence class specified by D with
C(D). To use the framework of randomization testing for testing some property of
D, we must sample h sets of chains uniformly from C(D). In the next subsection
we discuss an algorithm that does this. But first, let us elaborate why it is useful
to maintain the properties listed above when testing the significance of A(D).
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When we apply algorithm A on the set of chains D, we are essentially in-
vestigating the rankings, i.e., the result should be a consequence of the ordering
information present in D. This is only one property of D, however. Others are
those that we mention in the conditions. Condition 1 is used to rule out the pos-
sibility that the value of A(D) is somehow caused only by the length distribution
of the chains in D. Note that this requirement also implies that D1 and D2 are
of the same size. Likewise, condition 2 should rule out the possibility that the
result is not a consequence of the rankings, but simply the co-occurrences of the
items.

Maintaining the pair order matrix is motivated from a slightly different point
of view. If D contained real-valued vectors instead of chains, it would make sense
to maintain the empirical mean of the observations. When we require that CD is
preserved, we are making a similar requirement. Recall that the rank aggregation
problem can be solved by formulating a minimum feedback arc set problem given
the pair order matrix (see Chapter 2). Hence, the randomized data sets D̃i will
have the same “mean” as D. One way of seeing this is to view D as a set of
points in the space of chains. The random data sets should be located in the
same region of this space as D.

An MCMC algorithm for sampling from C(D)

Next we will discuss a Markov chain Monte Carlo algorithm that samples uni-
formly from C(D) given D. Under suitable conditions the samples obtained are
independent, which is important if we want to use the empirical p-value for as-
sessing the significance of A(D).

Overview of the algorithm

The MCMC algorithm we propose can be seen as a random walk on an undirected
graph with C(D) as the set of vertices. Denote this graph by G(D). The vertices
D1 and D2 of G(D) are connected by an edge if we obtain D2 from D1 by
performing a small local change in D1 (and vice versa). We call this local change
a swap and will define it later in detail. First, let us look at a higher level
description of the algorithm.

In general, when using MCMC to sample from a distribution, we must con-
struct the Markov Chain so that its stationary distribution equals the target
distribution we want to sample from. In case of random walks on undirected
graphs it is known that if we pick the next vertex uniformly at random from
the set of neighboring vertices of the current vertex, the chain will converge to a
distribution where the probability of vertex Di is proportional to its degree, i.e.,
number of neighbors.
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If all vertices are of equal degree, the stationary distribution will be the uni-
form distribution. As we want to sample uniformly from C(D), this would be
optimal. However, it turns out that the way we define the graph G(D) does not
result in the vertices having the same number of neighboring vertices. To remedy
this, we use the Metropolis-Hastings algorithm (see e.g. [GCSR04]) for picking
the next state. Denote by N(Di) the set of neighbors of the vertex Di. When
the chain is at Di, we pick uniformly at random the vertex Di+1 from N(Di).
The chain jumps to Di+1 with probability

min(
|N(Di)|
|N(Di+1)|

, 1), (6.2)

that is, the jump is accepted always when Di+1 has a smaller degree, and other-
wise we jump with a probability that decreases as the degree of Di+1 increases.
If the chain does not jump, it stays at the state Di and attempts to jump again
(possibly to some other neighboring vertex) in the next step.

It is easy to show that this modified random walk has the desired property
of converging to a uniform distribution over the set of vertices. Denote by p(Di)
the target distribution we want to sample from. In this case p(Di) is the uniform
distribution over all i. Hence, we have p(Di) = p(Di+1) for all i. The Metropolis-
Hastings algorithm jumps to the next state Di+1 with probability min(r, 1), where

r =
p(Di+1)/J(Di+1|Di)
p(Di)/J(Di|Di+1)

. (6.3)

Above J(·|·) is a proposal distribution, which in this case is simply the uniform
distribution over the neighbors of Di for all i. That is, we have J(Di+1|Di) =
|N(Di)|−1 and J(Di|Di+1) = |N(Di+1)|−1. When this is substituted into Equa-
tion 6.3 along with the fact that p(Di) = p(Di+1) we obtain Equation 6.2.

Given D, a simple procedure for sampling one D̃ uniformly from C(D) works as
follows: we start from D = D0, make a series of local changes to the data resulting
in a new slightly modified set of chains on every step, call these D1, D2, . . .. After
s steps we are at the set Ds, which we let to be our sample D̃. It is important
to make enough transformations, i.e., have a large enough s, so that D̃ will not
depend on the starting point D. We will discuss a method for determining the
correct number steps later. If a larger number of samples is desired, we can
simply continue running the Markov chain for another set of s transformations
from each sample onwards until enough samples have been obtained.

Note that this procedure for sampling multiple D̃ is valid only when s is large
enough to make the individual samples independent. Typically this will not be
the case, or at least it is very complicated to determine if the samples are truly
independent. However, if we require the samples only to be exchangeable, a slight
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modification to the above procedure will yield a method that does not suffer from
the difficulties associated with the simple sequential approach.

We now describe this better approach that will let us sample h sets of chains
from CD so that the samples satisfy the exchangeability condition. The approach
is originally proposed in [BC89]. We first start the Markov chain from D and
run it backwards for s steps. In practice the way we define our Markov chain,
running it backwards is equivalent to running it forwards. This gives us the set
D̃0. Next, we run the chain forwards h− 1 times for s steps, each time starting
from D̃0. This way the samples can no longer be dependent on each other, but
only on D̃0. And since we obtained D̃0 by running the Markov chain backwards
from D, the dependence of the samples of D̃0 is the same as the dependence of
D on D̃0. Note that a somewhat more efficient approach is proposed in [BC91].

The Swap

When running the chain we must make sure the data sets D1, D2, . . . Ds all belong
to C(D). This is achieved when the local change is defined so that if Di belongs
to C(D), then Di+1 belongs to C(D) as well, independent of i. We call this local
change a swap for reasons that will become apparent shortly.

Formally we define a swap as the tuple (π, τ, i, j), where π and τ are chains
in D, i is an index of π, and j and index of τ . To do the swap (π, τ, i, j) we
transpose the items at positions i and i + 1 in π, and at positions j and j + 1
in τ . For example, if π = (1, 2, 3, 4, 5) and τ = (3, 2, 6, 4, 1), the swap (π, τ, 2, 1)
will result in the chains π′ = (1, 3, 2, 4, 5) and τ ′ = (2, 3, 6, 4, 1). The positions of
items 2 and 3 are changed in both π and τ .

Clearly this swap does not affect the number of chains, lengths of any chain,
nor the occurrence frequencies of any itemset as items are not inserted or removed.
To guarantee that also the pair order matrix CD will be preserved, we must pose
one additional requirement for a swap. Note that when transposing two adjacent
items in the chain π, say, u and v with u originally before v, only two elements
of CD are modified. These are CD(u, v), which is decremented by one as there is
one instance less of u preceding v after the transposition, and CD(v, u), which is
incremented by one as now there is one instance more where v precedes u.

Obviously, if the swap would change only π, the resulting data set would no
longer belong to C(D) as CD was changed. Hence, we must carry out a second
transposition in another chain τ that cancels out the effect the first transposition
had on CD. I.e., when we first transpose u and v in π where u precedes v, we
must immediately after this transpose u and v in τ where v precedes u.

Definition Let D be a set of chains and let π and τ belong to D. The tuple
(π, τ, i, j) is a valid swap for D, if the item at the ith position of π is the same as
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the item at the j + 1th position of τ , and if the item at i + 1th position of π is
the same as the item at the jth position of τ .

The swap we made in the example above is thus a valid swap.
Given the data D, we may have several valid swaps to choose from. To see

how the set of valid swaps evolves in a single step of the algorithm, consider the
following example. Let Di contain the three chains below:

π1 : (1, 2, 3, 4, 5)
π2 : (7, 8, 4, 3, 6)
π3 : (3, 2, 6, 4, 1)

The valid swaps in this case are (π1, π3, 2, 1) and (π1, π2, 3, 3). If we apply the
swap (π1, π2, 3, 3) we obtain the chains

π′1 : (1, 2, 4, 3, 5)
π′2 : (7, 8, 3, 4, 6)
π3 : (3, 2, 6, 4, 1)

Obviously (π1, π2, 3, 3) is still a valid swap, as we can always revert the previous
swap. But notice that (π1, π2, 2, 1) is no longer a valid swap as the items 2 and
3 are not adjacent in π′1. Instead (π′2, π3, 4, 3) is introduced as a new valid swap
since now 4 and 6 are adjacent in π′2.

Given this definition of the swap, an interesting open question is whether or
not C(D) is connected with respect to the valid swaps? Meaning, can we reach
every member of C(D) starting from D? Obviously this should be the case if we
want to sample uniformly from all of C(D), but showing this is not easy.

Convergence

Above it was mentioned that we must let the chain run long enough to make
sure D̃s is not correlated with the starting state D0. This means that the chain
should have mixed, meaning that when we stop it the probability of landing at
Ds actually corresponds to the probability Ds has in the stationary distribution
of the chain. Making sure a Markov Chain has converged to the stationary
distribution is a difficult problem.

Hence we resort to a fairly simple heuristic for the problem of assessing the
convergence of the algorithm. An indicator of the current sample Di being un-
correlated from D0 = D is the following measure:

δ(D,Di) = |D|−1

|D|∑
j=1

dK(D(j), Di(j)), (6.4)
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where D(j) is the jth chain of D. This is always defined, as the chain Di(j)
is always a permutation of D(j). The distance defined in Equation 6.4 is thus
the average Kendall distance between the permutations in D and Di. To assess
the convergence we see how δ(D,Di) behaves as i grows. When δ(D,Di) has
converged to some value or is not considerably increasing, we assume the current
sample is not correlated to D more strongly than to most other members of C(D).

Note that here we are assuming that the chains in D are labeled. To see
what this means consider the following example with the sets D and Di both
containing four chains.

D(1) : 1, 2, 3 Di(1) : 2, 1, 3
D(2) : 4, 5, 6 Di(2) : 6, 5, 4
D(3) : 2, 1, 3 Di(3) : 1, 2, 3
D(4) : 6, 5, 4 Di(4) : 4, 5, 6

Here we have obtained Di from D with the multiple swap operations. The dis-
tance δ(D,Di) is 2 even though D and Di clearly are identical as sets. Hence,
Equation 6.4 can not be used for testing this identity. To do this we should
compute the Kendall distance between D(j) and Di(h(j)), where h is a bijective
mapping between chains in D and Di that minimizes the sum of the pairwise dis-
tances. However, if we associate with each chain a label that is not modified by
the swap, then using the mapping h is no longer motivated. If we have some ad-
ditional data associated with each chain, it is important to preserve the mapping
between chains in D and Dr. This can happen for the chains arise for example
from a survey where the respondents have been asked to rank some items, but
we also have demographic information of each respondent.

Implementation issues

Until now we have discussed the approach at a fairly general level. There’s also a
practical issue when implementing the proposed algorithm. The number of valid
swaps at a given state is of order O(m2|D|2) in the worst case, which can get
prohibitively large for storing each valid swap as a tuple explicitely. Hence, we
do not store the tuples, but only use the structures AD and SD, defined next.
We have,

AD = {{u, v} | uv ∈ π1 ∧ vu ∈ π2 ∧ π1, π2 ∈ D}, (6.5)

where uv ∈ π denotes that u and v are adjacent in π with u before v. This is the
set of swappable pairs. The size of AD is of order O(m2) in the worst case. In
addition, we also have the sets

SD(u, v) = {π ∈ D | uv ∈ π} (6.6)
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for all (u, v) pairs. This is simply a list that contains the set of chains where we
can transpose u and v. Note that SD(u, v) and SD(v, u) are not the same set. In
SD(u, v) we have chains where u appears before v, while in SD(v, u) are chains
where v appears before u. The size of each SD(u, v) is of order O(|D|) in the
worst case, and the storage requirement for AD and SD is hence only O(m2|D|),
a factor of |D| less than storing the tuples explicitely.

Do AD and SD fully represent all possible tuples of valid swaps? A valid swap
is constructed from AD and SD by first picking a swappable pair {u, v} from AD,
and then picking two chains, one from SD(u, v) and the other from SD(v, u). It
is easy to see that a swap constructed this way must be a valid swap. Also, there
are no valid swaps that are not described by AD and SD. Let (τ1, τ2, i, j) be such
a valid swap. This would mean that there exist τ1 and τ2 in D so that item u
appears at position i in τ1 and at position j + 1 in τ2, and item v appears at
position i + 1 in τ1 and at position j in τ2. Obviously this means that uv ∈ τ1

(hence τ1 ∈ SD(u, v)) and vu ∈ τ2 (meaning τ2 ∈ SD(v, u)), and since both τ1

and τ2 belong to D, the pair {u, v} must be a swappable pair and belong to AD.
Thus, (τ1, τ2, i, j) is represented by AD and SD, and the assumption of this not
being the case is incorrect.

This leaves us with two additional concerns. Recall, that we want to use
the Metropolis-Hastings approach to sample from the uniform distribution over
C(D). In order to do this we must be able to sample uniformly from the neighbors
of Di, and we have to know the precise size of Di’s neighborhood. The size of the
neighborhood N(Di) is precisely the number of valid swaps at Di, and is given
by

|N(Di)| =
∑

{u,v}∈ADi

|SD(u, v)| · |SD(v, u)|, (6.7)

which is easy to compute given ADi and SDi .
To sample a neighbor uniformly at random using ADi and SDi , we first pick

the swappable pair {u, v} from ADi with the probability

Pr({u, v}) =
|SDi

(u, v)| · |SDi
(v, u)|

N(Di)
, (6.8)

which is simply the fraction of valid swaps in N(Di) that affect items u and v.
Then π and τ are sampled uniformly from SD(u, v) and SD(v, u) with probabil-
ities |SD(u, v)|−1 and |SD(v, u)|−1, respectively. Thus we have

Pr({u, v}) · |SD(u, v)|−1 · |SD(v, u)|−1 =
1

N(Di)

as required.
The final algorithm that we call swap-pairs is given in Algorithm 3. It takes

as arguments the data D and the integer n that specifies the number of rounds

95



6. Sampling sets of chains

Algorithm 3: The swap-pairs algorithm for sampling uniformly from C(D).

1: swap-pairs(D, n)
2: AD ← {{u, v} | uv ∈ π1 ∧ vu ∈ π2 ∧ π1, π2 ∈ D}
3: for all {u, v} ∈ AD do
4: SD(u, v)← {π ∈ D | uv ∈ π}
5: SD(v, u)← {π ∈ D | vu ∈ π}
6: end for
7: i← 0
8: while i < n do
9: {u, v} ← sample-pair(AD, SD)

10: π ← sample-uniform(SD(u, v))
11: τ ← sample-uniform(SD(v, u))
12: s← (π, τ, π(u), τ(v))
13: Na ←

∑
{u,v}∈AD

|SD(u, v)| · |SD(v, u)|
14: apply-swap(s,D,AD, SD)
15: Nb ←

∑
{u,v}∈AD

|SD(u, v)| · |SD(v, u)|
16: if rand() ≥ Na

Nb
then

17: apply-swap(s,D,AD, SD)
18: end if
19: i← i + 1
20: end while
21: return D

the algorithm is ran. On lines 2–6 we initialize the AD and SD structures, while
lines 8–20 contain the main loop. First, on line 9 the pair {u, v} is sampled
from AD with the probability given in Equation 6.8. The sample-uniform
function simply samples an element from the set it is given as the argument.
On lines 13 and 15 we compute the neighborhood sizes before and after the
swap, respectively. The actual swap is carried out by the apply-swap function,
that modifies π and τ in D and updates AD and SD accordingly. Lines 16–18
implement the Metropolis-Hastings step. Note that it is easier to simply perform
the swap and backtrack if the jump should not have been accepted. A swap can
be canceled simply by applying it a second time. The function rand() simply
returns a uniformly distributed number from the interval [0, 1].

6.3 Experiments

We can use the random data sets to test if the clusterings we obtained in Chapter 4
are valid. For a description of the data sets, please see Section 2.1. The validity
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SUSHI MLENS DUBLIN MSNBC
n 5000 2191 5000 5000
m 100 207 12 17
min. l 10 6 4 6
avg. l 10 13.3 4.8 6.5
max. l 10 15 6 8
t (sec) 297 670 73 81

Table 6.1: Properties of different data sets together with the time t that it takes
for swap-pairs to perform 107 swaps.

of a clustering can be questioned if the clusterings we compute from the random
data sets are as good or almost as good as the one we computed from the real data.
We measure the goodness of a clustering with the cost function of Equation 4.4
that the clustering algorithms try to minimize. That is, we let A(D) to be the
clustering error.

Estimating the convergence

We must first estimate how many swaps must we make between individual sam-
ples to obtain an uncorrelated set of random data sets. To this end we run the
swap-pairs algorithm for 107 swaps on each data set and measure δ(D,Di) every
105 swaps.

From Table 6.1 we can see the characteristics of the different data sets and
the time it takes swap-pairs to perform 107 swaps. Obviously n, the number of
chains in the input, does not affect the time t, but the number of items m plays
a significant part.

In Figure 6.1 are four plots that show how the distance δ(D,Di) develops with
the number of swaps i for the data sets. The assumption is that when δ(D,Di)
no longer increases the current data Di is independent of the initial state D.
Based on the plots in Figure 6.1 we say that in case of the data sets SUSHI and
MLENS the chain has converged after five million swaps. The plot for DUBLIN
indicates that the distance δ stabilizes already after about 500 000 swaps. With
MSNBC this happens roughly after three million swaps. We note that especially
in case of the SUSHI data δ might still increase if we would continue swapping.

Testing clustering validity

Figure 6.2 shows the histograms of the clustering error for the different algo-
rithms and data sets based on a sample of 100 random elements of CD. The error
observed in real data is indicated by a red vertical line in each histogram. The
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Figure 6.1: The distance δ(D,Di) as a function of the number of swaps i.

results are mostly as expected; the clustering error in the real data is consid-
erably smaller than the expected error in random data. There are a couple of
interesting exceptions to this, however. With the dublin data set expected clus-
tering error in random data is in fact smaller than the true error of the real data
set when the clustering is computed using the graph representation only. The
same happens also with the msnbc data with both the graph and hypersphere
representations. Especially with msnbc and graph representation the histogram
suggests a bimodal distribution of the error. That is, the equivalence class of
msnbc contains two kinds of sets of chains: for some sets the graph representa-
tion results in clusterings that are “better” than the one we obtain from the true
msnbc, while for some sets the clusterings are notably worse. With both dublin
and msnbc this phenomenon no longer occurs when we use Lloyd’s algorithm to
improve upon the initial clustering obtained based on the vector representation.

In general the results suggest that the clusterings we obtain from the actual
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Figure 6.2: Histograms for the clustering error with different algorithms on 100
different samples from the equivalence class of the respective data set. The clus-
tering error on the original (“real”) data is indicated with a vertical line. See
also Table 6.2.
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graph hyper graph, rf hyper, rf
SUSHI 0.01 0.01 0.01 0.01
MLENS 0.01 0.01 0.01 0.01
DUBLIN 1.00 0.01 0.01 0.01
MSNBC 0.64 0.85 0.01 0.01

Table 6.2: The empirical p values as defined in Equation 6.1 for the clusterings
in different data sets obtained by the different algorithms. The score is based on
a sample of 99 random data sets from the equivalence class of the respective data
sets. See also Figure 6.2.

data sets have a smaller error than a clustering computed with the same algorithm
from a random data that shares certain characteristics with the real data.

6.4 Conclusion

We developed an MCMC algorithm for sampling sets of chains that all belong
to the same equivalence class as a given set of chains. The algorithm is based
on Metropolis-Hastings, and will sample uniformly from the set of sets that are
reachable from the initial data set with a local modification that we called a swap.
It is not known whether the reachable sets constitute all of the equivalence class.

The purpose for sampling the random sets of chains is randomization testing.
We can assess the significance of the results we have obtained in real data by
computing some statistic of the real data, and then comparing this to the same
statistic computed from random sets of chains. Under the null-hypothesis there
is no variation in the statistic between the real and random data sets. We say
the result is significant if the statistic in the real data is considerably different
from the one observed in random data.
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Chapter 7

Chains, partial orders, and 0–1
data

In the previous chapters we have discussed techniques for analyzing sets of chains.
To demonstrate the algorithms we performed experiments with chains arising
from various applications. Ranked data, however, is not as typical as relational
data. A large proportion of data mining literature is concerned with the analysis
of transactional databases that can very often be represented simply as a binary
matrix. Most notably this is the case with work on frequent itemset mining, see
e.g. [AMS+96, MT97, CG02, GZ03, HPYM04, ZH02].

In this chapter we study the relationship between orders and 0–1 data. More
precisely, we will address two tasks. First, we discuss how to find chains that
order the transactions based on the content of the transactions alone. A method
for finding chain-like patterns from 0–1 data was already discussed in [GKM03].
We propose another technique that is not based on the levelwise algorithm. Our
second task is to find a global order that covers all transactions. This order
can be total, but again we argue that partial orders are a better model. We
propose an approach where this order is constructed given a set of chains on the
transactions.

The problem of finding an order for 0–1 data is mostly motivated by bios-
tratigraphy, where the task is to determine the age of sediments using the fossils
they contain. We use the proposed method for finding a temporal order for a
number of sites where fossils have been located. The data is incomplete and
contains noise, mostly in the form of false zeros, i.e., zeros that should in fact be
ones. We argue that because of this the temporal order should be a partial order
instead of a strict ranking of the fossil discovery sites.

We propose an algorithm for computing a set of chains from a given 0–1 data.
These chains can be aggregated to a bucket order, or an arbitrary partial order
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on the transactions. We also discuss a method for assessing the orderability of
0–1 data in general. To this end we propose a simple randomized heuristic for
testing the property that the transactions can be ordered based on their contents.

7.1 Ordering a set of 0–1 vectors

We start the discussion by considering the general problem of finding an order
for 0–1 vectors. Let M be a set of n vectors x ∈ {0, 1}m, and let π be a partial
order on M . We will look at the special case where π is a total order later. We
associate a cost with the pair (M,π), denoted f(M,π). The task of finding an
order for the vectors in M is now simply stated as follows:

Problem Given the set M of binary vectors, find the partial order π that mini-
mizes f(M,π).

This definition is incomplete unless we specify f . Of course the “meaning” of
the found order is defined by f , and therefore it’s precise definition is application
dependant.

Our choice for f was originally motivated by the application of finding a tem-
poral order for fossil discovery sites. The data is a set of 0–1 vectors that each
correspond to a geographical location (or sediment at a certain location). Every
dimension of the vectors corresponds to a species or genus of some organism, de-
pending on the level of detail. In the vector representing a site all those positions
have a 1 that correspond to a species of which fossil remains have been found
at the site. The age difference between the youngest and oldest site is several
millions of years. In this temporal scale the following assumption is (mostly)
true: A species first appears, then exists for a certain time, and finally becomes
extinct. Important is that a species does not become extinct and then re-appear
later.

In practice this will happen to some extent as the fossil record is incomplete
due to various reasons. Nonetheless, we assume that an ordering where there are
many of such events is probably not correct in the evolutional sense. This should
be captured by the cost function by assigning a higher cost for orders where there
are many non-occurrences of a species (zeros) between occurrences of the same
species (ones).

Species that do re-appear after their extinction are called Lazarus species1 in
the paleontological community. We call a zero that appears between two ones in
an order a lazarus event. The problem of finding the order is thus to minimize
the number of lazarus events.

1This refers to a character in the New Testament, see Gospel of John 11:1–44.
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More precisely, we define the lazarus count as

f(M,π) =
∑
y∈M

m∑
i=1

I{yi = 0∧∃x ∈M : (x ≺π y)∧xi = 1∧∃z ∈M : (y ≺π z)∧zi = 1},

(7.1)
where x ≺π y denotes that the vector x precedes the vector y according to π,
and xi is the ith element of x. I{·} is the indicator function that takes the
value 1 when its argument is true, and the value 0 otherwise. Intuitively f(M,π)
simply counts all zeros that are both preceded and followed by a one in the order
specified by π. Note that this is trivially zero when we let π = ∅. In practice
we must somehow make sure that ∅ is not chosen as the solution unless the data
really does not have any underlying order (see Section 7.2).

An interesting special case occurs if π happens to be a total order. In this
case we can say the vectors in M are the rows (or columns) of a matrix ordered
according to π, and the function f counts all occurrences of zeros that appear
between the first and last one on every column. A matrix A (here A denotes both
the matrix and the set of its rows) is said to have the consecutive ones property
if there exists a permutation π so that f(A, π) = 0. Note that there may exist
several of such permutations. If A does have the consecutive ones property, then
π can be found in linear time [BL76, Hsu02]. From our point of view, however,
the case when the vectors in M contain noise and a zero cost solution can not
be found is more relevant. This is due to the incompleteness of the fossil record;
a species may have existed at a site but it is possible that there are no fossils
remaining or they simply have not been found.

Partial orders from 0–1 data

The input will thus inevitably contain noise in form of false zeros and false ones.
This is the reason we think is not necessarily a good idea to model the temporal
order by a total order, and consider partial orders to be a better model. To
motivate this, consider the following simple example. Let

M = {(1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 1)},

and define the permutation π so that we obtain the matrix

1: 1 0 0
2: 1 1 0
3: 1 0 1
4: 0 1 1
5: 0 0 1.
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1

2

3

4

5

Figure 7.1: A partial order represented as a directed acyclic graph.

In this case the value of f(M,π) is 1, the only zero that has a one appearing both
before and after is in the second column and is indicated in bold above. It is easy
to check that f(M,π) is minimized for this selection of π. However, we can also
see that two other permutations result in exactly the same value of f , namely:

1: 1 0 0 1: 1 0 0
2: 1 1 0 3: 1 0 1
4: 0 1 1 and 2: 1 1 0
3: 1 0 1 4: 0 1 1
5: 0 0 1 5: 0 0 1

All these three different permutations are all equally good in terms of the lazarus
count. Choosing one of them as the “correct” solution is not necessarily optimal,
as we introduce an order between some vectors (rows of the matrix) that can be
more or less arbitrary. This order is neither supported nor contradicted by the
data, but we can not distinguish it from a case where the data strongly suggests
some vectors being ordered in a certain way. This problem is overcome when π
is allowed to be an arbitrary partial order.

Next we discuss how this partial order should be chosen. In the example
above, three permutations that all result in a cost of one for the given M are (1,
2, 3, 4, 5), (1, 2, 4, 3, 5) and (1, 3, 2, 4, 5). In every case 1 and 5 occupy the
first and last positions, respectively. Furthermore, we see that 2 precedes 4 in all
three permutations. The partial order that adheres to these properties is given
in Figure 7.1. In fact, the set of linear extensions of this partial order contains
exactly the three permutations listed above. The cost of this partial order is zero
in terms of f . Note that this is not the case in general, usually the solution will
have a nonzero cost despite being a partial order.

Unfortunately the above partial order is not unique either. We can create
another partial order that has the same lazarus count as π in terms simply by
reversing the direction of each arrow in Figure 7.1. Indeed, for every total order
that we listed above, also the reversal has a cost of 1. It is easy to see that due
to this property the following simple but computationally infeasible algorithm
for finding the partial order does not work. Suppose that we enumerate all
possible permutations of the transactions and compute the value f(M,π) for
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each π. Then we discard every permutation except the ones with the smallest
lazarus count and compute their intersection. The partial order constructed this
way will only contain pairs that were contained in all of the permutations with
minimal cost. Clearly this will result in the trivial (empty) partial order as the
set of permutations we are intersecting contains also their reversals, and the
intersection of a permutation with its reversal results in the empty set.

The direction of time

Even if enumerating all permutations of any realistic set of vectors was not un-
realistic, the above suggestion would not work, because we still need to remove
the reversals from the set of permutations that are used to construct the partial
order. This can not be done by simply removing the reversal of each permutation
at random, because we do not know which one of the permutations is the correct
one. Returning to the above example, the set of permutations we obtain after
checking f(M,π) for every possible π is:

(1, 2, 3, 4, 5) (5, 4, 3, 2, 1)
(1, 2, 4, 3, 5) (5, 3, 4, 2, 1)
(1, 3, 2, 4, 5) (5, 4, 2, 3, 1)

If we use permutations in either the left or right column, the result is as expected,
but a priori we do not know this. We could have ended up picking (1, 2, 3, 4, 5),
(5, 3, 4, 2, 1) and (1, 3, 2, 4, 5), the intersection of which does not correspond to
the correct solution.

Before computing the intersection, we must partition the set of permutations
to two sets so that permutations belonging to the same set are linear extensions of
the same partial order. An approach for doing this based on graph partitioning is
suggested in [UFM05]. This algorithm works nicely when the number of chains is
not too big, but does not scale to large sets as the space requirement is quadratic
in terms of the number of chains. Clearly an alternative approach is to use
the clustering algorithms discussed in Chapter 4. We can say that the partial
order depicted in Figure 7.1 is the first component that “generates” half of the
permutations, while its reversal is the second component that generates the other
half. (See Section 2.1 on a simple model that generates a set of chains given k
partial orders.)

Chains from 0–1 data

The clustering algorithms provide a nice solution for deciding the direction of
time, but the algorithm outlined above is still infeasible. Enumerating all permu-
tations can not be done unless the number of transactions is very small, which
typically is not the case. However, consider the following property: If π∗ is a
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permutation that minimizes f given M , and π(M ′) is the projection of π onto
M ′ ⊆ M , then π∗(M ′) minimizes f given M ′. In less formal terms this means
that vectors belonging to any subset M ′ of M are optimally ordered in the glob-
ally optimal solution for M . Note that the converse may not be true if the
optimal solution (in terms of a total order) for M ′ is not unique. In this case it
can happen that only one of them will be equal to π∗(M ′).

A projection of a total order of M onto some of it’s subsets is by definition
a chain on M . This gives the idea for the following algorithm, which we call
sample-chains. Pick a subset M ′ of M at random, where |M ′| = l is small.
Compute f(M ′, π) for all l! chains and let X be the set of chains that minimize
f(M ′, π). If X contains only two chains (some π and its reversal), output both
and repeat this procedure until enough chains, say n, have been collected. The
reason for discarding X if it contains more than two chains is fairly obvious: if
there are many permutations that have a small lazarus count on M ′, the algorithm
has no way of telling which one of them is more likely to be compatible with the
true permutation π∗.

In practice we do not want chains for which f(M ′, π) is too large either. The
data has only weak evidence for an order π if π has a high lazarus count, even if
there are no other orders with the same lazarus count. Hence, we use a threshold
σ to prune such chains from the final output. This threshold is crucial to the
performance of the algorithm. If σ is too high, we get many chains that have
only low evidence in the data. If σ is too low, sampling will be very slow, as
only a small fraction of random subsets of M are likely to result in a chain being
created.

See Algorithm 4 for an outline of sample-chains. If X is output by the
algorithm, it contains only two chains, π and its reversal πR. We know π is the
optimal order of M ′, and hence in any of the globally optimal solutions vectors in
M ′ are ordered in this way. The chains we obtain are all thus compatible with the
globally optimal solutions. The algorithm can also be seen as an implementation
of the following simple heuristic: π is a good order for some M ′ ⊂ M if the
lazarus count of M ′ given π is low, and there are no other π′ with equally low
lazarus counts for M ′. We say that a subset M ′ and a permutation π form a valid
chain given l and σ when the lazarus count f(M ′, π) ≤ σ and there are no other
permutations π′ so that f(M ′, π′) ≤ σ as well. The algorithm sample-chains
computes a sample from the set of all valid chains in the given data set M .

Finally, we can use the techniques discussed in Chapter 3 for constructing a
bucket order on M . In [UFM05] the aim was to construct an arbitrary partial
order, but as we stated in Chapter 3, they can be difficult to interpret especially
if the number of ranked items is large.
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Algorithm 4: The sample-chains algorithm.

1: sample-chains( M , l, n, σ )
2: i← 0
3: while i < n do
4: M ′ ← a random l-sized subset of M
5: X ← {π∗ | π∗ = arg minπ{f(M ′, π)} ∧ f(M ′, π∗) ≤ σ}
6: if |X| = 2 then
7: output X
8: i← i + 1
9: end if

10: end while

7.2 Assessing the orderability of a set of 0–1 vectors

So far we have assumed that looking for an order for the vectors in M by using
the lazarus count given in Equation 7.1 is feasible. But as already stated in the
introduction, a meaningful order can be expected to be found only for certain
data sets. The approach described above will always find a set of chains that we
can use to construct a partial order on the 0–1 vectors, provided the threshold
σ is set appropriately. Given a new set of binary vectors, how can we assess its
“orderability”? We pose the question of orderability in terms of matrices. Let
M denote also the matrix that we obtain when we use the vectors in the set M
as its rows. We say a set of vectors M is orderable if the matrix associated with
it is orderable.

We say a 0–1 matrix M is orderable in terms of a cost function f , if f can be
used to distinguish between “good” and “bad” orders for its rows. Obviously if
all permutations have more or less the same cost in terms of f , it is impossible
to say which one of them is correct, and hence we can not use f to find an order
for M .

Let A be an orderable matrix. We define the matrix B as follows. Let
B = A + F−

p + F+
q , where

F−
p (u, v) =

{
−1 with probability p iff A(u, v) = 1,
0 otherwise,

and

F+
q (u, v) =

{
1 with probability q iff A(u, v) = 0,
0 otherwise.

That is, the matrix F−
p introduces a false zero to A with probability p and the

matrix F+
q introduces a false one to A with probability q. This model is motivated
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by the paleontology application. We assume that under perfect conditions all
fossils would have been formed and were also all found. This ideal input has
the consecutive ones property. But due to various sources of errors, we end up
observing something that has a number of ones missing and a few false ones
added.

When p and q are both 0.5, it is easy to see that the matrix A has no effect on
the resulting matrix B. The matrix B will have a 1 or 0 at any given element with
probability 0.5. Such completely random matrices are obviously not orderable.
However, if p and q are not “too large”, we can expect the orderability property
having remained in B. In general we do not know either p or q.

Instead of trying to estimate these we address the following question: can
we somehow distinguish the B we observe from a matrix that for sure is not
orderable but has the same column frequencies? If we can, then this supports
the assumption that B indeed was generated by the model described above and
the order we find is relevant.

We will discuss a simple randomized method for analyzing this. Let τ be a
random permutation on M , and let M ′ be a random subset of M of size l, where
the distribution over the respective sample spaces is assumed to be uniform. Let
Z be a random variable with the value f(M ′, τ(M ′)). The test that we propose is
based on comparing the empirical distribution of Z that is obtained by sampling
M , with the distribution that Z has under the zero hypothesis of M not being
orderable.

If the vectors in M are not orderable using the cost function f defined in
Equation 7.1, then every permutation on M ′ should have almost the same cost in
terms of f . This is the case when the vectors in M are generated by the following
simple stochastic process. We let

xi =
{

1 with probability pi,
0 with probability 1− pi.

(7.2)

Suppose l = 3 and consider the ith coordinate of the vectors in M ′. A zero can
occur between two ones obviously only if there are two ones and one zero. This
happens with probability p2

i (1 − pi). Three items can be ordered in 6 different
ways, of which two will lead to the forbidden configuration, hence the probability
of coordinate i contributing a cost of 1 to Z is q = 1

3p2
i (1− pi). If we denote this

event with Xi we have Z =
∑

i Xi. When pi = pj for all i and j this is clearly
the Binomial distribution. In the more realistic case where the pis are different,
Z is the sum of independent but non-identically distributed Bernoulli variables,
also called Poisson trials.

To demonstrate the idea, we generate the sets A1 and A2 that both contain
200 200-dimensional vectors. The set A1 is constructed so that there exists
a permutation π so that f(A1, π) = 0, i.e., A1 satisfies the consecutive ones
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Figure 7.2: Two matrices having the same column frequencies but with different
structure: matrix A1 in (a) has the consecutive ones property while matrix A2

in (b) contains noise.
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Figure 7.3: Examples of empirical probability distributions of Z when the input
vectors either have the consecutive ones property as in subfigure (a) of Fig. 7.2
(solid line) or contain noise as in subfigure (b) of Fig. 7.2 (dashed line).
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Figure 7.4: Left: Empirical distribution of Z for different values of p when q = 0.0.
Right: Empirical distribution of Z for different values of q when p = 0.0.

property. Set A2 is generated by the model of Equation 7.2. Both matrices
have the same column frequencies, i.e., the number of ones on the ith column of
A1 is the same as the number of ones on the ith column of A2. These column
frequencies were chosen uniformly at random from [0, 1]. See Figure 7.2 for
examples. Subfigure (a) shows an instance of matrix A1 while in subfigure (b)
the matrix A2 is shown. In Figure 7.3 we have plotted the empirical distribution
of Z for both A1 (solid line) and A2 (dashed line). Obviously the distributions
are of a completely different shape. The one corresponding to A2 is symmetric
and has short tails, whereas the one based on sampling from A1 has a lot of
weight on Z = 0 and a long tail.

This shows the extreme cases of any input. Recall, that in general we observe
the matrix B that is of the form A + F−

p + F+
q , where the matrices F−

p and F+
q

introduce false zeros and false ones, respectively. How sensitive is the distribution
of Z to p and q? In Figure 7.4 we plot the empirical distribution of Z (Again
using the same 200× 200 matrix A1 as the underlying component.) for different
values of p and q while the other one is kept fixed at zero. We observe that the
influence of p is considerably weaker than that of q. The difference between p = 0
and p = 0.4 is smaller than the difference between q = 0.025 and q = 0.1. In
other words, false zeros have less effect on the final shape of the distribution of
Z, while already a small fraction of false ones changes it by a noticeable margin.

Finally, we note that the column frequencies affect the shape of the distribu-
tion as well. If the input matrix is very sparse, we can expect the probability
of Z = 0 to be higher also for matrices generated using Equation 7.2. It is thus
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Figure 7.5: Left: Empirical distribution of Z (solid line) when B = A1 + F−
0.5 +

F+
0.05 and the reference distribution (dotted line). Right: Empirical distribution

of Z (solid line) when B = A1 +F−
0.1 +F+

0.2 and the reference distribution (dotted
line).

important to always compare the distribution obtained from the real input to a
matrix with the same column frequencies.

Distinguishing orderable matrices from ones that are not orderable is a matter
of comparing the empirical distribution of Z obtained from the real data with
the reference distribution obtained from a matrix based on Equation 7.2. If
the distribution based on the real data has a higher probability for Z = 0 and
a longer tail than the reference distribution, it may be possible that the input
vectors indeed are orderable. However, the order can be ambiguous. For example,
if the input matrix looks like a chessboard (1s for white squares and 0s for black
squares), in a zero cost solution the rows with even indices must be grouped
together, and placed either before or after the rows with odd indices. The order
within the even (and odd, respectively) indices is not determined. There are
thus a very large number of equally good permutations, but still the empirical
distribution of Z will have Pr(Z = 0) = 1. Therefore, to be precise, this heuristic
can only be used to rule out inputs that are essentially noise and hence not
orderable.

7.3 Experiments

In this section we describe experiments performed on a paleontological data set.
We make use of the analysis techniques discussed in the earlier chapters, and
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this way the section also serves the purpose of demonstrating the techniques in
a practical setting. The data set we use, called g10s10, is a 124 × 139 0–1
matrix, where the rows correspond to sites and columns to different genera. The
1s indicate that a fossil belonging to a certain genus was found at a certain site.
The task is to find a temporal order for the sites that is evolutionally feasible,
i.e., extinct genera do not re-appear later, as argued in Section 7.1.

Especially we are interested in the number of temporal classes (or buckets)
that the sites should be divided to. The current system used by the paleontolo-
gists divides the sites in g10s10 to 14 different classes. The results we obtained in
Chapter 3 when combining the MCMC algorithm of [PFM06] with the bucket-
pivot algorithm indicate on the average about 17 classes in g10s10. This num-
ber is not fully reliable, however. The algorithm of [PFM06] is also based on the
lazarus count principle, and is hence also unable to distinguish between the two
directions of time: the one where the sites become older and the one where they
become younger. In [PFM06] this problem is solved by restricting the Markov
Chain to those permutations that correspond to only one of the directions. This
is done by fixing the order of a subset of 11 sites using so called hard ages that
are determined for some sites based on other data. There is a small possibility
that the number of buckets observed in the pair order matrix of g10s10 is an
artefact of this. The approach discussed in this chapter allows us to construct
the pair order matrix without resorting to any additional data about the ages of
the sites.

Sampling chains from G10S10
We start by evaluating the orderability of the g10s10 data. To this end we
compute the empirical distribution of the Z variable and compare it with its
distribution under the zero hypothesis as described in the previous section. The
data set itself along with the results is shown in Figure 7.6. The solid line
indicates the empirical distribution of Z computed from the matrix shown on
the left in Figure 7.6. The dotted line is the reference distribution. They are
obviously not identical, and hence we can not rule out the possibility of g10s10
being orderable.

The next task is to pick a number of chains from the g10s10 matrix us-
ing the algorithm of Section 7.1. As the algorithm has to check every possible
permutation of the chosen subset of rows, looking for long chains is not very effi-
cient. We want to have a large number of chains, so we can not spend too much
time per candidate. The length of the chain is a compromise between efficiency
and quality; if the chains are too short we encounter problems when separating
the different directions from each other. In Chapter 4 the experiments indicate
that obtaining a correct clustering with chains shorter than 5 items tends to be
difficult. We let l = 5, as this leads only to 5! = 120 permutations to check,
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Figure 7.6: Left: The g10s10 data set with rows ordered according to the esti-
mated age of the sites. Right: Distributions of Z for the real data (solid line)
and the random data (dotted line).

and chains of length 5 can usually be clustered successfully with the algorithms
proposed in Chapter 4.

Setting σ is another interesting question, for which we do not have a final
answer. We can experimentally investigate how sample-chains behaves for
different values of σ, i.e., see how long it takes to sample n chains. If we run the
algorithm with σ = 0, meaning that a chain π(M ′) is accepted only if f(M ′, π) =
0 we obtain 1000 chains in approximately 15 minutes2. In this time the algorithm
evaluates roughly 1.1 million different subsets of M . When σ is increased to 10,
we obtain 1000 chains in less than a minute. Sampling 50000 chains from g10s10
with l = 5 and σ = 10 takes 40 min and the algorithm evaluates about 3.1 million
subsets of the rows.

Note that there are about 225 million subsets of size five in total when m =
124. Thus, given that the current implementation can process roughly 1 million
subsets (when l = 5) in 15 minutes, it would not be infeasible to evaluate them
all and this way obtain all chains that are valid. This would take about 56
hours. However, our main motivation for sampling the chains is to use them for
computing the normalized pair order matrix CD for the sites. The set of chains
we get with sample-chains is a uniform sample of all possible chains that are
valid given l and σ. It is easy to see that the relative frequency of chains where u
precedes v is the same in the entire set of valid chains and in a uniform sample of

2Using a fairly unoptimized Java implementation of the algorithm running on a 1.8GHz
CPU.
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Figure 7.7: Left: A scatterplot of 1000 chains sampled from the g10s10 data set
with σ = 0. Right: Detail of the central part of the left figure. In both figures
the colors indicate a 2-way clustering of the chains. Even though the clusters
overlap in the plot on the right they correspond as expected to the two sets of
chains that point to different directions but are otherwise identical.

this set. Hence, the benefits of having all valid chains is negligible in the current
application when compared to the additional cost of computing them.

Finding the direction of time
Recall, that for every chain π in the sample we obtain using sample-chains,
also its reversal πR belongs to the sample. This means that one half of the chains
correspond to an order where the sites “become younger”, while in the other half
they “become older”. To resolve the direction of time, we have to partition the
set of chains so that chains in the same group point to the same direction. As
suggested above in Section 7.1, this can be done using the clustering algorithms
of Chapter 4. We can also use the visualization techniques of Chapter 5 to see
how the set of chains we have sampled is structured, and if the clustering really
seems to correspond to the correct partition.

In Figure 7.7 we have plotted a set of 1000 chains that are valid given σ = 0.
The plot is created using the hypersphere representation and PCA. On the left
side of the figure is a plot showing all chains, while the plot on the right shows the
group of points in the very center of the left plot. The clustering is indicated by
the colors. Maybe somewhat surprisingly there are not only two groups of points,
but several small ones with a bigger cluster of points in the center. However, it is
relatively easy to see that the the figure is symmetric with respect to the origin.
For every red point there is a corresponding blue point on the opposite side of
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Figure 7.8: A scatterplot of 1000 chains sampled from the g10s10 data set with
σ = 10. The colors indicate a 2-way clustering of the chains.

the origin. This indicates that the clustering has separated the two directions as
expected.

When we cluster the set of 50000 chains that we sampled with σ = 10 and
pick a random subset of 1000 chains for visualization, we obtain the scatterplot
in Figure 7.8. As above, the chains are distributed symmetrically around the
origin. Note that unlike in Figure 7.7 the figure is not strictly symmetric with
respect to the origin. This is because we plot only a random subset of the 50000
chains. Also in this case the clustering algorithm has found the two directions of
time.

Bucket orders for sites
We can construct the normalized pair order matrix ĈD using chains from one
of the clusters found above in the set of 50000 chains. This matrix is shown on
the left in Figure 7.9, note that the rows and columns of ĈD have been sorted in
order of the row-wise sums. When looking at the left matrix, we observe some
gray elements in the upper right and lower left corners, meaning that for some
sites u and v ĈD(u, v) is very close to 0.5.

These values correspond to pairs (u, v) where site u is a old and site v young.
It is unlikely that old and young sites occur together in a chain, because they
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Figure 7.9: Left: The normalized pair order matrix for g10s10 computed from
25000 chains. Right: The normalized pair order matrix for g10s10 with missing
values inferred by transitivity. Black corresponds to value 1.0, white to 0.0.

tend to have no common species, and can hence be ordered arbitrarily without
affecting f(M ′, π). This increases the number of permutations that have a lazarus
count less than σ, which prevents the candidate subset M ′ from being a valid
chain. If the input D does not contain any instances where either u precedes v
or vice versa, we have ĈD(u, v) = ĈD(v, u) = 0.5 by definition. Note that this
does not occur when the pair order matrix is built based on total orders on the
sites, as is the case in Figure 3.5 on page 34.

This phenomenon can cause problems if we want to apply the bucket-pivot
algorithm discussed in Chapter 3 to construct a bucket order on the sites. If the
pivot site is chosen so that it belongs to many of such pairs, the resulting bucket
order will have many errors.

Even though we may have no explicit information about the order of some u
and v, we can still infer their order by transitivity from the other pairs. Suppose
the set of chains we sampled has many occurrences of (u, w) and (w, v) for dif-
ferent w but none of (u, v), we can say that u should precede v. We implement
this idea in the following simple algorithm for “fixing” a normalized pair order
matrix that is obtained from a set of chains:

1. Let UD denote the set of unordered pairs {u, v}, st. u and v never occur
together in any chain of the input D.

2. For all {u, v} ∈ UD, let T (u, v) denote the number of different w, st.
ĈD(u, w) > γ and ĈD(w, v) > γ.
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bp bp-pr
avg. cC 850.35 847.42
min. cC 682.97 674.97
max. cC 1415.29 1426.45
std. cC 129.96 132.63
avg. cMN 1198.43 1189.77
min. cMN 788.50 780.50
max. cMN 1988.00 1979.50
std. cMN 185.48 187.01
avg. Nb 32.72 29.29
min. Nb 20.00 15.00
max. Nb 42.00 40.00
std. Nb 3.41 4.54

Table 7.1: Results of the bucket-pivot algorithm with (right column) and
without pruning. The numbers are based on 1000 independent runs.

3. For all {u, v} ∈ UD with T (u, v) > δ, let ĈD(u, v) = 1 and ĈD(v, u) = 0.

Above γ ∈ (0.5, 1] and δ ∈ N are free parameters.
When the above algorithm is applied to the left matrix in Figure 7.9, we

obtain the matrix on the right. This no longer contains any missing pairs, and is
hence better suited to be used as input for bucket-pivot. When bucket-pivot
is run 1000 times with the fixed pair order matrix of Figure 7.9 as the input, we
obtain the results shown in Table 7.1. Here bp denotes the regular algorithm, and
bp-pr the variant that uses pruning to reduce the number of redundant buckets
(see Section 3.2).

When Table 7.1 is compared with Table 3.1 on page 3.1, we notice that the
average number of buckets found is considerably higher (32.7 and 29.3 with bp
and bp-pr, respectively) when the pair order matrix is built from chains instead
of permutations (here average Nb equals 17.5 and 16.9). This result indicates
that using the chains a more fine grained order of the sites can be obtained.
Whether this means that the true number of classes in g10s10 is higher than 14,
as indicated by the current MN-system, would require additional experiments.

7.4 Conclusion

We have proposed a simple method for sampling chains from a set of 0–1 vectors.
Each chain defines a total order on some small subset of the vectors. Moreover,
the chains can be combined to produce a global order on the vectors. As a prac-
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tical example we used the method to produce a bucket order for fossil discovery
sites given occurrence information of fossils of different species found at the sites.

The method is based on a measure we call the lazarus count which is related to
the consecutive ones property of 0–1 matrices. A small drawback of this approach
is that we obtain the chains in “both directions”. The problem of separating these
two directions from each other is a clustering problem, and is easily solved with
one of the algorithms presented in Chapter 4 on page 53.

Another issue with the approach is that it will always yield some chains even if
the input is inherently not orderable using the lazarus count measure. To tackle
this we also discussed a heuristic for assessing the orderability of a set of 0–1
vectors.
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Chapter 8

Discussion

In this thesis we have discussed algorithms for analyzing sets of chains. More
specifically, we have considered the following tasks: finding bucket orders, clus-
tering chains, visualizing sets of chains, randomization testing for sets of chains
and sampling chains from 0–1 data. The work has been exploratory in the sense
that no specific real world problem was targeted by the research. However, we
have demonstrated the proposed methods on real data sets that arise from dif-
ferent application domains. Probably the most important application we have
considered is that of biostratigraphy, where the task is to determine the age of
rock sediments based on the fossil record.

For the problem of finding bucket orders we presented a constant factor ap-
proximation algorithm in Chapter 3. The problem is closely related to that of
rank aggregation, where the task is to find a total that is as compatible as possible
with a set of total orders. A key proposition that we make in this thesis is that
in some cases bucket orders are a better model than total orders for representing
sets of orders (permutations or chains).

In Chapter 4 we considered the problem of clustering a set of chains. By
clustering we mean the usual problem of partitioning a set of items so that items
similar to each other are placed in the same cluster, while items dissimilar to each
other end up in different clusters. We gave a simple variant of Lloyd’s iteration for
solving the k-means problem in case of chains. We also compared our algorithm
to that of [KA06]. The results indicate that the methods tend to perform equally
well with our algorithm outperforming [KA06] by a small margin in a number of
cases. We also gave two approaches for representing chains in a vector space.

Visualization can be a powerful tool in an early stage of data analysis. In
Chapter 5 we discussed how existing dimension reduction techniques can be com-
bined with the vector space representations of Chapter 4 to form scatterplots of
sets of chains. We use measures from information retrieval and machine learning
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to evaluate the visualizations.
The topic of Chapter 6 is related to recent work on randomization testing

of data mining results. Here the problem is to construct random data sets that
share some well specified characteristics with the original data. Results computed
from the random data sets are then compared with the results from real data. If
these do not differ considerably (according to some statistic) we can question the
significance of the found results. In Chapter 6 we gave an MCMC algorithm for
sampling sets of chains. We used the algorithm to assess the significance of the
clusterings found in Chapter 4.

Chapter 7 deals with a slightly different problem than the rest of this work.
There we do not discuss a method for analyzing chains, but instead propose a
simple algorithm for sampling chains from 0–1 data. The assumption is that
an order for 0–1 vectors can be deduced from the contents of the vectors. This
approach is largely motivated by the paleontology application. As a first task,
we are interested in finding total orders for small subsets of the transactions.
Only some subsets of the transactions can be ordered according to the chosen
cost function, these are the valid chains. Instead of attempting to find all valid
chains, of which there can be a number that is exponential in the number of
vectors in the input, we are satisfied with a sample of this set. Our second task is
to construct a global order for the 0–1 vectors. We discuss why it is better to use
partial orders than total orders and give a simple heuristic for assessing whether
such an order can be found given a set of 0–1 vectors.

The problems discussed in this thesis are by no means fully understood. Our
approach to finding a bucket order is based on pairwise probabilities of the items
to precede one another. By using some other definition for an optimal bucket
order, it might be possible to develop algorithms that make use of the given set
of chains directly instead of first estimating these probabilities. Also, it is not
obvious that the relatively simple clustering approach as taken in Chapter 4 and
also in [KA06] is the best way of finding multiple orders to describe a set of chains.
When constructing the visualizations in Chapter 5, we have in many ways also
only scratched the surface of the problem. Dimension reduction algorithms that
would take the structure of the space in which the chains reside properly into
account are yet another topic for further research.

Chapter 6 discusses the swap-pairs algorithm for sampling sets of chains.
There are two important theoretical questions related to this. First, is the equiv-
alence class as defined in Section 6.2 connected with respect the swap operation
defined in Section 6.2? If not, then swap-pairs will sample only from a re-
stricted subset of the equivalence class. How restricted is this subset? Moreover,
can something precise be said about the convergence of swap-pairs, i.e., is it
rapidly mixing?

Finally, the question of finding orders from 0–1 data certainly warrants further
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research. We see that there are two ways of extending the work. On one hand it
would be interesting to develop more efficient algorithms that find chains based
on the lazarus count principle. On the other hand one can study the problem of
ordering 0–1 data in a more general setting. What kinds of other cost functions
can be used to find orders? What common properties should they satisfy, and
are there any efficient algorithms that could make use of these properties?
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Appendix A

Proof of Theorem 4.3.1

The proof is a simple matter of upper bounding the equation

p =
(

m

l

)−1 l∑
i=2

(
l

i

)(
m− l

l − i

)
.

First we note that using Equation 5.22 of [GKP94] (Vandermonde’s convolution)
the sum above can be rewritten as(

m

l

)
−

((
l

1

)(
m− l

l − 1

)
+

(
m− l

l

)
︸ ︷︷ ︸

A

)
.

Essentially Vandermonde’s convolution states that
∑l

i=0

(
l
i

)(
m−l
l−i

)
=

(
m
l

)
, and we

simply subtract the first two terms indicated by A, because above the sum starts
from i = 2. Using simple manipulations we obtain

A =
(

m− l

l

)( l2

m− 2l + 1
+ 1

)
,

which gives the following:

p =
(

m

l

)−1((
m

l

)
−

(
m− l

l

)( l2

m− 2l + 1
+ 1

))
.
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A. Proof of Theorem 4.3.1

Since the part l2

m−2l+1 + 1 is always larger than 1, we have

p <

(
m

l

)−1((
m

l

)
−

(
m− l

l

))
= 1−

(
m

l

)−1(
m− l

l

)
= 1− (m− l)!

l!(m− 2l)!
· l!(m− l)!

m!

= 1− (m− l)(m− l − 1) · · · (m− 2l + 1)
m(m− 1) · · · (m− l + 1)

< 1− (m− l)(m− l − 1) · · · (m− 2l + 1)
ml

< 1− (m− 2l + 1)l

ml

<
ml − (m− 2l)l

ml
.

We can factor ml − (m− 2l)l as follows:

ml − (m− 2l)l = (m− (m− 2l))
(
ml−1(m− 2l)0 + ml−2(m− 2l)1 + . . .

· · ·+ m1(m− 2l)l−2 + m0(m− 2l)l−1
)

= 2l

l−1∑
i=0

ml−1−i(m− 2l)i.

Using this we write

ml − (m− 2l)l

ml
= 2l

l−1∑
i=0

(
1
m

)lml−1−i(m− 2l)i.

Letting a = l − 1 and taking one 1
m out of the sum we get

1
m

2(a + 1)
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i=0
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1
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)ama−i(m− 2(a + 1))i

=
1
m
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1
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1
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)i.
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We assume l = a + 1 is considerably smaller than m, and hence (1 − 2(a+1)
m )i is

at most 1. There are a + 1 terms in the sum, so the above is upper bounded by

1
m

2(a + 1)(a + 1) =
1
m

2l2,

which concludes the proof of the theorem. �
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