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Multi-Criteria Partner Selection in Virtual Organisations
With Transportation Costs and Other Network

Interdependencies

Toni Jarimo and Ahti Salo

Abstract— In this paper we study how the selection of partners in a
virtual organisation (VO) can be assisted through mixed integer linear
programming (MILP) models. Additionally to fixed and variable costs, we
present extensions that accommodate transportation costs, capacity risk-
measures, and inter-organisational dependencies such as the success of
past collaboration. Experiences from a real case study indicate that these
models are helpful in VO decision making; computational experiments
suggest that the models are tractable. In general, the MILP models are
potentially applicable to a variety of portfolio selection problems.

NOMENCLATURE

Parameters
Ci,j distribution for candidatei’s capacity on taskj
ck

i,j kth element ofCi,j

ea,b intensity of earlier collaboration between candidatesa
andb

fi fixed cost of candidatei’s work on the project
fi,j fixed cost of candidatei’s work on taskj of the project
i index for candidates
j index for project’s tasks
k index for the candidates’ capacity distributions
m number of candidates
n number of tasks in the project
pi,j(k) probability that candidatei’s realised capacity on task

j is ck
i,j

ta,b unit transportation cost between candidatesa andb
vi,j variable cost of candidatei’s work on taskj
wj workload of taskj
δr′,r′′ quantity of transportation required between tasksr′ and

r′′

Variables
xi,j candidatei’s work allocation on taskj
yi takes value one ifi is selected into the VO; zero

otherwise
yi,j takes value one ifi performs work on taskj; zero

otherwise
za,b takes value one if both candidatesa andb are selected

into the VO; zero otherwise
zr

a,b takes value one if candidatesa and b perform tasks
r′ and r′′, respectively, and transportation is required
between tasksr′ andr′′; zero otherwise

I. I NTRODUCTION

Collaborative networks are becoming more important in global and
regional business, thanks to their ability to combine organisational
competences. But when individual companies seek efficiency gains
by focusing on their core competences while outsourcing non-core
operations, the number and complexity of inter-firm transactions
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grows [1]. This calls for the development and deployment of decision
support models that help companies in the management of such
relationships. Towards this end, several researchers have introduced
the idea of a ‘club’ that consists of a set of member-organisations,
with a mutually agreed cooperation structure for the creation of
temporaryvirtual organisations(VO) [2]–[4]. We call this club a
virtual organisation breeding environment(VBE) [3], [5], which is
characterised by a common ICT infrastructure, strategy, and processes
for agile VO creation, among others.

Specifically, we focus on the problem of selecting VO partners in
a VBE. This is essentially a multi-criteria optimisation problem for
which we develop a mixed integer linear programming (MILP) model
in order to allocate work among potential VO partners, taking into
account fixed and variable work costs, transportation costs, risks of
capacity shortfall, and inter-organisational dependencies. We extend
the formulation and application of earlier models [6] in three ways.
First, the set of Pareto-efficient configurations are identified using
an additive value function. Second, transportation costs are explicitly
modelled. Third, a real-life application is presented to illustrate the
use of our models. Our MILP models are potentially applicable also
to otherportfolio selectionproblems, where a subset of elements is
to be chosen from a larger set with respect to multiple constraints
and criteria [7]–[9].

Several authors have developed VO partner selection methods for
minimising a single criterion, most notably the total life cycle costs
defined in terms of production, operation, and transportation costs, for
instance [10], [11]. However, many ‘soft’ factors—such as corporate
culture and social relations—that influence the VO performance
cannot be captured by pure cost models. This motivates the use of
multi-criteria models for VO partner selection [12], [13].

The explicit consideration of risks [14], [15] and inter-
organisational dependencies [16], [17], in particular, are novel fea-
tures that are motivated by real partner-selection problems, such as
our case example. Although trust, cultural homogeneity, and success
of past collaboration are highly relevant to partner selection [18],
[19], only few authors have formally or practically addressed these.

The rest of this paper is structured as follows. Section II develops
the MILP model for VO partner selection. Section III presents a real-
life case example and illustrates the use of our MILP model. Finally,
Section IV concludes.

II. A M ODEL OF COLLABORATION

A. Parameters and Variables

We model VO partner selection as a work-allocation problem
whereM = {1, . . . , m} denotes the set of candidate partners in the
VBE. At the outset, the VBE identifies a business opportunity which
is to be addressed by carrying out a project for the Customer. The
project tasks are denoted byN = {1, . . . , n} so that the workload
wj of j ∈ N is measured in relevant units (e.g. person months). The
notation follows an earlier version of this model [6].

The decision variable is the work-allocation matrixXm×n whose
elementxi,j denotes the amount of work on taskj that is assigned
to candidatei. The following auxiliary variables are helpful in model
formulation. Let

yi =

{
0, if xi,j = 0 ∀ j ∈ N
1, if xi,j > 0 for at least onej ∈ N.

Thus, yi is equal to one if candidatei performs some work in the
project, and zero otherwise. Also, let

yi,j =

{
0, if xi,j = 0
1, if xi,j > 0.
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These variables are distinct in thatyi indicates whether or not
candidatei is involved in the project, whileyi,j indicates which tasks
candidatei is involved in. Thus, ifyi = 0 for somei, thenyi,j = 0
∀j; and if yi = 1 for somei, thenyi,j = 1 for at least onej.

Capacity information is given through discrete probability distri-
butions so thatck

i,j denotes thekth element ofCi,j and pi,j(k) is
the corresponding probability. Without loss of generality, it can be
assumed that the possible capacities are sorted in descending order
so thatc1

i,j = maxk ck
i,j . Because the probabilities add up to one,

the expected capacity that candidatei devotes to taskj is

E[Ci,j ] =
∑

k

pi,j(k)ck
i,j ∀ i ∈ M, j ∈ N.

B. Objective Function

Our basic model accounts for the candidates’ variable and fixed
costs through a single cost criterion

min
X,Y

Cost(X, Y ) =

m∑
i=1

fiyi +

n∑
j=1

m∑
i=1

(vi,jxi,j + fi,jyi,j), (1)

where the work allocation matrixXm×n contains thex’s and the
matrix Ym×(n+1) contains they’s. In the objective function, the first
sum term captures fixed costs due to the introduction of partners, and
the double-sum term covers fixed and variable costs of the work the
partners perform on their respective tasks.

C. Constraints

Two types of constraints are needed to ensure the fulfilment of
project requirements and the feasibility of the optimal solution. In
order to satisfy project requirements, the workload of each task has
to be completed, i.e.

m∑
i=1

xi,j ≥ wj ∀ j ∈ N. (2)

The workload assigned to a candidate must not exceed maximum
capacity

xi,j ≤ c1
i,j ∀ i ∈ M, j ∈ N.

Alternatively, the workload of the partner can be bounded by its
expected capacity (i.e.xi,j ≤ E[Ci,j ]), because the partner may not
be able to devote its maximum capacity to the task. Finally, workloads
must be non-negative:

xi,j ≥ 0 ∀ i ∈ M, j ∈ N.

To ensure feasibility, the binaryyi’s must satisfy the constraints:

yi ≥
∑

j∈N
xi,j∑

j∈N
wj

− ε and yi ≤
∑

j∈N
xi,j∑

j∈N
wj

− ε + 1

∀ i ∈ M. (3)

The numerators denote the total amount of work that is allocated to
candidatei while the denominator is the total workload of the project:
thus, these quotients are equal to the proportion of the project’s
workload that is allocated to candidatei. Furthermore,ε corresponds
to the proportion of the total workload that a candidate must exceed
so as to be a relevant VO partner. Thus,yi = 1 if at leastε × 100
percent of the project’s workload is allocated to candidatei, and
yi = 0 otherwise.

In the first expression of (3), the denominator ensures that the
right hand is less than one (if it were larger than one, the model
would become infeasible becauseyi is a zero-one variable). A similar
argument holds for the denominator in the other inequality, too.
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Fig. 1. An example of transportation parameters

The following constraints ensure that the binaryyi,j ’s assume their
correct values:

yi,j ≥
xi,j

c1
i,j

, ∀ i ∈ M, j ∈ N s.t. c1
i,j > 0.

That is, yi,j = 1 if at least some work of taskj is allocated to
candidatei, andyi,j = 0 otherwise. No upper constraint foryi,j ’s is
needed, because increases in these binary variables cause higher costs,
whereforeyi,j ’s remain at zero level whenever feasible. However, if
one were to introduce an additional decision criterion such that the
benefit increases whenyi,j = 1, an upper bound similar to that for
yi’s becomes necessary.

D. Transportation Costs

We consider a manufacturing VO where each partner supplies a
specific component that is a part of the end-product. Whenever two
or more components are assembled together, these components must
be at the same site, which incurs transportation costs.

Transportation costs are driven mainly by two factors: 1) geograph-
ical distance and 2) volume and weight of the cargo. For instance,
consider a project of three tasks such that the output of Task 1 must
be made available at the same site where Task 3 is carried out and
that the volume of this transportation is 5 units. This task sequence is
illustrated through the simple network in Figure 1a. Because Task 2
does not have physical connection to Tasks 1 or 3, it is a disconnected
node. For instance, Task 1 could correspond to the manufacturing of a
microchip, which is assembled into the end-product in Task 3. Task 2,
in turn, could represent software development for the end-product.

Assume that we have four partner candidates, between which
the unit transportation costs are as shown in Figure 1b. Moreover,
assume that Candidates 1 and 3 are capable of performing Task 1,
while Task 3 can be performed by Candidates 1 and 4. Figure 1c
integrates the information of Figures 1a and 1b, as well as information
about which candidates can perform the corresponding tasks. Thus,
depending on the work allocation of Tasks 1 and 3, the transportation
costs are as shown in Figure 1c.

The above concepts can be formalised as follows. Letr = (r′, r′′)
denote a pair of tasks such that the (physical) output of taskr′ must
be at the same location where taskr′′ is carried out (see Figure 1a).
Let R denote the set of all such pairs. For each(r′, r′′) ∈ R, let
δr′,r′′ be the corresponding output volume of taskr′ (measured in
a relevant unit, e.g. kg). For instance, in the example of Figure 1,
R consists of only one pair, namely(1, 3) with an output volume of
δ1,3 = 5.

The cost of transportation can be presented as a graph whose nodes
correspond to the candidate partners and whose edges represent the
unit transportation costs between adjacent nodes (see Figure 1b).
Specifically, for candidatesa and b, these unit costs are denoted by
ta,b. In Figure 1b, for instance, we havet1,4 = 6.
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For each pair(r′, r′′) ∈ R, we have two sets of candidates, i.e.
1) those that are capable of performing taskr′ and 2) those that
are capable of performing taskr′′ (see Figure 1c). These two sets
are connected by edges between the candidates such that each edge
represents the transportation cost from one candidate to another, in
accordance with the relation(r′, r′′). For instance, if Candidate 1
were to perform Task 1 and Candidate 4 were to perform Task 4,
the transportation costs would be5× 6 = 30, becauseδ1,3 = 5 and
t1,4 = 6.

Transportation costs can now be incorporated into our MILP model
as follows. For any given pair of tasksr = (r′, r′′), we define the
binary variablezr

a,b

zr
a,b =

{
0, if ya,r′ = 0 or yb,r′′ = 0
1, if ya,r′ = 1 andyb,r′′ = 1

∀ r ∈ R, a, b ∈ M s.t. c1
a,r′ ≥ wr′ andc1

b,r′′ ≥ wr′′ ,

where this definition applies for all pairs of candidates(a, b) such
that a is capable of performing taskr′ and b can perform taskr′′.
Thus, zr

a,b is one if tasksr′ and r′′ are enabled by transportation
between candidatesa and b; otherwisezr

a,b is zero. In addition, the
following constraints are needed:

zr
a,b ≤

ya,r′ + yb,r′′

2
and zr

a,b ≥ ya,r′ + yb,r′′ − 1.

The first of these constraints ensures thatzr
a,b is zero if tasksr′ and

r′′ are not allocated to candidatesa andb, respectively. The second
constraint ensures thatzr

a,b is one if candidatesa andb work on tasks
r′ andr′′, respectively.

The total transportation costs can now be written as

CostTRANS =
∑
r∈R

δr′,r′′ta,bz
r
a,b.

The above cost function is linear, thus the objective function (1)
remains linear even when transportation costs are accounted for.

E. Capacity Risks

Risk management is vital due to the possibly adverse impact of
uncertainties in the partners’ individual or collaborative behaviour.
Hallikas et al. [20] suggest that there are two main sources of
uncertainties, namelycustomer demandand customer delivery, i.e.
supply. Because the VO partner selection process is triggered by a
business opportunity—orrealised demand—demand risks are here
not very relevant, because there are usually no risks with customer
payments (excluding force majeure events such as bankruptcy). In
our case, we therefore focus on capacity fluctuations that call for
the reconfiguration of the VO. Thus, capacities are modelled through
discrete probability distributions.

Among alternative measures for the management of capacity risks,
we give precedence toexpected downside risk(EDR) [21]. EDR
can be interpreted as the expected shortfall from a given target
value (i.e. the amount of work that is allocated to a partner). It
is therefore more meaningful than variance-based measures which
indicate ‘risk’ whenever there are capacity uncertainties, although
the decision maker (DM) is not faced with risks when the available
capacity exceeds the required level. EDR also belongs to the family
of mean-risk dominance models and shares their desirable properties
[8], [22].

In our model, the EDR of Candidatei’s work allocation on taskj
is

ρEDR
i,j =

∑
k

ck
i,j

<xi,j

pi,j(k)(xi,j − ck
i,j).

1 2

3 4

2

1

Fig. 2. An example of candidates’ collaboration history

That is, ρEDR
i,j is the expected downside difference between the

amount of work on taskj that is allocated to Candidatei, on one
hand, andi’s capacity on this task, on the other hand. The summation
is taken over the eventsck

i,j that result in capacity shortfall, subject
to the allocation of workloadxi,j .

In order to incorporate EDR into our model, letck+
i,j ≥ 0 and

ck−
i,j ≥ 0, denote the positive and negative difference ofck

i,j − xi,j

for any givenck
i,j ∈ Ci,j . The correct values ofck+

i,j andck−
i,j can be

ensured through constraints

xi,j − ck−
i,j + ck+

i,j = ck
i,j ∀ i ∈ M, j ∈ N, ck

i,j ∈ Ci,j .

The formula for EDR becomes

ρEDR
i,j =

∑
k

pi,j(k)ck−
i,j ,

where the summation is taken over the probability distribution
pi,j(k). However, only capacity realisations below the target level
contribute to the risk measure, becauseck−

i,j ’s are equal to zero
otherwise. The total EDR of a VO configuration can thus be expressed
as the sum

∑
i

∑
j
ρEDR

i,j .
EDR-based risk management can be captured by our MILP model

either through goal programming (e.g. through linear constraints such
as ρEDR

i,j ≤ EDRmax) or by aggregating risks and costs through a
value function. Both approaches require parameter estimates, either in
terms of accepted risk-levels(EDRmax) or through the explication
of tradeoffs between cost and capacity risk. Furthermore, one can
associate lower accepted risk-levels or higher cost-of-risk with critical
tasks.

F. Inter-organisational Dependencies

In partner selection, for instance, it is unrealistic to estimate the
transaction costs that are likely to arise during the entire VO life-
cycle; it is therefore more practical to study non-monetary indicators
that influence the size of transaction costs over the VO life-cycle.
One such indicator—which can be measured relatively easily—is the
number of past collaboration activities among partner candidates. It
is reasonable to assume that the more intensely the companies have
collaborated earlier, the better they know each other’s ways of action,
which reduces the transaction costs of collaboration. In contrast,
examples of measurable indicators that may result inincreasedtrans-
action costs include geographical distance and linguistic difference.
We refer to these and related indicators asnetwork preparedness
criteria.

The network preparedness criteria differ from traditional selection
criteria (e.g. cost or quality) in that their measurement involves two
or more companies (one cannot measure ‘geographical distance’ for
a single company). The following formulation shows how inter-
organisational dependencies are incorporated into our model, using
collaboration history as an example of network preparedness criteria.
For instance, Figure 2 illustrates the collaboration history of four
fictitious companies. Here, Companies 2 and 3 have collaborated in
one past project, and Companies 3 and 4 have collaborated in two
earlier projects. Company 1 has no earlier collaboration with others.
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Let za,b ∈ {0, 1} be a binary variable which indicates whether or
not a particularpair of candidates is selected into the VO. Formally,
we let

za,b =

{
0, if ya = 0 or yb = 0
1, if ya = 1 andyb = 1.

In other words,za,b is one if some work is allocated to both
candidatesa andb, and zero if work is allocated to neither candidate
or only to one of them. Hence,za,b shows whether apair of
organisations is selected into the VO. This enables objective functions
that account for inter-organisational dependencies, of which the
collaboration history in Figure 2 is but one example.

For z, we need the constraints

za,b ≤
ya + yb

2
and za,b ≥ ya + yb − 1 ∀ {a, b} ⊂ M,

The former constraint ensures thatza,b is strictly less than one if
eitherya or yb is zero. The latter one thatza,b is one if bothya and
yb are equal to one.

We next define a quantitative measure for collaboration history.
First, let ea,b denote the number of earlier collaboration activities
between companiesa and b, and letemax be the maximum number
of earlier collaboration activities of a single candidate. For instance,
in Figure 2, we havee2,3 = 1, e3,4 = 2, and emax = 3, which is
due to Candidate 3.

When the VBE has a documented collaboration history, the fol-
lowing linear measure can be used to approximate the benefits of
earlier collaboration

γLIN(Y, Z) =
∑
i∈M

emaxyi −
∑

a,b∈M
a<b

ea,bza,b. (4)

Here,Z is them×m matrix ofz’s. The first sum inγLIN increases by
emax whenever the number of partners in the VO configuration grows
by one, while the second subtracts the number of earlier collaboration
activities of the new partner. Hence,γLIN increases whenever a new
partner is added into the configuration, unless this new partner has
emax collaboration activities with the partners that are already part
of the configuration. If the DM prefers a small number of partners
and an active collaboration history, then a configuration with a small
γLIN is preferred to one with a largeγLIN.

The network preparedness criteria can be incorporated into our
MILP model through the introduction of a suitable cost function
or the adoption of a multi-criteria approach. In practise, the multi-
criteria approach is likely to be dominant, since measuring inter-
organisational dependencies in monetary terms may be difficult. For
instance, the collaboration measureγLIN can be employed as a new
criterion, apart from costs and risks.

III. C ASE STUDY: MAGNETIC CLUTCH PROTOTYPE FORLORRIES

We illustrate the use of the model with a partner-selection example
of an existing VBE, theVirtuelle Fabrik AG (http://www.vfeb.ch).
This VBE operates in North-Eastern Switzerland and offers the
services of some 70 companies in the field of machinery manufacture.
Recently, it has carried out projects for car and energy industries, for
instance.

A. Project Description

We applied our MILP model to a real-life case of Virtuelle Fabrik,
where partners were to be selected for a project ordered by a large
German car manufacturer. The aim of the project was to devise
and construct a prototype magnetic clutch to be used in lorries. We
performed the case study in close collaboration with the manager
of Virtuelle Fabrik, who also contributed by suggesting many of the

AE&P

Alwo

Amsonic

Beni Burtscher

Brunner

Bühler

CCB

Fornara

Humbel

Innotool

Knobel

Okey AG

OMB

Schuler
Schär Engineering
SIG

SMA

Sulzer AG

Unima AG
VF AG

Wiftech

Fig. 3. Intensity of past collaboration between the partner candidates of
Virtuelle Fabrik

features that are contained in our model. Here, we illustrate the model
with real data.

The project was broken down into nine tasks, which were 1) Grind-
ing, 2) Gear milling, 3) Metal sheet forming, 4) Milling and turning
of bigger parts, 5) Welding, 6) Bending of pipes, 7) Engineering,
8) Milling and turning of smaller parts, and 9) Project management.
These tasks had to follow a tight schedule set by the end customer. For
each task, there were two to five partner candidates, some of which
were candidates for several tasks. The total number of candidates
was 21. They were chosen on the basis of their competences and
availability.

There were three selection criteria in the following order of
declining priority: 1) minimise delay risks, 2) maximise earlier
collaboration, and 3) minimise costs. The project had a tight schedule,
thus minimisation of risks was most important. Moreover, successful
collaboration history was expected to contribute to finishing the
project in time. Costs were the least important criterion.

We aggregated the different objectives through anadditive value
function, which reflects the DM’s preferences for the relative impor-
tance of the selection criteria [9]. The value of a VO configuration
to the DM is the weighted sum of scores on each criterion. Because
the additive value function is linear, it can be readily maximised in
the MILP framework.

Each partner candidate was given a probability distribution for
finishing the tasks in time based on historical performance. Only
the probabilities associated with the capacity distributions had to be
estimated, because the candidates’ costs for finishing the tasks were
known and data on the candidates’ collaboration history was readily
available. In Figure 3, each square represents a partner candidate of
the case and the links between the candidates represent the number of
past joint projects; a thicker line between two candidates represents a
greater number of joint projects in the past. Candidates that have had
no earlier collaboration with other candidates are not connected (i.e.
Okey AG, Schuler, Scḧar Engineering, SIG, and Unima AG). Out of
the 288 parameters that were estimated or taken from databases, 210
pertained to the collaboration history of Figure 3: with 21 candidates
there are maximum(212−21)/2 = 210 links between the candidates.
However, only 23 of these were non-zero, representing the 23 links
of the network. Costs and capacity distributions were described by
26 and 52 parameter values, respectively.

One full workday was used to explain the model to the DM, gather
data, estimate parameters, and interpret the results. The DM was
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TABLE I
PERFORMANCE OF SIXPARETO-EFFICIENT CONFIGURATIONS ON THREE SELECTION CRITERIA

Task\ Configuration 1 2 3 4 5 6
Bending of pipes SMA SMA SMA SMA SMA SMA
Engineering Schuler Schär Engineering Scḧar Engineering AE&P AE&P AE&P
Gear milling Okey AG Okey AG Okey AG Okey AG Okey AG Okey AG
Grinding Brunner Brunner Brunner Brunner Brunner Brunner
Metal sheet forming Beni Burtscher Beni Burtscher Beni Burtscher Beni Burtscher Beni Burtscher Beni Burtscher
Milling bigger parts SMA SMA SMA SMA OMB SMA
Milling smaller parts Innotool Innotool Innotool Innotool Innotool Innotool
Project management VF AG Schär Engineering VF AG AE&P AE&P VF AG
Welding Beni Burtscher Beni Burtscher Beni Burtscher Beni Burtscher Beni Burtscher Beni Burtscher
Performance (all criteria to be minimised):
Risk 0.25 0.75 0.75 1.25 1.25 1.75
Collaboration 86 73 83 70 94 81
Cost 131 312 132 116 123 215 124 005 121 934 122 057

TABLE II
SENSITIVITY ANALYSIS

Task Robustness of Partner Candidates
Bending of pipes SMA: 100
Engineering AE&P: 50 Scḧar E.: 33 Schuler:17
Gear milling Okey AG: 100
Grinding Brunner: 100
Metal sheet forming Beni Burt.: 100
Milling of big parts SMA: 83 OMB: 17
Milling small parts Innotool: 100
Project managem. VF AG: 50 AE&P: 33 Schär E.: 17
Welding Beni Burt.: 100

already familiar with the concepts since Virtuelle Fabrik has been a
partner in the ECOLEAD research project (http://www.ecolead.org).
The required time can be reduced further by systemising the activities
of data gathering and parameter estimation.

B. Partner Selection

The problem was to select a good VO configuration for the project,
subject to the above information on the project and candidate partners.
This problem was essentially that of allocating the task workloads to
partners, in recognition of their capacities and the relevant evaluation
criteria.

In our case study there were six Pareto-efficient configurations.
Table I presents the performance of these configurations in view of
the three selection criteria. The configurations have been sorted in
the decreasing importance of these criteria (risk, collaboration, cost).
Hence, Configuration 1 would best reflect the DM’s preferences.

The risk-measure used was the expected downside risk (EDR),
meaning that smaller scores indicate lower risks. The collaboration-
score is calculated using theγLIN-measure (4) that accounts for the
earlier collaboration as well as for the total number of partners in
a configuration. Also here a smaller score is preferred. Cost is the
expected total cost in Euros, based on the candidates’ prices.

Table II gives a sensitivity analysis on the candidates. The score
after each candidate represents the percentage of Pareto-efficient
configurations in which the work of the corresponding task has been
allocated to the candidate. This score can be interpreted as a measure
of robustness in the sense that a partner with a high score is a good
choice despite the relative importance of the selection criteria [9].

C. Computational Tractability

Finding one Pareto-efficient configuration in the above case takes
a few seconds on a normal PC (1.2 GHz processor with 1 GB of
RAM), with a Java implementation (http://java.sun.com) using the
lp solve library (http://groups.yahoo.com/group/lpsolve/). However,

TABLE III
UPPER BOUNDS FOR THE NUMBER OF INTEGER VARIABLES IN THE MODEL

(n=NUMBER OF TASKS, m′=NUMBER OF CANDIDATES PER TASK)

Variable # Variables Note
yi m′ × n One per each candidate

yi,j m′ × n One per each candidate

zr
a,b m′2(n− 1) Number of edges in a complete

bipartite graph (m′2) for each
transportation requirement (n-1).

za,b
1
2
m′ × n(m′ × n− 1) Number of edges in a complete

graph ofm′ × n nodes
Total 3

2
m′ × n + 1

2
(m′ × n)2 + m′2(n− 1)

since lpsolve does not exploit specific integer programming algo-
rithms, such as Branch-and-cut, many commercial solvers would be
considerably faster. Moreover, the use of branching algorithms allows
parallel computation for faster solution [23]. Practitioners can esti-
mate the computation time through simulations using their available
hardware and software and randomised data that corresponds their
subjective needs.

The computational complexity of a MILP model increases with
the number of integer variables (Table III): for instance, in a case
with 10 tasks and 10 different partner candidates for each task
(i.e. 100 candidates altogether), the maximum number of binary
variables is 6050. MILP models of that size are readily solved
with up-to-date software. Moreover, the maximum number involves
interdependencies between each task and each partner, which is
not the case in practise: e.g. the average degree of a node in the
Virtuelle Fabrik collaboration graph (Figure 3) is2× 23/21 = 2.19.
The average of, say four links from 100 partner candidates yields
1300 integer variables in total, which is considerably less than the
maximum 6050. Hence, realistic problems with hundreds of partner
candidates are accurately solvable. The advantage of MILP models is
that a feasible solution is readily available. Thus, large problems can
be solved in limited time using anytime algorithms where a solution
is always available, and further computation improves the available
solution until the optimum is reached [24].

D. Managerial and Practical Implications

The manager of Virtuelle Fabrik was particularly satisfied with the
model’s capability of highlighting inter-organisational dependencies:
for him, it was difficult to intuitively see the synergies of different
VO configurations. In addition to the case-study with Virtuelle
Fabrik, a workshop was arranged in Brussels on May 7, 2007. In
this workshop, the representatives of four network partners of the
ECOLEAD project evaluated the usefulness of our partner selection
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models, using the above Virtuelle Fabrik case as a demonstrator. The
four networks were CeBeNetwork (http://www.cebenetwork.com),
IECOS (http://www.iecos.com), ISOIN (http://www.isoin.net), and
Swiss Microtech (http://www.swissmicrotech.ch). The users com-
pared the Virtuelle Fabrik case with the conditions of their own
networks and shared their comments with the researchers.

First, the following summarises the functionalities the users appre-
ciate in the models:

• Objective comparison of the partner candidates’ capabilities and
performance with respect to multiple criteria was deemed useful.
Since partner selection is a daily process for network managers,
they appreciated the possibility of quick comparisons of the
expected performance of alternative VO configurations.

• Systematic use of historical performance data in partner selec-
tion was considered to improve the expected performance of
VOs. In particular, the ability to account for the references about
past collaboration was seen useful.

• The users saw that the models would reduce subjective assess-
ment and the risk of forgetting small or new VBE members that
have only a few references in collaborative projects but high
potential.

Second, according to the users, the models could be further
improved as follows:

• Many of the users would like to see the models operationalised
into software tools with graphic web interface. They also wish
to further customise the models for their networks and integrate
them with other management systems.

• The users would like to see how differentprojectsare related
to each other, in terms of e.g. common partners and risks.
This would facilitate holistic project portfolio and resource
management for the VBE.

• The networks would need a web questionnaire for VBE mem-
bers to gather the input for databases. The databases need to be
comprehensive enough to facilitate the use of the models.

The above encouraging comments from the end-user community
reflect the practical relevance of the models.

IV. CONCLUSIONS

The models developed in this paper extend earlier research through
the consideration of multiple criteria, risks of individual VO failures
and inter-organisational dependencies. These extensions enable the
development of decision support systems that help the DM assess
alternative VO configurations: indeed, experiences from our case
study with a real VBE suggest that such systems can be very useful
when the DM seeks to identify Pareto-efficient VO configurations.

Because the VBE supports the creation of VOs from a relatively
stable set of members, it is in a good position to collect data on its
members. Numerical parameter estimates can be typically obtained
by using accumulated databases, by soliciting expert opinions, or
by collecting bids from candidate partners. In cases where it is
difficult to acquire complete information about all relevant model
parameters (e.g. candidate’s performance, DM’s preferences for the
evaluation criteria), methods that deal with incomplete information
can be useful.

Our MILP models are relevant for a broad range of problems
where a subset of candidates must be selected from a large set in
view of multiple constraints and criteria. Such portfolio selection
problems are common in the management of project, patent, and
product portfolios, to name but some examples. These MILP models
are also flexible in that constraints or objective functions can be
readily modified. Computationally, they are tractable in problems with
hundreds of partner candidates.
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