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Helsinki University of Technology, Software Business and Engineering Institute (SoberIT), P.O. Box 9210, FIN-02015 TKK, Finland

Received 6 October 2006; accepted 12 November 2006
Abstract

Variability is the ability of a system to be efficiently extended, changed, customised or configured for use in a particular context. There
is an ever-growing demand for variability of software. Software product families are an important means for implementing software
variability. We present a domain ontology called Kumbang for modelling the variability in software product families. Kumbang synthes-
ises previous approaches to modelling variability in software product families. In addition, it incorporates modelling constructs devel-
oped in the product configuration domain for modelling the variability in non-software products. The modelling concepts include
components and features with compositional structure and attributes, the interfaces of components and connections between them,
and constraints. The semantics of Kumbang is rigorously described using natural language and a UML profile. We provide preliminary
proof of concept for Kumbang: the domain ontology has been provided with a formal semantics by implementing a translation into a
general-purpose knowledge representation language with formal semantics and inference support. A prototype tool for resolving
variability has been implemented.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Variability is the ability of a system to be efficiently
extended, changed, customised or configured for use in a
particular context [1]. There is a growing demand for var-
iability of software, and a significant research interest in the
topic, as exemplified by the workshops and special issues
devoted to it, see, e.g., [2]. Products that incorporate vari-
ability can be useful for various purposes: for example,
such products can address multiple user segments, allow
price categorisation, support various hardware platforms
and operating systems, provide different sets of features
for different needs, and cover different market areas with
different languages, legislation, and market structure.
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Addressing these concerns without variability would be
very difficult, if not impossible.

Software product families, or software product lines, as
they are also called, have become an important means for
implementing variability [3]. A software product family is
commonly defined to consist of a common architecture, a
set of reusable assets used in systematically producing indi-
vidual products, and the set of products thus produced [4].
Intuitively, variability in software product families pertains
to the fact that different products in the family have many
similarities, but also differ from each other in significant
ways.

A software product family may contain very large
numbers of individual products. Consequently, methods
for representing the variability and efficiently reasoning
about it are needed. Towards this end, numerous methods
for modelling the variability in software product families
have been proposed. A practically important class of such
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methods is based on modelling the common and variable
features of a product family. An example of such a method
is FODA (feature oriented domain analysis) [5]. In the con-
text of such methods, a feature is defined as ‘‘an end-user
visible characteristic of a system’’ [6]. Features are typically
organised in a directed tree or other acyclic graph that
more or less rigorously defines which features combina-
tions represent valid individuals of the product family.
On the other hand, a number of methods for modelling
variability in product family architectures have been
reported; Koalish [7] and xADL 2.0 [8] are examples of
such methods. Product family architectures are typically
described in terms of components, their connection points
called interfaces, the compositional structure of compo-
nents, and connections or connectors between interfaces.
Unfortunately, most, if not all, variability modelling meth-
ods lack a well-defined conceptual foundation. They are
not rigorous in specifying the modelling concepts, their
interrelations and semantics: some authors seem to be more
concerned with notation than its meaning. We believe that
this condition severely undermines the practical applicabil-
ity of variability modelling methods.

Variability has been studied in the domain of traditional
products, i.e., mechanical and electrical ones. This domain
of research is called product configuration, or configuration

for short, and it studies how a general design of a product
can be modified, or in other words, configured, in prescribed
ways to produce product individuals that match the specific
needs of customers [9]. Configuration as an activity is highly
similar to routine design [10]: routine design proceeds within
a well-defined state space of potential designs. In contrast to
methods for modelling variability in software product fami-
lies, the results achieved in product configuration domain
include a number of conceptualisations of the domain
[11,12]. The conceptual work done in the domain has lead
to a large number of successful applications [9,13,14]. We
believe that much research effort has been wasted when the
lessons learnt in the configuration domain have not been
transferred to software product family research, even though
the transfer of results may not be straightforward due to the
differences in the nature of software and physical products.

In this paper, we introduce Kumbang, a domain onto-
logy for modelling the variability in software product fam-
ilies. Kumbang unifies the feature and architecture based
approaches to modelling variability in software product
families. In addition to modelling variability from feature
and architectural point of view, Kumbang enables model-
ling the interrelations of these two views. Unlike its prede-
cessors, Kumbang is rigorously described using both
natural language and a UML (Unified Modeling Lan-
guage) version 2.0 [15] profile. UML is the de facto stan-
dard modelling method in the software engineering
domain and profiles are its built-in extension mechanism.
Kumbang incorporates many lessons learnt in the product
configuration domain.

We believe that Kumbang is of great practical value. In
addition its rich set of well-defined modelling concepts and
constructs, a number of other points speak for its applicabi-
lity. First, describing Kumbang in terms of UML makes it
easier for people already familiar with UML to adopt Kum-
bang. Further, the fact that Kumbang is described using a
UML profile makes it, at least in principle, possible to use
existing UML 2.0 compliant tools to provide tool support
for Kumbang. The modelling capabilities of Kumbang are
demonstrated using an example based on a real-life product.

The remainder of this paper is organised as follows.
Next, in Section 2 we discuss previous work relevant to
the paper: discussed topics include methods for represent-
ing variability in software product families, and an over-
view of product configuration research, especially from
the point of view of representing variability. Thereafter,
in Section 3 follows the main contribution of this paper:
definition of Kumbang, a domain ontology for modelling
variability in software product families. Section 4 provides
an overview of the proof of concept existing for Kumbang.
Discussion and comparison to previous work follow in Sec-
tion 5. Conclusions and an outline for further work round
up the paper in Section 6.
2. Previous work

In this section, we discuss the relevant previous work that
lays the foundation on which this work builds. We begin by
discussing software product families. Thereafter, we discuss
the notion of variability and existing methods for modelling
variability in software product families. Finally, we provide
an overview of the product configuration domain.

2.1. Software product families

This subsection introduces the concept of software prod-

uct family, or line, an alternative term used. There are a
number of definitions for the concept [3,4,16]. Clements
and Northrop define the concept as follows [3]:

A software product line is a set of software-intensive sys-
tems sharing a common, managed set of features that
satisfy the specific needs of a particular market segment
or mission and that are developed from a common set of
core assets in a prescribed way.
Jan Bosch defines the concept somewhat differently [4]:
A software product line consists of a product line archi-
tecture and a set of reusable components that are
designed for incorporation into the product line archi-
tecture. In addition, the product line consists of the soft-
ware products that are developed using the mentioned
reusable assets.

A comparison between the two definitions indicates that
there are both remarkable commonalities and differences
between them. Most significantly, the definitions share
the notion of a set of reusable or core assets. Also, both def-
initions include the set of products or systems developed
using these assets.
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Despite the similarities, the definitions are far from
being equivalent. The Clements and Northrop definition
can be seen as market driven: one of the defining character-
istics of a software product family is the satisfying of ‘‘the
specific needs of a particular market segment’’. Bosch’s def-
inition emphasises the role of software architecture as a part
of a software product family. Thereby, his definition can be
said to be technology-driven.

There are still some minor differences between the
definitions. First, the Clements and Northrop definition
includes the requirement missing from Bosch’s definition
that the systems belonging to the product family are
developed ‘‘in a prescribed way’’. The Bosch definition,
on the other hand, postulates that the core assets belonging
to the product family are designed to ‘‘for incorporation
into the product family architecture’’. However, these
differences seem not to imply that the defined concepts
were radically different; instead, the definitions can be
considered to emphasise different aspects of the same
phenomenon.

The activities related to a software product family are
typically organised into two phases, namely the develop-
ment and deployment [4]; other authors use the terms
domain and application engineering to refer to roughly the
same phenomena, respectively [6]. During the development
process, the software product family architecture and com-
ponents implementing the common part, i.e., components
present in all individual products in the product family,
are implemented. The deployment process involves deriv-
ing individual products from the product family, based
on a set of specific market or customer requirements.
The architecture and components from the above-dis-
cussed development process form the basis for the deploy-
ment process: they are adapted to match the requirements
for the individual product being deployed. However, in a
typical case, product-specific code must be developed to
implement product-specific requirements that are not cov-
ered by the assets from the development process.

A configurable software product family [3] is such a soft-
ware product family for which there is no or little need to
develop product-specific software during the deployment
process. In other words, the product-specific requirements
can be met by configuring the reusable assets developed
during the development process. Reported cases from the
industry include MarketMaker [3], Securitas [4], Salion
[17], and two anonymous cases [18,19].

Variability and its management are an important part of
product family engineering. Variability is the ability of a
system to be efficiently extended, changed, customised or
configured for use in a particular context [1]. Software var-

iability management and has been the topic of a number of
workshops [20–22], and a special issue [2]. A definition for
variability management is [23]:
Variability management encompasses the activities of
explicitly representing variability in software artefacts
throughout the lifecycle, managing dependencies among
different variabilities, and supporting the instantiations
of the variabilities.

Variability and its management are key characteristics
that distinguish software product family engineering from
other approaches to software development [24].

2.2. Modelling variability in software product families

A large number of methods for modelling variability in
software product families have been reported. These can be
classified into three broad categories: feature-based meth-
ods, methods based on modelling variability in software
architectures, and methods that do not commit to any spe-
cific set of concepts. Below we provide a brief overview of
the first two categories; a more detailed account can be
found in [25].

2.2.1. Feature modelling

Feature modelling has become a popular method for
modelling software variability. A large number of feature
modelling methods have been suggested, e.g., [5,6,26,27].
The methods are based on the notion of feature. However,
different methods use somewhat different definitions of
feature: popular definitions of feature include ‘‘an end-user
visible characteristic of a system’’, and ‘‘a distinguishable
characteristic of a concept (e.g., system, component, and
so on) that is relevant to some stakeholder of the concept’’
[6]. Also, feature has been characterised as capturing a con-
siderable set of requirements and representing a logical unit
of behaviour [4].

All feature modelling methods are based on the notion
of feature model; alternative terms include feature diagram

and feature graph. A feature model describes the common
and the variable features of a software product family.
Individual products are distinguished from each other
through the features they deliver. Feature models of indus-
trial software product families can be very large, consisting
of hundreds or even thousands of features [28–30]. A
feature model is a description of a system family, e.g., a
software product family. A feature configuration is a
description of an individual product. A feature configura-
tion may consist of a subset of the features in the model,
or have a more complex structure.

Fig. 1 illustrates a sample feature model represented
using FODA (Feature Oriented Domain Analysis) [5], the
first feature modelling method reported. A feature model
in FODA is a directed tree, or more generally, a rooted,
directed, acyclic graph. The root is sometimes referred to
as concept. The root feature has a number of features as
its subfeatures, and these may in turn have other features
as their subfeatures, et cetera. There are a number of sub-
feature kinds: mandatory subfeatures must be selected
whenever its parent is selected; an optional feature may
be selected whenever its parent is selected, but needs not
be selected; an alternative subfeature consists of a set of
alternatives of which exactly one must be selected whenever



Fig. 1. A sample feature model describing the features of a car, adopted
from [5]. The model illustrates the basic modelling concepts of the FODA
(Feature Oriented Domain Analysis) method [5], the first feature
modelling method reported in the software engineering domain.

Fig. 2. The architecture of a client–server system described using Koala
[37], a component model and architecture description language developed
and used at Philips Consumer Electronics. The figure illustrates the main
modelling concepts of the Koala method.
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the parent feature is selected. A feature configuration, i.e.,
a description of an individual product, in FODA is such a
subset of the features in the model that obeys the rules of
the model.

Feature modelling methods reported after FODA are
mainly based on the same set of modelling concepts,
although a number of additional concepts have been sug-
gested. In FORM (Feature Oriented Reuse Method) [26],
features are classified into four layers, namely capability

layer, operating system layer, domain technology layer,
and implementation technique layer. Further, there are three
possible relationships between features: generalisation/

specialisation, composed of, and implemented by, while there
is only one in FODA (consists-of). Czarnecki and Eise-
necker have introduced or-features that are similar to alter-
native features in FODA, with the exception that instead of
selecting exactly one, any number of alternatives greater
than equal to one may be selected [6]. They extend their
earlier work with cardinalities, attributes, and reference

attributes [31]. Cardinalities can be used to specify how
many subfeatures of a specific kind a feature must have,
e.g., a car could be specified to include exactly four tires.
Attributes, in turn, parameterise features. Finally, refer-
ence attributes can be used to refer to other features in
the feature hierarchy.

The term feature has also been used in other ontological
work. However, in the cases we know of, the term is used in
a significantly different meaning than in our work. For
instance, in [32] the term feature is used to describe the dif-
ferent design conditions that impact construction cost. The
difference between this use of the term and ours is that in
our work features are used to describe the variabilities
and commonalities of a family of systems, whereas in [32]
features are design conditions in a single system, a design
of a building.

2.2.2. Modelling product family architectures

The level of design concerning the overall structure of
software systems is commonly referred to as the software

architecture level of design. This level includes structural
issues such as the organisation of a system as a composition

of components, the protocols for communication, the assign-

ment of functionality to design elements, etc. [33]. A defini-
tion for software architecture is [34]:
The software architecture of a program or computing
system is the structure or structures of the system, which
comprise software components, the externally visible
properties of those components, and the relations
among them.

Informally, software architecture is used to refer to the
structure of a software system on a high level of abstrac-
tion. Software architecture does not concern the fine-
grained structure or the properties of a software system,
or the process used to develop it [35].

A large number of architecture description languages

(ADLs) have been developed [36]. All ADLs share the
notion of component as the basic concept for describing
software architecture; a component is typically defined as
a locus of computation. In addition, most ADLs include
concepts for describing the connection points of compo-
nents, typically termed ports; and connectors, entities medi-
ating communication between components. A typical ADL
is intended for describing the architecture of a single
system: they lack concepts and constructs for modelling
the variability in product family architectures. Hence, most
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of them are not directly applicable to modelling product
family architecture. There are exceptions to this rule,
including Koala [37] and its derivative Koalish [7] and
xADL 2.0 [8].

Koala [37–39] is a component model and an ADL deve-
loped at Philips Consumer Electronics. Fig. 2 contains an
example of an architecture description in Koala. Koala is
one of the few ADLs that have been applied in the industry
[39] and is therefore of special interest from a practical
point of view.

The main modelling elements of Koala are components

that have interfaces as their explicit connection points. A
component is defined as ‘‘an encapsulated piece of software
with an explicit interface to its environment’’; an interface
is a ‘‘small set of semantically related functions’’. Functions

correspond to function signatures in, e.g., the C program-
ming language. Each interface is either a requires or a
provides interface. A requires interface signals that the
component containing the interface requires some service
from its environment. Similarly, a provides interface sig-
nals that the component provides such a service to its envi-
ronment. There may be bindings between interfaces, with
the intuitive semantics that a requires interface bound to
a provides interface gets its required services from the pro-
vides interface.

Components may contain other components. The
semantics of containment is that of encapsulation: a com-
ponent that is a part of another component can only be
accessed from within the containing component. A config-

uration is a component that is not a part of any other com-
ponent and has no interfaces. A configuration can be
thought of as an independent system that can be deployed
in a product.

Koala includes a number of variability mechanisms. A
configuration is characterised by a set of parameters. Sys-
tems with different parameter values are different: the func-
tionality of a system may directly vary based on the
parameters. There may be many alternative bindings
between interfaces, and different alternatives lead to differ-
ent systems. An interface may be declared optional. Such an
interface may but is not required to contained in an
instance of the component type defining it.

Koalish [7] extends Koala with explicit mechanisms for
modelling variability. In Koalish it is possible to define a
set of possible types and a cardinality for contained compo-
nents: this enables variability in the type and number of
components contained by a given name. Constraints can
be used to restrict the set of valid individual systems. Koa-
lish is our own earlier work and much of it has been used as
a part of the Kumbang domain ontology to be presented in
the following section.

xADL 2.0 [8,40] is an infrastructure for rapid develop-
ment of XML (eXtended Markup Language)-based archi-
tecture description languages. Hence, xADL 2.0 is not
merely an ADL, but provides facilities for defining custo-
mised ADLs. Below we concentrate on the core constructs
of xADL 2.0.
The basic modelling elements of xADL 2.0 include com-

ponent type, connector type, and interface type. Component
types may be defined a compositional structure. Interfaces
are connection points of components, and they may be
bound together using connectors. The variability modelling
elements of xADL include optional elements, variant types,
and optional variant elements. Optional elements have the
intuitive semantics that instances may but are not required
to be included in an individual system. Variant types per-
tain to choosing one out of two or more elements. Finally,
optional variant elements are the combination of optional
elements and variant types. The control over whether to
include an optional element, and which variant should be
selected is in Boolean guards. They are Boolean expressions
on a number of variables. The authors of xADL 2.0 refer to
the forms of variability discussed above as space variabili-

ties [41]. In addition, xADL 2.0 supports time variabilities

in the form of evolution of design elements. In short, the
evolution is described in terms of versions and branches.

2.2.3. Product configuration

The purpose of this subsection is to provide an overview
of product configuration research, a subfield of artificial
intelligence [13].

Research in the product configuration domain is based
on the notion of configurable product: a configurable
product is such a product that each product individual is
adapted to the requirements of a particular customer order.
Historically, the configurable products studied in the
domain have been non-software products, often mechani-
cal and electronics products. A modular structure is typical
of a configurable product: product individuals consist of
pre-designed components, and selecting different compo-
nents leads to different product variants [9].

The possibilities for adapting the configurable product
are predefined in a configuration model that explicitly and
declaratively describes the set of legal product individuals.
A specification of a product individual, configuration, is
produced in the configuration task based on the configura-
tion model and a set of customer requirements.

There are two widely sited conceptualisations of config-
uration knowledge [11,12]. The most important concepts in
these are: components, ports, resources, and functions. Com-
ponents represent distinguishable entities in a product: a
configuration is composed of components, and compo-
nents may in turn be composed of other components. Ports
are connection interfaces, either physical or logical, of com-
ponents. Ports may be connected with each other.
Resources, in turn, are entities that are produced and con-
sumed by components. In a configuration, the production
and consumption of each resource kind must be balanced.
Finally, functions are abstract characterisations of a prod-
uct that a customer or sales person would use to describe it.

Efficient knowledge-based information systems, product

configurators, or configurators for short, have become an
important and successful application of artificial intelli-
gence techniques for companies selling products adapted



28 T. Asikainen et al. / Advanced Engineering Informatics 21 (2007) 23–40
to customer needs [13]. The basic functionality of a confi-
gurator is to support a user in finding a configuration of
a given configuration model matching his specific needs.
Examples of the kinds of support provided are: A configu-
rator represents the available choices in a way that enables
the user to easily enter his requirements. The configurator
makes deductions based on the requirements the user has
entered so far, and prevents or discourages the user from
making incompatible choices. Finally, the user can at any
point ask the configurator to automatically find a configu-
ration that is valid with respect to the configuration model
and satisfies the requirements entered so far. The above-
described functionality is based on using declarative config-
uration models and efficient, sound, and complete inference
tools operating on these.

Configurators have reportedly been applied to a number
of different kinds of products; perhaps the most challenging
cases have been telephone switching systems at Siemens [42],
and other kind of telecommunication products at AT&T
[43]. At Siemens, the problem instances have been consider-
ably large: typically, a configuration has included tens of
thousands of components with hundreds of thousands of
attributes, and over 100,000 connection points. Configura-
tors have become parts of ERP (Enterprise Resource Plan-
ning) systems, such as SAP [44], and Baan [45].

3. Kumbang

In this section, we define Kumbang, a domain ontology
for representing variability in software product families.
Kumbang includes concepts for modelling variability both
from the feature and architecture point of views and the
interrelations between these two views. Unlike most, if
not all, existing methods for modelling the variability in
software product families, Kumbang is rigorously
described using both natural language and a UML (Unified
Modeling Language) 2.0 [15] profile.

3.1. Foundation: Kumbang models and configurations

Kumbang is based on three layers of abstraction. At the
highest level of abstraction is the metalayer that contains
the modelling concepts, or metaclasses. The next layer is
the model layer that contains Kumbang models. The enti-
ties that appear in Kumbang models are termed classes

and are instances of metaclasses. Finally, the third layer,
instance layer, contains the instances of the classes appear-
ing at the model layer.

We describe Kumbang predominantly by characterising
Kumbang models, their constituent entities, and the rela-
tions between entities in the model and instance layers.
We use expressions such as ‘‘a Kumbang model’’ when
we mean ‘‘an instance of the metaclass Kumbang model’’,
or ‘‘Kumbang instances’’ when meaning ‘‘instances of the
metaclass Kumbang instance’’.

A Kumbang model, or model for short, is a representa-
tion of the variability in a software product family. A Kum-
bang configuration (configuration) is a representation of an
individual software product. A Kumbang model defines a
(possible empty) set of Kumbang configurations that are
valid with respect to the model. Intuitively, a valid config-
uration is a configuration that conforms to the model
and is hence a representation of a valid individual of the
product family. More specific requirements for a valid con-
figuration will be defined in the remaining subsections.

UML. We give the UML 2.0 presentation of Kumbang
concepts under separate headings. We assume the reader is
familiar with UML. The language is defined in an OMG
(Object Management Group) standard [15]. We define the
Kumbang ontology as a profile extending the UML meta-
model, see Fig. 3 for an illustration of the profile. The ste-
reotypes appearing in the profile correspond to metaclasses
in the terminology introduced in the beginning of this sub-
section. We do not explicate the correspondences between
metaclasses and the corresponding UML stereotypes as
these are obvious from their names. Fig. 3a illustrates that
KumbangModel is defined as a stereotype extending the
metaclass Model (from Models). KumbangConfiguration

is defined as a stereotype extending the same metaclass.

A Kumbang model consists of a set of Kumbang types. A
Kumbang type serves as a description of its instances,
Kumbang instances, which are entities appearing in Kum-
bang configurations. Kumbang type is an abstract meta-
class that has three subclasses, namely composable type,
interface type, and attribute type, see Fig. 3b. Of these,
the latter two are concrete metaclasses, whereas compos-
able type is an abstract metaclass with two concrete sub-
classes, component type and feature type. Each of these
metaclasses will be discussed in more detail in the remain-
ing subsections.

A Kumbang instance is a description of an entity in a
product individual. Kumbang instance is an abstract
metaclass. Similarly as for Kumbang type above, Kum-
bang instance is the root of a taxonomy of metaclasses,
see Fig. 3c for the UML representation.

UML. KumbangType is represented as an abstract ste-
reotype extending the metaclass Classifier (from Kernel).
The subclasses of Kumbang type are specialisations of
the KumbangType stereotype. KumbangInstance is an
abstract metaclass extending the metaclass InstanceSpecifi-

cation (from Kernel). The subclasses of Kumbang instance
are represented as specialisations of KumbangInstance. The
properties rootComponent and rootFeature corresponding
to the root component and root feature types are defined
for KumbangModel.

3.2. Types and taxonomy

Kumbang types are organised into taxonomies defined
by the isa-relation. For types T1 and T2, isa(T1, T2), implies
that T1 is a direct subtype of T2 and T2 is a direct supertype
of T1. Further, T1 is a subtype of T2 is implied by the pair
(T1, T2) being in the transitive closure of isa; this also



Fig. 3. The Kumbang profile used to represent the Kumbang domain ontology using UML concepts. (a) Stereotypes are used to represent individual
concepts in Kumbang. Each stereotype extends a UML metaclass. (b) Stereotypes may be organised in a taxonomy. Here, the taxonomy of stereotypes
representing Kumbang types is presented. (c) Taxonomy of Kumbang instances.
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implies that T2 is a supertype of T1. We require that in a
well-formed model the transitive closure of the isa relation
is asymmetric. In addition, we require that only pairs of
types (T1, T2) where T1 and T2 are instances of the same
concrete metaclass may belong to the isa relation. This
implies, for example, that component types may only have
other component types as their supertypes. Each Kumbang
type is either abstract or concrete.

A subtype inherits the properties of its supertypes. The
properties that are inherited include attribute definitions,
part definitions, interface definitions, and constraints. Each
of these classes of properties will be discussed in more
detail in the remaining subsections.

Each Kumbang instance is (directly) of exactly one type;
this type is termed the type of the instance, and the instance is
said to be an instance of that type. In addition, each instance
is an indirect instance of all the supertypes of its type.
Semantics. We describe the semantics of Kumbang
under separate headings. Only concrete types may have
instances in a valid configuration. All the instances in a
valid configuration must be valid. Intuitively, a valid
instance conforms to its type; more specific requirements
for a valid instance are defined in subsequent subsections.

UML. In UML, the base type for Kumbang types, i.e.,
KumbangType, is a stereotype extending the metaclass
Classifier (from Kernel). Further, the taxonomy between
types is represented using the Generalisation relation
between the types.

Example. Fig. 4 introduces a running example that will
be used to demonstrate Kumbang concepts throughout this
paper. The example is based on an industrial product fam-
ily, a car periphery system (CPS) by Robert Bosch GmbH



Fig. 4. A Kumbang model of a car periphery system (CPS) product family used as a running example in this paper. The model represents that variability
of a car periphery system both in terms of the features individual systems in the family deliver, and their architecture, both hardware and software.
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[46,47]. The model of the product family used as the basis
for the running example is available as [48]. Car periphery
systems are embedded systems based on sensors installed
around the vehicle that monitor its environment. The data
obtained from the sensors is used as input for different
applications. Examples of such applications include park-
ing assistance and pre-crash detection.

The example is expressed using Kumbang language, a
prototype language that defines concrete syntax for Kum-
bang. The language is structured according to types, i.e.,
the properties of a type are collected under its definition.

The example includes several cases of subtyping. Fig. 5
illustrates the taxonomies of component and feature types
as a UML class diagram. Fig. 5a shows that the abstract
component type SensorSoftware has two concrete sub-
types, SingleSensorSW and MultiSensorSW. Intuitively,
different software is required for systems including only a
single sensor or multiple sensors. Fig. 5b shows that con-



Fig. 5. The Kumbang types in the sample model (Fig. 4) represented using UML. (a) The taxonomy of types representing sensor software. (b) The
taxonomy of types representing sensor sets. (c) Other component types, i.e., types not participating in taxonomic relations. (d) Feature types.
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crete component types representing physical sensor sets
may have multiple supertypes: each of the concrete sensor
sets is a subtype of either the component type SingleSensor-

Set representing a sensor set consisting of a single sensor,
or of MultiSensorSet, consisting of multiple sensors, and
of either component type SSRSensorSet or USSensorSet.
The remaining component types are illustrated in Fig. 5c
and feature types in Fig. 5d.

3.3. Attributes

A Kumbang instance is characterised by its attributes.
An attribute is a name–value pair. In a Kumbang type,
attribute definitions are used to specify the attributes their
instances may and must have. An attribute definition
includes a name, and an attribute type. An attribute type
specifies a non-empty set of possible attribute values.
Possible attribute value type kinds include enumerations,
strings, integers, floating point numbers, and structured
types built from these.

Semantics. A valid instance of a Kumbang type has the
attributes of its type. In more detail, a valid instance i of
type t has, for each attribute definition a of t, an attribute
with name a.name and value that is one of the possi-
ble values defined by a.type. The attribute definitions of
t include those defined in the type and those inherited
from its supertypes; more generally, the properties of a
type include those defined in its supertypes. A valid
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Kumbang instance has no other attributes than those of
its type.

UML. In UML, attribute definitions are represented as
properties. In more detail, attribute definitions are repre-
sented using the stereotype AttributeDefinition that extends
the metaclass Property (from Kernel). A number of con-
straints apply: each property must have a type. Further,
the type must have the stereotype Attribute type applied
to it; hence, as AttributeType is an extension of DataType

in the UML metamodel, only types the instances of which
are identified by their values may act as attribute types in
Kumbang [15].

Example. The running example includes several attri-
bute definitions. For example, the component type Sensor-

Set includes an attribute named supervisionDepth of type
Depth; the type is an enumerated set of distances given in
centimetres. Intuitively, the attribute represents the super-
vision depth of the sensor set, that is, what is the maximum
distance for objects that can be supervised by the sensor
set. In addition, the model contains binary attribute types
Symmetry, AlarmType, and DisplayType, and attribute
type Probability with three possible values. Each of these
is used in a feature type to represent information some
information. For instance, the attribute definition symme-

try of type Symmetry in feature type ParkingAssistance is
used to represent whether parking assistance is provided
for the passenger side only (value PassengerSideOnly) or
for both sides of the vehicle (LeftAndRight).

3.4. Compositional structure

In this subsection, we discuss concepts for describing the
structure of software product families and their individuals.
We use the term structure to refer to how instances are
composed of other instances of the same kind.

A composable type can be defined a compositional struc-
ture. Composable type is an abstract metaclass that is a
subclass of Kumbang type. Composable type has two con-
crete subclasses, component type and feature type, see
Fig. 3b. A composable type intentionally specifies the prop-
erties of its instances.

A component type represents a distinguishable entity in
a software product family. Such an entity may be, for
instance, a software component, or, in the case of an
embedded system, a hardware component. Components,
the instances of component types, represent software com-
ponents constituting individual software systems in the
software product family.

A feature type defines the properties of its instances, i.e.,
features. A feature is an end-user visible characteristic of a
system [5]. Hence, the features a product individual delivers
characterise the individual from the user’s or sales person’s
point of view.

At most one component type can be defined to be the
root component type, and at most one feature type the root
feature type. A Kumbang model must define at least one of
the root types. This implies that a Kumbang model may
describe a software product family from either an architec-
tural or a feature point of view, or from both.

The compositional structure of a composable type speci-
fies how components and features are either physically or
logically composed of other components and features,
respectively. We say that composable instances may have
other composable instances as their parts. When discussing
features, we also use the term subfeature to refer to their parts.

A composable type specifies its compositional structure
through a set of part definitions. A part definition consists
of an optional part name, a non-empty set of possible part

types, a cardinality, and similarity definition. We use the
term whole type to refer to the composable type containing
the part definition.

The part name identifies the role in which composable
instances are parts of the individuals of the whole type.
The set of possible part types contains the composable types
the instances of which may occur as parts of the instances of
the whole type with the part name. The set may only contain
component types if the whole type is a component, and fea-
ture types if the whole type is a feature type. The cardinality
consists of a lower and upper bound. The lower bound is a
non-negative integer, and the upper bound an integer greater
than or equal to one. The upper bound must be greater than
or equal to the lower bound. Finally, the similarity definition
takes one of the values same, different, and none; the defini-
tion specifies whether the parts must be of the same type
(same), must be of different types (different), or there are no
restrictions on their respective types (none).

Semantics. In a valid configuration, there must exist
exactly one instance of the root component type, if one is
defined. We call this instance the root component instance.
Similarly for the root feature type, if one is defined, there
must be exactly one instance of it (root feature instance)
in a valid configuration. All other composable instances
must be a part of some other composable instance. Hence,
all the component instances in a valid configuration are
transitive parts of the root component instance, and all fea-
ture instances of the root feature instance. The types of all
instances in a valid configuration must be concrete.

A valid instance of a composable type has the parts
specified by its part definitions. In more detail, an instance
i is valid if (and only if) it has, for each part definition p of
its type t, n composable instances as its parts with the part
name p.name. The number n must be between the lower
and upper bounds of the cardinality. Each part must be
of one of the possible part types, p.types. Further, if the
similarity definition has value same, all the part instances
must be of same type; if the similarity definition has value
different, the part instances must all be instances of different
types. A valid composable instance has no other parts than
those implied by the part definitions of its type.

UML. In the Kumbang profile, ComposableType is an
abstract stereotype that specialises KumbangType; see
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Fig. 3b. ComponentType and FeatureType are concrete ste-
reotypes that specialise ComposableType. The stereotype
ComposableType extends StructuredClassifier (from Inter-

nalStructures). In addition, ComponentType extends Com-

ponent (from components). No explicit extension is given
for FeatureType: the stereotype inherits the extension from
its superclass ComposableType.

Part definitions are represented by the PartDefinition

stereotype. The stereotype is defined two properties: types

of type ComposableType contains the set of possible part
types and the enumerated value similarity encodes the sim-
ilarity definition. The cardinality of the types property is
1..*, implying that the set of possible part types must be
non-empty.

Example. The structure of the example software product
family is illustrated in Fig. 6. In more detail, Fig. 6a illus-
trates the featural structure: a car periphery system (CPS),
represented by the root feature type, CPSFeatures, is com-
posed of two applications: pre-crash detection and parking
assistance, represented by the feature type PreCrash and
ParkingAssistance. The two applications are represented
Fig. 6. The compositional structure of the running example. (a) The compositio
and hardware architectures. (c) The hardware architecture illustrated in m
compositional structure, interfaces and connections between interfaces.
by the part definition application with cardinality 1..2 and
the two above-mentioned types as the possible part types.
The fact that the similarity definition has the value different

captures that fact that the same application cannot be
meaningfully delivered twice by the same system.

There are further part definitions in the model. The
feature type ParkingAssistance includes five part defini-
tions: imminent, veryNear, near, inProximity, and userInter-

face. The first four represent the different zones that the
parking assistance system monitors. The cardinality 0..1
of inproximity implies that this zone is optional (may or
may not be included in a parking assistance application),
whereas the other zones are mandatory (must be included).
The fifth part definition, userInterface, represents the user
interfaces of the application: the interface may be either
an alarming device, a display, or both.

On the component side, the root component type
Fig. 6b defines two parts, hardware of type Hardware and
software of type Software. As the names imply, these
represent the hardware and software, respectively, consti-
tuting the system. Both the software and hardware are fur-
ther decomposed. The decomposition of hardware is
nal structure of feature types. (b) The architecture consists of the software
ore detail. (d) The architecture of the software components, i.e., their
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represented in Fig. 6c: the hardware consists of a sensor set
(part definition named sensorHW) of type SensorSet,
optional audio hardware (audioHW) of type Buzzer, Loud-

speaker, or RadioAdapter, and an optional display (dis-

playHW) either of type TFT1 or TFT2. The software,
illustrated in Fig. 6c, consists of sensor software (sensors),
optional pre-crash detection software (precrash), and one
to three different applications (application).

3.5. Interfaces and connections

Components, especially software ones, are often charac-
terised by the services they require from the environment in
which they are deployed, and the services they provide
themselves to their environment. Interfaces are a means
to describe such services. In this subsection, we discuss
the concepts and constructs in Kumbang for describing
the interfaces of components, and the connections between
such interfaces.

An interface type is a description of a set of functions. A
function corresponds to a function signature in a program-
ming language, such as the C programming language. Intu-
itively, an interface type describes a set of services.
Interface type is a subclass of the metaclass Kumbang type.
The instances of interface types, interface instances, are
connection points of component instances.

A component type specifies the required and provided
services of its instances via interface definitions. An inter-
face definition consists of an optional interface name, a
non-empty set of possible interface types, a direction defini-

tion, an optionality definition, and a groundedness definition.
The interface name specifies the role in which the interfaces
instances are interfaces of the component type. The set of
possible interface types contains the interface types the
instances of which may occur as interfaces of instances of
the component type by the interface name.

The direction definition has two possible values: pro-

vided and required, with the intuitive semantics that inter-
face instances denote services either provided or required
by the component, based on the value in the definition cor-
responding to the interface.

The optionality definition has two possible values:
optional and mandatory: the value mandatory implies that
the instances of the component type must have an interface
with the interface name, whereas the value optional implies
that the instances may but need not have such an interface.
Finally, the groundedness definition is a Boolean value that
specifies whether an instance of the component implements
the functions and attributes defined by the interface type
(true), or whether the responsibility is delegated to its parts
(false). It should be noted that the groundedness definition
is meaningful only for provided interfaces.

There may be a connection between a pair of interface
instances. The fact that the pair of interface instances
(a,b) is connected is conceptualised by the pair being in
the connected relation. The interface instance is the first
position is termed the source interface, and the interface
in the second position the target interface. The connected

relation is not, by default, symmetric: connected(a,b) does
not imply connected(b,a). The intuitive semantics of con-
nections is that requests, such as function calls, flow from
the source interface to the target interface. In other words,
the target interface provides the services described by its
type to the source interface.

Not all pairs of interface instances may be reasonably
connected. Which interfaces instances may be connected,
is determined by their directions, types, and the relative
locations of the component instances containing them. A
valid configuration may be required to contain certain con-
nections between pairs of interface instances. The specific
rules that determine which connections are possible and
required in a valid configuration depend on the component
model assumed. One set of such rules is based on the ones
used in Koala [37]; other rules are likewise possible. In the
following, we assume that such a set of rules has been
defined, but do not commit to any specific set of such rules.

A component type may include a number of connection

constraints. A connection constraint is a condition requir-
ing that a connection between a pair of interfaces exists.
A connection constraint is a special case of the constraint

concepts, and will be discussed in more detail in the follow-
ing subsection.

Semantics. A valid component instance has the inter-
faces defined by its type. In more detail, a valid component
instance c has, for each interface definition d where the
optionality definition has value mandatory, an interface
instance i as its interface with name d.name. If the option-
ality definition has value optional, the component instance
may, but is does not need to have such an interface. The
interface instance is either a required or a provided inter-
face, according to the direction definition. The interface
is either grounded or not according to the groundedness
definition. A valid component instance has no other inter-
faces than those described by its interface definitions.

The connections between pairs of interfaces must obey
the set of rules for connections.

UML. Interface type is represented by the stereotype
InterfaceType that extends the metaclass Interface (from

Interfaces). An instance of the stereotype, i.e., an interface
type, may only own operations. Similarly, an interface def-
inition is represented by the stereotype InterfaceDefinition

that extends the metaclass Port (from Ports). InterfaceDef-
initon defines three properties: types of type InterfaceType

and cardinality 1..* is the set of possible interface types; if
there is only one possible interface type, this is stored in
the type property of the metaclass Property. The Boolean
value isOptional corresponds to the optionality definition;
and direction of the enumerated value type Direction that
has two possible values, required and provided. The ground-
edness definition corresponds to the isBehavior attribute of
the metaclass Port (from ports).

An interface instance is represented by the stereotype
InterfaceInstance that extends the metaclass InstanceSpeci-
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fication (from Kernel). The stereotype defines two proper-
ties: direction and isBehavior. Both of these are derived
attributes: the values are derived from the values of the
interface definitions of the interface instances.

A connection is represented as a stereotype extending
the metaclass InstanceSpecification (from Kernel). In more
detail, connections are represented by links between
instance specifications corresponding to interface instances.
The links are instances of the targets association that is
derived based on the rules for connecting interfaces.

Example. The running example includes two interface
types, ISensor and IPrecrash. The sensor software (sensors)
provides an interface named of type ISensor that represents
raw data from sensors, Fig. 6d. This data is refined by the
pre-crash software (precrash): the component collects the
sensor data through a required interface of type ISensor

and refined provides the refined data for other components
to use through a provided interface of the refined type,
IPrecrash. Applications represented by component types
PreSetSW and PreFireSW use the refined data and the
parking software, represented by component type Par-
kingSW the raw data; the usage of data is represented by
required interfaces.

3.6. Constraints

The concepts and constructs discussed so far form the
basis for modelling variability in software product families.
However, there may exist interdependencies between enti-
ties that cannot be adequately captured using the concepts
and constructs discussed so far. Hence, mechanisms for
specifying such dependencies are needed. In this subsec-
tion, we describe how constraints fulfil this need.

A constraint is a Boolean condition. It must be possible
to evaluate a constraint with respect to a configuration.
Further, each constraint must be true in a valid configura-
tion. Kumbang does not confine to any specific constraint
language: any constraint language can be used as long as it
can evaluated with respect to a configuration. However, we
have specified the Kumbang Constraint Language as an
example of a constraint language. We discuss this language
in the remainder of this subsection.
Table 1
The predicates and functions in Kumbang Constraint Language and their sema
be used to capture complex dependencies between entities in Kumbang model

Predicate Semantics

cardinality(ref) The number of instances refe
value(ref, attr) The set of values of attribute
present(ref) True if an instance reference
instanceOf(ref, T) True if an instance reference
hasInstances(T) True if the type T has instan
hasPartOfType(T) True if the instance has an in
hasPartOfType(T, ref) True if an instance reference
connected(ref) True if an interface instance
connectedTo(ref1, ref2) True if an interface instance
In the Kumbang Constraint Language, it is possible to
make references in the compositional hierarchy. Such refer-
ences are termed part references and consist of a sequence
of part names, optionally qualified by type names. A part
reference is evaluated in the context of a composable
instance, and the semantics of a part reference is the set
of composable instances that match the sequence of part
names and type qualifiers (if present): a part matches a part
name if the name equals its role, and the type if the part is
an instance of the type. It is also possible to make
references to interfaces by adding an interface name to
the end of a part reference. Also interface names may be
qualified with interface types.

Example. The constraint in component type CPSArchi-
tecture includes two part references, spelled out as software.

sensorSW and hardware.sensorHW, see Fig. 4. In feature
type CPSFeatures, the part reference application:Parking

Assistance refers to those parts of CPS instances named
application that are of type ParkingAssistance.

The connects section of component type Software con-
tains interface references. As an example, the reference
application:PreSetSW- >crashinput refers to the interface
named crashinput of a part named application that is of
type PreSetSW.

The Kumbang constraint language defines a number of
predicates and functions on part and interface references
and Kumbang types. Table 1 contains a summary of
these.

Part references are set-valued, i.e., they refer to sets of
instances. This is due to the fact that a composable instance
may have multiple parts in the same role. When predicates
are applied to set-valued referenced, the semantics is exis-
tentially quantified in the sense that the predicate evaluates
to true if it is true for at least one of the instances in the set,
or any pair of instances in the case of connectedTo predi-
cate, see Table 1 for details. It is also possible to explicitly
quantify over part references using the standard universal
(") and existential ($) quantifiers.

Standard arithmetic operators (+, �, *, /, mod) can be
applied to arithmetic values, i.e., real-valued attributes
and cardinalities, to yield new values. Further, such
values can be compared using the customary comparison
ntics. The Kumbang Constraint Language is a constraint language that can
s that cannot be captured using other construct

renced by ref

named attr of instances referenced by ref

d by ref is in the configuration
d by ref is of type T

ces (at least one) in the configuration
stance of type T as its transitive part

d by ref has a transitive part of type T

referenced by ref is connected
referenced by ref1 is connected to an interface instance referenced by ref2
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operators (=, 5, <, 6, >, P). Other attribute values can be
compared for equality and inequality (=, 5). The results of
the comparisons are Boolean values. These can be further
used as operands for the standard logical operators, the
unary not (�), and the binary operators: or (_), and (^),
implication (!), and equivalence (M).

An important class of constraints are connection con-

straints. Connection constraints are a special case of
constraints that can be captured using the connectedTo-
predicate. However, a special syntax for them is used due
to their importance.

Example. In the running example, connection constraints
are defined in component type Software, in the connects sec-
tion. For example, the constraint connectedTo(application:
ParkingSW- >sensorInput, sensorSW- >sdata) is written as
application:ParkingSW- >sensorInput = sensorSW- >sdata.
The intuitive semantics is that whenever the parking assis-
tance software is included in the system, its required inter-
face (sensorInput) must be connected to the sensor date
source (interface sdata of sensors).

Constraints can also be used to specify the dependencies
between features and components. We say that features
instances are implemented by entities in the component
hierarchy. Constraints used to specify such dependencies
are termed implementation constraints. In such constraints,
the dollar symbol ($) can be used to refer to the root com-
ponent instance.

Example. There are a number of implementation con-
straints in the example model. As an example, feature type
ParkingAssistance includes the implementation constraint
present($.software.parkingSW) that has the semantics that
to implement parking assistance, the root software compo-
nent must have a part referenced by software.parkingSW

present.

Semantics. A valid Kumbang instance satisfies the con-
straints of its type.

4. Proof of concept

In this section, we discuss the proof of concept existing
for Kumbang. This includes a translation from Kumbang
to Weight Constraint Rule language, a general-purpose
knowledge representation language; Kumbang Configura-

tor, a prototype tool that can be used to resolve variability
represented using Kumbang models; and a number of case
studies inspired by real-world software product families in
which Kumbang has been used.

We have provided Kumbang with formal semantics by
defining a translation from Kumbang models to Weight
Constraint Rule Language (WCRL) [49], a general-pur-
pose knowledge representation language. Although gen-
eral-purpose, WCRL has been designed to allow the easy
representation of configuration knowledge about non-soft-
ware products. Furthermore, it has been shown to be suit-
able for representing configuration modelling concepts [50].
This suggests that WCRL is a reasonable choice for the
knowledge representation formalism of our approach as
well. Further, an inference system smodels (see http://
www.tcs.tkk.fi/smodels/) operating on WCRL has been
shown to have a very competitive performance compared
to other problem solvers, especially in the case of problems
including structure [49].

We have defined a language based on the Kumbang
domain ontology. The language is likewise called Kum-
bang. The language has been provided with a machine-
readable syntax for the language using javaCC (Java
Compiler Constructor) [51], a tool that generates Java code
for both lexical and syntax analysis based on an input file
describing the tokens and syntax of a language. The
machine-readable syntax closely resembles that used in
Fig. 4, although minor changes have been made in this
paper to save space in the figure. In short, the language
consists of a number of type definitions, each of which con-
tains the properties defined by the type. Hence, the syntax
resembles that of an object-oriented programming lan-
guage. We have implemented the translation from Kum-
bang models expressed in the language to WCRL.

A configuration tool supporting Kumbang has been
implemented in our research group; Fig. 7 shows a screen-
shot. The tool is called Kumbang Configurator [52]. Kum-
bang Configurator supports the user in the configuration
task as follows. The tool reads in a Kumbang model and
represents the variability in the model in a graphical user
interface. The user can enter her requirements for the indi-
vidual product by resolving the variation points in the
model: e.g., the user may decide whether to include an
optional element in the configuration or not, to select attri-
bute values or the type of a given part, create a connection
between interfaces, etc. After each requirement entered by
the user, the tool checks the consistency of the configura-
tion, i.e., are the requirements entered so far mutually com-
patible, and deduces the consequences of the requirements
entered so far; the consequences are reflected in the user
interface. The consistency checks and deductions are per-
formed using smodels based on the WCRL program trans-
lated from the model. Once all the variation points have
been resolved and a valid configuration thus found, the
tool is able to export the configuration, which can be
entered as an input for tools used to implement the soft-
ware, or used for other purposes. The current implementa-
tion has the limitation that only enumerated attribute value
types are supported. Further details about Kumbang Con-
figurator can be found in [52].

Our research group has modelled a number of example
products using Kumbang: in addition to the running exam-
ple used in this paper, see Section 3 above, a weather pre-
diction network loosely based on a real product has been
modelled from the architectural point of view. The models
are roughly equal in size, containing dozens of model ele-
ments (types and their properties). In both cases, Kumbang
has provided a sufficient level of support to capture the
intent of the product families, i.e., the models capture

http://www.tcs.tkk.fi/smodels/
http://www.tcs.tkk.fi/smodels/


Fig. 7. A screenshot from Kumbang Configurator, a tool supporting the configuration task. The configurator takes a Kumbang model as an input and
allows the user to enter his requirements for a specific product using a graphical interface. The screenshot illustrates the running example being configured.
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correctly the intuition of what are the valid configurations
in the families and rules out configurations that are intui-
tively invalid. The cognitive effort required to create the
models has been reasonable. The translation from Kum-
bang language to WCRL could be done within a couple
of seconds.
5. Comparison to related work

In this section, we compare Kumbang to related work.
The comparison is organised according to the main classes
modelling concepts of Kumbang. The main related work
includes feature modelling methods, methods for modelling
product family architectures, the Unified Modeling Lan-
guage (UML), and configuration ontologies.

The comparison is made to UML version 2.0. There are
several reasons for selecting this language version. An obvi-
ous reason is that it is the current official version of the
language. In addition, UML 2.0 contains a number of
concepts and constructs useful for representing composi-
tional structures and architectures that are not found in
previous language version. These include improved facili-
ties for specifying the structure of components and other
classifiers, and the concept of connector used to represent
connections between interfaces in components.
5.1. Types and taxonomy

Not all architecture description languages (ADLs) dis-
tinguish between types and instances. However, the distinc-
tion is made in Koala [37] and in xADL 2.0 [40]. Due to the
practical success of Koala [39], we believe that distinguish-
ing between component instances is useful. Also, in UML
components may have instances. The same distinction is
also made in the product configuration domain [11,12].

Traditionally, feature modelling methods have included
only the notion of features: no distinction between feature
types and instances has been made. However, at least the
authors of [31] have identified a phenomenon in which ‘‘a
configuration may include several different variants of the
same feature’’. We believe this is an important phenome-
non and therefore needs to be explicitly modelled. Further,
we believe it is natural to model this phenomenon using
feature types and instances: this enables a distinction
between feature types appearing in feature models and fea-
ture instances appearing in configurations.

Another benefit of using types is that they facilitate the
reuse of knowledge. Once a type has been defined, it is pos-
sible to refer to it in a simple manner, instead of repeating
the entire definition. The possibility of organising types
into taxonomies and inheriting property definitions further
promote reuse of feature knowledge.

Example. In the running example, the classification of
sensor sets based on the number of sensors (single vs. mul-
tiple), and type (US vs. SSR) is modelled using subtyping.
5.2. Attributes

Attributes are one of the fundamental modelling con-
structs found in almost all software modelling methods.
For instance, they are found in almost all ADLs [36], and
in UML. Hence, it is natural that component types can
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define attributes in Kumbang. Attributes are also used in
feature modelling methods: although not included in
FODA [5] and argued against in [6], they have more recently
been found to be useful concept for modelling features [31].

Some kinds of attribute types are problematic from the
point of view of formalising Kumbang models and reason-
ing about them using WCRL: enumerated values is the eas-
iest kind of attribute types, and these are the kind of
attributes that are supported in the current proof of con-
cept. Comparisons between attributes of string type for
equality and inequality can be implemented using WCRL
in a straightforward manner. The same applies to struc-
tured attribute value types containing enumerated values
and strings as fields. However, arithmetic operations
including floating point values would require adopting
a new knowledge representation language and inference
tool.

5.3. Compositional structure

Part definitions in Kumbang distinguish between the
role (defined by the part name) and type (defined by the
set of possible part types). The distinction is also reflected
in the instance world.

Many methods for modelling components distinguish
between roles and types. The distinction is made in
UML, where parts may be specified both a type and a
name. In Koala, the contained components are defined
both a name and a type. The same holds also for configu-
ration ontologies [11,12].

However, in feature modelling methods there is typically
no distinction between a feature and the role in which the
feature is a subfeature of a whole feature. A number of
arguments speak for introducing the distinction. First,
given the distinction between feature types and their
instances, it is natural that a feature type can be used in
multiple locations of the compositional hierarchy of
features, possible in different roles. Second, instances of a
single feature type may appear as subfeatures of a single
feature type in different roles.

Example. In feature type ParkingAssistance, the feature
type Zone is the possible type of four part definitions,
namely imminent, veryNear, near, and inProximity.

The possibility of defining multiple possible part types
roughly corresponds to alternative and or-features, as
defined in feature modelling methods, such as [31]: an alter-
native feature corresponds to a part definition with a pos-
sible part types corresponding to the alternative features
and cardinality of one. Further, an or-feature can be repre-
sented similarly, with the exception that cardinality is now
1..n, where n is the number of possible part types. However,
in UML 2.0 or in Koala there is no construct similar to
multiple possible types. Hence, the PartDefinition stereo-
type in the Kumbang profile had to be extended with the
property types in order to represent multiple possible part
types. In the product configuration domain, the construct
of multiple possible part types is in wide use.

Cardinality of parts or subfeatures is a construct present
in UML 2.0, some feature modelling methods [31], and
configuration ontologies. Hence, its inclusion to Kumbang
is well motivated.
5.4. Interfaces and connections

Traditionally, points of interactions and connections
between them are an important concept in ADLs, such as
Koala and xADL 2.0. The term most commonly used for
points of interaction in ADLs is port, and for connections
between them connector. Ports have also been considered in
configuration ontologies as connection points of compo-
nents. Such points of interaction have not been defined
for features. Consequently, Kumbang defines interaction
points only for components, not for features.

The advocates of ADLs have traditionally emphasised
the importance of connectors in architecture description
[36]: it has been argued that they should be ‘‘first class enti-
ties’’, equal in importance to components and ports. How-
ever, in Koala connectors are not given much emphasis:
unlike in many ADLs, connectors are typically merely con-
nections between connections points with no internal struc-
ture; there are no connector types in either of these
languages, nor are there connector instances in UML.
The practical success of Koala and the fact that UML is
the de facto standard modelling method in software engi-
neering domain motivated the connection concept in Kum-
bang to be similar to these two languages.
5.5. Constraints

Constraints have been found an important modelling
concept in the product configuration domain [11]. Also,
feature modelling methods typically include the possibility
to state at least two forms of constraints: for features A and
B, it is possible to state that A and B are incompatible, or
that A requires B. However, it has been argued that this
form of constraints is not sufficient [53]. As an example,
there is no straightforward way to state that A and B

together require C. Further, there may exist even more
complex interactions between features [54]. Also, with
models describing variability both from a feature and an
architecture point of view, it is not feasible to assume that
there would be no interactions between entities in these
views. Hence, we believe a comprehensive constraint lan-
guage is needed to capture the possibly complex interac-
tions between different entities.
6. Conclusions and further work

We have presented Kumbang, a domain ontology for
modelling the variability in software product families.
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The ontology synthesises existing variability modelling
methods, predominantly feature and architecture based
ones. It incorporates modelling constructs developed in
the product configuration domain. The proof of concept
shows that the semantics is rigorous enough to serve as
the basis for representing Kumbang models using Weight
Constraint Rule Language (WCRL) [49], a general purpose
knowledge-representation language with formal semantics.
Therefore, Kumbang serves as a solid basis for developing
modelling languages and tool support for the tasks of man-
aging variability in software product families and configur-
ing them to meet specific customer requirements.

There are a number of possible ways to extend Kumbang.
One such extension would be to extend Kumbang to support
modelling the evolution of software product families: many
software product families have long life-spans during which
new component types and versions of types are introduced
[55]. Also, in some cases it is desirably to configure a software
product family at multiple stages [56]: at each stage, some
decisions are made while others are deferred till later stages.
Extending Kumbang to support such a configuration pro-
cess is an interesting research problem.

In addition to conceptual extensions, Kumbang can be
extended in other directions. One of the directions is mod-
elling languages based on Kumbang. In this paper we have
used one such language to present the example; other
languages, both textual and graphical, would be likewise
feasible. In designing such a language, minimising the
cognitive effort required to create Kumbang models should
be an important design criteria.

Still further towards applications, the tool support for
Kumbang should be further developed. A prototype of a
configuration tool exists and needs to be further developed.
The fact that Kumbang is described as a UML profile
suggests that existing UML tools could be used to create
Kumbang models. However, this is not quite straightfor-
ward, as most such tools seem to support the standard less
than perfectly and also the standard itself is not quite
unambiguous.

Finally, demonstrating the practical applicability of
Kumbang requires modelling real software product fami-
lies in real software development contexts. Both the expres-
sive power and usability of Kumbang and the language
built on it should be evaluated. Similarly, applying Kum-
bang to a sufficiently wide range of different kinds of con-
figurable software product families can be used to analyse
its scope of applicability.
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Pitkäranta for implementing Kumbang Configurator and
participating in creating the example model used in the
paper.

References

[1] M. Svahnberg, J. van Gurp, J. Bosch, A taxonomy of variability
realization techniques, Software - Practice and Experience 35 (8)
(2006) 705–754.

[2] J. Bosch, Software variability management (introduction to special
issue on software variability management), Science of Computer
Programming 53 (5) (2004) 255–258.

[3] P.C. Clements, L. Northrop, Software Product Lines – Practices and
Patterns, Addison-Wesley, Boston, MA, 2001.

[4] J. Bosch, Design and Use of Software Architectures: Adapting and
Evolving a Product-Line Approach, Addison-Wesley, Boston, MA,
2000.

[5] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, S.A. Peterson.
Feature-oriented domain analysis (FODA) – feasibility study, Tech-
nical Report CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, 1990.

[6] K. Czarnecki, U.W. Eisenecker, Generative Programming, Addison-
Wesley, Boston, MA, 2000.

[7] T. Asikainen, T. Soininen, T. Männistö, A Koala-based approach for
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of two configurable software product families, in: Proceedings of the
5th International Workshop on Product Family Engineering (PFE-5),
2004, pp. 403–421.

[20] J. van Gurp, J. Bosch, Proceedings of Software Variability Manage-
ment Workshop, Technical Report IWI Preprint 2003-7-01, Univer-
sity of Groningen, 2003.



40 T. Asikainen et al. / Advanced Engineering Informatics 21 (2007) 23–40
[21] J. Bosch, P. Knauber, Proceedings of International Workshop on
Software Variability Management (SVM) (held in conjunction with
ICSE 2003), Portland, Oregon, USA, 2003.
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