
Timo  Asikainen,  Tomi  Männistö,  and  Timo  Soininen.  2006.  A  unified  conceptual
foundation  for  feature  modelling.  In:  Liam  O'Brien  (editor).  Proceedings  of  the  10th
International  Software  Product  Line  Conference  (SPLC  2006).  Baltimore,  Maryland,
USA. 2124 August 2006. IEEE Computer Society, pages 3140.

© 2006 IEEE

Reprinted with permission.

This material is posted here with permission of the IEEE. Such permission of the IEEE
does  not  in  any  way  imply  IEEE  endorsement  of  any  of  Helsinki  University  of
Technology's products or services. Internal or personal use of this material is permitted.
However,  permission  to  reprint/republish  this  material  for  advertising  or  promotional
purposes  or  for  creating  new  collective  works  for  resale  or  redistribution  must  be
obtained from the IEEE by writing to pubspermissions@ieee.org.

By choosing  to view  this document, you agree  to all provisions of  the copyright  laws
protecting it.

mailto:pubs-permissions@ieee.org


A Unified Conceptual Foundation for Feature Modelling 

Timo Asikainen, Tomi Männistö, and Timo Soininen 
Helsinki University of Technology, Software Business and Engineering Institute (SoberIT) 

{timo.asikainen,tomi.mannisto,timo.soininen}@tkk.fi

Abstract

Feature modelling has become perhaps the most 
popular method for representing variabilities and 
commonalities in software product families. A large 
number of feature modelling methods and supporting 
tools have been reported. The conceptual foundation 
of feature models remains vague, a fact that severely 
undermines the usability of feature models. Therefore, 
we introduce Forfamel, a rigorous conceptual founda-
tion for feature modelling. Forfamel synthesises exist-
ing feature modelling methods in the sense that it cov-
ers most concepts and constructs found in existing 
feature modelling methods. In addition, Forfamel in-
cludes a few additional constructs that may prove to be 
useful. We show the novel contribution of Forfamel by 
reflecting it against previous feature modelling meth-
ods and arguing for its underlying design decisions. 

1. Introduction 

Feature modelling is a method for describing the 
commonalities and variabilities within a family of sys-
tems, such as a software product family. Since its in-
troduction in 1990 [1], feature modelling has attracted 
significant research interest and it has been applied in a 
number of application domains. In addition, a large 
number of tools supporting the feature modelling para-
digm have been introduced; see [2] for references con-
cerning both application domains and tool support. 
However, feature modelling still has not made its 
break-through into the toolbox of every software archi-
tect or requirements engineer.  

In our opinion, a factor hindering the propagation of 
feature modelling is the fact that most feature model-
ling methods lack a proper conceptual foundation: ei-
ther the concepts and their interrelations used in a fea-
ture modelling method are not defined at all, or in an 
unsatisfactory manner. In addition, there are significant 
differences in what concepts are included in each fea-
ture modelling method, especially in their semantics.  

In this paper, we study the conceptual foundation of 
feature models. We reify the foundation into a domain 

ontology called Forfamel. Forfamel synthesises exist-
ing feature modelling methods in the sense that it cov-
ers most concepts and constructs found in existing fea-
ture modelling methods. It includes a number of exten-
sions to previous feature modelling methods. Forfamel 
enables the easy reuse of feature knowledge both 
within a feature model and between feature models. 
The modelling concepts are demonstrated using a run-
ning example. The semantics of Forfamel is rigorously 
defined, and the reasons underlying its design are thor-
oughly motivated by reflecting Forfamel against previ-
ous feature modelling methods. 

We believe that the rich and well-defined concepts 
of Forfamel provide an excellent basis for developing 
tools supporting the creation and management of fea-
ture models, and configuring them to yield descriptions 
of individual systems in the family. Such tools are es-
sential for feature modelling to become a technique 
truly popular in the software industry. As a proof of 
this argument, we provide an overview of Kumbang-
Configurator, a tool enabling the configuration of fea-
ture models based on Forfamel. 

The remainder of this paper is structured as follows. 
In Section 2, we reiterate the basic feature modelling 
concepts. Forfamel is introduced in Section 3. Sec-
tion 4 discusses a language and a prototype tool sup-
porting Forfamel. Discussion and comparison to previ-
ous work follows in Section 5. Conclusions and an 
outline for further work round up the paper in Sec-
tion 6. 

2. Feature modelling 

In this section, we briefly reiterate feature model-
ling. We begin by discussing FODA [1], the first fea-
ture modelling methods reported, thereafter discuss the 
most important extensions to FODA, and finally pro-
vide a brief overview of the research themes related to 
feature modelling. 

In FODA (Feature Oriented Domain Analysis), the 
notion of feature is limited to attributes of systems that 
directly affect end users [1]. However, the definition of 
feature has been extended to “a system property that is 
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relevant to some stakeholder” [3]. In this paper, we 
adopt the latter view of features: we do not assume that 
features would necessarily affect end users. 

In FODA, features are organised in feature models.
Figure 1 illustrates a sample feature model in FODA. 
A feature model is a tree where the root is a feature, 
sometimes referred to as the concept. The root feature 
has features as its subfeatures, and these may in turn 
have other features as their subfeatures, et cetera. A 
feature model is a description of a system family, e.g., 
a software product family. A description of an individ-
ual system is derived by selecting a subset of features. 

There are a number of subfeature kinds: mandatory 
subfeatures must be selected whenever its parent is 
selected; an optional feature may be selected whenever 
its parent is selected, but needs not be selected; an al-
ternative subfeature consists of a set of alternatives of 
which exactly one must be selected whenever the par-
ent feature is selected. 

An individual product of the system family is de-
scribed by a selection of features that obeys the rules 
of the feature model. Such a collection of selected fea-
tures is termed a feature configuration. The task of 
finding a feature configuration matching a specific set 
of requirements for a product individual at hand is 
termed configuration task.

A number of feature modelling methods that extend 
FODA have been suggested [3,4,5]. Most popular ex-
tensions include feature cardinalities, attributes, and 
or-features, or more generally, group cardinalities. 
Some methods explicitly allow feature models to be 
directed acyclic graphs, a generalisation of trees. 

A feature cardinality [5] specifies how many times 
a subfeature must be selected into a feature description. 
A mandatory feature corresponds to cardinality 1, and 
an optional subfeature to cardinality 0..1. Other cardi-
nalities can be defined, such as 2..4 (two to four sub-
features must be selected), and 1..* (at least one sub-
feature must be selected). 

In some approaches, features may have attrib-
utes [3,5]. An attribute is a value that characterises a 
feature. There are different variants of attributes: in [5] 

a feature may be defined multiple attributes, whereas 
in [3] a feature may have at most one attribute. 

An or-feature [4] is a subfeature kind similar to an 
alternative feature, with the difference that at least one 
of the alternatives must be selected. Group cardinal-
ities [2] are a generalisation of the alternative and or-
feature concepts, similarly as feature cardinalities gen-
eralise mandatory and optional features: a group cardi-
nality specifies the number of subfeatures that must be 
selected from a group. 

In addition to conceptual extensions, a large number 
of other papers related to feature modelling have been 
published. Carrying out the configuration task in mul-
tiple stages has been studied [3]. Feature models have 
been used to support a variety of different engineering 
techniques, such as product line production plan-
ning [6], re-engineering legacy systems [7], and other 
purposes [8,9,10]. Metrics have been defined for fea-
ture models [11]. Feature models have been defined 
semantics using a range of knowledge representation 
languages, such as propositional logic [12,13,14], con-
straint programming [15], and grammars [2,13]. 

3. Forfamel  a conceptual foundation for 
feature modelling 

In this section, we define Forfamel, a domain ontol-
ogy for feature modelling. First, we define the notion 
of feature configuration. A feature configuration is a 
description of the features delivered by an individual 
system. Thereafter, we discuss the notion of feature 
models and the conditions a feature configuration must 
fulfil to be a valid configuration of a feature model.  

3.1. Feature configuration  

The concept of feature, as defined above, is associ-
ated with a system; there is no reference to a software 
product or other system family in the definition. There-
fore, we begin our exploration of features by describ-
ing how a feature configuration characterises a system 
through its features. 

A feature configuration, or configuration for short, 
is a description of the features delivered by a system; 
see Figure 2 (a) for a UML metamodel of concepts 
related to feature configuration.  

A feature configuration consists of a set of fea-
tures (F), the subfeature relation (s), the attribute rela-
tion (a), the type function t, and the root feature (r)
that is a member of the set of features.  

A feature is characterised by its type, subfeatures,
and attributes.

The essence of a feature is captured by its type. 
Two features that do not agree in their types cannot be 

Figure 1 A sample FODA feature model [1]

Car

Horsepower Air conditioningTransmission

Manual Automatic

Composition rule:
Air conditioning requires Horsepower > 100

Rationale:
Automatic more fuel efficient
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considered to be equal. Two features that do agree in 
their types may still be distinguished by their subfea-
tures and attributes. The types of features are repre-
sented by the type function t: F T, where T is the set 
of types appearing in the configuration. 

Example. Figure 3 (a) contains a sample feature 
configuration of a text editor; the sample configura-
tion, along with a corresponding feature model, will be 
used as a running example throughout this paper.  

The notation used for features resembles the UML 
notation for instance specifications: each feature is 
represented by a box, and the type of the feature is 
preceded by a colon and underlined. The root feature 
(of type Text editor) is identified by the text ‘«root 
feature»’, resembling the UML stereotype notation. 

The subfeatures of a feature are represented by the 
ternary relation s (short for subfeature): the triple 

(w, p, n) being in s has the semantics that feature w
(whole) has feature p (part) as its subfeature in the role 
identified by n (name). The name may be omitted. We 
also say that p is a subfeature of w, and that w is a par-
ent of p.

Example. The running example contains a number 
of subfeatures. For instance, the root feature has a sub-
feature of type Clipboard, with no explicit role. The 
root feature has features typed MathPal and EqMaster
in roles primary and secondary equation editor, re-
spectively. The root feature has a subfeature typed 
Spell checking, that in turn has two features, typed 
English and Dutch, as the spell checking languages. 

The attributes of features are represented by the a
(attribute) relation: the triple (f, v, n) being in the a
relation has the semantics that feature f has the value v
as its attribute with name n.

Figure 2 Forfamel metamodel (a) Feature configuration (b) Feature model (c) Feature type
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Example. The root feature has two attributes with 
name supportedFormat: rtf, and pdf. The two attributes 
denote the fact that the text editor described by the 
feature configuration supports documents both in RTF 
and PDF formats. The feature typed Clipboard has
attribute named capacity value 5, implying a clipboard 
able to hold five items at a time. 

There are a number of restrictions on the subfeature 
relation. First, the root feature must not be a part of 
any other feature. Second, all features, except the root 
feature, must be subfeatures of some other feature. In 
other words, the feature configuration must have a 
single root. Third, the transitive closure of the binary 
projection 

s2 = { (w, p) : (w, p, n) s } 
of s must be anti-symmetric and anti-reflexive: a fea-
ture must not be a transitive subfeature of itself, and it 
must not be true for any two features that a is a subfea-
ture of b, and b is a transitive subfeature of a.

We do not require that no feature is a subfeature of 
more than one feature. That is, we allow feature dia-
grams that are not tree-formed but directed acyclic 
graphs (DAG). 

3.2. Feature model 

In this subsection, we describe feature models and 
show their relation to feature configurations. In more 

detail, we describe the constituent elements of feature 
models and define when a feature configuration is a 
valid configuration of a feature model. 

A feature model is a characterisation of a system 
family, such as a software product family. A feature 
model intentionally defines which feature configura-
tions are valid descriptions of systems in the software 
product family. We will call such a feature configura-
tion a valid configuration of the model. Below, we will 
detail what is required of a feature configuration to be 
valid. 

A feature model consists of a set of feature types ,
a set of attribute value types , and a root feature 
type ; see Figure 2 (b) for a UML-metamodel of the 
concepts related to feature models. 

A feature type is a description of its instances, i.e., 
features. We will discuss how feature types character-
ise their instances in more detail below. 

Feature types are organised into taxonomies defined 
by the binary isa-relation. For types t1 and t2, isa(t1, t2)
implies that t1 is a direct subtype of t2 and t2 is a direct
supertype of t1. Further, that t1 is a subtype of t2 is im-
plied by the pair (t1, t2) being in the transitive closure 
of isa; this also implies that t2 is a supertype of t1.

Each feature is a direct instance of exactly one fea-
ture type that is the type given by the t relation of a 
feature configuration. In addition, a feature is an (indi-
rect) instance of all the supertypes of t.

Figure 3 (a) A sample feature configuration (b) A sample feature model

:Spell checking

:English :Dutch

«root feature»
:Text editor

supportedFormat: {rtf, pdf}

primary secondary

:EqMaster:MathPal:Clipboard
capacity: 5

Spell checking

English French Dutch

«root type»
Text editor

supportedFormat: {doc, rtf, pdf} [1..3]

primary
secondary

0..1

Equation editor

EqMaster MathPal

Clipboard
capacity: {1..10} language

1..2

(a)

(b)

language language

{type(primary) <> type(secondary)}
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A feature type is either abstract or concrete. The in-
tuitive semantics is that only concrete feature types 
may have direct instances in a valid configuration. 

Example. Figure 3 (b) illustrates a feature model. 
Feature type Equation editor is an abstract feature 
type. It has two subtypes, EqMaster and MathPal, both 
of which are concrete. 

A feature model must specify a root feature type
that is one of the feature types in the model 

A feature type, see Figure 2 (c), consists of a set
subfeature definitions, a set of attribute definitions, and 
a set of constraints. A feature type inherits these con-
stituent elements from all of its supertypes. 

A subfeature definition consists of an optional sub-
feature name (for short, name), a set of possible sub-
feature types (types), a similarity definition, and a non-
empty, finite set of allowed cardinalities (card). The 
similarity definition takes one of three values: same,
different, and none.

Intuitively, the subfeature definitions of a feature 
type specify what subfeatures the features of the type 
must and may have. The semantics of a subfeature 
definition are captured by the following definition. We 
will use the dot (.) notation to refer to the properties of 
subfeature definitions, and later attribute definitions. 
For instance, d.card refers to the set of allowed cardi-
nalities of subfeature definition d.

Definition (Subfeature definition conformance).
Given a feature type t and d a part definition of t, and 
feature f of type t, let C = { c : (f, c, d.name) s}, i.e., 
C is the set of features that are subfeatures of f by the 
name d.name.

Feature f conforms to subfeature definition d if (and 
only if) |C | d.card and every member of C is a valid 
instance of a member of d.types; and, if the similarity 
definition has value same, all members of C must be 
direct features of the same type, and if the value is dif-
ferent, all the members of C must be of different direct 
type. 

Intuitively, it is required that the number of features 
must agree with the cardinality definition, be of a type 
contained in the set of possible subfeature types, and 
additionally adhere to the similarity definition. 

Example. The root feature type is Text editor. It 
contains four subfeature definitions: unnamed defini-
tions with Clipboard and Spell checking as their sole 
possible subfeature types, and definitions named pri-
mary and secondary with Equation editor as their sole 
possible subfeature type. All these definitions but sec-
ondary are mandatory subfeatures: the set of allowed 
cardinalities is 1 (default value, not shown in figure). 
The definition named secondary has the allowed set of 
cardinalities of 0..1, hence the subfeature is optional.  

Feature type Spell checking defines a subfeature by 
the name language. The cardinality is 1..2, implying 
that at least one and at most two languages from Eng-
lish, French, and Dutch, must be selected. The similar-
ity definition is different (the default value, not 
shown), implying that each possible type may be se-
lected at most once. 

An attribute definition consists of an attribute name
(name), an attribute value type (type), and a non-empty 
set of allowed cardinalities (card). An attribute value 
type is a finite set of values, such as integers or strings. 

Intuitively, the attribute definitions of a feature type 
specify which attributes the features of the type may 
and must have. 

Definition (Attribute definition conformance).
Given a feature type t, an attribute definition d of t, and 
feature f of type t, let V = { v : (f, v, d.name) a}, i.e., 
the set of values that are attributes of f by the name 
d.name.

Feature f conforms to attribute definition d if 
|V| d.card and every member of V is a member of 
d.type.

The intuition behind attribute definition confor-
mance is similar to that behind subfeature definitions: 
the cardinality must match, and the values that are at-
tributes of the instance must be in the attribute value 
type of the definition. 

Example. The sample feature model contains two 
attribute definitions: feature type Clipboard defines an 
attribute named capacity with cardinality 1 of type 
integer in the range 1 to 10. In addition, the root fea-
ture type defines an attribute named supportedFormat 
and value type consisting of values rtf, pdf, and doc.

A constraint is a Boolean condition that can be 
evaluated in the context of a feature, that is, the fea-
ture, its attributes, transitive subfeatures and their at-
tributes. Constraints are expressed using a constraint 
language. Specifying a constraint language, along with 
its semantics, is out of the scope of this paper; in prac-
tice, a language resembling the Object Constraint Lan-
guage (OCL) [16] would likely satisfy the require-
ments for a constraint language. 

Example. The running example contains one con-
straint, represented using the UML constraint notation. 
The intuition of the constraint is that the primary and 
secondary equation editors must be of different types: 
it would not make sense for a text editor to have the 
same equation editor, say, MathPal, both as the pri-
mary and secondary editor. 

At this point, we are ready to define what is re-
quired of a valid instance of a type. 
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Definition (Valid instance). Feature f is a valid in-
stance of feature type t if:

1) f is an instance of t;
2) f conforms to each subfeature definition of t and 

has no other subfeatures; 
3) f conforms to each attribute definition of t and 

has no other attributes; and 
4) each constraint of t evaluates to true for f.
The intuition behind the above definition is as fol-

lows. An instance of a type must conform to the sub-
feature and attribute definitions and constraints of the 
type. There may be not other subfeatures or attributes 
than those defined for the type.  

Definition (Valid configuration). Feature configu-
ration c is a valid configuration of feature model M if 
the root feature c.r is a valid instance of the root fea-
ture type M.  and each feature in the configuration is a 
direct instance of a concrete feature type. 

Intuitively, the root feature must be an instance of 
the root feature type. The definition also requires that 
all the features in the configuration be of concrete fea-
ture types. This captures the intuition between abstract 
and concrete features types: only concrete feature types 
may have instances in a valid configuration. 

Example. All the instances in Figure 3 (a) are valid 
instances of their respective direct types that are all 
concrete. Hence the configuration is a valid configura-
tion of the feature model in Figure 3 (b). 

We require that in a well-formed feature model the 
transitive closure of the isa relation is asymmetric: no 
feature type is a supertype of itself. We do not restrict 
the number of direct supertypes a type may have: fea-
ture types may inherit properties from multiple types. 

It is required that the compositional structure of fea-
ture types is such that a in a valid configuration, a fea-
ture instance may not contain a transitive subfeature 
that is an instance of the type of containing feature. 

4. Validation 

In this section we describe how we have validated 
the feasibility of Forfamel. 

We have provided Forfamel with formal semantics 
by defining a translation from Kumbang to Weight 
Constraint Rule Language (WCRL) [17], a general-
purpose knowledge representation language. Kumbang 
is a domain ontology and a modelling language we 
have developed. It includes Forfamel as a subset and 
additionally contains concepts and constructs for de-
scribing software architecture in terms of components, 
interfaces, etc.

Although general-purpose, WCRL has been de-
signed to allow the easy representation of configura-
tion knowledge about non-software products and 

shown to suit this purpose [18]. This suggests that 
WCRL is a reasonable choice for the knowledge repre-
sentation formalism of our approach as well. Further, 
an inference system smodels1 operating on WCRL has 
been shown to have a very competitive performance 
compared to other problem solvers, especially in the 
case of problems including structure [17]. 

We have defined a language that enables expressing 
feature models using Forfamel. The language has been 
defined machine-readable syntax using javaCC (Java 
Compiler Constructor)2, a tool that generates Java code 
for both lexical and syntax analysis based on a gram-
mar description. Further, we have implemented a piece 
of software that translates a Forfamel model expressed 
in the language into WCRL, thus providing Forfamel 
with formal semantics. A configuration tool supporting 
Forfamel has been implemented in our research group. 
The tool is called Kumbang Configurator [19]. Kum-
bang Configurator supports a user in the configuration 
task as follows. The tool reads in a Kumbang model 
and represents the model in a graphical user interface, 
see Figure 4. The user can enter her requirements for 
the individual product by resolving the variation points 
in the model: e.g., the user may decide whether to in-
clude an optional element in the configuration or not, 
or to select attribute values or the type of a of a given 
part. After each requirement entered by the user, the 
tool checks the consistency of the configuration, i.e., 
are the requirements entered so far mutually compati-
ble, and deduces the consequences of the requirements 
entered so far; the consequences are reflected in the 
user interface. The consistency checks and deductions 
are done using smodels and the WCRL program trans-
lated from the model. 

Once all the variation points have been resolved and 
a valid configuration thus found, the tool is able to 
export the configuration, which can be entered as an 
input for tools used to implement the software, or used 
for other purposes. Further details about Kumbang 
Configurator can be found in [19]. 

A number of software product families have been 
modelled using Kumbang. First, a model based on a 
family of car periphery systems by Robert Bosch 
GmbH has been constructed using Kumbang; see [20] 
for the original model of the family. This example in-
cludes both a feature and an architectural point of 
view. The total number of types (feature and compo-
nent) in the example is about 30. In addition, a weather 
prediction network loosely based on a real product has 
been modelled. The model contains about 20 types. 

                                                          
1 See http://www.tcs.hut.fi/Software/smodels/
2 See https://javacc.dev.java.net/
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In both cases, Kumbang has provided a sufficient 
level of support to capture the intent of the product 
families. Specifically, Forfamel has provided an ade-
quate level of support for modelling the feature aspects 
of the product families. The cognitive effort required 
to create the models has been reasonable. Translating 
the models into the formal representation in WCRL 
could be done within a couple of seconds. When con-
figuring the models using Kumbang configurator, the 
time required for the reasoning tasks has been unno-
ticeable and the results have been in accordance with 
the semantics described in previous section. 

5. Comparison to previous work 

In this section, we reflect our work against previous 
work on feature modelling. As this paper studies fea-
ture and feature modelling from a conceptual point of 
view, the comparison will likewise be mostly made at 
the conceptual level: comparison to papers focusing on 
applications of feature models and defining semantics 
for feature models are only discussed when they ex-
tend the conceptual basis of feature models. 

5.1. Models and configurations 

Unlike most previous papers on feature modelling, 
we have emphasised the distinction between a feature 
model, i.e., a description of a system family, and a fea-

ture configuration, i.e., a description of an individual 
system. We have rigorously defined the notions of a 
feature configuration, a feature model, and valid con-
figuration. The relationship between a feature model 
and its configurations is the very reason for pursuing 
feature modelling. Therefore, we consider this to be a 
major contribution of this paper. 

Czarnecki et al. have introduced the notion of 
staged configuration [3]. The idea underlying the no-
tion is that configuring a feature model is not an 
atomic action, but involves different stakeholder 
groups during multiple stages. Within each stage, a 
feature model, or diagram, as Czarnecki et al. call 
them, is specialised in such a way that the set of con-
figurations of the specialised model is a subset of the 
original model. A fully specialised feature diagram 
denotes only one configuration. It may even be the 
case that the artefact of interest is not a fully special-
ised feature model, or a configuration, but a feature 
model still containing variability. 

Arguably, the notion of staged configuration un-
dermines the distinction between a feature model and 
its valid configuration. However, both the definition of 
a specialisation step and fully specialised configuration 
given above are dependent on the notion of a feature 
model and its configuration. Hence, it is still necessary 
to specify what are the valid configurations of a feature 
model. 

Figure 4 A screenshot from Kumbang Configurator
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5.2. Types and instances 

Traditionally, feature modelling methods have made 
no clear distinction between feature types and their 
instances, features [1,4,13]. That is, both entities ap-
pearing in a feature model and in a feature configura-
tion, i.e., a description of an individual system, have 
been termed features. However, we believe there are 
several reasons for distinguishing ‘features’ appearing 
in feature models and configurations. 

First, entities appearing in feature models include 
variability, e.g., alternative and optional subfeatures. 
Entities appearing in configurations are free of such 
variabilities. This is a fundamental difference, and 
therefore we believe it necessary to consider entities 
appearing in feature models and configurations as in-
stances of different meta-entities. 

Further, especially in the presence of feature cardi-
nalities, it may happen that “a configuration may in-
clude several different variants of the same fea-
ture” [2]. We believe that the notion of types and in-
stances is a concise and easily understood way of char-
acterising the relationship between feature in a model 
and its variants in a configuration. 

The notion of feature types facilitates the reuse of 
feature knowledge. In Forfamel, a feature type may 
naturally appear as a possible type in multiple subfea-
ture definitions. In previous work on feature model-
ling, additional concepts such as “feature-diagram ref-
erence” [3] and “macro” [21] have been required to 
enable reusing features within a model. The reuse pos-
sibilities are further enhanced by the possibility of de-
fining subtypes that inherit the properties of their su-
pertypes. 

5.3. Subfeature definitions 

The notion of subfeatures is quintessential in any 
feature modelling method. This is also the case in For-
famel. However, the mechanism used in Forfamel for 
representing subfeatures in feature models is somewhat 
different from those found in previous methods. 

As shown in Figure 2 (c), a subfeature definition 
has three attributes: an optional name, a set of possible 
cardinalities, and a similarity definition.  

The name of a subfeature is new in feature model-
ling. The intuition is that if a name is given, it specifies 
the role that the features specified by the definition 
have in parent feature; in many cases the role is appar-
ent from the feature type, and no separate name is 
needed.

There are a number of factors motivating the inclu-
sion of a subfeature name. First, constituent elements 
are identified by their names, not types, in many 

widely applied modelling methods, such as classes and 
their members in object-oriented languages and prop-
erties in UML. Second, a role name enables features of 
the same type to have multiple roles as subfeatures of 
the same feature; the subfeature definitions primary
and secondary of the running example (Figure 3) dem-
onstrates this point.  

Further, subfeature names can be used to simplify 
feature models: e.g., Figure 5 illustrates how a frag-
ment of the feature model of Figure 1 can be repre-
sented fewer levels of subfeatures, with the aid of sub-
feature names. Of course, there are still further ways to 
represent the same fragment, e.g., using subtyping. 
However, we do believe that subfeature names may be 
a useful modelling construct in many cases. We em-
phasise that subfeature names are optional: the exam-
ple of Figure 3 shows multiple cases in which the sub-
feature names have been omitted. 

A subfeature definition is a natural place to store 
knowledge about cardinality. This is in contrast to 
most previous papers on feature modelling, in which 
the terms ‘mandatory feature’ and ‘optional feature’ 
have been extensively used. These terms suggest that 
being mandatory or optional is a property of a feature. 
This point is demonstrated by the running example 
(Figure 3): the feature type Equation editor could be 
characterised to be both a mandatory and an optional 
subfeature of Text editor. Recently, this point has been 
acknowledged by Czarnecki et al., but still left implicit 
in their metamodel [3]. 

In previous work it has been suggested that features 
can be classified based on their role in a feature model 
as grouped features, solitary features, and root fea-
tures [3], see Figure 6 for a fragment of the meta-
model. In Forfamel feature types contain no knowl-
edge about their role as subfeatures of other features; 
such knowledge is contained in subfeature definitions 
instead. A practical argument to support this view is 
that including such knowledge in a feature would con-
ceptually prohibit reusing the feature in different con-
text. A similar argument applies to classifying a feature 
as a root feature, see Figure 6: arguably, a feature that 
is a root feature in a feature model should be reusable 
as a non-root feature in another model. In Forfamel, on 
the other hand, the root feature is encoded as a prop-
erty of a feature model, not of any feature type.  

Figure 5 An example of subfeature names 
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Cardinalities and similarity definitions are closely 
related through the questions: Given a subfeature defi-
nition that allows a cardinality greater than one and 
includes multiple possible part types, can the same 
type be selected multiple times? Must all the subfea-
tures be of the same type? The similarity definition can 
be used to specify the desired semantics. 

In previous work on cardinality-based feature mod-
elling [2], this issue has been resolved differently: a 
feature in a group of features may only be selected 
once. Under this semantics, it is difficult to represent 
certain practically relevant situations. Consider the 
fragment of feature model in Figure 7 (a): a car has 
four tires, and all of them must be either slicks or rain 
tires; mixing is not an alternative. We cannot think of a 
way expressing this fragment without resorting to con-
straints using the feature modelling method of [2].  

The notion of cardinality in Forfamel is different 
from that suggested in [2] additional ways. First, in [2] 
cardinalities are expressed as a sequence of integer 
intervals, e.g., [0..1][2..4], whereas in Forfamel cardi-
nalities are represented as a set of integers. It is not 
difficult to see that these two representations are 
equivalent. 

A more fundamental difference is that [2] allows 
specifying an unbounded cardinality, denoted by the 
symbol *. As the example in Figure 7 (b) shows, there 
are natural cases in which there is no natural upper 
bound for the cardinality of a subfeature: a text editor 
may have any number of plug-ins.  

Unfortunately, an unbounded cardinality leads into 
cases in which some or all the valid configurations of a 
model are infinite, i.e., contain an infinite number of 
features: consider a constraint on subfeature a of un-
bounded cardinality with integer attribute i stating that 
for each subfeature a1, there exists a subfeature a2 such 
that a2.i > a1.i. It is easy to see that there is no finite 
configuration that satisfies this constraint, but there are 
an infinite number of infinite configurations that do 
satisfy it. Dealing with infinite configurations may not 
be impossible, but surely more difficult than with finite 
configurations. This is why we have excluded un-
bounded cardinalities from Forfamel. 

Similarly as above, infinite valid configurations 
would also result if feature types were allowed to de-
fine subfeatures with themselves as possible subfeature 
types. 

5.4. Constraints 

All feature modelling methods include a form of 
constraints. In most methods, these have been of the 
form A requires B, or A excludes B. More recently, it 
has been argued that more comprehensive forms of 
constraints are required [13]. A construct similar to 
constraints called product sets has been suggested to 
support complex product decisions. [22]. 

We did not specify a constraint language as part of 
Forfamel in this paper. However, we do believe that a 
comprehensive constraints language is essential for 
expressing the potentially complex dependencies be-
tween features in industrial software product families.  

6. Conclusion and further work 

We have presented Forfamel, a feature modelling 
method that synthesises modelling concepts and con-
structs found in existing feature modelling methods. It 
does this by rigorously defining the relationship be-
tween a feature model and its valid configurations. In 
addition, Forfamel includes a number of extensions not 
found in existing feature modelling methods. Most 
importantly, subfeature names can be used to specify 
the role of a subfeature. Features may be defined arbi-
trarily many attributes, each of which may be set-
valued. 

To be practically applicable, the work presented in 
this paper must be augmented in several ways. Al-
though we have evaluated the language and initial tool 
support briefly described in this paper, additional stud-
ies are needed and further development may be re-
quired based on the outcomes. Forfamel could be ex-
tended to support multi-staged configuration. Also, as 
many of the computational problems related to For-
famel and feature models in general are computation-

Figure 6 A fragment of a UML metamodel for cardi-
nality based feature modelling [3] Figure 7 Examples of similarities
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ally hard, the feasibility of solving them in practice 
must be verified. 
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