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Method of Moments Analysis of the Backscattering
Properties of a Corrugated Trihedral Corner Reflector

Ilari Hianninen, Mikko Pitkonen, Keijo I. Nikoskinen, Senior Member, IEEE, and Jukka Sarvas, Member, IEEE

Abstract—A method of moments (MoM) formulation is devel-
oped to analyze the backscattering properties of an anisotropic
trihedral corner reflector, which is obtained by corrugating one
or several of its interior faces. The proposed formulation treats
the corrugated surface as ideally tuned to the incident wave fre-
quency. The numerical analysis of the studied structures has been
done using closed-form formulas and accurate numerical integra-
tion. The focus of the study reported in this paper has been the po-
larization responses of ideally tuned corrugated reflectors, which
have interesting properties, particularly regarding elliptically or
circularly polarized waves. We numerically verify that an appro-
priately corrugated reflector returns elliptically and circularly po-
larized waves with the same handedness as the incident wave. For a
linearly polarized incident wave, the corner reflector is able to ro-
tate them by 90°. Also the effect of the direction of the corrugation
to the backscattering properties is studied.

Index Terms—Corner reflector, electromagnetic scattering,
method of moments (MoM), radar cross-section (RCS), soft and
hard surface (SHS).

I. INTRODUCTION

RIHEDRAL corner reflectors are widely used as location

markers and calibration targets in radar technology and re-
mote sensing. They have a high backscattering radar cross-sec-
tion over a wide angular range, they do not require any power
to operate, they are mechanically easy to construct, and they
can also be operated in difficult conditions. Conventional trihe-
dral corner reflectors, i.e., reflectors made from a perfect elec-
tric conductor (PEC) material return linearly polarized incident
electromagnetic waves with the same polarization but they re-
verse the handedness of elliptically and circularly polarized in-
cident waves. Depolarizing trihedral corner reflectors, however,
retain the handedness of elliptically and circularly polarized in-
cident waves, which is an important factor when one wishes to
use polarimetric radars. Depolarizing corner reflectors are also
able to rotate linearly polarized incident waves by 90°. These
properties also make the reflected wave easy to distinguish from
the background noise due the environment. In this paper, we
consider a trihedral corner reflector (Fig. 1) where the depolar-
ization is obtained by choosing one or several of the interior
faces to be ideally tuned corrugated surfaces.

Ideally tuned corrugated surfaces are a well-known realiza-
tion of soft and hard surfaces (SHSs) [1]-[3], although soft and
hard surfaces can also be realized by other means [4], [5]. The
corrugation is called ideally tuned if its geometric dimensions
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Geometry of the trihedral corner reflector with a corrugated interior

are chosen in such a way that the corrugated surface presents an
ideal SHS for the incident electromagnetic wave for a selected
wavelength. The SHSs have the property that the reflected fields
from them retain the incident polarization. Then the ray theory
predicts that the reflection from the trihedral corner reflector ei-
ther retains or reverses the polarization according to how many
of the inside faces of the corner reflector are made of SHS plates
and how many are made of PEC plates. The use of SHSs in
trihedral corner reflectors has been previously discussed, but a
rigorous numerical analysis of such structures has been lacking
[6]-[8]. In this paper, a method of moments (MoM) formulation
is derived for an ideally tuned corrugated surface. The presented
formulation can also be used for mixed structures, which con-
tain both PEC and SHS domains. The results of the MoM are
verified using a physical optics (PO) method.

II. IDEALLY TUNED CORRUGATION

SHS has been introduced as a convenient idealized model for
the ideally tuned corrugated surface. They have the unique prop-
erty that they have the same boundary conditions for both elec-
tric and magnetic fields. Let us mark by @ the tangential unit
vector to the direction of the corrugation (i.e., the conducting
direction) and by v the tangential unit vector perpendicular to
the direction of the corrugation (i.e., the nonconducting direc-
tion). Then the boundary conditions for the electric and mag-
netic fields on the SHS can be written [3]

"H=0 (1)

and so the SHS can be regarded as a combined PEC and per-
fect magnetic conductor (PMC) surface to the direction of the
corrugation. An equivalent way to achieve an SHS is to require
that the surface impedance Z,, seen by the electric field to the
direction of the corrugation approaches zero and that the surface
impedance Z, perpendicular to the direction of the corrugation

0018-926X/$20.00 © 2006 IEEE
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approaches infinity [1]. We define the surface impedances 7,
and Z, by the following equations:

where ¢, .y and Hy,, .,y are the components of the electric and
magnetic field to the direction parallel or perpendicular to the
corrugation, respectively.

In practice, an ideally tuned corrugated surface, which rea-
sonably well simulates an SHS, can be achieved as follows; see,
e.g., [9]. Let the geometrical properties of the corrugation be as
indicated in Fig. 2, with the height of the corrugation denoted
by h, the width by ¢, and the thickness of the walls between the
grooves by d. We assume that the width of the corrugation is
much smaller than the incident wavelength A; and also that the
distance separating the grooves is much smaller than the width
of the corrugation, i.e.,

d<<t+d<<)\1/2\/62/61 (3)

where e is the permittivity inside the grooves and ¢; is the per-
mittivity outside the scatterer. Then, if the incident wave is a
TM-wave (i.e., the incident electric field vector is in the plane
formed by the surface normal 7 and the conducting direction
u), the dominating waveform created inside the corrugation is
an evanescent TE;-waveform. The surface impedance seen by
the incident electric field component £, can then be written

Zw = iZ"E tan(BTF h) = ;;;lé? tan(BTER)  (4)
where ZTEr = wpu, /BT is the wave impedance for the

TE;-waveform, 371 is the propagation factor, and ks = |k|
and po are the wave number and permeability inside the corru-
gation. Because kot < 7, we can approximate the propagation
factor 3TF1 by

1 .
BT = = hal) =72 i )
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Fig. 3. If the incident TE-wave arrives to the surface travelling to the
direction of the corrugation, i.e., in the un-plane, the surface impedance seen
by the incident electric field is highly dependent of the incident angle . This
dependency can be compensated for by filling the corrugation with a dielectric
material such that €5 > €.

and tan(3TF1h) by
2% e—ﬂ'h/t _ 67'rh/t

tan(8TE ) = tan(inh/t) = 3 o G R

(6)
Then the surface impedance component parallel to the corruga-
tion becomes

Jdwpat kot 2
oy N i— =1 , M=, — 7)
i T €9

which approaches zero as kot approaches zero, i.e., when the
width ¢ of the grooves becomes very small compared to the
wavelength.

Strictly speaking, for (4) for the surface impedance compo-
nent Z,, to be correct, it is assumed that the incident wave arrives
to the surface from the normal direction. In reality the surface
impedance Z, depends on the incident angle of the illuminating
wave. However, for incident TM-waves, the dependency on the
incident angle is insignificant if the width of the corrugation is
very small compared to the wavelength, as we have assumed.

If the incident wave is a TE-wave (i.e., the incident electric
field vector is in the plane formed by the surface normal 7 and
the nonconducting vector @), the electric field component F,
sees a surface impedance

Z, = ino tan(konh) 8)

where ko,, = |7 - k2|. This surface impedance component is de-
pendent on the incident angle o, measured from the n axis to-
ward the u axis (see Fig. 3). When the incident wave arrives to
the surface at an angle «« > 0, the path travelled by the incident
wave inside the corrugation diverges from the normal direction,
which changes the surface impedance Z,, seen at the mouth of
the grooves. However, it is possible to greatly diminish the di-
rectional dependence by filling the grooves by a dielectric ma-
terial with ez /€ > 1, since then the path of the wave inside the
corrugation follows more closely the normal direction as the in-
cident wave is deflected toward the normal. When the height of
the corrugation A is chosen as [2]

h= Al ©)

41/(ez/€1) — sin® a

we see that even for grazing incidence, this incident angle de-
pendency can be made quite small. With the height of the cor-
rugation chosen properly, tan(ks,h) = oo, and the surface
impedance component perpendicular to the corrugation Z, is
infinite.
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If the surface impedances seen by the electric field at the
mouth of the grooves satisfy the previous conditions, the top
of the corrugation can be replaced by a virtual SHS with equiv-
alent boundary conditions. However, finding the actual physical
dimensions of the corrugation required for these conditions to
be valid is beyond the scope of this paper. For the rest of this
paper, we assume that these conditions hold. Since the SHS re-
quires similar boundary conditions for both the electric field and
the magnetic field, there exist on the SHS both equivalent elec-
tric and magnetic surface currents. The SHS only allows cur-
rents to flow to the direction of the corrugation. This can easily
be seen from the boundary conditions (1) as follows. The equiv-
alent electric surface current on the SHS can be written

J=nxH
=ax (H,an+ H,0)=H,n X
=-H,u (10)
and similarly the equivalent magnetic surface current is a func-
tion of the tangential electric field

M=-nxFE
=-nx (E,n+ E,) = —-FE,n X9
= E,i. (11)
Thus the equivalent electric and magnetic surface currents can
only have u-components.

III. METHOD OF MOMENTS FORMULATION FOR THE IDEALLY
TUNED CORRUGATED SURFACE

The boundary conditions for soft and hard surfaces are nearly
similar in expression to the general PEC or PMC surfaces. The
PEC, or the PMC, boundary condition states that the tangen-
tial electric or magnetic field components are zero on the sur-
face, whereas the SHS boundary condition requires that the tan-
gential field component parallel to the corrugation of both the
electric and magnetic field is zero on the surface. Let us denote
by E"°, H'" the incident electric and magnetic fields and by
E®, H® the scattered fields, so that the total fields are the sum of
the incident and scattered fields. Then the SHS boundary con-
dition requires that for r on the SHS domain

a(r) - (B"(r) + E*(r)) = 0 (12)
a(r) - (H™(r) + H(r)) = 0 (13)

where 4(r) is the direction of the corrugation, i.e., the con-
ducting direction. By using the equivalent surface principle (also
called the Stratton—Chu formulas) and the boundary conditions
(12) and (13), we can in the usual way derive the electric and
magnetic field equations for a closed ideally corrugated surface
as

1

iwel

a(r) - B (r) = —a(r) - (DJ)(r)

+a(r) - (KM)(r) — 1'&(1’) -a(r) x M(r)

2
(14)
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. 1 .

- . Hln(‘, — .

a(r) (r) o u(r

a(r) -n(r) x J(r)
15)

where the integral operators (K F)(r) and (DF)(r) on a surface

S are defined as

(KF)(r) = [ /5 VG(r,r') x F(r') ds'} o a
(DF)(r) = [p.v.v | /S GV - F(r') dS’
+ K2 | /S G(r,r)F(r') dS’} . (17)

for the closed surface S of a volume D and a continuous field
FN('r) tangential to S. We also define the single layer potential
(SF)(r) as

(SF)(r) = { /S G(r,r)F(r') ds’} (18)

tan

to help to write the equations later in a more condensed form.

An ideally corrugated surface only allows electric and mag-
netic currents to flow to the direction of the corrugation. Both
J(r) and M (r) on an SHS domain can then be written as J(r) =
J(r)u(r), M(r) = M(r)ua(r). It is easily seen that the vector
product with n rotates them to the o-direction so the last terms
on the right-hand sides of (14) and (15) are cancelled out. In the
MoM formulation, the basis functions f,, for electric and mag-
netic surface currents for the SHS domains must thus be chosen
in such a way that they only carry currents to the direction of the
corrugation. This is relatively easy to achieve by using rectan-
gular rooftop functions as basis functions. Since rooftop func-
tions only allow surface currents to flow to the direction of the
rectangular elements, by orienting the rectangular elements on
the SHS domains to the direction of the corrugation, the flow
of the surface currents is automatically restricted to the wanted
direction.

For a PEC surface, the usual boundary condition holds, and
(14) and (15) reduce to their usual forms. Since the boundary
conditions for the PEC and SHS are very close to each other,
it is easy to connect SHS patches to PEC surface patches. The
connecting is done by correctly choosing the basis functions
for the different regions and so that they match on the junctions
of the regions. Rectangular elements can also be combined
with triangular elements to form hybrid basis functions. On the
triangular element, these functions behave as triangle-based
Rao—Wilton—Glisson (RWG) functions, and on the rectangular
element as rooftop functions. The use of these hybrid functions
makes it easy to correctly model nonrectangular piecewise
planar structures, such as a triangular corner reflector, by
mainly using rooftop functions in order to reduce the number
of unknowns compared to the case when solely RWG functions
are used. The edges can be modeled by the hybrid functions
which avoid the so called staircase effect.
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Next we form the MoM equations for the combined PEC and
SHS domains by expanding the electric and magnetic surface
currents in (14) and (15) as

N N
n=1 n=1

and by using the same functions f,, as testing functions f,,, we
obtain

19)

N
- 1
flr) -E™(r)dS = —— x,
/spt<fm> ") ") e s

V- f.(0)(SY' - f,)(r)dS
X/spt(fm> (r)( )(r)

N

k2
qu 2:: / Fnl

Sf,.)(r)dS
pt(f,.) ) (5

+ n m\T) " K n dsS (20)
n;y /sp«fm) () (Kfn)lr)
'L)t(fm) Funlr) B () 05 = iwm ;yn
v'fm'l' S’V/-fn rVdS
* /spt(fm> () )(r)
B .
iwul ;yn /Pt(fm) F(r) - (SF,)(r)dS
B " K Q1)
Zw /t(fm) ) (Kf,)(r)dS

Since we want to analyze the scattering from an electrically
very large trihedral corner reflector, the computations are done
with the following approximation that further lowers the number
of the needed unknowns. We assume that the corner reflector is
made of thin triangular plates. For PEC plates, the surface cur-
rent is then the vector sum of the two sides. For SHS plates, the
situation is more complicated, since a real corrugated plate, as
illustrated in Fig. 2, can be approximated by an SHS only on the
corrugated side since the backside of the plate is made of PEC.
Thus, the thin plate impedance boundary model only gives cor-
rect results on the corrugated side of the realizable structure. We
only model the surface currents on the interior faces of the SHS
plates and neglect the induced surface currents on the backside
of the SHS plates. The inclusion of the backsides of the SHS
plates into the analysis would require us to fix the depth of the
corrugation, which is yet a function of the permittivity inside
the grooves. The physical realization of the corrugation is con-
sidered here to be beyond the scope of this paper. Because the
backside of the reflector is largely in shadow from the incident
fields and our model is quite large in terms of wavelengths and
we only consider the backscattering directions, this customary
physical optics type approximation applies and only gives rise
to a negligible error in the scattered far fields for the face di-
rections. For sideward or grazing incidence, the discontinuity of
the induced currents on the edges may give rise to more substan-
tial errors in the scattered far fields due to the edge diffractions.

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 54, NO. 4, APRIL 2006

TCR1 TCR2 TCR3

Fig. 4. TCRI1, TCR2, and TCR3, trihedral corner reflectors with interior
yz-faces corrugated with conductance vectors #t; = ¢, &> = (§+ 2)/ V2 and
its = (§ — 2)/V/2, respectively.

Thus, for sideward directions, the results shown here may not
be as accurate as for the face directions.

IV. ANALYSIS OF THE BACKSCATTERING PROPERTIES OF THE
CORNER REFLECTORS BY NUMERICAL RESULTS

The models for the trihedral corner reflectors were con-
structed using three isosceles right triangles with cathetus
length ¢ = 6 and with frequency f = 1 GHz. The models
used consisted of more than 3000 elements, including mainly
rectangular elements and some triangular elements on the edges
of the triangles. The number of basis functions varied between
5000 and 6000, and they consisted of the rooftop functions
on the PEC and SHS domains, of the RWG functions on the
inner edges and of the hybrid functions on the outer and inner
edges. The exact configuration of these functions depends on
the chosen corrugation. Closed-form formulas and accurate nu-
merical integration were used to evaluate the singular integrals
in the MoM equations [10], [11].

Five different corrugated corner reflectors were studied: three
with one interior corrugated face (reflectors TCR1, TCR2, and
TCR3; see Fig. 4), with three different directions for the corru-
gation, one reflector with two interior corrugated faces (TCR4;
see Fig. 10), and one with all the interior faces corrugated
(TCRS; see Fig. 10). Different monostatic (i.e., backscattering)
and bistatic responses were computed, but to save space only
the monostatic conical patterns at § = 54.74° are shown. The
incident field was right-handedly circularly polarized in all
the examples, except where otherwise noted, with the incident
polar angle § = 54.74° and the azimuth angle ¢ varying from
0° to 90°.

The results obtained were verified using an analytical PO
method. The trihedral corner reflector was assumed to be made
of thin PEC and SHS plates, with the SHS boundary conditions
(1) on the SHS plates. The assumptions that were made for the
MoM regarding the validity of the SH surface as a substitute
for the ideally tuned corrugated surface also hold for the PO
method with the same limitations. The surface currents caused
by the wave reflecting multiple times in the reflector were de-
termined using analytical geometry and the reflection dyadic of
the SH surface presented in [6]. The PO results suffer from the
lack of edge diffractions, especially for grazing incidence, but
they are still in good agreement with the results obtained by the
MoM computations.

The field strengths shown are normalized with respect to the
PEC trihedral corner reflector with the zero level indicating the
maximum field strength of the PEC reflector. The field strengths
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Relative field strength [dB]
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Fig. 5. Relative backscattering co- and cross-polarization responses of the
PEC reflector.

Relative field strength [dB]

Azimuth angle ¢ [deg]

Fig. 6. Relative backscattering co- and cross-polarization responses of the
reflector TCR1.

Co-pol' ==+ PO Co-pol— — — Cross—pol - PO Cross—pol‘

are displayed in decibels with co- and cross-polarization re-
sponses shown separately. The PO results are shown alongside
the MoM results. The co- and cross-polarization responses are
easily computed using the polarization match vector [12].

A. Trihedral Corner Reflector With Corrugated Interior
Y z-Face

Shown in Figs. 5 and 6 are the co- and cross-polarization
responses of a PEC trihedral corner reflector and the reflector
TCRI. Since in the reflector TCR1 the interior yz-face is corru-
gated along the y axis, its copolarization response is very strong,
whereas for the PEC reflector it is very weak in the middle range
of the conical backscattering pattern. When only two of the inte-
rior faces are illuminated, the PEC reflector shows a good copo-
larization response. The reflector TCR1 shows a poor copolar-
ization response when the corrugated face is illuminated along
with only one PEC face and a good copolarization response
when two PEC faces are illuminated, which agrees well with
theoretical predictions in this case.
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Fig. 7. Relative backscattering co- and cross-polarization responses of the
reflector TCR2.
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Fig. 8. Relative backscattering co- and cross-polarization responses of the
reflector TCR3.

Surprisingly, the intuitive model based on ray theory does not
predict, however, that the direction of the corrugation highly
affects the backscattering response. The levels of the copolar-
ized backscattered field are much lower for reflectors TCR2 and
TCR3 (Figs. 7 and 8), for which the corrugation is rotated 45°
toward or away from the z axis. This has important practical im-
plications, since previously it has been assumed that the direc-
tion of the corrugation has little impact on the backscattering re-
sponse. An explanation for this behavior is not intuitively clear.
The most plausible explanation is that the phase of the reflected
field from the corrugated interior face changes according to the
direction of the corrugation and in some cases the shift in phase
results in a deteriorated co-polarization response. Also of in-
terest is the difference between the co-polarization responses of
the MoM and the PO method for TCR2, near the azimuth angle
¢ = 70°.

Trihedral corner reflectors also have interesting properties re-
garding linearly polarized incident waves. In Fig. 9 is presented
the backscattering response of TCR1 for a vertically linearly po-
larized incident electric field (i.e., the electric field vector was
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Relative field strength [dB]
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Fig. 9. Relative backscattering co- and cross-polarization responses of the
reflector TCR1 for a vertically linearly polarized incident electric field.

z z

Y Y

TCR4 TCR5

Fig. 10. TCR4 and TCRS, trihedral corner reflectors with two interior
corrugated faces and all interior faces corrugated, respectively. The conductance
vectors are to the directions of the principal axes, i.e., on the xy-plane & = &,
on the yz-plane & = ¥, and on the zax-plane & = 2.

in the plane formed by the z axis and the incident wave vector
k). We see that near the azimuth angle ¢ = 60° direction the
cross-polarization response of the reflector is very strong. Also,
in the boresight direction, the copolarization response is about
5 dB lower than for the circularly polarized incident wave.

B. Corner Reflector With Two or Three Corrugated Interior
Faces

We also studied trihedral corner reflectors with two or three
corrugated interior faces (reflectors TCR4 and TCRS, respec-
tively; see Fig. 10). According to the theoretical predictions, the
reflector TCR4 should exhibit a low copolarization response for
circularly polarized incident fields, since the reflections from
the corrugated faces retain the handedness of the field but the
reflection from the PEC face reverses the handedness of the po-
larization. Similarly, the reflected field from TCRS should retain
the handedness of the incident field, since the reflections should
not modify the polarization.

When two of the interior faces of the corner reflector are cor-
rugated (reflector TCR4), the results again behave in the pre-
dicted way (Fig. 11): in the middle range of the backscattering
pattern we get three reflections due to all the interior faces’
being illuminated, and the copolarization response is remark-
ably lower than the cross-polarization response. When only the
corrugated faces are illuminated, the copolarization response is

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 54, NO. 4, APRIL 2006

A

30 40 50 60 70 80 90
Azimuth angle ¢ [deg]

Relative field strength [dB]

Co-pol = —- PO Co-pol— — — Cross—pol -+ +* PO Cross—pol|

Fig. 11. Relative backscattering co- and cross-polarization responses of the
reflector TCR4.
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Fig. 12. Relative backscattering co- and cross-polarization responses of the
reflector TCRS.

again very high, and similarly when the PEC face and one of
the corrugated faces are illuminated, the cross-polarization re-
sponse is high.

For reflector TCRS, the copolarization response is remark-
ably lower in the middle range. What is even more significant is
that in the boresight direction (6 = 54.74°, ¢ = 45°), the copo-
larization response vanishes almost entirely (Fig. 12). In the
boresight direction, the reflector TCRS5 exhibits nearly a PEC re-
flector-like behavior, i.e., the cross-polarization response is high
and the copolarization response is very low. The cross-polariza-
tion response of the PO model is zero, which is what the ray
theory predicts. The behavior of the copolarization response is
again intuitively difficult to explain. It is again more than likely
to result from the phase differences of the reflected fields from
the three corrugated interior faces.

When the directions of the corrugations of the interior faces
are such that from the boresight direction they are at a 120°
angle with respect to each other, as with the reflector TCRS,
the phases of the reflected waves from each of the interior faces
are such that when they are added together, they destructively
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interfere with each other, resulting in a very poor copolarization
response.

V. CONCLUSION

A method of moments formulation for soft and hard surfaces
has been developed to analyze the backscattering properties of a
corrugated trihedral corner reflector. The used formulation treats
the corrugated surface as ideally tuned to the incident field fre-
quency.

The focus of this paper has been the polarization response
of different corrugation configurations of the corner reflector
and how it is affected by the changes in corrugation, particu-
larly for the circularly polarized incident waves. The behavior
of the corrugated trihedral corner reflector has some very inter-
esting and sometimes surprising aspects, which are important
regarding practical implementations. The obtained results are
useful in the wide-ranging use of trihedral corner reflectors in
the radar technology or in the remote sensing.

REFERENCES

[1] P-S.Kildal, “Definition of artificially soft and hard surfaces for electro-
magnetic waves,” Electron. Lett., vol. 24, no. 3, pp. 168—170, Feb. 1988.

[2] ——, “Artificially soft and hard surfaces in electromagnetics,” IEEE
Trans. Antennas Propag., vol. 38, pp. 1537-1544, Oct. 1990.

[3] I V.Lindell, “Generalized soft-and-hard surface,” IEEE Trans. Antennas
Propag., vol. 50, pp. 926-929, Jul. 2002.

[4] A. Macikunas and S. Haykin, “Trihedral twist-grid polarimetric re-
flector,” Proc. Inst. Elect. Eng. F, vol. 140, no. 4, pp. 216-222, Aug.
1993.

[S] D. R. Sheen, E. L. Johansen, and L. P. Elenbogen, “The gridded trihe-
dral: A new polarimetric SAR calibration reflector,” IEEE Trans. Geosci.
Remote Sens., vol. 30, no. 6, pp. 1149-1153, Nov. 1992.

[6] I. V. Lindell and P. P. Puska, “Reflection dyadic for the soft and hard
surface with application to the depolarising corner reflector,” Proc. Inst.
Elect. Eng. Micro. Ant. Propag., vol. 143, no. 5, pp. 417-421, Oct. 1996.

[7] D. G. Michelson and E. V. Jull, “Depolarizing trihedral corner reflec-
tors for radar navigation and remote sensing,” IEEE Trans. Antennas
Propag., vol. 43, pp. 513-518, May 1995.

[8] C. Gennarelli, G. Pelosi, and G. Riccio, “Physical optics analysis of the
field backscattered by a depolarising trihedral comer reflector,” Proc.
Inst. Elect. Eng. Micro. Ant. Propag., vol. 145, no. 3, pp. 213-218, Jun.
1998.

[9] Z. Ying, P-S. Kildal, and A. A. Kishk, “Study of different realizations
and calculation models for soft surfaces by using a vertical monopole
on a soft disk as a test bed,” IEEE Trans. Antennas Propag., vol. 44, pp.
1474-1481, Nov. 1996.

1173

[10] R. D. Graglia, “On the numerical integration of the linear shape func-
tions times the 3-D Green’s function or its gradient on a plane triangle,”
IEEE Trans. Antennas Propag., vol. 41, pp. 1448-1455, Oct. 1993.

[11] P. Yld-Oijala and M. Taskinen, “Calculation of CFIF impedance matrix
elements with RWG and n X RWG functions,” IEEE Trans. Antennas
Propag., vol. 51, pp. 1837-1846, Aug. 2003.

[12] I. V. Lindell, Methods for Electromagnetic Field Analysis, ser. Engi-
neering Science. Oxford, U.K.: Oxford Univ. Press, 1992.

Ilari Hinninen received the M.Sc.(Tech.) degree in electrical engineering from
Helsinki University of Technology (TKK), Espoo, Finland, in 2002 and the In-
génieur ECP degree from Ecole Centrale Paris, France, in 2002. He is currently
pursuing the D.Sc.(Tech.) degree in computational electromagnetics at TKK.

Currently, he is with the Electromagnetics Laboratory, Helsinki University of
Technology, as a Research Engineer.

Mikko Pitkonen received the M.Sc. degree in electrical engineering from
Helsinki University of Technology (TKK), Espoo, Finland, in 2005.

He is currently a Graduate Student with the Electromagnetics Laboratory,
TKK.

Keijo I. Nikoskinen (M’85-SM’00) was born in Kajaani, Finland, in 1962.
He received the Dipl.Eng., Lic.Tech., and D.Sc.(Tech.) degrees in electrical en-
gineering from Helsinki University of Technology (TKK), Espoo, Finland, in
1986, 1989, and 1991, respectively.

From 1991 to 1994, he was a Junior Scientist with the Academy of Finland.
Since 1996, he has been a Professor of Electromagnetics at TKK. His profes-
sional interest covers both the theory and applications of electromagnetics.

Jukka Sarvas (M’98) received the M.Sc. and Ph.D. degrees in mathematics
from the University of Helsinki, Finland, in 1968 and 1972, respectively.

He was with the University of Helsinki and with Outokumpu Co. during
1982-1984. In 1988-2002, he was Director of the Rolf Nevanlinna Research
Institute of Applied Mathematics and Statistics, University of Helsinki. He
was a Visiting Researcher during 1974-1975 and 1979-1980 at the University
of Michigan and in 1999-2000 and 2004 at the University of Illinois at
Urbana-Champaign. Since 2002, he has been a Professor in computational
electromagnetics in the Electromagnetics Laboratory, Helsinki University of
Technology. His main interests include field computing with integral equations
and fast methods.



	toc
	Method of Moments Analysis of the Backscattering Properties of a
	Ilari Hänninen, Mikko Pitkonen, Keijo I. Nikoskinen, Senior Memb
	I. I NTRODUCTION

	Fig.€1. Geometry of the trihedral corner reflector with a corrug
	II. I DEALLY T UNED C ORRUGATION

	Fig.€2. The physical properties of the corrugation.
	Fig.€3. If the incident TE-wave arrives to the surface travellin
	III. M ETHOD OF M OMENTS F ORMULATION FOR THE I DEALLY T UNED C 

	Fig.€4. TCR1, TCR2, and TCR3, trihedral corner reflectors with i
	IV. A NALYSIS OF THE B ACKSCATTERING P ROPERTIES OF THE C ORNER 

	Fig.€5. Relative backscattering co- and cross-polarization respo
	Fig.€6. Relative backscattering co- and cross-polarization respo
	A. Trihedral Corner Reflector With Corrugated Interior $Yz$ -Fac

	Fig.€7. Relative backscattering co- and cross-polarization respo
	Fig.€8. Relative backscattering co- and cross-polarization respo
	Fig.€9. Relative backscattering co- and cross-polarization respo
	Fig.€10. TCR4 and TCR5, trihedral corner reflectors with two int
	B. Corner Reflector With Two or Three Corrugated Interior Faces

	Fig.€11. Relative backscattering co- and cross-polarization resp
	Fig.€12. Relative backscattering co- and cross-polarization resp
	V. C ONCLUSION
	P.-S. Kildal, Definition of artificially soft and hard surfaces 
	I. V. Lindell, Generalized soft-and-hard surface, IEEE Trans. An
	A. Macikunas and S. Haykin, Trihedral twist-grid polarimetric re
	D. R. Sheen, E. L. Johansen, and L. P. Elenbogen, The gridded tr
	I. V. Lindell and P. P. Puska, Reflection dyadic for the soft an
	D. G. Michelson and E. V. Jull, Depolarizing trihedral corner re
	C. Gennarelli, G. Pelosi, and G. Riccio, Physical optics analysi
	Z. Ying, P.-S. Kildal, and A. A. Kishk, Study of different reali
	R. D. Graglia, On the numerical integration of the linear shape 
	P. Ylä-Oijala and M. Taskinen, Calculation of CFIF impedance mat
	I. V. Lindell, Methods for Electromagnetic Field Analysis, ser. 



