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In this paper we study how the selection of partners in a virtual
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programming (MILP) models. Additionally to fixed and variable costs, we
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measures, and inter-organisational dependencies such as the success of
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models are potentially applicable to a variety of portfolio selection
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Multi-Criteria Partner Selection in Virtual Organisations
With Transportation Costs and Other Network

Interdependencies

Toni Jarimo and Ahti Salo

Abstract—In this paper we study how the selection of partners in a
virtual organisation (VO) can be assisted through mixed integer linear
programming (MILP) models. Additionally to fixed and variable costs, we

present extensions that accommodate transportation costs, capacity risk-

grows [1]. This calls for the development and deployment of decision
support models that help companies in the management of such
relationships. Towards this end, several researchers have introduced
the idea of a ‘club’ that consists of a set of member-organisations,
with a mutually agreed cooperation structure for the creation of
temporaryvirtual organisations(VO) [2]-[4]. We call this club a
virtual organisation breeding environme¥BE) [3], [5], which is
characterised by a common ICT infrastructure, strategy, and processes
for agile VO creation, among others.

Specifically, we focus on the problem of selecting VO partners in

measures, and inter-organisational dependencies such as the success of VVBE. This is essentially a multi-criteria optimisation problem for

past collaboration. Experiences from a real case study indicate that these

models are helpful in VO decision making; computational experiments . h A
suggest that the models are tractable. In general, the MILP models are N order to allocate work among potential VO partners, taking into

potentially applicable to a variety of portfolio selection problems.

NOMENCLATURE

Parameters

Cij distribution for candidaté’s capacity on taskj

o, kth element ofC;

€ab intensity of earlier collaboration between candidates
andb

fi fixed cost of candidatés work on the project

fig fixed cost of candidatés work on task; of the project

i index for candidates

j index for project’s tasks

k index for the candidates’ capacity distributions

m number of candidates

n number of tasks in the project

pi,; (k) probability that candidaté’s realised capacity on task
jis cﬁj

tab unit transportation cost between candidaiesnd b

Vij variable cost of candidatés work on task;

wj workload of taskj

Ot guantity of transportation required between taskand

1

T

Variables

Ti,j candidatei’s work allocation on task

Yi takes value one ifi is selected into the VO; zero
otherwise

Yij takes value one if performs work on taskj; zero
otherwise

Za,b takes value one if both candidatesaindb are selected
into the VO, zero otherwise

2o b takes value one if candidates and b perform tasks

Collaborative networks are becoming more important in global angl

r’ andr”, respectively, and transportation is required
between tasks’ andr’’; zero otherwise

I. INTRODUCTION

which we develop a mixed integer linear programming (MILP) model

account fixed and variable work costs, transportation costs, risks of
capacity shortfall, and inter-organisational dependencies. We extend
the formulation and application of earlier models [6] in three ways.
First, the set of Pareto-efficient configurations are identified using
an additive value function. Second, transportation costs are explicitly
modelled. Third, a real-life application is presented to illustrate the
use of our models. Our MILP models are potentially applicable also
to otherportfolio selectionproblems, where a subset of elements is
to be chosen from a larger set with respect to multiple constraints
and criteria [7]-[9].

Several authors have developed VO partner selection methods for
minimising a single criterion, most notably the total life cycle costs
defined in terms of production, operation, and transportation costs, for
instance [10], [11]. However, many ‘soft’ factors—such as corporate
culture and social relations—that influence the VO performance
cannot be captured by pure cost models. This motivates the use of
multi-criteria models for VO partner selection [12], [13].

The explicit consideration of risks [14], [15] and inter-
organisational dependencies [16], [17], in particular, are novel fea-
tures that are motivated by real partner-selection problems, such as
our case example. Although trust, cultural homogeneity, and success
of past collaboration are highly relevant to partner selection [18],
[19], only few authors have formally or practically addressed these.

The rest of this paper is structured as follows. Section Il develops
the MILP model for VO partner selection. Section Ill presents a real-
life case example and illustrates the use of our MILP model. Finally,
Section IV concludes.

Il. AMODEL OF COLLABORATION
A. Parameters and Variables

We model VO partner selection as a work-allocation problem
whereM = {1,...,m} denotes the set of candidate partners in the
VBE. At the outset, the VBE identifies a business opportunity which
is to be addressed by carrying out a project for the Customer. The
project tasks are denoted by = {1,...,n} so that the workload
i of j € N is measured in relevant units (e.g. person months). The

regional business, thanks to their ability to combine organisatior}ﬁ_f)tation follows an earlier version of this model [6].
competences. But when individual companies seek efficiency gainsre decision variable is the work-allocation matf,, ., whose
by focusing on their core competences while outsourcing NON-CQfymentz; ; denotes the amount of work on tagkhat is assigned
operations, the number and complexity of inter-firm transaction§ candidate. The following auxiliary variables are helpful in model
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if z;; > 0 for at least ongj € N.
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s, yi is equal to one if candidate performs some work in the

at VTT Technical Research Centre of Finland and was partly funded by tREOject, and zero otherwise. Also, let

ECOLEAD project of the European Commission and by the COBTEC project
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the National Workplace Development Programme (Tykes).

If Ti,5 = 0
if z;,5 > 0.

Yij = %
1,7 17



These variables are distinct in thgt indicates whether or not
candidate is involved in the project, while; ; indicates which tasks
candidatei is involved in. Thus, ify; = 0 for somei, theny; ; =0
Vj; and if y; = 1 for somes, theny; ; = 1 for at least onej.

Capacity information is given through discrete probability distri- ,-
butions so that} ; denotes theith element ofC;; and p; ;(k) is fa=s
the corresponding probability. Without loss of generality, it can be®\@
assumed that the possible capacities are sorted in descending ordgy
SO thatc,},j = maxg cﬁj. Because the probabilities add up to ON€y Task order (b) Unit trans-  (c) Costs of possible trans-
the expected capacity that candidatdevotes to taslj is for assembly portation costs portation routes

E[C’U] _ Zpi,j(k)cf,]‘ VieM, jeN. Fig. 1. An example of transportation parameters
K

Cu\ﬁdidz#tvs
for} Tast{ 1

C&\Hdid#tcs
for} Tas‘( 3

The following constraints ensure that the bingry's assume their

. . . _ correct values:
Our basic model accounts for the candidates’ variable and fixed

costs through a single cost criterion Yij >

B. Objective Function
Lii VieM,jeN st ;>0
10 1€ ,]E S..Ci,j>.
m n m ©J
min Cost(X,Y) = Zfiyi + ZZ(“WJ + fisuig), (1) Thatis,y; = 1 if at least some work of tasl is allocated to
XY ; . _ ; ; o
i—1 J=1 i=1 candidatei, andy; ; = 0 otherwise. No upper constraint fgs ;'s is
where the work allocation matri,,«,, contains thez's and the needed, beca'use increases in these binary vanable§ cause higher gosts,
whereforey; ;'s remain at zero level whenever feasible. However, if

matrix Y,,, x (n4+1) contains they’s. In the objective function, the first e 1o introd n additional decision criterion h that th
sum term captures fixed costs due to the introduction of partners, zErP(? were 1o introduce an additional decision criterion such that the
f

the double-sum term covers fixed and variable costs of the work %neflt increases whegt,; = 1, an upper bound similar to that for

) ) ;'s becomes necessary.
partners perform on their respective tasks. Yi y

C. Constraints D. Transportation Costs

Two types of constraints are needed to ensure the fulfilment of We consider a manufacturing VO where each partner supplies a
project requirements and the feasibility of the optimal solution. IBpecific component that is a part of the end-product. Whenever two
order to satisfy project requirements, the workload of each task Hfsmore components are assembled together, these components must

to be completed, i.e. be at the same site, which incurs transportation costs.
m Transportation costs are driven mainly by two factors: 1) geograph-
in,j >w; VjeEN. (2) ical distance and 2) volume and weight of the cargo. For instance,

consider a project of three tasks such that the output of Task 1 must
be made available at the same site where Task 3 is carried out and
Hi8t the volume of this transportation is 5 units. This task sequence is
illustrated through the simple network in Figure la. Because Task 2
does not have physical connection to Tasks 1 or 3, it is a disconnected
Alternatively, the workload of the partner can be bounded by iode. For instance, Task 1 could correspond to the manufacturing of a
expected capacity (i.e:; ; < E[C; ;]), because the partner may notmicrochip, which is assembled into the end-product in Task 3. Task 2,
be able to devote its maximum capacity to the task. Finally, workloaifsturn, could represent software development for the end-product.
must be non-negative: Assume that we have four partner candidates, between which
) ) the unit transportation costs are as shown in Figure 1b. Moreover,
zij 20 VieM, jeN. assume that Candidates 1 and 3 are capable of performing Task 1,

To ensure feasibility, the binany;’s must satisfy the constraints: While Task 3 can be performed by Candidates 1 and 4. Figure 1c
integrates the information of Figures 1a and 1b, as well as information

i=1
The workload assigned to a candidate must not exceed maxim
capacity
x;;<ci;, Vi€eM, jeN.

> Zjein-j e and u < ZjeN Lig e+l about which candidates can perform the corresponding tasks. Thus,
Yi = Z en Wi Yi > Z en W depending on the work allocation of Tasks 1 and 3, the transportation
! ! Vie M. (3) costs are as shown in Figure 1c.

The above concepts can be formalised as followsrLet(r’, r")

The numerators denote the total amount of work that is allocateddenote a pair of tasks such that the (physical) output of taskust

candidate while the denominator is the total workload of the projectbe at the same location where taskis carried out (see Figure 1a).

thus, these quotients are equal to the proportion of the projedtst R denote the set of all such pairs. For egeh ") € R, let

workload that is allocated to candidateFurthermore¢ corresponds 4, be the corresponding output volume of task(measured in

to the proportion of the total workload that a candidate must exceadelevant unit, e.g. kg). For instance, in the example of Figure 1,

so as to be a relevant VO partner. Thys,= 1 if at leaste x 100 R consists of only one pair, name(y, 3) with an output volume of

percent of the project’s workload is allocated to candidatand d:,3 = 5.

y; = 0 otherwise. The cost of transportation can be presented as a graph whose nodes
In the first expression of (3), the denominator ensures that therrespond to the candidate partners and whose edges represent the

right hand is less than one (if it were larger than one, the modehit transportation costs between adjacent nodes (see Figure 1b).

would become infeasible becaugeis a zero-one variable). A similar Specifically, for candidates andb, these unit costs are denoted by

argument holds for the denominator in the other inequality, too. ¢.. In Figure 1b, for instance, we haves = 6.



For each painr’,r"") € R, we have two sets of candidates, i.e.
1) those that are capable of performing taskand 2) those that
are capable of performing task’ (see Figure 1c). These two sets
are connected by edges between the candidates such that each edge
represents the transportation cost from one candidate to another, in
accordance with the relatio’, r”’). For instance, if Candidate 1
were to perform Task 1 and Candidate 4 were to perform Task 49- 2. An example of candidates’ collaboration history
the transportation costs would Bex 6 = 30, becausé; 3 = 5 and
t1,4 = 6.

Transportation costs can now be incorporated into our MILP modghat is, pFP® is the expected downside difference between the

5]
as follows. For any given pair of tasks= (r’,""), we define the amount of work on taskj that is allocated to Candidate on one

binary variablez;, ;, hand, and’s capacity on this task, on the other hand. The summation
) is taken over the eventsﬁj that result in capacity shortfall, subject
oy = { 0, ']t Yar = 0or é/b’r” ::) to the allocation of workload:; ;.
Lot o, =1andyy,» =1 In order to incorporate EDR into our model, Ieif_;.r > 0 and
VreR, abe M s.t. c}ml > wy andcéﬂ,u > Wyt cf,]_. > 0, denote the positive and negative differenCecbj — T

for any givencf ; € C; ;. The correct values of; T andc}; can be

where this definition applies for all pairs of candidafesb) such ensured through constraints

that a is capable of performing task andb can perform task’.

Thus, z; ,, is one if tasksr’ and r” are enabled by transportation T — ij—. 4 ij =cf; YieM,jEN, c; €Ci;.
between candidates and b; otherwisez;, , is zero. In addition, the
following constraints are needed: The formula for EDR becomes
EDR k—
s a.r! —+ I r i = i k; N
Zab < = 2 = and zgp > Yo +Yper — 1. Pij zk:p“i( )i

The first of these constraints ensures tha} is zero if tasks”’ and where the summation is taken over the probability distribution
r"" are not allocated to candidatesand b, respectively. The second p;,; (k). However, only capacity realisations below the target level
constraint ensures thaf , is one if candidates andb work on tasks contribute to the risk measure, becauéii—;?’s are equal to zero

r" andr”, respectively. otherwise. The total EDR of a VO configuration can thus be expressed
The total transportation costs can now be written as as the sumd_, > piP%.
TRANS . EDR-based risk management can be captured by our MILP model
Cost = Z Ort v ta,bZab- either through goal programming (e.g. through linear constraints such
TR as pi’?™ < EDRmax) O by aggregating risks and costs through a

The above cost function is linear, thus the objective function (¥plue function. Both approaches require parameter estimates, either in
remains linear even when transportation costs are accounted for.terms of accepted risk-level£DRuax) or through the explication
of tradeoffs between cost and capacity risk. Furthermore, one can
associate lower accepted risk-levels or higher cost-of-risk with critical
tasks.
Risk management is vital due to the possibly adverse impact of
uncertainties in the partners’ individual or collaborative behavioye | .
Hallikas et al. [20] suggest that there are two main sources of
uncertainties, namelgustomer demandnd customer deliveryi.e. In partner selection, for instance, it is unrealistic to estimate the
supply. Because the VO partner selection process is triggered bifapsaction costs that are likely to arise during the entire VO life-
business opportunity—orealised demand—demand risks are hereeycle; it is therefore more practical to study non-monetary indicators
not very relevant, because there are usually no risks with custorifgft influence the size of transaction costs over the VO life-cycle.
payments (excluding force majeure events such as bankruptcy).QRe such indicator—which can be measured relatively easily—is the
our case, we therefore focus on capacity fluctuations that call fo¥mber of past collaboration activities among partner candidates. It
the reconfiguration of the VO. Thus, capacities are modelled throutfhreasonable to assume that the more intensely the companies have
discrete probability distributions. collaborated earlier, the better they know each other’s ways of action,
Among alternative measures for the management of capacity riskdlich reduces the transaction costs of collaboration. In contrast,
we give precedence texpected downside riskEDR) [21]. EDR €xamples of measurable indicators that may resulidreasedrans-
can be interpreted as the expected shortfall from a given targ&ion costs include geographical distance and linguistic difference.
value (i.e. the amount of work that is allocated to a partner). Ye refer to these and related indicators reswork preparedness
is therefore more meaningful than variance-based measures wHiEke" 2.
indicate ‘risk’ whenever there are capacity uncertainties, although1he network preparedness criteria differ from traditional selection
the decision maker (DM) is not faced with risks when the availabfgiteria (e.g. cost or quality) in that their measurement involves two
capacity exceeds the required level. EDR also belongs to the fanfifyMore companies (one cannot measure ‘geographical distance’ for
of mean-risk dominance models and shares their desirable properfie§ingle company). The following formulation shows how inter-

E. Capacity Risks

organisational Dependencies

18], [22]. organisational dependencies are incorporated into our model, using
In our model, the EDR of Candidaiés work allocation on task ~ collaboration history as an example of network preparedness criteria.

is For instance, Figure 2 illustrates the collaboration history of four
pE?R _ Z i (k) (wis — Cﬁj). fictitious companies. Here, Companies 2 and 3 have collaborated in

- one past project, and Companies 3 and 4 have collaborated in two
ok i<=ij earlier projects. Company 1 has no earlier collaboration with others.



Let zq,5 € {0,1} be a binary variable which indicates whether or

not a particulampair of candidates is selected into the VO. Formally, mokey AG
we let :Sch‘ar Engineering Fornara
. SIG
U 0, ifyo=00ry, =0 HMynima AG
@b 1, if yo=1andy, = 1.

In other words, z,,, is one if some work is allocated to both
candidates: andb, and zero if work is allocated to neither candidate
or only to one of them. Hencez,, shows whether gpair of
organisations is selected into the VO. This enables objective functions
that account for inter-organisational dependencies, of which the
collaboration history in Figure 2 is but one example. Beni Sulzer AG
For z, we need the constraints

Za,bgyaTw and Za,bzya+yb_1 V{a,b}CM,

The former constraint ensures that, is strictly less than one if

eithery, or ys is zero. The latter one that, ; is one if bothy, and

yp are equal to one. Fig. 3. Intensity of past collaboration between the partner candidates of
We next define a quantitative measure for collaboration historyirtuelle Fabrik

First, lete,,; denote the number of earlier collaboration activities

between companies andb, and letemax be the maximum number

of earlier collaboration activities of a single candidate. For instancgatures that are contained in our model. Here, we illustrate the model

in Figure 2, we havesz s = 1, es.4 = 2, andemax = 3, Which iS  jith real data.

due to Candidate 3. The project was broken down into nine tasks, which were 1) Grind-
When the VBE has a documented collaboration history, the fahg, 2) Gear milling, 3) Metal sheet forming, 4) Milling and turning

lowing linear measure can be used to approximate the benefitsppthigger parts, 5) Welding, 6) Bending of pipes, 7) Engineering,

earlier collaboration 8) Milling and turning of smaller parts, and 9) Project management.
WLIN(Yy 7) = Z emaxlli — Z CabZab- (4) These tasks had to foIIowatlght schedule set by the end customer. For
! o each task, there were two to five partner candidates, some of which
a<b were candidates for several tasks. The total number of candidates

Here, Z is them xm matrix of 2's. The first sum imy™™N increases by Was 21. They were chosen on the basis of their competences and

emax Whenever the number of partners in the VO configuration grov@yailability.
by one, while the second subtracts the number of earlier collaborationThere were three selection criteria in the following order of
activities of the new partner. Hence"'N increases whenever a newdeclining priority: 1) minimise delay risks, 2) maximise earlier
partner is added into the configuration, unless this new partner ¢gdlaboration, and 3) minimise costs. The project had a tight schedule,
emax COllaboration activities with the partners that are already padfius minimisation of risks was most important. Moreover, successful
of the configuration. If the DM prefers a small number of partner@ollaboration history was expected to contribute to finishing the
and an active collaboration history, then a configuration with a smafoject in time. Costs were the least important criterion.
N is preferred to one with a large-"™. We aggregated the different objectives throughaalditive value

The network preparedness criteria can be incorporated into dupction which reflects the DM's preferences for the relative impor-
MILP model through the introduction of a suitable cost functiofi@nce of the selection criteria [9]. The value of a VO configuration
or the adoption of a multi-criteria approach. In practise, the multio the DM is the weighted sum of scores on each criterion. Because
criteria approach is likely to be dominant, since measuring intéfe additive value function is linear, it can be readily maximised in
organisational dependencies in monetary terms may be difficult. #Bg MILP framework.
instance, the collaboration measure™ can be employed as a new Each partner candidate was given a probability distribution for
criterion, apart from costs and risks. finishing the tasks in time based on historical performance. Only

the probabilities associated with the capacity distributions had to be

I1l. CASE STUDY: MAGNETIC CLUTCH PROTOTYPE FORLORRIES ©sStimated, because the candidates’ costs for finishing the tasks were

We illustrate the use of the model with a partner-selection exampﬁgown and data on the candidates’ collaboration history was readily

of an exisiing VBE, thevituelle Fabrk AG (ntpimviebe). o 8207, T B0 2 S S SRS S e e
This VBE operates in North-Eastern Switzerland and offers the P

services of some 70 companies in the field of machinery manufactlﬁg.st joint projects; a thicker line between two candidates represents a

. . . . . %reater number of joint projects in the past. Candidates that have had
Recently, it has carried out projects for car and energy industries, tOr . : . . :
instance no earlier collaboration with other candidates are not connected (i.e.

Okey AG, Schuler, Sdr Engineering, SIG, and Unima AG). Out of
. o the 288 parameters that were estimated or taken from databases, 210
A. Project Description pertained to the collaboration history of Figure 3: with 21 candidates
We applied our MILP model to a real-life case of Virtuelle Fabrikthere are maximun21—21)/2 = 210 links between the candidates.
where partners were to be selected for a project ordered by a lakigwever, only 23 of these were non-zero, representing the 23 links
German car manufacturer. The aim of the project was to deviegthe network. Costs and capacity distributions were described by
and construct a prototype magnetic clutch to be used in lorries. \®8 and 52 parameter values, respectively.
performed the case study in close collaboration with the manageiOne full workday was used to explain the model to the DM, gather
of Virtuelle Fabrik, who also contributed by suggesting many of théata, estimate parameters, and interpret the results. The DM was



TABLE |
PERFORMANCE OF SIXPARETO-EFFICIENT CONFIGURATIONS ON THREE SELECTION CRITERIA

Task\ Configuration 1 2 3 4 5 6

Bending of pipes SMA SMA SMA SMA SMA SMA

Engineering Schuler Séh Engineering  Scir Engineering  AE&P AE&P AE&P

Gear milling Okey AG Okey AG Okey AG Okey AG Okey AG Okey AG

Grinding Brunner Brunner Brunner Brunner Brunner Brunner

Metal sheet forming Beni Burtscher  Beni Burtscher Beni Burtscher Beni Burtscher  Beni Burtscher  Beni Burtscher

Milling bigger parts SMA SMA SMA SMA OMB SMA

Milling smaller parts  Innotool Innotool Innotool Innotool Innotool Innotool

Project management  VF AG SahEngineering  VF AG AE&P AE&P VF AG

Welding Beni Burtscher  Beni Burtscher Beni Burtscher Beni Burtscher  Beni Burtscher  Beni Burtscher

Performance (all criteria to be minimised):

Risk 0.25 0.75 0.75 1.25 1.25 1.75

Collaboration 86 73 83 70 94 81

Cost 131 312 132 116 123 215 124 005 121 934 122 057

TABLE I TABLE Il
SENSITIVITY ANALYSIS UPPER BOUNDS FOR THE NUMBER OF INTEGER VARIABLES IN THE MODEL
Task Robustness of Partner Candidates (nZNUMBER OF TASKS m/=NUMBER OF CANDIDATES PER TAS@
Eﬁgﬁ:ggr%fgplpes iEA;Plgg Sdir E.: 33 Schuler:17 Variable # Variables Note
: - : i ! One per each candidate

Gear milling Okey AG: 100 Yi moen P ,
Grinding Brunner: 100 Yi,j m' xXn One per each candidate
Metal sheet forming  Beni Burt.: 100 27 m2(n —1) Number of edges in a complete
Milling of big parts SMA: 83 OMB: 17 ' bipartite graph #’2) for each
Milling small parts Innotool: 100 transportation requirement{1).
W;J;%t managem. Beni \B/L'I:rtAGl05OO AE&P: 33 SohE.: 17 Zab %m’ xn(m’ xn—1) Number of edges in a complete

9 - graph ofm’ x n nodes

Total %m/ ><n+%(m/ xn)2 +m?(n—1)

already familiar with the concepts since Virtuelle Fabrik has been a
partner in the_ECOLEAD research project (http;//wx_/vx_/v.ecolead-_Or_gg'mce Insolve does not exploit specific integer programming algo-
The required tl_me can be reduced fur_ther_by systemising the actwﬂmms’ such as Branch-and-cut, many commercial solvers would be
of data gathering and parameter estimation. considerably faster. Moreover, the use of branching algorithms allows
parallel computation for faster solution [23]. Practitioners can esti-
B. Partner Selection mate the computation time through simulations using their available
The problem was to select a good VO configuration for the projedtardware and software and randomised data that corresponds their
subject to the above information on the project and candidate partnétghjective needs.
This problem was essentially that of allocating the task workloads toThe computational complexity of a MILP model increases with
partners, in recognition of their capacities and the relevant evaluatitv¢ number of integer variables (Table Ill): for instance, in a case
criteria. with 10 tasks and 10 different partner candidates for each task
In our case study there were six Pareto-efficient configuratiose. 100 candidates altogether), the maximum number of binary
Table | presents the performance of these configurations in view\sfriables is 6050. MILP models of that size are readily solved
the three selection criteria. The configurations have been sortedwiith up-to-date software. Moreover, the maximum number involves
the decreasing importance of these criteria (risk, collaboration, costterdependencies between each task and each partner, which is
Hence, Configuration 1 would best reflect the DM’s preferences. not the case in practise: e.g. the average degree of a node in the
The risk-measure used was the expected downside risk (EDRixtuelle Fabrik collaboration graph (Figure 3)2sx 23/21 = 2.19.
meaning that smaller scores indicate lower risks. The collaboratiofRe average of, say four links from 100 partner candidates yields
score is calculated using the'N-measure (4) that accounts for thel300 integer variables in total, which is considerably less than the
earlier collaboration as well as for the total number of partners inaximum 6050. Hence, realistic problems with hundreds of partner
a configuration. Also here a smaller score is preferred. Cost is thendidates are accurately solvable. The advantage of MILP models is
expected total cost in Euros, based on the candidates’ prices. that a feasible solution is readily available. Thus, large problems can
Table Il gives a sensitivity analysis on the candidates. The scdre solved in limited time using anytime algorithms where a solution
after each candidate represents the percentage of Pareto-effice@ways available, and further computation improves the available
configurations in which the work of the corresponding task has begelution until the optimum is reached [24].
allocated to the candidate. This score can be interpreted as a measure
of robustness in the sense that a partner with a high score is a gepdvanagerial and Practical Implications

choice despite the relative importance of the selection criteria [9]. The manager of Virtuelle Fabrik was particularly satisfied with the

model’s capability of highlighting inter-organisational dependencies:
C. Computational Tractability for him, it was difficult to intuitively see the synergies of different
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