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1 Introduction

“It’s not what you say, but how you say it.” The age-old adage about the form vs.

function dichotomy condenses the essence of this thesis. A complex and rich language

is one of the distinct features of the human race. Human beings, as profoundly social

animals, are also, in addition to the explicit, verbal channel of vocal communication,

exceptionally talented in picking up the tone of speech and evaluating the speaker’s

message, intentions, mood, and even health status from it. This tone of speech, called

the voice quality, constitutes much of the second, implicit channel of vocal communi-

cation. Laver (1980) defines it as “the characteristic auditory colouring of a speaker’s

voice”. Although the definition uses perceptual aspects of voice, voice quality is firmly

rooted in the physiological process of voice production, which also is the viewpoint of

this thesis.

In traditional speech sciences, the existence and significance of the voice quality in vo-

cal communication is acknowledged, but often ignored. In disciplines such as phonet-

ics, research of vocal expression of emotions, logopedics, and vocology, measures only

indirectly related to the voice quality are customarily utilized. Measures such as the

fundamental frequency, intensity, and spectral tilt reflect more profound phenomena in

the voice production system, which, due to methodological and conceptual deficien-

cies, have traditionally gained insufficient attention. Voice quality changes, directly

related to the actual physiological source of voiced speech, should be able to describe

and explain the secondary parameter variations at a more basic level. Therefore, direct

analysis of the voice source should give a better insight on the factors actually causing

the observed voice quality changes.

Within the last two or three decades, the methodology and actual study of the voice

quality and the voice production have gained increasing attention. Measurement tech-
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niques and algorithms have been developed, and considerable knowledge of the details

of the voice apparatus has been acquired. Still, much work needs to be done to obtain

a comprehensive view of the function and analysis of human voice in production of

different voice qualities.

Most of the studies utilize a voice source separation method called inverse filtering

(Miller, 1959; Fant, 1960). All proposed inverse filtering methods make assumptions

regarding the separability of the source and the filter, even though those assumptions

are known to be invalid in real life. Due to this discrepancy and other possible im-

perfections caused by the inverse filtering methods, evaluation of the validity of the

acquired estimates of the airflow between the vocal folds (the glottal volume veloc-

ity waveform, or glottal flow) should be essential in the field. However, since direct

measurements of the glottal flow are not practically possible, direct evaluation of the

inverse filtering methods is not possible. Hence, most studies have relied on simple

qualitative inspection of the acquired waveform shapes or the spectrum as the veri-

fication method. Another issue related to inverse filtering methodology is that few

comparative studies of different inverse filtering methods have been performed. There-

fore, little data exists on the discrepancies of the glottal flow estimates acquired using

different algorithms, and the effect of the inverse filtering method on the acquired flow

waveforms cannot be easily estimated.

Quantitative analysis of the estimated glottal flow waveforms requires parameterization

of the results. While numerous parameters have been suggested, little is known about

their relative differences, their performance in measuring different features of the voice

source, or how the parameter values can be compared to each other.

In contrast to the relative abundance of the different published voice source analysis

and parameterization methods, surprisingly few software packages for those purposes

are publicly available. The lack of existing research and development platforms has
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created an unnecessary barrier of entry to the field, with every research group having

to implement their own algorithms at a great time expense and a risk of implementation

errors.

Due to practical reasons, comparatively few studies of voice source on continuous

speech have been performed. Instead, stationary vowels or very short, fixed utterances

are commonly used. As marked differences can be found between stationary vowels

and continuous speech, future research needs to be able to address the problems as-

sociated with the analysis of continuous speech and to ascertain whether knowledge

acquired using stationary phonation is applicable to natural speech.

Studies utilizing voice source analysis techniques have already been performed in var-

ious fields such as occupational voice (Vilkman et al., 1999; Lehto, 2007), classical

singing (Björkner, 2006), pathological voice evaluation (Murphy, 2006), and percep-

tion of emotions (Gobl and Ní Chasaide, 2003). However, improved knowledge on the

voice source functioning and its relationship to the voice quality could be useful in,

for example, reliable recognition of vocal emotions. Emotion recognition and detec-

tion techniques could be used, for example, in improving human-computer interaction,

automated telephone services, and automatic labelling of recordings. Furthermore,

the contemporary high-quality methods for speech synthesis mostly allow for limited

voice quality changes with reduced naturalness. The expressivity of speech synthesis

techniques could be dramatically improved if voice quality adjustments could be per-

formed. This would be a valuable feature in areas such as human-computer interaction

both in traditional and mobile computing environments, as well as in the gaming and

film industries.
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1.1 Scope of this thesis

Two research questions were presented in this study:

• How can the most important laryngeal voice quality features be analyzed?

• How do the voice quality features affect different facets of vocal expression?

The first research question concerns the voice quality analysis methods. Some prac-

tical limitations were set for the methodology from the beginning. First, the analysis

methods should be non-invasive and sufficiently discrete in nature, so that the actual

data acquisition would not overtly affect the tasks at hand. For example, the equipment

and the environment required for the use of high-speed imaging of the vocal folds

would hardly allow for realistic expression of emotions, with the exception of fear and

anxiety! In practice, these limitations dictated the use of microphone recordings and

voice inverse filtering throughout the study. Yet, the validity and the reliability of the

inverse filtering methods, the data parameterization techniques, as well as the actual

working environment were discussed to shed light on the question. The goal was to

establish a suitable methodology for voice quality studies.

The second research question concerns the actual gathering of knowledge regarding

the voice quality features. As a complete examination of all different voice quality di-

mensions would have been far beyond the scope of a single doctoral thesis, the present

studies were limited to the breathy–pressed (or lax–tense) axis of laryngeal voice qual-

ity. To answer the second research question, the relationship of different aspects of

vocal expression such as vocal expression of emotions and prominence to the pressed-

ness were examined. Hence, the goal was to obtain data on the voice source behaviour

in voice quality changes in continuous speech.
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1.2 Organization of the thesis

The doctoral thesis consists of this summary and seven publications. Five of the articles

were published in international peer-reviewed journals and two in reviewed conference

proceedings. The Articles III–VII discuss the voice source analysis and parameteriza-

tion methods, while the Articles I and II address the actual voice quality differences in

different contexts.

The summary provides a broader overview and background information on the top-

ics and concepts of the thesis at a more detailed level than in the articles. In section

2, the human voice production mechanism is described. Section 3 discusses different

methods of artificially modelling the voice production. Section 4 gives a treatment on

different voice analysis techniques, while section 5 summarizes different voice source

parameterization methods. The concepts of voice quality and vocal expression of emo-

tion are treated in section 6. Section 7 summarizes the articles and section 8 concludes

the thesis.
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2 Voice production system

2.1 Subglottal structures

The process of producing voiced sounds starts from the airflow caused by the pressure

exerted on the lungs. Lungs are a pair of organs located in the thorax. Their primary

function is respiration by absorption of oxygen from air and excretion of carbon diox-

ide from the bloodstream. However, due to that function, they also act as powerful

bellows, facilitating airstream through the respiratory airways (Rossing, 1990). The

total volume of the lungs is about 6–7 litres, of which two litres is residual volume,

which can never be depleted unless the lungs collapse (Titze, 1994). Thus, the vital

capacity of lungs is 4–5 litres. In low levels of physical activity, only 10–15% of the

vital capacity is inhaled and exhaled.

In the expiratory process, the elastic recoil of the lungs and ribs is sufficient to initi-

ate exhaling (Titze, 1994). In the first phase of expiration, the diaphragm is used to

regulate the elastic recoil to control the lung pressure. In the latter expiratory phases

of active breathing, exhalation is further continued by a pressure exerted on the lungs

by the internal intercostal and the abdominal muscles (West, 2000). The muscles in-

duce an overpressure, which in average phonation is 0.5–1 kPa (Hirano, 1981). The

pressure differential between the lungs and the ambient air causes an airflow through

the respiratory airways. This airflow has been measured to be about 0.07–0.20 l/s in

sustained phonation, with great individual variation (Hirano, 1981).

The air from the lungs erupts through the respiratory airways, the lower part of which

consist of the bronchi and the trachea. Unlike the upper part, consisting of the larynx

and the vocal tract discussed below, the trachea is a fairly rigid, 10–12 cm long tubular
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structure, about 25 mm in diameter (Stevens, 2000).

2.2 Larynx

The larynx, illustrated in the cross-section of the vocal organs in Fig. 2.1, is situated

in the neck, where it is surrounded by a large number of blood vessels, nerves, glands,

and other supply lines of the human body (Titze, 1994). These impose severe space

constraints on the larynx, which affect the larynx’s operation. Furthermore, the larynx

is used in several auxiliary functions as well. For example, in swallowing the larynx is

moved upwards so that the airway can be sealed. In yawning the pharynx expands and

the larynx is depressed to widen the airway. The range of vertical movement in these

operations can be several centimeters. The larynx can also move forward when greater

air flow is needed or when a lump of food is swallowed. The need for mobility of the

laryngeal structure precludes any rigid bony attachments to the skeleton, and so most

of the laryngeal framework is in the form of cartilages.

The different cartilages of the larynx are shown in Fig. 2.2. The thyroid cartilage

shields the inner structures and forms a rigid structure in front of them (Titze, 1994). It

comprises of two plates that are joined at the midline at an angle of about 90◦ to 120◦.

The angle is usually smaller in adult males than in women and children, resulting in

a prominence known as the Adam’s apple. At the posterior borders of the thyroid

cartilage, four projections arise. The two upward projections, superior cornu, connect

the thyroid cartilage via a ligament to the hyoid bone. The downward projections,

inferior cornu, join with the cricoid cartilage. The cricoid cartilage lies directly below

the thyroid cartilage, forming a solid ring completely surrounding the laryngeal airway.

It may be thought of as the most superior tracheal ring, but is different in shape and

construction. The two arytenoid cartilages are situated on top of the posterior portion
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Figure 2.1: A sagittal cross-section of the respiratory airways, illustrating the key
elements of the voice production system (Gray and Lewis, 1918).

of the cricoid cartilage. The vocal ligament attaches to the anterior projection at the

base of the arytenoid cartilage. The arytenoid cartilages are readily movable due to the

highly flexible cricoarytenoid joint. The arytenoid cartilages can move not only in the

medial-lateral direction, but they also can rock in the anterior-posterior direction. The
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epiglottis is a lid-like cartilage at the top of the larynx, which folds over the entryway

to the larynx when tight closure of the airway is needed.

Figure 2.2: Antero-lateral and posterior views of the ligaments and cartilages of the
larynx (Gray and Lewis, 1918).

The hyoid bone is the only bone related to the larynx (Titze, 1994). While not part of

the larynx proper, it connects to the thyroid cartilage through the thyroid membrane

and the superior cornu. Many muscles are also anchored to this bone.

The muscles of the larynx may be divided into two groups, the intrinsics and the ex-

trinsics (Titze, 1994). The intrinsic muscles interconnect the different cartilages of the

larynx, while the extrinsic muscles connect the laryngeal structures to its surroundings,
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such as the sternum or the hyoid bone. The two thyroarytenoid muscles, shown in Fig.

2.3, are connected to the thyroid and arytenoid cartilages. They make up the bulk of

the vocal folds. When contracted, they pull the arytenoid cartilages forward, thereby

shortening, thickening and stiffening the vocal folds. The two cricothyroid muscles

connect the cricoid and thyroid cartilages. They elevate the cricoid arch and depress

the thyroid lamina, thereby shortening the cricothyroid space and lengthening the vo-

cal folds. Thus, they are the primary pitch-control muscles. The lateral and posterior

cricoarytenoid and interarytenoid muscles connect the arytenoids to the cricoid and to

each other, thus facilitating the movements of the arytenoids. The different extrinsic

laryngeal muscles control the vertical movements of the larynx and the hyoid bone.

Figure 2.3: Top and two side views of larynx muscles and their attachments to the
cartilages (Gray and Lewis, 1918).

The vocal folds are located at the narrowest portion of the airway in the larynx. They

are a valve-like structure composed of rather thick and flexible mucosa and muscle
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tissue. In breathing, they are used in controlling the airflow and sealing off the trachea

from the pharynx when needed. The length of the vocal fold is about 1.6 cm in males

and 1 cm in females, and their mass is approximately 1 gram (Hirano et al., 1981). The

aperture between the vocal folds is called the glottis. In males, the average glottal peak

cross-sectional areas of 126 mm2 during inspiration and 27 mm2 during phonation have

been measured (Brancatisano et al., 1983; Hertegård and Gauffin, 1995). A schematic

of a coronal section of a vocal fold is shown in Fig. 2.4. The outermost layer is a thin

skin made up of layered and scale-like epithelium (Hirano, 1981). It is 0.05–0.10 mm

thick, and acts as a capsule whose purpose is to maintain the shape of the vocal fold.

The lamina propria resides between the epithelium and the thyroarytenoid muscle.

It is a layered system of non-muscular tissues that can be divided into three layers:

superficial, intermediate, and deep. The superficial layer consists of elastic protein

fibers surrounded by interstitial fluids. It can be likened to a mass of soft gelatin. The

intermediate layer also consists primarily of elastic fibers, although in this layer they

are mainly longitudinally aligned. Furthermore, mixed with the elastic fibers there

are also some inextensible collagen fibers. The deep layer consists of longitudinally

aligned collagenous, inextensible fibers. The superficial layer is approximately 0.5 mm

thick in the middle of the vocal fold, while the intermediate and deep layers together

are about 1–2 mm. The thyroarytenoid muscle forms the major portion of the vocal

fold, being approximately 7–8 mm thick (Titze, 1994). The structure of the vocal

fold, however, is not uniform along its length. The intermediate layer thickens and the

superficial layer becomes thinner towards the ends of the vocal folds, and there also

exist masses of elastic fibers—an extension of the intermediate layer—at both ends of

the vocal folds, cushioning the membranes’ attachments to the surrounding cartilages

(Hirano, 1981).
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Figure 2.4: Schematic drawing of a coronal section through the right vocal fold. (After
Titze 1994.)

2.3 Vocal tract

The respiratory airway above the larynx is called the vocal tract. The vocal tract con-

sists of the pharynx, mouth, and the nasal cavity (see Fig. 2.1). The shape of the vocal

tract can be altered by moving the tongue vertically and longitudinally. The tongue

placement affects the relative diameters of different parts of the vocal tract, thus affect-

ing the vocal tract resonances, i.e., the formants. In non-nasalized phonation, the soft

palate seals the nasal cavity from the pharynx, so that the airflow only occurs through

the pharyngeal cavity and the mouth. Furthermore, the length of the vocal tract may

be adjusted by moving the larynx vertically or by widening or constricting the mouth

opening.
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The average vocal tract length of young adult males has been found to be 15.5 cm and

of females 13.9 cm (Fitch and Giedd, 1999). The vocal tract volume has been reported

to vary, depending on the individual, vowel, and voice quality, between 19 to 80 cm3

(Stevens, 2000; Story et al., 2001).

2.4 Principles of vocal fold oscillation

According to the traditional myoelastic-aerodynamic theory of vocal fold oscillation,

vocal folds vibrate due to the Bernoulli forces caused by the sufficiently high-velocity

airstream through the glottis pulling the vocal folds together (Titze, 1994). After the

closure of the glottis, the elastic properties of the tissue together with the increased

subglottal pressure force the separation of the vocal folds. The movement outwards

then continues, until the elastic forces of the tissue limit and reverse it.

Unfortunately, the myoelastic-aerodynamic theory is unable to explain self-sustained

oscillation. The Bernoulli forces are equal in strength in both the inward and outward

motion of the vocal folds, and thus no net energy would be accrued to sustain the

vibration (Titze, 1994). The separatory forces exerted by the pressure difference over

the glottis, for one, require relatively complete closure of the glottis, and would not

explain how the vibration can occur even without it.

The airstream through the glottis does not vanish in thin air; instead, it travels through

the vocal tract. The moving column of air in the vocal tract also has a certain mass,

and hence, inertia. The inertia of the air in the vocal tract provides positive feedback to

the vocal fold vibration: when the folds are opening, the air column is accelerated by

the airflow below, causing a positive pressure at the vocal folds, which further pushes

them apart. Respectively, when the folds are closing, the inertia of the air column
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causes a negative pressure at the glottis, further pulling the vocal folds together (Titze,

1994). Since the vocal tract coupling is related to the cyclic nature of the vocal fold

oscillation, it provides a positive feedback and introduces an asymmetry between the

vocal fold motion and the driving forces, thus establishing sufficient conditions for

self-sustained oscillation of the vocal folds.

Airflow

lungsmouth
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 2.5: Schematic time-series of the vocal fold vibration. Frames 1–6 illustrate
the closing phase. The glottis is closed during frames 7–13, during which the contact
area moves upwards, until the folds separate again in frames 14–19. Throughout the
cycle, the lower portion of the vocal folds (on the right-hand side in the illustration)
leads the movement.

Observations of vocal fold oscillations have shown that the vocal fold movement is

not uniform in the medial plane of the vocal folds (Titze, 1994; Timcke et al., 1958;

van den Berg et al., 1957). Instead, it has been noticed that the vocal fold moves

with a wavelike motion—the upper portion of the vocal fold lags the lower portion,

as illustrated in figure 2.5. This nonuniform movement appears to exhibit important

properties which, in addition to the vocal tract coupling, are essential in sustaining the

oscillation. Due to the vocal fold shape during the cycle, a pressure difference exists

between the inward and outward movement, and as in the case of vocal tract coupling,

the pressure difference is aligned to amplify the oscillations.
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3 Modelling of voice production

Due to ethical and methodological problems, validation of the voice production phe-

nomena in vivo may be impractical or even impossible. Therefore, modelling of voice

production has been widely used in studies of the voice source. Physical modelling

forms either a descriptive model such as a mass-spring model, or a model that is phys-

ically as precise as possible, like the finite element method (FEM). In addition, it is

possible to use acoustical modelling, which focuses on the properties of the major

acoustic signals instead of the physiological details of the voice production system.

Acoustic modelling methods utilize, in one form or another, the source filter theory,

in which the glottal airflow is represented using some approximate mathematical for-

mula, and the vocal tract is regarded as a filter according to Fant’s source-filter model

(Fant, 1960).

3.1 Physical modelling of voice source

3.1.1 Mass-spring models

Mass-spring models are a popular approach for simulating vocal fold behavior. Mass-

spring models are constructed by lumping the vocal fold mass into few discrete mass

elements, which are connected to each other and to a rigid boundary with springs and

damping elements. Figure 3.1 shows three different mass-spring models of varying

complexity.

In a one-mass model of the vocal folds, the vocal folds are considered a simple second-

order system consisting of a mass, a spring, and a damper (Flanagan and Landgraf,
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Figure 3.1: The one-, two-, and three-mass models of the vocal folds.

1968). The mass represents the total mass of the vocal folds. The spring constant

represents the tissue elasticity, while the damping accounts for the energy losses in the

vibration caused by tissue viscosity. The spring constant can be varied according to

vocal fold tension and the damping can be determined experimentally.

The one-mass model of vocal fold vibration is able to represent only the lateral dis-

placement of the vocal folds. As the mucosal wave cannot be modelled, a one-mass

model is capable of self-sustaining oscillation only in the presence of a vocal tract and

the inertance of the air column within it (Titze, 1994). Thus, one-mass models exag-

gerate the effect of coupling of vocal tract and the vocal folds and are generally not

sufficient for research purposes.

To alleviate the observed shortcomings of the one-mass model, two-mass models of the

vocal folds were introduced in a widely cited paper by Ishizaka and Flanagan (1972).

An example of such a model is illustrated in Fig. 3.1 (b). The two-mass model is

able to simulate the phase difference between the upper and lower parts of the vocal

folds, described in Sec. 2.4. The two degrees of freedom allow the mucosal wave to be

represented in addition to the overall tissue displacement. Thus, a two-mass model fa-

cilitates oscillation even without the presence of a coupled vocal tract inertance (Story,
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2002).

A limitation of the two-mass models is that their discretization of tissue does not cap-

ture the layered structure of the vocal folds (Story, 2002). Although the lower mass in

the model presented by Ishizaka and Flanagan (1972) is made thicker and heavier in

an effort to simulate the effects of the body layer, the arrangement does not allow for a

coupled oscillation of both the cover and body layers. In essence, the two-mass model

is a “cover” model rather than a “cover-body” model. Furthermore, in the human vocal

folds, stiffness is controlled by the contraction of the thyroarytenoid muscles. In the

two-mass model of Ishizaka and Flanagan (1972), there exists no direct physiological

correlation between the spring stiffnesses and the effects of muscle contractions (Story

and Titze, 1995). These limitations can be overcome by adding another mass to the

model, creating a three-mass model (Story and Titze, 1995), shown in Fig. 3.1. The

added mass element acts as a body mass, and is positioned laterally to the the two

cover masses. The cover mass connections represent the stiffness of the cover tissue as

well as the effective coupling stiffness between the body and cover. The body mass is

connected to a rigid boundary, and this connection represents the effective stiffness of

the body, which depends on the level of contraction of the muscle tissue. This model

thus allows for physiologically realistic control parameters characterizing the cover

and body tissue features. For example, the contraction of the thyroarytenoid muscle

increases the stiffness of the body but may not necessarily stiffen the cover.

Perpetual increase of model complexity may lead to overparameterization of the prob-

lem. Even a two-mass model requires setting of as many as 19 parameters to account

for phenomena such as nonlinear elastic forces and collisions of the vocal folds, re-

sulting in high computational loads and problems in tuning the parameters. Therefore,

Avanzini et al. (2001) and Avanzini (2008) have proposed a modified one-mass model,

which retains the simplicity of the traditional one-mass models while still allowing for

mimicking of the features of the more complex two-mass models. While their model
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incorporates a time delay parameter which is not directly physiologically motivated,

they gain a high degree of control and low computational requirements in the model.

3.1.2 Finite element method (FEM) models

The lumped-mass models of the vocal folds described in the previous section are useful

in describing the main features of the vocal fold vibration. They are, however, insuffi-

cient to accurately simulate the tissue dynamics. Their spatial resolution is insufficient

to reflect the scale of vocal fold physiology, and the parameters have few direct im-

plications for vocal-fold tissue physiology (Gunter, 2003). FEM is a technique used

for solving partial differential equations approximately. In FEM, the modelled entity

is tesselated into a triangular mesh, and then the partial differential equations are dis-

cretized, describing the properties of the entity to these triangles. The method can be

used both for two- and three-dimensional modelling.

Finite element models were first applied to modelling of vocal fold vibration by Alipour

and Titze (1985). They discretized the vocal folds into areas representing the body, the

cover, and the ligament. To optimize the speed of computation, a 2D/3D hybrid model

was used. A coronal section of their vocal fold model is shown in Fig. 3.2

Three-dimensional FE models of the vocal folds, which have a close resemblance to the

actual vocal fold physiology, have also been developed. For example, Gunter (2003)

developed a vocal fold model with a high spatial resolution for the estimation of effects

of pathological and surgical alterations of the vocal folds.

Another approach to FE modelling is to model the fluid flow within the vocal tract.

For example, Hannukainen et al. (2007) modelled the spectral properties of a station-

ary vocal tract using magnetic resonance imaging (MRI). Their analysis resulted in
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Figure 3.2: A coronal slice of the vocal fold mesh used in the FEM models of Alipour
and Titze (1985) and Alipour (2000). The model differentiates between the body, liga-
ment, and cover layers of the vocal folds.

precise vocal tract filters, which then may be applied to source-filter models of speech

production, described in the next section. Dedouch et al. (2002) have modelled the

production of several Czech vowels using FE models of vocal tract shapes acquired

using MRI analysis and a mass-spring model of vocal folds. The formant frequencies

computed using the model were in a good agreement with the data on the formant

frequencies published in literature.

A combined viscoelastic-acoustic FE model of the voice production system would be

a logical continuation of the separate FE models of the vocal folds and the vocal tract.

However, the computational complexity issues in combined models have so far limited

such implementations.
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3.2 Source-filter model

In addition to physical modelling described earlier, another approach is to estimate the

acoustic waveform directly, without paying attention to the physiological details of the

voice production. In this approach, human voice production is assumed to conform to

the source-filter model, in which voiced speech is modelled by three separate processes

considered to be linear: the glottal excitation (source), vocal tract filtering, and the lip-

radiation effect (Fant, 1960). A block diagram of the source-filter model is shown in

Figure 3.3. In the source-filter model of voice production, the voice source acts as as

source signal, which is then filtered by the formant filter of the vocal tract as well as the

lip radiation filter. This may be represented as an equivalent acoustic circuit, in which

the vocal tract in non-nasalized vowels constitutes a distributed series inductance and

parallel capacitance per unit length of the vocal tract (Fant, 1973). Since the Laplace

transform of such a system only has poles in the negative half-plane, its stability is

guaranteed and it is also inversible. Furthermore, since the blocks of the source-filter

model are considered linear and to have no interaction, they can be modelled and

manipulated with very modest computational requirements. The actual physiological

voice production mechanism does not fully conform to Fant’s acoustic theory of speech

production, as acoustic interaction between the voice source and the vocal tract has

been long known to exist. In practice, however, the source-filter model still has been

found to be applicable to a multitude of problems.

One of the most common methods of voice source modelling is to construct a synthetic

mathematical approximation of the glottal airflow and use the acquired waveform as

the source. The method allows for easy modification of the source signal, within the

limits of the mathematical model. Numerous source models have been proposed. For

example, Rosenberg (1971) presented several alternative simulated glottal flow pulses,

most of which were composed of sinusoidal sections. Fant et al. (1985) refined their
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Figure 3.3: A block diagram of the source-filter model of speech production. Accord-
ing to the source-filter theorem, speech production can be split into several independent
and therefore linearly separable processes.

previous glottal flow models and proposed the Liljencrants-Fant (LF) model, which

consists of exponential and exponential-sinusoidal sections. The waveforms and defi-

nition of the LF-model are shown in Fig. 3.4. The flow pulse is defined by five different

parameters. Furthermore, Fant (1995) defines five more parameters which are used in-

terchangeably with the original ones. The LF-model is by far the most commonly used

synthetic model of the glottal flow, even though the calculation of the waveform is

somewhat complicated when compared to most other models. More recently, Veldhuis

(1998) has proposed the R++ model, which is a computationally efficient glottal flow

model equivalent to the LF-model. Furthermore, Doval et al. (2006) have presented a

unified glottal flow model, which is claimed to be spectrally equivalent, and therefore

exchangable, with any of the aforementioned models.

In synthesis of vowels using source-filter modelling, the vocal tract filter represents

the vowel formant structure. The actual filter parameters may be acquired from anal-

ysis of natural speech or synthesized using prior knowledge of the formant locations

and bandwidths. The lip-radiation effect corresponds to changing the volume velocity

waveform at the lips to a free-field speech pressure signal at a certain distance from

the speaker. It can be modelled by a simple differentiation filter. Furthermore, instead

of using synthetic glottal flow pulses, glottal flow waveforms acquired using inverse

filtering, described in section 4.3, may be used in the synthesis of vowels (Alku et al.,
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Figure 3.4: The LF-model of glottal flow. The upper graph shows the glottal flow,
while the lower is the differentiated glottal flow, acquired by the shown equations. The
parameters α, ωg, and ε are set using boundary conditions described in the original
paper (Fant et al., 1985).

1999). This semi-synthetic speech generation method allows for highly natural vowel

sounds at the expense of lost flexibility in modifying the pulse shape.

Due to its versatility, the source-filter model of speech production has been applied

to a multitude of speech processing tasks, including speech analysis, synthesis, and

coding. In speech analysis, important techniques such as inverse filtering, discussed

in section 4.3, are based on Fant’s model of speech production. In speech synthesis,

separated speech production models are applied when versatility and easy modification

of the voice quality features of speech are required. In speech coding, methods such as

the linear predictive coding conform to the source-filter model, even though there are

differences between the two. Specifically, linear predictive coding lumps the spectral
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structure of the source, filter, and the lip radiation effect together, leaving just a train

of impulses as the excitation signal.
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4 Voice production analysis techniques

The concealed location of the vocal folds poses difficulties for the analysis of their

function. Due to their placement, direct measurement of their vibration is intrusive

and difficult. Various methods for their observation have been developed. The observa-

tion techniques can generally be divided to three categories. First, imaging techniques

concentrate on visual analysis of larynx by observing the vocal folds using a mirror,

optic fiber, or a photodiode. These techniques return a visual image of the glottis, a

part thereof, or a dynamic brightness variation curve. Second, electrical and electro-

magnetical glottography methods extract specific features of the vocal fold vibration

related to the changing electrical properties of the tissue. Third, acoustical methods

estimate the airflow through the glottis by using techniques called inverse filtering, or

variations thereof.

4.1 Imaging techniques

Laryngoscopy is a method for visually observing the vocal folds, either using a solid

endoscope, or a flexible fiberscope. The fiberscope, illustrated on the left hand side

in Fig. 4.1, is inserted through a nostril and the nasal cavity into the pharynx. The

optic fibers in the fiberscope are used both to illuminate the larynx and to transmit

an image back to an optical sensor. Fiberscopes allow for the observation of vocal

fold vibrations during running speech. Solid endoscopes, illustrated in Fig. 4.1 (right

hand side), constitute of a rigid tube and a mirror inserted in the mouth and are more

obstructive regarding the voicing process, but they offer a brighter image and thus a

better resolution than fiberscopes (Kiritani et al., 1990).
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Figure 4.1: A schematic illustration of a fiberscope (on the left) and a solid endoscope
(on the right).

In clinical work, laryngoscopes are usually utilized in conjunction with stroboscopic

imaging. In stroboscopic imaging, the light source is flashed at a frequency close to

the vocal fold fundamental frequency. Due to the flashing, the apparent motion of the

vocal folds is slowed down to the difference frequency of the light source and vocal

folds. This allows for easy and rapid inspection of the vibration patterns. The ma-

jor drawback is that only periodic motion is captured in stroboscopy. Furthermore,

stroboscopic imaging cannot be used in simultaneous recording of audio or other glot-

tographic signals, as it is not a real-time, continuous signal.

To acquire continuous visual data on single vocal fold oscillations, high speed pho-

tography has traditionally been used (e.g. Hirano, 1981). In high speed photography,

a film camera capable of exposing frames at speeds of more than 2000 frames per

second is used to obtain accurate information on the vocal fold vibrations. However,

since high-speed filming is expensive and the data processing is very time-consuming,

use of film cameras has been replaced by digital imaging. Instead of exposing pho-

tographic film, a complementary metal-oxide semiconductor (CMOS) sensor is used

to capture the images, which are then transferred to a computer for storage (Eysholdt

et al., 1996). This also allows for simultaneous capture of audio and video, and even
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capture of colours using contemporary equipment.

Videokymography (VKG) is a special low-cost alternative for high-speed imaging. It is

especially suited for analysis of vocal fold vibratory cycles. VKG uses a special charge

coupled device (CCD) video camera, which can operate in two different modes. In the

standard mode the apparatus works as a regular commercial video camera. In the high-

speed mode, the camera delivers images from a single scan line of the whole video

field at a rate of 7812.5 line images per second (Švec and Schutte, 1996; Švec et al.,

2000), yielding images similar to the one in Figure 4.2. The main advantage of VKG

is that the equipment required is an ordinary video camera with slight modifications,

so it is significantly less expensive than proper high-speed digital imaging apparatuses.

Also, the amount of data stored and processed is small when compared to high-speed

imaging. On the other hand, a full image is not obtained, the measurement position

has to be pre-selected, and movement of the larynx may make the recording position

inaccurate. However, videokymography has been employed in basic voice research as

well as in clinical practice (Švec et al., 2000).

Figure 4.2: A sequence of line images obtained by videokymography. Each vertical
pixel column represents a separate frame. The black blocks are the video sync periods,
during which no image is obtained. Adapted with permission of the authors by Alku
et al. (2000).
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Photoglottography (PGG), or glottal transillumination, is another technique for acquir-

ing an estimate of the glottal area during phonation (e.g. Hirano, 1981). In PGG, a

photoelectric sensor is placed on the neck below the cricoid cartilage. The vocal folds

are then brightly lit using a fiberscope. The photoelectric sensor then records the light

emitted through the glottis and the neck tissue and, therefore, also the brightness vari-

ation caused by the vocal fold vibrations. The sensor and the light source may be

exchanged, but the effect remains the same. The photoglottographic waveform has

been found to closely correlate with the glottal area measured from high-speed image

frames (Hanson et al., 1995).

Magnetic resonance imaging (MRI) is a non-invasive method using the nuclear mag-

netic resonance to examine features of the structure of an object. It can provide images

of the structure of living tissue by using a strong magnetic field and radio frequency

pulses to manipulate the spin alignment of hydrogen atoms. While the technique is

not sophisticated enough to yield real-time data on vocal fold vibrations, it can be used

to record vocal tract configurations, even during continuous speech (Engwall, 1999,

2004).

4.2 Electroglottography

Electroglottography (EGG) is a method for inspecting the vocal fold functioning by

measuring the time-varying electrical impedance between the folds. In EGG, two elec-

trodes, having an area typically of a few cm2, are placed on both sides of the thyroid

cartilage, and an electrical current of less than 10 mA is channeled through the elec-

trodes. As the conductivity of the vocal fold tissue is much larger than that of the

air within the laryngeal cavity and the glottis, the impedance between the electrodes

varies in step with the vocal fold vibration. However, since even small direct current
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and low-frequency electrical currents can cause involuntary muscle contractions and

great discomfort, an alternating current with a frequency of between 300 kHz and a

few megahertz are typically used (Baken, 1992).

The EGG signal, since it represents the impedance between the electrodes, is relates

well to the closed phase features of the glottal flow. On the other hand, the open phase

is not so well detailed in the EGG signal, a sample pulse of which is shown in Fig. 4.3.

The gradual increase and decrease of the contact area due to the mucosal wave and the

zipper-like opening of the vocal folds is apparent in the figure, while the open phase is

essentially a constant line with a slight decreasing slope due to a high-pass filter which

is used to remove the large low-frequency fluctuation of the signal.
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Figure 4.3: An example of an EGG signal of a male speaker in modal phonation. Point
1 indicates complete glottal closure, after which the contact area gradually decreases
due to the mucosal wave and the zipper-like opening of the glottis, until at point 2 the
glottis is completely open. It remains open until point 3, at which point the folds begin
to close again towards point 4.

Due to its relative simplicity, EGG is a commonly used technique both in voice re-

search and clinical work. Its qualitative assessment may reveal several forms of patho-

logical function of voice, such as various disorders or abnormalitites of vocal fold
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tension. For example, different oedemas or neurological pathologies leave their mark

on the EGG signal (Kitzing, 1990). Traditionally, the acquisition of the fundamen-

tal frequency ( f0) has been an important application of the EGG waveform, although

modern f0 detection algorithms have decreased the importance of this use.

Use of EGG also has several known problems, the most significant of which are the

difficulties in obtaining good waveforms in female and child subjects (Colton and Con-

ture, 1990). Furthermore, soft voice and breathy phonation cause problems to EGG, as

the limited vocal fold vibration may not provide for proper contact of the vocal folds.

The EGG waveform quality is also sensitive to the electrode placement and contact,

which is further emphasized by laryngeal movements and neck muscle contraction

during speech.

4.3 Inverse filtering

The analysis of the airflow out of the mouth and nose or even that of a microphone

recording is an attractive method due to the relative simplicity and non-invasiveness of

the process. Indeed, various such methods have been developed, almost all of which

employ the source-filter theory of speech production, described in section 3.2, as the

basis of the processing (Walker and Murphy, 2007).

The separated speech production model, illustrated in Fig. 3.3, may be expressed in

the z-plane as

S (z) = G(z)V(z)R(z), (4.1)

where S (z) is the speech pressure waveform, G(z) is the glottal flow waveform, V(z) is

the vocal tract filter, and R(z) is the lip radiation filter. The lip radiation can be modelled

accurately at low frequencies by a fixed differentiator (Flanagan, 1972). Therefore,
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R(z) = 1 − ρz−1, where ρ is the lip radiation coefficient, whose value is close to 1.

The differentiated glottal flow may be defined as the effective driving function: Q(z) =

G(z)R(z). Glottal inverse filtering then requires solving the following equation:

Q(z) =
S (z)
V(z)

. (4.2)

Since V(z) is also unknown, it has to be solved for simultaneously with Q(z), which is

a blind deconvolution problem. Various methods have been developed for partitioning

S (z) to the vocal tract and glottal flow components V(z) and Q(z).

Miller (1959) performed the first published inverse filtering experiments. Even though

the source-filter theory of the speech production was first published by Fant (1960),

Miller implicitly assumed a separated speech production model in his work. He con-

structed an analogue inverse network, compensating for the first two formants by utiliz-

ing prior knowledge of the formant locations and bandwidths and manually adjusting

the inverse network accordingly. The method was cumbersome and was polluted by

ripple of the unfiltered higher formants, but the resulting glottal flow estimates por-

trayed similar features as the ones obtained with contemporary methods.

Miller’s method of explicit formant placement, dubbed manual inverse filtering, has

been widely used both in research and in clinical work, although the recent manual

inverse filtering implementations use computer software instead of analogue filter net-

works (e.g. Granqvist et al., 2003). Software implementations of manual inverse filter-

ing usually allow for an arbitrary number of formants to be compensated, and since the

operator’s expertese is the only limiting factor in the formant placement, it can be used

to effectively estimate the glottal flow even from samples otherwise deemed difficult.

On the other hand, manual inverse filtering is time-consuming due to its laborious na-

ture, and the results may be regarded more subjective than in other methods due to the

reliance on the operator’s judgment in the formant placement.
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A popular approach to the inverse filtering problem is to utilize the closed phase of

the glottal flow. If the glottis closes completely during each cycle, during that time the

speech waveform must simply be a decaying oscillation affected only by the vocal tract

resonances (Wong et al., 1979). Extracting the vocal tract filter V(z) during the closed

phase should be a simple matter, and closed phase inverse filtering has been widely

used to estimate the glottal flow (e.g. Strube, 1974; Wong et al., 1979; Mataušek and

Batalov, 1980; Ananthapadmanabha and Fant, 1982; Plumpe et al., 1999; Akande and

Murphy, 2005). The fundamental problem of these methods is the implicit require-

ment of the existence of a clear closed phase. Therefore, the method is not suited to

inverse filtering of very breathy voice, in which the glottal closure is only partial or

non-existent.

In non-nasalized vowels, the vocal tract can be modelled with a piecewise continuous

tube, the frequency response of which can be approximated with an all-pole filter struc-

ture. There exist effective methods for extracting the all-pole filter coefficients, such

as the linear prediction (LP) or the digital all-pole (DAP) modelling. Such methods

have been applied to the blind deconvolution problem in inverse filtering (e.g. Allen

and Curtis, 1974; Milenkovic, 1986; Alku, 1992).

A popular method for utilizing a priori knowledge of the glottal pulse shapes is to use

glottal flow models such as those described in section 3.2 in the inverse filtering pro-

cess. Several such approaches have been proposed (e.g. Krishnamurthy, 1992; Kasuya

et al., 1999; Fröhlich et al., 2001; Arroabarren and Carlosena, 2003; Bozkurt et al.,

2005).

Several external aids have been developed for the inverse filtering process. Rothenberg

(1973) developed a pneumotachograph, or Rothenberg mask, to estimate the airflow

out of the mouth, thus avoiding the effects of the lip radiation effect. This allows

for measurement of absolute flow values, which is not possible in inverse filtering of
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the speech pressure signal. Rothenberg used manual inverse filtering to remove the

formants from the flow signal, but in principle most inverse filtering methods could

easily be adapted for use with a Rothenberg mask. Its main limitation is the small

bandwidth of only 1.6 kHz (Hertegård and Gauffin, 1992), which causes the glottal

flow pulses to become artificially rounded and devoid of features. Furthermore, in

many recording tasks the use of the mask is restrictive and limits expression.

The Sondhi tube is another tool for glottal flow measurement. Sondhi (1975) noted

that by speaking into a reflectionless uniform tube the vocal tract resonances are con-

siderably reduced, and in the case of a neutral vowel, even almost entirely eliminated.

Thus, the glottal waveform can be directly recorded using a microphone inserted in the

tube wall. The use of the Sondhi tube restricts the uttered sounds only to the neutral

vowel, which makes it unsuitable for most speech tasks.

There also exist methods in which signal paths other than the microphone recordings

are used in the separation of the voice source and the vocal tract. Especially the use of

EGG signals has been found beneficial together with the closed-phase inverse filtering

methods, since EGG is able to indicate the glottal closure and opening instants much

more precisely than the microphone recording (e.g. Veeneman. and BeMent, 1984;

Krishnamurthy and Childers, 1986).

Evaluation of inverse-filtering methods has been a long-standing problem. Direct mea-

surement of the glottal flow is not practically possible, so direct comparisons between

the flow estimates and the actual flow cannot be made. Several other techniques, how-

ever, have been used to assess the correctness of inverse filtering methods. Glottal

waveform estimates have been compared to other simultaneously acquired signals such

as EGG, VKG, or high-speed imaging (e.g. Baer et al., 1983; Childers et al., 1984;

Granqvist et al., 2003). While these techniques assess the vocal fold behaviour, they

do not measure the glottal airflow, but just some related quantities. No one-to-one
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mapping exists between the glottal flow and their values, and therefore information

given by them is always limited.
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5 Voice source parameterization

Analytic study of the voice source requires not only use of some voice analysis tech-

niques, as described in the previous section, but also parameterization of the data ac-

quired in the analysis. Parameterization implies quantifying the obtained signals with

properly selected numeral values (Alku, 2003). In parameterization, some significant

features of the original signals are represented in a compressed numerical form. This

compact representation of the signal features can then be used in quantitative analysis

and study of voice production.

5.1 Absolute measurements of glottal properties

The most obvious way to parameterize glottal behaviour would be to measure different

properties of the vocal folds or the glottis during the vibratory process. Laryngoscopy

yields an optical image of the vocal folds from which the measurement of the glottal

area or the vocal fold length is comparatively straightforward (Childers et al., 1983;

Eysholdt et al., 1996). This process is also illustrated in Figure 5.1. Unfortunately, the

exact scale of the image is usually not defined due to the unknown distance between

the optical lens and the vocal folds, and therefore only relative measures are normally

acquired. Techniques have been developed to perform distance calibration using laser

triangulation or stereoscopic imaging, yielding absolute measures of the vocal folds

(Hertegård et al., 2003; Wittenberg et al., 2000).

When the Rothenberg mask is used, absolute measurements of the glottal airflow can

be made using waveforms estimated by inverse filtering. Parameters typically used

include the peak, minimum, mean, and peak-to-peak flow (e.g. Holmberg et al., 1988).
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Figure 5.1: A laryngoscopic measurement of the glottal area with the perimeter of
the glottis traced in the High-speed Tool Box software (Larsson et al., 2000). Image
courtesy of Hannu Pulakka.

However, most inverse filtering experiments use microphone signals due to their less

disruptive nature, and in those experiments absolute flow amplitude measurements are

not possible.

5.2 Time-based parameters

Timcke et al. (1958) were the first to express the temporal properties of the glottal

fold vibration, as observed from ultra-high-speed motion pictures, in a parameterized

manner. They defined the open quotient (OQ) and speed quotient (SQ) parameters as

OQ =
Top

T
(5.1)

and

SQ =
To

Tc
, (5.2)
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where Top is the time when the glottis is open and T is the total period duration, To is the

duration of the opening period, and Tc the duration of the closing period. Furthermore,

Top = To + Tc. OQ and SQ have since been used repeatedly in the parameterization of

the glottal area obtained by high-speed imaging, the glottal flow volume velocity wave-

form obtained by inverse filtering, and in the case of OQ, EGG waveforms. OQ has

been found to be negatively correlated with the intensity and the pressedness of speech,

while SQ increases as the intensity increases (Holmberg et al., 1988; Childers and Lee,

1991). However, parameters relying on the determination of the maximal opening in-

stant such as SQ can be problematic to determine when using EGG since the glottal

opening may be difficult to detect. Since the various signals provide complementary

but differing information regarding the voice production, direct comparisons of the pa-

rameters computed from the different signals may be difficult. For example, the area

function waveforms tend to have more symmetrical opening and closing phases than

the flow waveforms, in which the closing phase is usually considerably shorter. These

differences directly affect the SQ. Rows (c) and (d) in Figure 5.2 illustrate the mea-

surements of the open and speed quotients and the effects of different values of the

parameters on the parameter shape.

Monsen and Engebretson (1977) introduced the closing quotient (ClQ), defined as

ClQ =
Tc

T
, (5.3)

and illustrated in Figure 5.2 (e). Its use is well-founded, since the majority of the

voicing energy stems from the abrupt closure of the glottis occurring at the end of the

closing phase. Therefore, the properties of the closing phase most directly affect the

voice quality. The closing quotient has been found to decrease when the vocal intensity

and the pressedness increase (e.g. Holmberg et al., 1988).

A common problem for all time-based parameters is that the exact locations of the

events such as the glottal opening or closing instant are often vague and subject to in-
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AQ =1.7 ms

ClQ = 0.26

DH12 = 14.4 dB

HRF = −8.6 dB

min flow=0.2 l/s

NAQ = 0.17

OQ = 0.94

peak flow=0.7 l/s

PSP = 0.19

SQ = 2.37

AQ =1.1 ms

ClQ = 0.27

DH12 = 8.8 dB

HRF = −2.8 dB

min flow=0.1 l/s

NAQ = 0.11

OQ = 0.82

peak flow=0.5 l/s

PSP = 0.11

SQ = 1.37

AQ = 0.6 ms

ClQ = 0.37

DH12 = 6.6 dB

HRF = 1.2 dB

min flow=0 l/s

NAQ = 0.06

OQ = 0.58

peak flow=0.25 l/s

PSP = 0.08

SQ = 1.04

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 5.2: Schematic representations of different common voice source parameters.
Figures representing three different values are shown for each parameter. Rows (a)–
(g) represent parameters of the time-based glottal waveform, while (h)–(j) illustrate
parameters based on the magnitude spectrum of the glottal flow. The lower curves in
figures (f) and (g) represent the flow derivative.
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terpretation due to either the smoothness of the pulse or residual formant ripple stem-

ming from incomplete cancellation of the formants (Dromey et al., 1992; Holmberg

et al., 1988). This reduces the precision and robustness of these parameters. One way

to avoid the problem is to combine amplitude-based time instants so that they express

properties related to the time domain of the signals. One such parameter is the ampli-

tude quotient (AQ), defined as

AQ =
Aac

dmin
, (5.4)

where Aac is the flow peak-to-peak amplitude (the difference between the maximum

and the minimum value within one period) and dmin is the minimum value of the flow

derivative (Alku and Vilkman, 1996a). Sample values of AQ are shown in Figure 5.2

(f). The measurements are straightforward to obtain, and the absolute scale of the

glottal flow pulses is not required to be known.

While the AQ parameter has been shown to correlate with the phonation type, in some

measurements its strong dependence on the f0 of the signal may be found problematic.

Therefore, a simple f0 normalization of the parameter has been proposed, resulting in

the normalized amplitude quotient (NAQ) (Alku et al., 2002), shown in Figure 5.2 (g).

The NAQ is defined as

NAQ =
AQ
T
. (5.5)

Fant (1995) has also arrived at essentially the same parameter (Rd) using a set of trans-

formed LF-model parameters. The NAQ parameter has been shown to correlate well

with the expression of the phonation type in intensity changes but to be more robust

than the ClQ parameter (Bäckström et al., 2002).

A common method of glottal flow parameterization is to fit a synthetic glottal flow

model waveform over the inverse filtered glottal flow waveform. The LF-model has

traditionally been the most popular model in fitting tasks (e.g. Strik et al., 1993). How-

ever, no technical reason prevents from using any other glottal flow model instead (e.g.
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Veldhuis, 1998; Doval et al., 2006). When an optimal fit is acquired, the model param-

eters are then used to describe the original glottal flow waveform. The model-based

parameterization methods are especially useful when the vowels need to be resynthe-

sized using the acquired parameters, but otherwise the forceful fitting of the waveform

to a synthetic model may cause data to be lost unnecessarily.

5.3 Spectral parameters

Small imperfections of the inverse filtering process may lead to gross disfiguration of

the time-domain glottal flow waveform. However, the power spectrum of the waveform

may still be largely unchanged. Several parameters have been proposed to facilitate

parameterization of the spectra of the glottal flow pulses. ∆H12, or H1-H2, is the

difference of the first two harmonics on the decibel scale (Titze and Sundberg, 1992).

The harmonic richness factor (HRF), defined as

HRF =

∑
k≥2 Hk

H1
, (5.6)

where Hk is the kth harmonic, is closely related to ∆H12, but tries to approximate the

spectral energy distribution from more than one higher harmonic (Childers and Lee,

1991). Attempts to further improve spectral parameterization include the parabolic

spectrum parameter (PSP), in which a second-order polynomial is fitted to the har-

monics to gain an estimate of the spectral slope (Alku et al., 1997). The ∆H12, HRF,

and PSP parameters are illustrated in Figure 5.2.
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6 Voice quality in vocal expression of emotion

Voice quality, defined as the characteristic auditory colouring of voice as described

in Section 1, is a major component of the non-verbal information constituting the so-

called second channel of speech. Its importance is especially pronounced in vocal

expression of emotions, which effectively communicates important additional infor-

mation on the speaker’s stances, attitudes, and intentions.

6.1 Definition and properties of voice quality

Voice quality is a concept encompassing the characteristic auditory colouring of a

speaker’s voice related to their identity, personality, health, and emotional state (Story

et al., 2001). It is a broad term and has been further defined as “those characteristics

which are present more or less all the time that a person is talking” (Abercombie, 1967,

p. 91). These characteristics are created by all subprocesses of speech production, i.e.

the respiratory, laryngeal, and articulatory systems.

Laver (1980) created an influental phonetic classification system for describing dif-

ferent voice qualities. His model describes different laryngeal and supralaryngeal set-

tings of the voice production system and uses those physiological changes as a method

for describing the voice quality. Supralaryngeal settings are divided into longitudi-

nal, latitudinal, and velopharyngeal settings. Laryngeal, or phonatory, settings include

modal voice, falsetto, whisper, creak, harshness, and breathiness, and several com-

pound phonation types. Furthermore, Laver defined general tension settings, i.e. tense

and lax voice, which affect the overall muscular tension throughout the vocal system.
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In speech research, a narrower definition of voice quality is often preferred in which the

voice quality is considered to stem only from laryngeal and respiratory features, thus

ignoring the effects of the vocal tract. This narrower definition is especially suitable in

the studies of the voice source, where the voice source signal can be considered to in-

corporate all voice quality features in itself. Even when the narrower definition is used,

Laver’s settings can be applied to describe the laryngeal voice quality (e.g. Gobl and Ní

Chasaide, 1992). However, simplified descriptions are often used, encompassing only

a single axis of voice quality variation, such as breathy, normal, and pressed phonation

(e.g. Alku and Vilkman, 1996b), or modal voice, vocal fry, and breathy voice (Childers

and Ahn, 1995). Such descriptions are useful as the changes can be quantified using a

single voice source parameter.

Voice quality is an omnipresent, pervasive property of speech. Together with fun-

damental frequency and intensity changes, it acts as a “second channel” of speech,

conveying extralinguistic information regarding moods, attitudes, emotions, health,

and physical properties of the speaker. Although in regular speech the voice quality

changes are automatic and largely subconscious, they can also be consciously con-

trolled, at least to a degree. For example, voice quality can convey culturally specific

affect content, or a mismatch between the lexical meaning, as in expression of humour,

sarcasm, or irony (Gobl, 2003).

Laryngeal voice quality changes have been connected to variations in the voice source

parameters in several studies. Klatt and Klatt (1990) found the breathy voice quality

to be signalled by a number of acoustic cues, such as a constant flow component,

increased open quotient, amplitude of the first harmonic, and first-formant bandwidth,

as well as reduced amplitudes of higher harmonics and a less distinct first-formant

peak. Childers and Lee (1991) found the HRF to be high in vocal fry, medium in

modal voice, and low in falsetto and breathy voice. Similar relations were observed

for OQ, SQ, and the LF-model parameter ta, breathy and falsetto exhibiting rounded
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pulse shapes and vocal fry very sharp pulses. The results were further supported by

the study of the LF-model parameters by Gobl and Ní Chasaide (1992) and Childers

and Ahn (1995) as well as of the NAQ parameter by Alku et al. (2002) and Bäckström

et al. (2002).

6.2 Vocal expression of emotions

Emotions are processes of events, affecting several psychophysiological components of

an organism: physiological arousal, motor expression, and subjective feeling (Scherer,

2000). They represent an organized, highly structured reaction to an event that is

relevant to the needs, goals, or survival of the organism (Watson, 2000). As emotions

induce a physiological response that can be observed by others, they also have inherent

communicative properties. Emotions present themselves in general appearance, such

as facial expressions and body postures, as well as in vocal expression. The expressions

can be interpreted with great accuracy by other individuals.

Different models for classifying emotions have been proposed. For example, several

popular theories list basic emotions, most of which include joy, interest, surprise, fear,

anger, sadness, and disgust as a core set, which should be considered more primi-

tive and universal than others (Ekman and Davidson, 1994). Structural models regard

emotions as comprising of different component processes, the precise combination of

which define the actual emotions (e.g. Scherer, 2003). A popular emotion classifica-

tion method is to set the emotions along a few abstract dimensions, the most popular

of which is the activation-valence (or activation-evaluation) space (Schlosberg, 1954).

In this scheme, valence rates whether the emotion is a positive or a negative one and

activation describes the emotion on a active-passive scale. This method is often prac-

tical in describing the differences between the emotions, even though it is unable to
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separate some key emotions such as anger and fear properly.

In speech, emotions are elicited at suprasegmental, segmental, as well as intrasegmen-

tal levels (Murray and Arnott, 1993). While all these levels contain both verbal and

vocal information, the emotional expression in the vocal, “implicit” channel of speech

production can render the verbal information redundant, qualify it further, or contra-

dict it. At the suprasegmental and segmental levels, emotions are expressed by the

fundamental frequency, intensity, and segment duration patterns. Even though these

are important factors in vocal expression of emotions, studies on emotional speech

synthesis have indicated that the presence of intrasegmental voice quality adjustments

improve the quality of, or are even by themselves sufficient to elicit emotional expres-

sion (Burkhardt, 2000; Gobl and Ní Chasaide, 2003).

Traditionally, the research on vocal expression of emotions has mostly utilized pa-

rameters related to f0, intensity, and duration changes (e.g. Murray and Arnott, 1993;

Banse and Scherer, 1996; Cowie et al., 2001). While the significance of voice quality

changes has been acknowledged, their use in emotion analysis was limited due to cited

methodological issues (Scherer, 1986). Relative frequency band energy contents, cor-

relating to spectral tilt variations of different voice qualities, have been used as factors

in some studies (e.g. Banse and Scherer, 1996). However, studies regarding inverse fil-

tering of emotional speech have indicated that even voice quality changes alone evoke

significant emotional colourings in otherwise neutral utterances, although there is no

one-to-one mapping between different emotions and voice qualities (Gobl and Ní Cha-

saide, 2003). Instead, the voice qualities are used in conjunction with other speech

features to express specific emotions.

Murray and Arnott (1993) presented a summary of the effects of vocal expression of

different emotions, given in Table 6.1. Similar effects have also been reported by Banse

and Scherer (1996) and Cowie et al. (2001). While some emotions, such as anger and
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sadness or happiness and disgust, show strong differences in the basic acoustic dimen-

sions, the table indicates very similar profiles for anger, happiness, and fear regard-

ing the speech rate, pitch average and range, and intensity variables. However, when

laryngeal voice quality changes are inspected, marked differences become apparent

(Ní Chasaide and Gobl, 2004). For example, anger is related with a very tense voice

quality, while sadness is expressed with a lax-creaky voice, and fear with a breathy

or whispery voice. These differences allow for a much better separation of emotions

when voice quality changes are taken into account.

Anger Happiness Sadness Fear Disgust

Speech rate slightly

faster

faster or

slower

slightly

slower

much

faster

very much

slower

Pitch average very much

higher

much

higher

slightly

lower

very much

higher

very much

lower

Pitch range much

wider

much

wider

slightly

narrower

much

wider

slightly

wider

Intensity higher higher lower normal lower

Voice quality breathy,

chest tone

breathy,

blaring

resonant irregular

voicing

grumbled,

chest tone

Pitch changes abrupt, on

stressed

syllables

smooth,

upward

inflections

downward

inflections

normal wide,

downward

terminal

inflections

Articulation tense normal slurring precise normal

Table 6.1: Summary of effect of emotions on speech (after Murray and Arnott, 1993).



65

7 Summary of publications

This thesis comprises seven publications of which five were published in international

reviewed journals and two in reviewed conference proceedings. The articles are di-

vided in two groups. Articles I and II address voice quality characteristics in different

contexts, while Articles III–VII discuss voice source analysis and parameterization

methods.

Publication I: ”Emotions in vowel segments of continuous speech:
Analysis of the glottal flow using the normalized amplitude quo-
tient”

In this paper, emotional expression in short vowels segments of continuous speech

were analyzed. The main goal of the study was to establish quantitative data on the

voice source behaviour in the expression of emotions. As material, acted emotional

portrayals by nine professional actors (five males, four females) were used. The five

emotions used—neutral, sadness, joy, anger, and tenderness—were chosen so that they

are well separated in the activation-valence space, and that the acoustic and perceptual

differences could be presumed to be as large as possible. Recited passages of Finnish

prose were recorded, inverse filtered, and parameterized using the NAQ parameter.

Statistical analysis using linear regression (ANOVA) indicated that both emotion and

speaker sex had a significant effect on the NAQ value. Post-hoc analysis indicated that

there are significant differences between most emotion pairs. It was found that anger

was expressed with the most pressed voice (indicated by the smallest NAQ value),

followed by neutral, joy, sadness, and tenderness. The pressed/breathy voice quality,

indicated by the NAQ values, were found to correlate with the activation dimension of

the emotions. Furthermore, it was found that the female speakers expressed consider-
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ably wider variations both within and between emotions.

Publication II: ”Laryngeal voice quality changes in expression of
prominence in continuous speech”

The second study concerned voice quality changes in expression of prominence. Here,

prominence (stress) reflects to the contrasting prosodic properties of nonverbal ex-

pression, which are used to emphasize some linguistic elements such as answers to

questions or the main topic of conversation. The hypothesis of the work was that

prominence in speech is expressed with a more pressed voice quality so that there

would be significant voice quality differences between stressed and unstressed sylla-

bles and words. This was tested by recording the speech of 11 speakers. The text

recited by speakers was chosen so that suitable vowels in different lexical positions

could be picked out. The vowels were inverse filtered and parameterized with TKK

Aparat (see Publication III) using NAQ and AQ parameters both of which are nega-

tively correlated with pressedness of speech. The study did not involve measurements

of subglottal pressure or intensity. Contradictory to the initial research hypothesis, the

results indicate that stressed vowels are expressed with a breathier voice quality than

unstressed vowels. The result was explained by features of speech production physiol-

ogy: in continuous speech, the rapid voice quality changes required for expression of

stress cannot be performed due to slow adjustments of sub-glottal pressure. Therefore,

only f0 is increased, but as the total speech production power remains the same, the

energy available for each glottal cycle decreases leading to more rounded glottal flow

waveforms and a breathier voice quality. The results suggest that studies performed on

sustained vowels or artificial voicing tasks might not be always applicable to continu-

ous speech.

Publication III: ”TKK Aparat: An Environment for Voice Inverse
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Filtering and Parameterization”

This article describes TKK Aparat, a voice source inverse filtering and parameteri-

zation software toolkit. As relatively few voice inverse filtering packages have been

published, a special software for this purpose was constructed. A simplified version

of iterative adaptive inverse filtering (IAIF) called direct inverse filtering (DIF) is pro-

posed, and both inverse filtering algorithms are described. The method and results

of evaluating the inverse filtering algorithms by comparing a large number of inverse

filtering parameters is described. The implemented parameters are also discussed to-

gether with the detailed description of the methods to acquire the parameterization

time instants. The essential user interface elements including the inverse filtering, pa-

rameterization, and visualization features are introduced. Usability testing was also

performed to reveal any usability issues and improve the interface. Finally, different

projects in which TKK Aparat has already been used are described. The software

package has already shown to be a useful tool, and has been adopted by several speech

research groups.

Publication IV: ”Comparison of Multiple Voice Source Parameters
in Different Phonation Types”

Article IV is a comparison of different voice source parameters. Although numer-

ous glottal flow parameters have been proposed, few quantitative comparisons of the

parameters have been made. In this paper, stationary utterances of all eight Finnish

vowels in three different phonations (breathy, normal, and pressed) where acquired

from 11 speakers. The data was inverse filtered and parameterized with TKK Aparat

using all 21 parameters supported by the software. Statistical analysis of the parame-

ters was performed by computing a linear regression model for every parameter. Then,
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the proportions of variation explained were calculated to find out which parameters

were able to best reflect the phonation changes. Furthermore, correlation matrices

were computed to discover which parameters are well related to each other regarding

the phonation type. Parameters focusing on the glottal closing phase such as NAQ,

AQ, and ClQ were able to express the phonation type best. Cross-correlation matrices

indicated that parameters tend to correlate with other members of the same parame-

ter group. For example, different closing phase parameters were well correlated, as

were the different OQ parameters. The results are useful in assisting in the selection

of suitable voice source parameters when the phonation changes are to be quantified.

Furthermore, the results assist in making comparisons of the results of existing papers

in which different voice source parameters have been used.

Publication V: ”Estimation of the voice source from speech pressure
signals: Evaluation of an inverse filtering technique using physical
modelling of voice production”

In this study, the goal was to test a novel method to estimate the performance of an

inverse filtering technique using physical modelling of voice production. Speech pres-

sure signals are generated using a combined two-mass model of the vocal folds and

a wave reflection (digital waveguide) model of the trachea and the vocal tract. The

mass-spring model was aerodynamically coupled with the digital waveguide to pro-

vide a realistic interaction between the two elements. The speech production model

was used to produce four different vowels, each with ten different values of the funda-

mental frequency. Since both the generated vowels and their respective voice source

signals were acquired from the synthetic model, they were able to act as a reference for

the inverse filtering evaluation. The inverse filtering method tested in this study was the

iterative adaptive inverse filtering (IAIF), which was used to inverse filter the synthetic

vowels to create glottal flow estimates. Both the synthetic and estimated glottal flows
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were then parameterized using the normalized amplitude quotient and the harmonic

level difference (H1-H2). The results indicated that the error introduced by inverse

filtering was, in general, small for both parameters. The effect of the distortion caused

by inverse filtering on the parameter values was clearly smaller than the change in the

corresponding parameters when the phonation type was altered. The error caused by

inverse filtering was largest for high-pitched vowels with low first formants, as ex-

pected. The study was able to show that the errors induced by inverse filtering are

sufficiently small that the proposed inverse filtering technique is able to measure the

voice source dynamics with satisfactory accuracy.

Publication VI: ”Comparison of two inverse filtering methods in pa-
rameterization of the glottal closing phase characteristics in differ-
ent phonation types”

In this article, two common inverse filtering methods are compared to observe whether

the inverse filtering method affects parameterization of the voice source. Speech pres-

sure waveforms of six female and seven male speakers producing sustained /a/ vowels

in breathy, normal, and pressed phonations were recorded. The recordings were inverse

filtered by two different methods: manual inverse filtering, as implemented in the De-

Cap software, and the semiautomatic iterative adaptive inverse filtering (IAIF) method.

Both of the methods were used by three different speech research professionals. The

closing phase characteristics of the estimated glottal flow waveforms were parameter-

ized using two time-based parameters, ClQ and NAQ. Statistical analyses were then

performed on the acquired parameters. Since normality tests indicated that the data

was not normally distributed, nonparametric tests were used. According to the statisti-

cal analyses, statistically significant differences between the inverse filtering methods

were present. However, the correlation of the results using the two methods were very

high and the discrepancies, in general, reasonably small. Therefore, the result of this
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study was found to be encouraging in showing that automatic inverse filtering can be

developed in the future to meet the needs of extensive speech data analysis.

Publication VII: ”An amplitude quotient based method to analyze
changes in the shape of the glottal pulse in the regulation of vocal
intensity”

This study presents an approach to visualizing intensity regulation in speech. The

method expresses voice samples in two-dimensional space using amplitude-domain

values extracted from inverse filtered glottal flow estimates. The proposed presen-

tation expresses a time-domain measure of the glottal pulse, the amplitude quotient

(AQ), as a function of the negative peak amplitude of the flow derivative (dpeak). Voice

samples varying from very soft to very loud with a SPL range of approximately 55 dB

were analyzed using the proposed method. The results indicate that when vocal in-

tensity is increased, the speech samples first showed a rapidly decreasing trend on the

graph. When intensity is further increased, the samples converged toward a horizontal

line, the asymptote of the regression hyperbola. The behaviour of the AQ-dpeak graph

indicates that the intensity regulation strategy changes from laryngeal to respiratory

mechanisms as the intensity increases. The proposed analysis method makes it pos-

sible to quantify how the control mechanisms underlying intensity regulation change

gradually between the laryngeal and respiratory mechanisms. The proposed presenta-

tion constitutes a concise visualization method for the intensity regulation functioning

because the only information needed is the glottal flow waveform estimate inverse fil-

tered from the acoustic speech pressure signal.
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8 Conclusions

This thesis sought new ways of improving the voice source analysis methodology in

voice quality studies and data of the actual voice quality changes in continuous speech.

The methodological issues were addressed in five different publications, while two

papers were studies on the voice quality changes.

In the course of this work, a novel software environment for voice source inverse fil-

tering and parameterization, TKK Aparat, was created. This work was described in

Article III. The algorithms and parameters implemented in this software were mostly

already published, but the software has practical importance as a common platform for

voice source studies and as a reference implementation of multiple principal algorithms

in the field. The software has received a favourable response and has been already

adopted by many research groups. The other publications regarding the methodology

have further tested the validity of the voice source analysis methods used (Article VI)

and proposed new techniques for testing them (Article V). Furthermore, guidelines for

the glottal volume flow waveform parameterization have been set in Article IV, and

new methods for interpretation of the glottal flow parameters are suggested in Article

VII.

The results of the methodological articles should prove useful in many works con-

cerning the study of the voice source. For example, the software created can be, and

has been, applied to studies of occupational voice and laryngology. The validation

studies can be repeated using other algorithms, thus providing comparable data on the

similarities of these algorithms and their applicability. Article IV, regarding different

voice source parameters, provides important guidelines for future research, including

selection of algorithms, as well as giving information on the comparability of different

glottal flow parameters. This information should prove valuable to anyone working
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on the speech pressedness and voice source analysis. Finally, the novel way of visu-

alizing the function of voice production suggested in Article VII should supplement

existing voice production analysis tools and therefore prove useful in the research of

vocal function.

The goal of acquiring data on the voice source behaviour in voice quality changes

was addressed in two studies. In the first of these publications, Article I, voice source

changes in expression of emotions were studied. This study suggested a correlation

between the pressedness of the voice and the activation dimension of emotional ex-

pression. In Article II, voice quality changes in expression of prominence (stress) in

speech were studied. This research yielded unexpected results contradicting the initial

intuitive hypothesis. A new, plausible explanation for the observed phenomenon was

suggested.

As a thorough analysis of the different voice quality issues with regard to the voice

source function would have extended beyond the realms of a single doctoral thesis,

only two seminal issues were studied. Both of the Articles I and II should provide use-

ful information for generation of expressive speech synthesis. Article I gives an insight

on the voice quality changes present in expression of different emotions, while Article

II should be useful in the generation of physiologically motivated speech intonation

models. Incorporation of voice quality changes in these domains should improve the

expressivity of synthetic speech.

In no way is this research complete. First, the practical limitation of only studying the

changes on the breathy–pressed axis of the voice quality rejects other important voice

quality features. Methods for their analysis have been developed, and they should be

incorporated in future studies to acquire a more thorough view of the voice quality

changes in different situations. Second, although this work improves on the unfortu-

nately common tradition of the field of using extremely limited amounts of data, even
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larger data sets could have been used. Therefore, the results of this work should, in

most cases, not be considered confirmatory, but exploratory in nature. To acquire au-

thoritative results, larger data sets should be analysed. Hence, fully automatic voice

inverse filtering and voice quality measurement methods need to be developed to facil-

itate the analysis of large data quantities.

The author believes that this work, on its own part, will help in facing the methodolog-

ical challenges which so far have been perceived as hindering the analysis of the voice

qualities in many fields of research. Yet, the inherently multidisciplinary nature of the

voice source analysis renders it a challenging and complex domain.
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