
Timo  Asikainen  and  Tomi  Männistö.  2009.  Nivel:  a  metamodelling  language  with  a
formal  semantics.  Software  and  Systems  Modeling,  volume  8,  number  4,  pages
521549.

© 2008 by authors and © 2008 Springer Science+Business Media

Preprinted with permission from Springer Science and Business Media.

The final publication is available at http://www.springerlink.com/.

http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s1027000801032

http://www.springerlink.com/.
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10270-008-0103-2


Nivel: A metamodelling language with a formal semantics

Timo Asikainen, Tomi Männistö ?

Helsinki University of Technology, Department of Computer Science and Engineering, P.O. Box 9210, FI-02015 TKK, Finland

Abstract Much work has been done to clarify the no-
tion of metamodelling and new ideas, such as strict meta-
modelling, distinction between ontological and linguis-
tic instantiation, unified modelling elements and deep
instantiation, have been introduced. However, many of
these ideas have not yet been fully developed and inte-
grated into modelling languages with (concrete) syntax,
rigorous semantics and tool support. Consequently, ap-
plying these ideas in practice and reasoning about their
meaning is difficult, if not impossible. In this paper,
we strive to add semantic rigour and conceptual clarity
to metamodelling through the introduction of Nivel,
a novel metamodelling language capable of expressing
models spanning an arbitrary number of levels. Nivel
is based on a core set of conceptual modelling concepts:
class, generalisation, instantiation, attribute, value and
association. Nivel adheres to a form of strict metamod-
elling and supports deep instantiation of classes, asso-
ciations and attributes. A formal semantics is given for
Nivel by translation to weight constraint rule language
(WCRL), which enables decidable, automated reasoning
about Nivel. The modelling facilities of Nivel and the
utility of the formalisation are demonstrated in a case
study on feature modelling.

Key words conceptual modelling – metamodelling –
Nivel – weight constraint rules – formal semantics

Send offprint requests to: Timo Asikainen
? We gratefully acknowledge the financial support from

the Finnish Funding Agency for Technology and Innovation
(Tekes) and from the Technology Industries of Finland Cen-
tennial Foundation.

Correspondence to: Timo Asikainen, tel. +358 9 4515364, fax
+358 9 4514958, e-mail: timo.asikainen@tkk.fi

1 Introduction

Modelling is one of the fundamental paradigms under-
lying any mature field of engineering. This is also the
case in software engineering, where initiatives such as the
model-driven engineering one highlight the importance
of models as engineering artefacts [24]. Metamodelling is
an active area of research within the software modelling
community with a long history, see, e.g., [15,18].

Recently, much work has been done to clarify the no-
tion of metamodelling [22] and interesting ideas, such as
strict metamodelling [4,5], distinction between ontolog-
ical and linguistic instantiation [6,22], unified modelling
elements [5] and deep instantiation [3,7] have been intro-
duced and argued for; see Section 2 for an overview. Al-
though these ideas are intuitively clear and described by
some formal rules [3,4,23], they have not been developed
into modelling languages with either formal semantics or
supporting tools, which essentially makes them practi-
cally inapplicable.

A number of reasons speak in favour of giving a mod-
elling language a formal semantics. Without a seman-
tics, a language only amounts to a collection of nota-
tions. Such a collection may well be useful for commu-
nication purposes, but may lead into disputes over the
proper usage and interpretation of the notations [14].
Although the semantics of a modelling language would
be intuitively clear, it may still not be precise enough to
enable formal (automated) reasoning and implementing
model transformations required, e.g., in a model-driven
development approach. The importance of a formal se-
mantics is also emphasised by the large number of pa-
pers formalising parts of UML, e.g., [9,14,25]. Finally,
it is particularly useful to give a formal semantics to a
metamodelling language: a metamodel, when viewed as
a modelling language, expressed in the metamodelling
language is given at least a partial semantics, as demon-
strated in Section 5.

On the other hand, it is not the case that a language
with a formal semantics would in general be unaccept-



2 Timo Asikainen, Tomi Männistö

able to users [16]. Instead, such a language can be made
accessible through a suitable concrete syntax or support-
ing tools; this is an approach sometimes referred to as
“logic through the backdoor” in artificial intelligence re-
search [33].

In this paper, we introduce Nivel, a novel meta-
modelling language capable of expressing models span-
ning an arbitrary number of levels. Nivel is intended
to cover a large variety of different modelling purposes
and is therefore not committed to any single modelling
paradigm, such as object-orientation. Nivel is based on
a core set of modelling concepts—class, generalisation,
attribute, value and association—found in many exist-
ing conceptual modelling languages. In addition, empha-
sis is put on defining the instantiation relationship be-
tween classes, which enables Nivel to be credited as a
metamodelling language. Finally, Nivel incorporates a
number of more recent ideas including strict metamod-
elling [4,5], distinction between ontological and linguistic
instantiation [6,22], unified modelling elements [5] and
deep instantiation [3,7]

Nivel elaborates on its modelling constructs in var-
ious ways. The notion of deep instantiation previously
defined for classes and attributes is extended to cover
associations. A role in an association may be played by
more than one class. Generalisations between associa-
tions are considered in detail, including cases in which
roles are redefined in association subclasses. Both mul-
tiple classification and restricting to single classification
are supported. Classes on a higher level exercise control
over their instances whether and how they may partic-
ipate in generalisations and define attributes. Although
most of these ideas are not be new to Nivel, we believe
that integrating them into a single yet relatively concise
language with a formal semantics is a novel and signif-
icant contribution from a theoretical point of view and
also a step towards practical applications.

A formal semantics is given for Nivel by a transla-
tion to Weight Constraint Rule Language (WCRL) [32],
a general purpose knowledge representation language for
which efficient, decidable reasoning procedures are avail-
able. This enables decidable, automated reasoning about
Nivel. The modelling facilities of Nivel are demon-
strated using a running example and a case study on fea-
ture modelling, a modelling initiative popular in the soft-
ware product family domain; the case study also high-
lights the utility of the formalisation.

The remainder of this paper is organised as follows.
Next, in Section 2 we review a number of ideas related
to metamodelling that will be incorporated in Nivel.
Section 3 provides an overview of WCRL. Thereafter,
Nivel is introduced and formalised by translation to
WCRL in Section 4. Section 5 presents a case study in
which Nivel is applied to feature modelling. Discussion
and comparison to previous work follow in Section 6. Fi-
nally, conclusions and an outline for further work round
up the paper in Section 7.

2 Modelling and metamodelling

In this section, we provide an overview of terminology
and ideas related to metamodelling that will be incorpo-
rated in Nivel in Section 4.

2.1 Model

In this paper, we adopt the view that being a model is
a relationship between a model and and an original [34,
22]. That is, being a model or an original is not an in-
trinsic property of an entity but roles played by them in
a binary relationship.

A model is expressed using a modelling language. The
term language element is used to refer to entities con-
stituting a modelling language; examples include propo-
sition and connective in propositional logic and entity
and relationship in ER modelling. Entities constituting
models are referred to as model elements.

2.2 Metaness

The notion of metaness often occurs when modelling is
discussed, especially in the software engineering context.
In this paper, we adopt a characterisation of metaness
based on a binary relation R and the relation Rn defined
for n ≥ 1 as [22]:

e1 Rn e2 =

{
e1 R e2 if n = 1
∃ e : e1 R n−1 e ∧ e R e2 if n ≥ 2

A relation suitable for building metalevels is required
to satisfy three properties: the acyclic, anti-transitive
and level-respecting properties [22]. The level-respecting
property implies the anti-transitive property [22] and
the acyclic property, see Appendix B. Hence, the level-
respective property defined as [22]

∀n, m : (∃ e1, e2 : e1 Rn e2 ∧ e1 Rm e2)→ n = m

suffices to characterise a relation suitable for building
metalevels.

Given a relation R suitable for building metalevels,
element e1 can be characterised as meta with respect to
e2 if (and only if) e1 Rne2 for n ≥ 2. For example, if R is
the binary relation modelOf (m, o), m is termed a model
of original o and modelOf 2(m, o) implies that m is a
metamodel of o. Further, each element m corresponds
to a level, or metalevel or layer, alternative terms used.
The level corresponding to m is said to be above the level
corresponding to o whenever modelOf p(m, o) for p ≥ 1;
conversely, the level corresponding to o is said to be below
the one corresponding to m. Finally, the terms top and
bottom are used to refer to levels above and below all
other levels, respectively.

If R is the instanceOf (i, t) relation, i is termed an
instance of t and t a type of i. For instanceOf p(i, t), i is
termed an instance of order p of t. Instances of order 2
or higher are collectively termed higher-order instances.



Nivel: A metamodelling language with a formal semantics 3

2.3 Strict metamodelling

The strict metamodelling rule has been defined as [4,5]:

In an n-level modeling architecture M0, M1, . . . ,
Mn−1, every element of an Mm-level model must
be an instance-of exactly one element of an Mm+1-
level model, for all m < n−1, and any relationship
other than the instance-of relationship between
two elements X and Y implies that level(X) =
level(Y ).

The rule guarantees that the models constituting a
metamodelling framework have well-defined boundaries;
in the absence of such boundaries, the notion of metaness
discussed in Section 2.2 could only be applied to individ-
ual model elements, not models.

Effectively, the rule requires that an element may not
be an instance of another element two ore more levels
above. Also, the rule enforces single classification: an el-
ement may not be an instance of two or elements.

2.4 Ontological and linguistic instantiation

A typical metamodelling framework is based on a sin-
gle form of instantiation. It has been argued that re-
sorting to a single form of instantiation leads to a num-
ber of problems, most importantly dual classification [5].
As an example of dual classification, a model element,
say Collie in Figure 1, is both an instance of Class and
Breed ; although both of these classifications are relevant,
they are different in nature and, ideallly, a metamod-
elling framework should acknowledge the difference.

As a remedy, it has been suggested that metamod-
elling frameworks should distinguish between two forms
of classification (instantiation), termed the logical and
physical dimension [5], or alternatively, ontological and
linguistic instantiation [6,22]. In this paper, the latter
set of terms is adopted.

As the term linguistic suggests, linguistic instantia-
tion pertains to the (abstract syntax of the) language
used to represent model elements or, in other words,
the form model elements take [3,5]. In terms of model
and language elements as defined and discussed in Sec-
tion 2.1, linguistic instantiation is a relation between
model and language elements where the former play the
role of instance and the latter that of class or type. An
ontological instantiation relationship relates two mod-
els (or model elements) that are in the same domain of
discourse, e.g., biology or retail sales, but on different
levels [22].

Figure 1 illustrates the distinction between ontologi-
cal (dashed vertical arrows) and linguistic instantiation
(dashed horizontal arrows). In the figure, Lassie is an on-
tological instance of Collie and a linguistic instance of
Object . Collie, on the other hand, is an ontological in-
stance of Breed and a linguistic instance of Class. Breed
is a linguistic instance of Metaclass.

ontological 
instance-of

O1

O0

L0 L1

O2

ontological 
instance-of

Collie
yearReg=1888
age

Class

Object

linguistic 
instance-of

linguistic 
instance-of

type

instance

Metaclass
linguistic 

instance-of

type

instance

Breed
yearReg

Lassie
age=7

Fig. 1 Ontological and linguistic instantiation. Adapted
from [22]

2.5 Unified modelling elements

In a metamodelling framework, model elements on a
level are typically represented using the same language
element: for example, in Figure 1, level O0 is associ-
ated with Object , level O1 with Class and level O2 with
Metaclass. Should another ontological level be added,
a new language element would need to be introduced,
probably termed Metametaclass in this case. If it is not
possible to add language elements, the maximum num-
ber of available ontological levels is determined by the
set of language elements at hand [5].

The notion of unified modelling elements has been
suggested as a means to avoid undue restrictions of the
above kind on the number of ontological levels. The no-
tion is based on the observation that model elements on
intermediate levels, i.e., other than the top and bottom
level, are uniform in the sense that they exhibit both
characteristics of classes and objects. Consequently, the
model elements can be represented by a single language
element, termed the unified modelling element Further,
model elements on the top and bottom levels can be
viewed as special cases, top-level elements with a degen-
erate object and bottom-level elements with a degen-
erate type facet. In order to assign model elements to
levels, the unified modelling element includes an integer
attribute for level. [5]

Figure 1 has been redrawn as Figure 2, employing
unified modelling elements. In Figure 2, the unified mod-
elling element ModelElement unifies Metaclass, Class
and Object in Figure 1. Breed , Collie and Lassie are
all linguistic instances of ModelElement .



4 Timo Asikainen, Tomi Männistö

ontological 
instance-of

O1

O0

L0 L1

O2

ontological 
instance-of

Collie
yearReg=1888
age

linguistic 
instance-of

linguistic 
instance-of

linguistic 
instance-ofBreed

yearReg

Lassie
age=7

ModelElement
level

Fig. 2 Unified modelling elements

2.6 Deep instantiation

The case in which a model element may have higher-
order instances is referred to as deep instantiation as
opposed to the case of shallow instantiation where only
first-order instances can be represented [3,5].

The maximum order of instances of a class is spec-
ified by its potency [3,5]. Potency is a non-negative in-
teger assigned independently for each class that is not
an instance of another class; the potency of a class is
denoted by a superscript after its name, cf. Figure 3.
An instance of a class has the potency value of its type
decremented by one. However, the potency value may
not be less than zero. Hence, the potency of a class gives
the maximum order of its instances. A class under the
notion of shallow instantiation is of potency 1.

Under deep instantiation, it is useful to enable a
model element to characterise its higher-order instances.
As an example, in Figure 3 the attribute denoted age2

implies that each second order instance of Breed , e.g.,
Lassie, has a value for age; the intuition is that every
dog must have an age. More generally, each attribute of
a class is assigned an integer value termed potency that
resembles the potency assigned for classes in that an in-
stance of the class has an attribute by the same name
as its type but with the potency decremented by one;
an attribute of potency one turns into a value in an in-
stance. Just as for classes, the potency of an attribute is
denoted using a superscript after its name. [3,5]

In Figure 3, the attribute age of Breed is of potency 2.
Further, by virtue of being an instance of Breed , Collie
has an attribute by the same name but of potency 1.
Finally, a value (7) is assigned for age in Lassie.

ontological 
instance-of

O1

O0

L0 L1

O2

ontological 
instance-of

Collie1

yearReg=1888
age1

ModelElement

linguistic 
instance-of

linguistic 
instance-of

linguistic 
instance-of

Lassie0

age=7

level
potency

Breed2

yearReg1

age2

Fig. 3 Deep instantiation

3 Weight Constraint Rule Language

In this section, we provide a brief overview of Weight
Constraint Rule Language (WCRL) based on [32], where
the interested reader should refer for exact definitions,
proofs and examples. WCRL will be used to give a formal
semantics for Nivel in Section 4.

WCRL is a general-purpose knowledge representa-
tion language similar to logic programs with a declar-
ative formal semantics based on the stable model se-
mantics of logic programs: the rules of the program are
interpreted as constraints on a solution set for the pro-
gram, whereas the usual logic programming paradigm is
based on a goal-directed backward chaining query eval-
uation [29].

3.1 Syntax of weight constraint rules

A weight constraint rule is an expression of the form

C0 ← C1, . . . , Cn

where each Ci is a weight constraint. A weight constraint
is of the form:

L ≤ {a1 = wa1 , . . . , an = wan
,

not b1 = wb1 , . . . , not bm = wbm
} ≤ U

where each ai and bj is an atom. Atom a and not-atom
not b are called literals. Each literal is associated with
a weight: e.g., wa1 is the weight of a1. The numbers L
and U are the lower and upper bound of the constraint,
respectively.



Nivel: A metamodelling language with a formal semantics 5

A number of notational shorthands are used. Con-
straints where every weight has value 1, i.e., of the form

L ≤ {a1 = 1, . . . , an = 1,

not b1 = 1, . . . , not bm = 1} ≤ U

are termed cardinality constraints and written as

L {a1, . . . , an, not b1, . . . , not bm} U

A missing lower bound is interpreted as −∞ and a
missing upper bound as ∞.

A rule of the form

{a1, . . . , an} ← C1, . . . , Cn

is termed a choice rule.
Constraints of the form 1 ≤ {l = 1}, where l is a lit-

eral, are written simply as l.
The shorthand

← C1, . . . , Cn

is used for rules where the head C0 is an unsatisfiable
constraint, such as 1 ≤ {}. This kind of rules are termed
integrity constraints. Finally, rules with an empty body,
that is, of the form

C0 ←
are termed facts.

3.2 Stable model semantics

A set of literals S is defined to satisfy a weight constraint
if (and only if):

L ≤
∑
ai∈S

wai
+
∑
bi /∈S

wbi
≤ U

That is, a weight constraint is satisfied if the sum of
weights of the literals satisfied by S is between the lower
and upper bounds. A weight constraint rule is satisfied
by a set of atoms S if and only if the head C0 is satisfied
whenever each constraint Ci in its body is satisfied. A
program P is defined as a set of weight constraints. P is
satisfied by S if and only if every weight constraint rule
in P is satisfied by S.

A set of atoms S is a stable model of program P if
(i) S satisfies P and (ii) S is justified by P . Intuitively, S
is justified or grounded by P if every atom a in S has
a non-circular justification. An atom is justified by a
program if it appears in the head of a satisfied rule. Non-
circular justification requires in addition that the body
of the justifying rule is satisfied without assuming a.

Example Consider the program:

0 ≤ {a = 1, b = 1} ≤ 2← a

The set of atoms {a} satisfies the only rule in program,
and thus the program itself. However, the atom a only
has a circular justification: the body is obviously not
satisfied without assuming a. Hence, {a} is not a sta-
ble model of the program. The only stable model is the
empty set.

3.3 Rules with variables

For practical purposes, WCRL has been extended with
a form of variables and function symbols. In more detail,
domain-restricted rules with variables are allowed. In-
tuitively, a domain-restricted program P is divided into
two parts: PDo containing the definition of domain pred-
icates and POt containing all the other rules. The form
of rules in PDo is restricted in such a way that PDo has a
unique, finite stable model. All the rules in POt must be
domain-restricted in the sense that every variable occur-
ring in a rule must appear in a domain predicate which
occurs positively in the body of the rule. The domain
predicates in PDo are defined using stratified rules al-
lowing a form of recursion [36].

A rule with variables is treated as a shorthand for all
its ground instantiations with respect to the Herbrand
universe of the program, i.e., the set of atoms that can be
composed by applying functional composition from the
basic symbols. The ground instantiation contains all the
rules that can be obtained by substituting each variable
in the rule with one of its possible values, restricted by
one or more domain predicates. The atoms occurring in
ground rules thus formed are termed the Herbrand base
of the program and a model consisting of such atoms a
Herbrand model.

Example Let us demonstrate different kinds of rules us-
ing a generalisation relation as an example, represented
as a binary predicate subclassOf (a, b) in WCRL. Intu-
itively, the predicate gives that a is a subclass of b, and b
is a superclass of a. In addition, we define the predicate
subclassOf d(a, b) with the semantics that a is a direct
subclass of b. The unary domain predicate classp(c) gives
that c is a class.

To begin with, facts of the form

classp(a)←

can be used to define the set of classes of interest.
To specify that a direct subclass is also a non-direct

subclass, we can write:

subclassOf (A, B)← subclassOf d(A, B),
classp(A), classp(B)

In the above rule, the literals classp(A) and classp(B)
are needed to make it domain-restricted.

A choice rule can be used to enable direct generali-
sations between pairs of classes:

{subclassOf d(A, B)} ← classp(A), classp(B)

That a class may not be a direct subclass of itself can
be represented using the integrity constraint

← subclassOf d(A, A), classp(A)



6 Timo Asikainen, Tomi Männistö

The possibility that a class (A) has two or more su-
perclasses (B) can be ruled out using an integrity con-
straint:

← 2 {subclassOf (A, B) : classp(B)}, classp(A)

The above rule also serves as an example of a rule in-
cluding a conditional literal. Conditional literals are of
the form l : d, where l is any predicate and d is a do-
main predicate. When instantiated, a conditional literal
corresponds to the sequence of literals l′ obtained by
substituting the variables in l by all the combinations
allowed by the domain predicate d.

3.4 Computational complexity and implementation

Given a ground WCRL program P , i.e., one not con-
taining variables, and a set of atoms S, it can be de-
cided in polynomial time whether S is a stable model
of P . Deciding whether program P has a stable model
is NP-complete.

An inference system, smodels1, implements WCRL
and has been shown to be competitive in performance
compared with other solvers, especially in the case of
problems including structure [32]. The smodels system
includes built-in function symbols for integer arithmetic
over domains restricted by domain predicates. This al-
lows rules such as

weightOn(B, P,G×M)← mass(B, M), gravity(P,G)

where the predicate mass(b, m) gives mass m of body b,
the predicate gravity(p, g) gravitational acceleration g on
planet p and the predicate weightOn(b, p, w) weight w of
body b on planet p. The built-in function denoted by ×
is the integer product.

The smodels system can be asked to compute a de-
sired number of stable models of a program that agrees
with a set of literals given as a compute statement.

4 Nivel—a metamodelling language

In this section, we introduce Nivel, a metamodelling
language capable of expressing models spanning an ar-
bitrary number of levels. Nivel is based on established
conceptual modelling concepts: class, generalisation, at-
tribute, value and association. Special emphasis is put on
defining the instantiation relationship between classes,
which enables Nivel to be credited as a metamodelling
language. In addition, Nivel incorporates more recent
metamodelling ideas discussed in Section 2 above.

The modelling facilities of Nivel are demonstrated
using a running example throughout the section and fur-
ther in a case study on feature modelling in Section 5.

1 See http://www.tcs.tkk.fi/Software/smodels/

A formal semantics is given for Nivel by translation
to WCRL. The semantics enables automated, decidable
reasoning on Nivel which is essential in solving different
computational tasks related to Nivel. WCRL is particu-
larly well suited as a knowledge representation language
for Nivel, as will be argued in Section 6.2. In short, the
number of complexity of rules required is moderate and
the translation is intuitive and modular.

This section begins with a description of the prin-
ciples applied in the formalisation. Thereafter, the lan-
guage elements of Nivel are discussed. The section is
concluded by an overview of computational problems re-
lated to Nivel.

4.1 Formalisation principles

A formal semantics is given for Nivel by translation
to WCRL. In the terminology of [26], the approach fol-
lowed is translational semantics: the syntactic constructs
of a language are mapped onto constructs of another lan-
guage, one that has a semantics defined. The symbol t
will be used to denote this mapping. Further, the map-
ping denoted by t can be termed the semantic mapping
and WCRL the semantic domain [17].

In symbols, we write: t : N 7→ W, where N denotes
the set of syntactically well-formed Nivel models and
W the set of WCRL programs. A model M entering the
mapping t is termed an input model.

4.1.1 Input and valid models, possible and actual ele-
ments The formal semantics capture the notion of a
valid model. Intuitively, the notion of validity pertains
to the interrelations that may and must exist between
model elements: for example, a class must not be an in-
stance of itself. The mapping t is constructed in such
a way that each stable model of t(M), where M ∈ N ,
corresponds to a valid Nivel model.

An input model M need not be valid. In general,
only a subset of the elements of M is found in each valid
spun by M : an input model contains elements that may
or may not appear in valid models. Intuitively, an input
model spans a search space for valid models. We will
use the terms possible and actual to refer to elements in
input models and valid models, respectively.

The distinction between possible and actual entities
is illustrated in Figure 4. Consider the model illustrated
in Figure 4 (a) as an input model. It is assumed that
each professor may possibly lecture any course. The in-
put model contains all these possibilities, e.g., all the
possible instances of the lectures association. There is
also a constraint requiring that each course is lectured
by a single professor and a professor must lecture at
least one and at most two courses. A valid model must
satisfy these constraints and may thus only include a
subset of the possible elements. A valid instantiation of
the lectures association is illustrated in Figure 4 (b).

http://www.tcs.tkk.fi/Software/smodels/


Nivel: A metamodelling language with a formal semantics 7

Smith

Jones

Algebra

Topology

(a)

CourseProfessor

Algebra

Topology

AnalysisSmith Jones

1 1..2
lectures

Analysis

:lectures

:lectures

:lectures
(b)

Fig. 4 Input and valid models, possible and actual model el-
ements. (a) A Nivel model spanning a number of valid mod-
els. It is assumed that each professor may possibly lecture any
course. (b) A sample instantiation of the lectures association,
assuming the model of part (a) as an input model.

4.1.2 Variants of predicates In the formalisation, it is
necessary to distinguish between knowledge on input
models and valid models, or in other words, between
possible and actual elements. We draw this distinction
by using different sets of predicates to represent these
two classes of knowledge.

We adopt the convention that predicates referring to
possible entities, i.e., those appearing in input models,
are subscripted with p (for “possible”). These predicates
will be defined in such a way that they are domain pred-
icates; recall the definition from Section 3.3. As a special
case of possible entities, predicates subscripted with D
(for “declared”) are used to represent knowledge that is
explicitly declared in an input model.

Knowledge on actual entities, i.e., those appearing in
valid models, is represented using predicates without a
subscript. For some language elements we will further
distinguish between direct and other, non-direct, cases.
The subscript d (for “direct”) is used to denote the di-
rect case, also in conjunction with possible predicates.
The capital subscript D implies both possibility and di-
rectness, the latter only if applicable.

4.1.3 A syntactic shorthand While input predicates are
domain predicates, actual predicates are not. As can be
recalled from Section 3.3, each variable occurring in a
rule must appear in a domain predicate which occurs
positively in the body of the rule. Consequently, in many
rules concerning actual predicates, the same predicate
will appear positively in the body applied to same argu-
ments both as an actual variant and a possible variant
needed to make the rule domain-restricted. The rules
thus resulting may be unnecessarily difficult to read.

To improve readibility, we adopt a syntactic short-
hand: such a pair appearing in the body of a rule may be
replaced by a single predicate with the subscripts joined
using a comma (,); the dash (−) symbol is used when a

predicate without a subscript is joined. As an example,

predd,D(· · · )

can be used in place of

predd(· · · ), predD(· · · )

4.1.4 Axiomatic and model/problem-specific rules The
program t(M) can be partitioned into two parts: an ax-
iomatic part ta and a part related to a particular model
and a computational problem tP(M).

The axiomatic part ta contains rules shared by all
models M ∈ N . The axiomatic rules cover the interre-
lations between both possible and actual elements, and
how possible elements may be actualised in valid mod-
els. The majority of the description of the formalisation
given in Sections 4.2 through 4.9 is devoted to the ax-
iomatic part. The mapping for possible elements will be
illustrated in parallel with the axiomatic rules using a
running example. Issues related to computational prob-
lems will be discussed in Section 4.10 and as a part of a
case study in Section 5.2.

We now proceed to discuss the language elements
of Nivel. The abstract syntax of Nivel is illustrated in
Figure 5 and will be discussed in detail in the subsections
on individual language elements to follow.

4.2 Class

Class is the most important language element in that all
other language elements are directly related to class.

A model consists of a set of classes, some of which
are top-level classes. The top-level classes are special in
a number of ways to be detailed in the following subsec-
tions. A class is identified by a name.

Semantics A formalisation of Nivel by translation to
WCRL will be given under headings such as this. In
describing the formalisation, we will concentrate on rules
we believe to be most interesting to the reader; other
rules are deferred to Appendix A. Table 1 contains a
summary of the predicates used in the formalisation.

A class is represented using an object constant; an
object constant may represent at most one class. The
predicate class(c) gives that the class represented by c is
a class in a valid model. In the remainder of this paper
we simply say “class c” instead of “the class represented
by c”, and similarly for other model elements represented
by object constants.

The unary domain predicate topLevel(c) gives that
class c is on the top level. A class declared to be on the
top level is also a possible class:

classp(C)← topLevelD(C)

and an actual class:

class(C)← topLevel(C) (1)



8 Timo Asikainen, Tomi Männistö

Association

Class
name:string [0..1]
/level:natural
potency:natural
isAbstact:Boolean
/mayDefineAttributes:Boolean
instancesMayHaveAttributes:Boolean
/superclassing:{none,single,multiple}
instanceSuperclassing:{none,single,multiple}

1

instancetype

(direct)
instanceOf

name:string
Role

hasRole

1

11..*

hasAttr

superclass subclass

Value
name:string
value

1hasValue

(direct)
subclassOf

0..1

Attribute
name:string
potency:natural
cardinality:Cardinality
domain:Domain

Model
numberOfLevels:natural
multipleClassification:Boolean

topLevel 1..*

Cardinality
lower:natural
upper:natural [0..1]

CardinalityConstraint
cardinality:Cardinality
potency:natural

GeneralisationSet
name:string
isCovering:Boolean
isDisjoint:Boolean

playsRoleIn

Domain
name:string
value [*]

Fig. 5 The abstract syntax (language elements) of Nivel

Hence, the top level is fixed in the sense that there
is no distinction between entities possibly and actually
on top level. The top level is also fixed in other re-
spects: in each valid model corresponding to an input
model, the top level is exactly as described in the in-
put model. The rules capturing this idea are relatively
simple and straightforward and are therefore deferred to
Appendix A throughout the formalisation.

Example We will use a running example to demon-
strate the concepts of Nivel and their translation to
WCRL. The example is illustrated in Figure 6, also con-
taining a legend of the notation used. The corresponding
WCRL rules are given as Figure 7

The running example includes a number of classes,
ProductType, Book , Novel , Video, etc. In addition, as
will be discussed in Section 4.8, an association is a special
case of class and hence all the associations in the model,
e.g., adapts and dramatisation, are classes as well.

Class ProductType and association adapts are de-
clared to be on the top level as follows:

topLevelD(productType)←
topLevelD(adapts)←

4.3 Generalisation

A generalisation is a binary relationship between classes,
represented by the subclassOf relation. More specifically,
if subclassOf (a, b) holds, we say that a is a subclass of b
and that b is a superclass of a. We also introduce the no-
tion of direct subclass, represented using the subclassOf d

relation, and use the terms direct subclass and direct su-
perclass in their obvious meanings.

The subclassOf relation is required to be antisym-
metric. That is, it cannot be the case that two classes, a
and b, are mutually subclasses of each other, unless a
equals b.

We term a class that is on the top-level and does not
have any superclasses a root class.

Semantics The predicates subclassOf and subclassOf d

are used in the meaning described above.
The predicate subclassOf is the reflexive closure of

subclassOf d, which is represented as follows, for the pos-
sible case:

subclassOf p(C, C)← classp(C) (2)

and actual elements:

subclassOf (C, C)← class−,p(C) (3)

Similarly for the transitive closure, we write for the
possible case:

subclassOf p(Csub , Csuper )← classp(Csuper ),

subclassOf D(Csub , C), subclassOf p(C, Csuper )
(4)

and for the actual case:

subclassOf (Csub , Csuper )←
subclassOf d,D(Csub , C), subclassOf −,p(C, Csuper )

(5)

Observe the close resemblance between Rules 2 and 3,
and Rules 4 and 5. Rules for the actual variant (Rules 3



Nivel: A metamodelling language with a formal semantics 9

Table 1 Predicates used in the formalisation in the order they appear in text

Predicate Variants Semantics

class(c) − p Object constant c represents a class
topLevel(c) − D Class c is on top level
subclassOf (a, b) − p d D Class a is a subclass of class b
superclassingSingle(c) At most one superclass may be defined for class c
superclassingMultiple(c) Any number of superclasses may be defined for class c
instanceOf (i, t) − p d pd D Class i is an instance of class t
instanceOf (i, t, o) tp tpd Class i is an instance of class t of order o
singleClassification No multiple classification is allowed
abstract(c) Class c is abstract
onLevel(c, l) Class c is on level l
level(l) Natural number l is a possible level number
hasPotency(c, p) − D Class c is of potency p
instanceSuperclassingSingle(c) At most one superclass may be defined for instances of type t
instanceSuperclassingMultiple(c) Any number of superclasses may be defined for instances of type t
inGSet(sub, super , g) − D Class sub is a subclass of class super in generalisation set g
inGSet(sub, g) − D Class sub is a subclass in generalisation set g
gSetOf (g, super) − D Generalisation set g is a generalisation set of class super
gSet(g) Constant symbol g represents a generalisation set
covering(g) Attribute isCovering is true for generalisation set g
disjoint(g) Attribute isDisjoint is true for generalisation set g
contains(d, v) Domain d contains value v
hasAttr(c, n, p, d, l, u) − p D Class c has attribute named n with potency p, domain d,

cardinality lower bound l and upper bound u
mayDefineAttributes(c) Class c may be defined attributes
instancesMayDefineAttributes(c) Attributes may be defined for instances of class c
hasValue(c, n, v) − p D Class c has value v under name n
association(a) Class a is an association
hasRole(a, r) − p D Association a has role r
playsRoleIn(c, r, a) − d p D Class c plays role r in association a; (c, r, a) is a roleplay
rolePlayed(r, a) Role r is played in association a
validRolePlay(c, r, ai, at) The roleplay (c, r, ai) is valid with respect to type at

Note: Symbols in the Variants column: ‘p’ – possible, ‘d’ – direct, ‘D’ – declared, ‘t’ – transitive, ‘−’ – actual.
In case more than one variant is defined, the semantics are described for the actual variant.

and 5) can be roughly obtained by changing the possi-
ble predicates to actual ones and appending an appro-
priate possible predicate to the actual one in the body:
a possible predicate (denoted by subscript p) is typically
appended to a non-direct actual one (missing subscript)
and a declared predicate (D) to a direct one (d).

A resemblance of the above-described kind is a recur-
rent pattern in the formalisation. Therefore, we simplify
the discussion by deferring most definitions for possible
variants to Appendix A.

The predicate subclassOf is antisymmetric:

← subclassOf −,p(A, B), subclassOf −,p(B, A), A 6= B

The notion of root class coincides with the predicate
topLevelD defined above.

Example The running example includes one case of
subclassing: the class Book is a superclass of two classes,
Novel and Anthology . The latter case is represented as:

subclassOf D(anthology , book)← ut

There are restrictions on whether and how many su-
perclasses a class may have. These restrictions are im-
posed by the superClassing attribute of Class. The at-
tribute takes one of the values none, single and multiple
with the intuitive semantics that a class may have no,
at most one or any number of superclasses, respectively.

A value for superClassing is not independently as-
signed for classes but derived in a way to be detailed
in Section 4.4.5. Top-level classes are a special case: any
number of superclasses may be defined for them.

Semantics The predicate superclassingSingle(c) gives
that the attribute superclassing of c has value single.
Similarly, the value multiple is implied by the predicate
superclassingMultiple(c). The value none is the default
in the sense that it is implied by neither of the above-
mentioned predicates holding for a class.

Direct generalisations are justified by the choice rule:

{subclassOf d(Csub , Csuper )} ←
subclassOf D(Csub , Csuper ),

superclassingSingle(Csub), class(Csuper )
(6)



10 Timo Asikainen, Tomi Männistö

1

0

2

RadioPlay2

taxRate=0%
title
owner2  [0..1]
length

ProductType3

taxRate
title2

owner3 [0..1]

Book2

taxRate=7%
title
owner2 [0..1] 
nrOfPages

0..12original adaptation
adapts2

dramatisation
original adaptation

IvanhoeTheFilm
title=Ivanhoe
length=106
owner

IvanhoeTheBook
title=Ivanhoe
nrOfPages=527
owner [0..1]

IvanhoeTheRadioPlay
title=Ivanhoe
length=143
owner [0..1]

original

original adaptation

3

adaptation

Legend

a

Class C with value v set to 9 and 
attribute attr of potency p with 
domain D and cardinality [a..b]

Binary association s with potency p with roles q and r.

Class A plays role q and classes B and C play role r.

Cardinality constraint related to role q with cardinality 0..1 and potency 2.

Class I is a direct 
instance of class T

C

B
A sp

q r

0..12

T

I

C
v=9
attrp:T [a..b]

{covering,disjoint}style

Novel2 Anthology2

:IvanhoeTheBook
owner=Tom

0..1

:A Class of potency 0, an 
instance of class A

Attributes may be defined 
for instances of AA aAbs Abstract class Abs

Class B is a direct 
subclass of class A

A

B

A A single superclass may be 
defined for instances of A

Ap

Multiple superclasses may 
be defined for instances of AA

Class A of potency p

Classes B and C constitute a 
covering and disjoint 
generalisation set g of A

A

CB

{covering, 
disjoint}g

Video2

taxRate=22%
title
owner2 [0..1]
length

Fig. 6 A sample Nivel model

Only classes with multiple allowed superclasses may
have two or more of them:
← 2 {subclassOf d(Csub , Csuper ) :

subclassOf D(Csub , Csuper )},
not superclassingMultiple(Csub), classp(Csub)

4.4 Instantiation

Instantiation is a binary relationship between classes.
Whenever instanceOf (i, t) holds, we say that i is an in-
stance of t and t is a type of i. We also introduce the

notion of direct instantiation and use the terms direct
instance and direct type.

4.4.1 Single and multiple classification A Nivel class
may have multiple direct types; in other words, multi-
ple classification is allowed. However, a model may be
confined to single classification by setting the attribute
multipleClassification of Model to false.

Semantics The binary predicate instanceOf (i, t) has
the semantics that class i is an instance of class t. Sim-
ilarly, instanceOf d(i, t) gives that i is a direct instance



Nivel: A metamodelling language with a formal semantics 11

const maxLevel = 3. instanceOfD(radioPlay , productType)←
singleClassification ← hasValueD(radioPlay , taxRate, 0)←

hasAttrD(radioPlay , length, 1, lengthDomain, 1, 1)←
topLevelD(productType)← contains(lengthDomain, 140..145)←

hasPotencyD(productType, 3)←
instancesMayDefineAttributes(productType)← instanceOfD(dramatisation, adapts)←

instanceSuperclassingSingle(productType)← playsRoleInD(book , original, dramatisation)←
playsRoleInD(video, adaptation, dramatisation)←

hasAttrD(productType, taxRate, 1, trDomain, 1, 1)← playsRoleInD(radioPlay , adaptation, dramatisation)←
hasAttrD(productType, title, 2, titleDomain, 1, 1)←

hasAttrD(productType, owner, 3, ownerDomain, 1, 1)← instanceOfD(ivBook , novel)←
hasValueD(ivBook , title, ivanhoe)←

contains(trDomain, 0)← hasValueD(ivBook , nrOfPages, 527)←
contains(trDomain, 7)←
contains(trDomain, 22)← instanceOfD(ivFilm, video)←

hasValueD(ivFilm, title, ivanhoe)←
contains(titleDomain, ivanhoe)← hasValueD(ivFilm, length, 106)←

contains(titleDomain, senseAndSensibility)←
contains(titleDomain, lassieReturns)← instanceOfD(ivRadioPlay , radioP lay)←

hasValueD(ivRadioPlay , length, 143)←
contains(ownerDomain, tom)← hasValueD(ivRadioPlay , title, ivanhoe)←
contains(ownerDomain, dick)←

contains(ownerDomain, harry)← instanceOfD(ivFilm, dramatisation)←
playsRoleInD(ivBook , original, ivF ilm)←

topLevelD(adapts)← playsRoleInD(ivFilm, adaptation, ivF ilm)←
association(adapts)←

hasPotencyD(adapts, 2)← instanceOfD(ivRadioPlayAdpt , dramatisation)←
hasRoleD(adapts, original)← playsRoleInD(ivBook , original, ivRadioP layAdpt)←

hasRoleD(adapts, adaptation)← playsRoleInD(ivRadioPlay , adaptation, ivRadioP layAdpt)←
playsRoleInD(productType, original, adapts)←

playsRoleInD(productType, adaptation, adapts)← instanceOfD(tomsBook , ivBook)←
hasValueD(tomsBook , owner, tom)←

instanceOfD(book , productType)←
hasValueD(book , taxRate, 7)← adapts(C, O)← instanceOftp(A, adapts, 2),

hasAttrD(book , nrOfPages, 1, pageDomain, 1, 1)← playsRoleIn−,p(C, adaptation,A),
contains(pageDomain, 520..530)← playsRoleIn−,p(O, original, A),

abstract(book)←
adaptsp(C, O)← instanceOftp(A, adapts, 2),

inGSetD(novel , book, style)← playsRoleInp(C, adaptation,A),
inGSetD(anthology , book, style)← playsRoleInp(O, original, A)

covering(style)←
disjoint(style)← ← 2 {adapts(Ci , O) : adaptsp(Ci , O)} ,

playsRoleIn−,p(Ct , adaptation,A),
instanceOfD(video, productType)← instanceOftp(A, adapts, 1),

hasValueD(video, taxRate, 22)← instanceOf −,p(Ci, Ct)
hasAttrD(video, length, 1, lengthDomain, 1, 1)←

contains(lengthDomain, 105..110)←

Fig. 7 The model-specificrules resulting from applying the mapping t to the model in Figure 6

of t. The atom singleClassification gives that multiple
classification is not allowed.

Possible, direct instantiations may become actual, di-
rect instantiations:

{instanceOf d(I, T )} ← instanceOf pd(I, T ),

class−,p(T )
(7)

A direct instance is a class:

class(I)← instanceOf d,pd(I, T ) (8)

Multiple classification, if singleClassification holds,
is ruled out as follows:

← 2
{

instanceOf d(I, T ) : instanceOf pd(I, T )
}

,

class−,p(I), singleClassification

Example The running example is restricted to single
classification:

singleClassification ←



12 Timo Asikainen, Tomi Männistö

The example contains a large number of declared in-
stantiations. Only instantiations shown using the dashed
line notation in Figure 6 need be explicitly represented
in WCRL. As an example, that Book is a direct instance
of ProductType is represented as follows:

instanceOf D(book , productType)←

4.4.2 Abstractness A class may be abstract, represented
by the attribute isAbstract set to true, with the seman-
tics that an abstract class may not have direct instances.

Semantics The predicate abstract(c) gives that class c
is abstract. The semantics of abstractness is captured
by:

← abstract(T ), instanceOf d,pd(I, T )

Example Class Book is abstract:

abstract(book)←

4.4.3 Level Each class is on exactly one level identified
by a natural number. The level of a class is represented
using the level attribute. The top level corresponds to
level 0. The level of other than top-level classes is deter-
mined based on the instantiation relation: if class i is an
instance of class t on level l, class i is on level l + 1.

Semantics Each level is represented by its number. The
binary predicate onLevel(c, l) gives that class c is on
level l. The top level is assigned number 0 by the rule:

onLevel(C, 0)← topLevel(C)

If class i is an instance of class t on level l, class i is
on level l + 1:

onLevel(I, L + 1)← instanceOf −,p(I, T ),

onLevel(T, L), level(L)
(9)

Above, the domain predicate level(l) gives that l is a
level.

The requirement that a class must not be on two or
more levels is represented using an integrity constraint:

← 2 {onLevel(C, L) : level(L)} , class−,p(C) (10)

4.4.4 Potency Each class must have exactly one natu-
ral number as its potency. A potency is independently
assigned for root classes. Other top-level classes have
the same potency as their superclasses. If class i is an
instance of class t of potency p, class i is of potency p−1.
That is, the potency value is decremented by one when
a class is instantiated. A class of potency 0 cannot be in-
stantiated. Hence, the potency value gives the maximum
order of instances a class may have.

Semantics The predicate hasPotency(c, p) gives that
class c is of potency p. Potency is decremented by one
when a class is instantiated:

hasPotency(I, P − 1)← instanceOf d,pd(I, T ),

hasPotency(T, P ), level(P ), P > 0

A class must have a single potency value. That is, it
may not be the case that class has no potency value:

← {hasPotency(C, P ) : level(P )} 0, class−,p(C)

or two or more potency values:

← 2 {hasPotency(C, P ) : level(P )} , class−,p(C)

Example The top-level classes ProductType and adapts
are declared potencies as follows:

hasPotencyD(productType, 3)←
hasPotencyD(adapts, 2)←

4.4.5 Instantiations implied by generalisations A gen-
eralisation may imply instantiations, both direct and
non-direct ones. The direct case is illustrated in Fig-
ure 8 (a): if Isuper is a direct instance of T and Isub is a
subclass of Isuper , then Isub is a direct instance of T .

However, there is an exception to this rule, illustrated
in Figure 8 (b): if Isub is a direct instance of Tsub that is
a subclass of Tsuper , a direct instantiation between Isub
and Tsuper is not implied; however, a non-direct instan-
tiation between the pair (Isub , Tsuper ) is implied. More
generally, we require that class i may not be a direct in-
stance of class t and a superclass t′ of t, even if multiple
classification is allowed.

Non-direct instantiations are implied analogously but
without a similar exception, see Figure 8 (c). If class
Isuper is a (direct) instance of class Tsub , then a subclass
Isub of Isuper is an instance of each superclass Tsuper of
Tsub , including Tsub itself.

Semantics Direct generalisations may be implied:

{instanceOf d(Isub , T )} ←
instanceOf d,pd(Isuper , T ),

subclassOf −,p(Isub , Isuper )

(11)

False cases of implied direct instantiation are ruled
out by the integrity rule

← instanceOf d,pd(I, Tsub), instanceOf d,pd(I, Tsuper ),

subclassOf −,p(Tsub , Tsuper ), Tsub 6= Tsuper

Non-direct instantiations are always implied:

instanceOf (Isub , Tsuper )←
instanceOf d,pd(Isuper , Tsub),

subclassOf −,p(Tsub , Tsuper ),

subclassOf −,p(Isub , Isuper )

(12)



Nivel: A metamodelling language with a formal semantics 13

T

«direct»

«direct»

(a)

Isuper

Isub

(c)

Isuper

Isub

Tsuper

Tsub

(b)

«direct»

«direct»

Tsuper

Tsub

Isub

Isuper

Fig. 8 The implications of subclassing on instantiation. In-
stantiations depicted using a thick line are assumed, others
are implied. (a) Direct instantiations implied. (b) Only non-
direct instantiation implied between Isub and Tsuper . (c) Non-
direct instantiations implied.

Example A number of instantiation relationships are
implied in the running example: e.g, IvanhoeTheBook
is, in addition to being a direct instance of Novel , a non-
direct instance of Book . Novel is a direct instance of
ProductType. ut

The types of a class exercise control whether and
how many superclasses may be defined for the class. The
relevant language construct is the instanceSuperclassing
attribute of Class taking one of the values none, single
and multiple. Superclass(es) may be defined for a class
if at least one of its direct types enables this.

Semantics That a single superclass may be defined for
the direct instances of class c is given by the predicate
instanceSuperclassingSingle(c). Similarly, the predicate
instanceSuperclassingMultiple(c) gives that any number
of superclasses may be defined for the instances. The
former is formalised as follows:

superclassingSingle(I)← instanceOf −,pd(I, T ),

instanceSuperclassingSingle(T )
(13)

The definition of the latter is similar and deferred to
Appendix A.

Example A single superclasses may be defined for in-
stances of ProductType:

instanceSuperclassingSingle(productType)←

4.5 Generalisation set

A generalisation may belong to a generalisation set. A
generalisation set is identified by a name. All the gen-
eralisations in a generalisation set must share the same
superclass. Given a generalisation set g containing gen-
eralisation (sub, super), we say that g is a generalisation
set of super and that sub is in generalisation set g.

Semantics A generalisation set is represented by an ob-
ject constant. The predicate inGSet(sub, super , g) gives
that generalisation (sub, super) belongs to generalisation
set g.

A generalisation declared in the context of a gener-
alisation set is a declared generalisation:

subclassOf D(Csub , Csuper )← inGSetD(Csub , Csuper , G)

A generalisation possibly in a generalisation set may
actually be in it, provided that the generalisation actu-
ally holds:

{inGSet(Csub , Csuper , G)} ←
inGSetD(Csub , Csuper , G),
subclassOf d(Csub , Csuper )

(14)

Example The classes Novel and Anthology constitute
a generalisation set style of Book . This is represented by
the facts:

inGSetD(novel , book , style)←
inGSetD(anthology , book , style)← ut

Disjointness and covering constraints may apply to
a generalisation set, imposed by attributes isCovering
and isDisjoint of GeneralisationSet .

If isCovering is set to true, the generalisation set is
said to be covering and an instance of the superclass
must be an instance of (at least) one of the subclasses.
Similarly, if isDisjoint is true, the generalisation set is
said to be disjoint and an instance of the superclass may
not be an instance of two or more of the subclasses.

Semantics The predicate covering(g) gives that gener-
alisation set g is covering. The semantics is defined as
an integrity constraint:

← {instanceOf (I, Tsub) : inGSetD(Tsub , G)} 0,

covering(G),
instanceOf −,p(I, Tsuper ), gSetOf (G, Tsuper )

Similarly for the case of disjointness, the predicate
disjoint(g) gives that generalisation set g is disjoint. The
related constraint is:

← 2 {instanceOf (I, Tsub) : inGSetD(Tsub , G)} ,

disjoint(G),
instanceOf −,p(I, Tsuper ), gSetOf (G, Tsuper )

Example The generalisation set style of Book is both
covering and disjoint:

covering(style)←
disjoint(style)←



14 Timo Asikainen, Tomi Männistö

4.6 Attribute

A class may be characterised by attributes. An attribute
is described by a name, a potency , a cardinality and a
domain. The name is used to distinguish the attributes
of a class from one other. Potency is a non-zero natural
number. The cardinality consists of a lower and an op-
tional upper bound, both of which are natural numbers.
The domain of an attribute is a set of values identified
by a name.

Given a class with an attribute, an instance of the
class has an attribute by the same name and with the
same domain as its type but with the potency decre-
mented by one, for potencies greater than 1.

Attributes are inherited by subclasses: if a class has
an attribute, its subclasses have the same attribute.

Semantics Attribute names, domains and values con-
tained in domains are all represented using object con-
stants. The predicate contains(d, v) gives that domain d
contains value v.

The predicate hasAttr(c, n, p, d, l, u) gives that class c
has attribute named n with potency p, domain d and
cardinality with lower bound l and upper bound u. If
the upper bound is omitted, a special symbol ∞ is used
in the formalisation.

A direct instance has the attributes of its type, with
potencies decremented by one:

hasAttr(I, N, P − 1, D, L, U)←
hasAttr−,p(T, N, P,D, L, U),
instanceOf d,pd(I, T ), P > 1

(15)

A subclass inherits the attributes of its superclass:

hasAttr(Csub , N, P,D, L, U)←
hasAttr−,p(Csuper , N, P, D, L, U),

subclassOf −,p(Csub , Csuper )
(16)

Example The running example includes a number of
attributes: e.g., the attribute title of ProductType is rep-
resented as follows:

hasAttrD(productType, title, 2, titleDomain, 1, 1)←

As an example of domains, pageDomain is repre-
sented as follows:

contains(pageDomain, 520..530)← ut

A class exercises control over whether attributes may
be defined for its instances or not. A class may enable
its direct instances to define attributes by setting its
Boolean attribute instancesMayDefineAttributes to true.
As a result, the attribute mayDefineAttributes will be
true for its instances, with the semantics that attributes
may be defined for them. Attributes may always be de-
fined for top level classes.

Semantics A declared attribute of class c for which
mayDefineAttributes(c) holds may become an actual at-
tribute:

{hasAttr(C, N, P,D, L, U)} ←
hasAttrD(C, N, P, D, L, U),

mayDefineAttributes(C)
(17)

Above, the predicate mayDefineAttributes(c) gives
that attributes may be defined for class c:

mayDefineAttributes(I)← instanceOf d,pd(I, T ),

instancesMayDefineAttributes(T )

Note that in the case of multiple classification, a class
may be defined attributes if at least one of its direct
types allows it.

Example Attributes may be defined for instances of
ProductType:

instancesMayDefineAttributes(productType)←

4.7 Value

When a class with an attribute of potency 1 is instan-
tiated, the instances may and must have values corre-
sponding to the attribute. The name of the value is the
same as that of the attribute. The number of such values
must agree with the cardinality of the attribute: there
must be at least lower and at most upper values by the
name of the attribute. Finally, each of the values must
be in the domain of the attribute.

Semantics The predicate hasValue(c, n, v) gives that
class c has value v under name n.

Attributes of potency 1 result in values. For an at-
tribute with and upper bound, i.e., U 6=∞

L {hasValue(I, N, V ) : contains(D,V ) :
hasValuep(I, N, V )} U ←

hasAttr−,p(T, N, 1, D, L, U), U 6=∞,

instanceOf d,pd(I, T )

(18)

Similarly for an attribute without an upper bound
(U =∞):

L {hasValue(I, N, V ) : contains(D,V ) :
hasValuep(I, N, V )} ←

hasAttr−,p(T, N, 1, D, L, U), U =∞,

instanceOf d,pd(I, T )

Example The fact below gives that Book has value 7
declared for the attribute taxRate:

hasValueD(book , taxRate, 7)←



Nivel: A metamodelling language with a formal semantics 15

4.8 Association

An association is a relationship between a set of classes.
An association defines a set of roles each of which is
played by one or more classes. Specifically, a role can be
played by multiple classes that are not subclasses of a
single superclass. An association is also a class. Hence,
all the language elements related to class discussed above
apply to association as well: associations may participate
in generalisations and generalisation sets, be instantiated
and have attributes and values.

Semantics An association is also a class and is conse-
quently represented by an object constant. The predicate
association(a) gives that a is an association.

Example The fact

association(adapts)←
gives that adapts is an association.

4.8.1 Role The distinguishing characteristic of associ-
ation is that they may have roles. A role is identified by
a name that must be unique in the context of an asso-
ciation. The set of roles of an association is fixed in the
sense that all the subclasses and instances of an associ-
ation must have the same set of roles as the association
itself: roles may only be defined for root classes.

Each role of an association must be played by at least
one class. If class c plays role r in association a, we say
that the triple (c, r, a) is a roleplay. Further, an instance
of c may play r in instances of a.

Semantics The predicate hasRole(a, r) gives that asso-
ciation a has role r. An instance of an association has
the roles of its type:

hasRole(I, R)← hasRole−,p(T, R),
instanceOf −,p(I, T )

(19)

The ternary predicate playsRoleIn(c, r, a) gives that
class c plays role r in association a. The following rule
gives that a declared roleplay (ci, r, ai) may be an actual
roleplay, provided that (ct, r, at) is, where ct is a type of
ci and at is a type of ai:

{playsRoleInd(Ci, R, Ai)} ←
playsRoleInD(Ci, R, Ai),

playsRoleIn−,p(Ct, R, At),

instanceOf −,p(Ci, Ct), instanceOf d,pd(Ai, At)

(20)

The predicate rolePlayed(r, a) gives that role r is
played by at least one class in association a:

rolePlayed(R,A)← playsRoleIn−,p(C, R, A)

All the roles of an association must be played:

← not rolePlayed(R,A), hasRole−,p(A, R),
association(A)

Example Roles original and adaptation are declared
for the association adapts:

hasRoleD(adapts, original)←
hasRoleD(adapts, adaptation)←

Both roles are played by ProductType:

playsRoleInD(productType, original , adapts)←
playsRoleInD(productType, adaptation, adapts)←

Roleplays on lower levels are declared similarly, see Fig-
ure 7 for the facts.

4.8.2 Association generalisation Given that an associ-
ation is also a class, there can be generalisations between
associations and all the properties of generalisations dis-
cussed above apply to generalisations between associa-
tions as well. In this section, we will discuss how roles
and the fact that roles are played by classes are affected
by generalisations.

By default, a subclass of an association inherits the
roleplays of its superclasses. However, a role can be re-
defined in an association subclass. Intuitively, a role is
redefined in a subclass when something is intentionally
said about the set of classes playing the role in the sub-
class. The fact that role r is redefined in an association
subclass ai implies that the roleplays (c, r, at) of the as-
sociation superclass at are not necessarily roleplays of
ai; only roleplays intentionally defined for ai apply to it.

Semantics The notion of role redefinition is captured
by the predicate redefinedRole(r, a), with the semantics
that role r of association a is redefined:

redefinedRole(R,Asub)← playsRoleInd,D(C, R, Asub),

subclassOf d,D(Asub , Asuper )

A class c playing role r in association asuper plays the
role in a subclass asub of asuper only if r has not been
redefined in asub :

playsRoleIn(C, R, Asub)←
not redefinedRole(R,Asub),

playsRoleIn−,p(C, R, Asuper ),

subclassOf d,D(Asub , Asuper ) ut

(21)

Intuitively, an instance of a subclass must be in all
respects a valid instance of all its superclasses. For as-
sociations, matching this intuition requires some extra
care. Towards this end, we define the notion of an asso-
ciation instance being valid with respect to its type:

Definition Association instance ai is valid with respect
to its type at, if every role r of ai is valid with respect to
at. Role r of ai is valid with respect to at, if r is played
by class ci such that ci is an instance of ct such that ct

plays r in at.



16 Timo Asikainen, Tomi Männistö

(a)

«association»
novelDramatisation

«association»
filmAdaptation

«association»
novelFilmAdaptation’

Book
dramatisation

original
adaptation

Novel Anthology

Film RadioPlay

original

adaptation

novelFilmAdaptation

(c)

(b)

(d)

Book
dramatisation

original

adaptation

Film RadioPlay

filmAdaptation

adaptation

Book

Novel Anthology
original

dramatisation
original

adaptation

Film RadioPlay

novelDramatisation

Fig. 9 Association generalisations. (a) Both roles redefined. (b) Only the role adaption redefined. (c) Only the role original
redefined. (d) An alternative definition of novelFilmAdaptation. An orthogonal line next to a role signals that the role is not
redefined.

Role redefinitions may lead to situations in which an
instance of an association is valid with respect to its
direct type but invalid with respect to one or more of
its non-direct types. An obvious way in which this may
occur is when a role is redefined to be played by a class
that is not a subclass of any of the classes playing the
role in the association superclass.

However, there is another way in which this may oc-
cur, illustrated in Figures 9 (b) through (d). Parts (b)
and (c) show how the associations filmAdaptation and
novelDramatisation, respectively, both redefine one of
the two roles, adaptation and original , of dramatisation,
respectively. The instances of novelFilmAdaptation’ de-
fined in Figure 9 (d) should intuitively be valid instances
of both filmAdaptation and novelDramatisation. How-
ever, neither role is redefined in novelFilmAdaptation’
and therefore, without the requirement that an associa-
tion must be valid with respect its both direct and non-
direct types, novelFilmAdaptation’ would unintendedly
be equivalent to dramatisation.

Semantics We formalise the notion of a role being valid
with respect to a type using the quaternary predicate
validRolePlay(c, r, ai, at), with the semantics that the
roleplay (c, r, ai) is valid with respect to type at of ai:

validRolePlay(Ci, R, Ai, At)←
playsRoleIn−,p(Ci, R, Ai), playsRoleIn−,p(Ct, R, At),

instanceOf −,p(Ci, Ct), instanceOf −,p(Ai, At)

An association must be valid with respect to all its
types:

← not validRolePlay(C, R, Ai, At),
playsRoleIn−,p(C, R, Ai),

instanceOf −,p(Ai, At), not topLevel(C)

4.9 Cardinality constraints

An association may be subject to cardinality constraints.
A cardinality constraint is said to apply to the instances
of the association. Intuitively, a cardinality constraint
restricts the possible combinations of classes participat-
ing in the instances. A cardinality constraint relates to
one or more roles of the association. In addition, a car-
dinality constraint includes a cardinality and a potency.
Cardinality is structurally equivalent to an attribute car-
dinality. Potency is the order of instances to which the
constraint applies.

Example The formalisation of cardinality constraints
is straightforward but lengthy and will not be discussed
here for space reasons. However, the formalisation is
demonstrated by showing how the cardinality constraint
in the running example can be formalised.

The cardinality constraint applies to second-order in-
stances of the adapts association. The constrained role
is adaptation; notice, however, that the UML conven-
tion is followed and the constraint is located next to the
original role. The intuitive semantics is that a second-
order instance of ProductType, e.g., IvanhoeTheFilm or
IvanhoeTheRadioPlay , may adapt at most one original.

To formalise cardinality constraints applying to an
association, a predicate representing the instances of the
association as tuples must be defined. Hence, we de-
fine the predicate adapts(c, o), with the semantics that
(adaptation) c adapts (original) o, both second-order in-
stances of ProductType:

adapts(C, O)← instanceOf tp(A, adapts, 2),

playsRoleIn−,p(C, adaptation, A),

playsRoleIn−,p(O, original , A)



Nivel: A metamodelling language with a formal semantics 17

Above, the auxiliary predicate instanceOf tp(i, t, o) gives
that i is a possible instance of t of order o; see Ap-
pendix A, Rule 24 for the definition.

The cardinality constraint can now be written as:

← 2
{

adapts(Ci, O) : adaptsp(Ci, O)
}

,

instanceOf p(A, adapts),

playsRoleIn−,p(Ct, adaptation, A),

instanceOf −,p(Ci, Ct)

4.10 Computational problems

In this section, we discuss how different computational
problems related to Nivel can be defined by introducing
WCRL rules relating the possible and actual elements,
or in other words, input and valid models. We will con-
sider the Nivel Check problem in detail and outline
how problems involving search can be represented. A
complete search problem is specified in Section 5.2 as a
part of a case study in feature modelling.

In general, a computational problem specifies which
entities declared in an input model must or may appear
in valid models. We will use the generic term check to
refer to the former alternative and search to the latter.
Additional rules are needed to check that possible el-
ements are actualised: such rules serve to restrict the
search space spun by the input model.

The relationship between declared and actual ele-
ments may be specified for all instances of a language
element at once or for a specific subset.

The Nivel Check problem is defined as follows:
Given an input model m, check if m is valid. Intuitively,
for an input model to be valid under Nivel Check, all
the declared entities must be actualised in a valid model.

Semantics The Nivel Check is formalised as follows.
All the declared instantiations must be actual, direct
instantiations:

← instanceOf D(I, T ), not instanceOf d(I, T ) (22)

all the declared generalisations must be actual, direct
generalisations:

← subclassOf D(Csub , Csuper ),
not subclassOf d(Csub , Csuper )

all the generalisations declared to be in generalisation
sets must actually be in them:

← inGSetD(Csub , Csuper , G),
not inGSet(Csub , Csuper , G)

all the declared attributes must correspond to actual at-
tributes:

← hasAttrD(C, N, P,D, L, U),
not hasAttr(C, N, P, D, L, U)

Car

Horsepower Air conditioningTransmission

Manual Automatic

Fig. 10 A sample FODA model. Adapted from [21]

all the declared values must correspond to actual values:

← hasValueD(C, N, V ), not hasValue(C, N, V )

all the roles declared to be played by classes must actu-
ally be played by them:

← playsRoleInD(C, R, A), not playsRoleIn(C, R, A)

Note the role Rules 6, 7, 14, 17 and 20 play in set-
ting up the search space: the rules are choice rules that
allow but do not force entities to appear in valid mod-
els. Should the braces in the rule heads be dropped, the
axiomatic part would in essence encode Nivel Check.

5 Case study in feature modelling

In this section, we demonstrate the modelling capabili-
ties of Nivel by applying it to feature modelling, a mod-
elling initiative gaining increasing popularity in the soft-
ware product family domain. The section begins with a
brief introduction to feature modelling. Thereafter, we
show how Nivel can be used to represent feature mod-
elling concepts using three levels.

5.1 Feature modelling

This section provides an overview of feature modelling.
We begin by discussing Feature Oriented Domain Anal-
ysis (FODA) [21], the first feature modelling language
reported, and thereafter discuss a number of extensions.

In FODA, feature is defined as an attribute that di-
rectly affects end users. Features are organised into fea-
ture models. Figure 10 illustrates a sample feature model
in FODA. A feature model is a tree where the root (in
Figure 10, Car) is a feature, sometimes referred to as
the concept. The root feature may have other features as
its subfeatures which may in turn have other features as
their subfeatures etc. A feature model is a description of
a system family, e.g., a software product family.

There are a number of subfeature kinds: a mandatory
subfeature (Horsepower) must be selected, i.e., included
in feature configuration, whenever its parent is selected;
an optional feature (Air conditioning) may be selected
whenever its parent is selected, but needs not be selected;
an alternative subfeature (Transmission) consists of a
set of features (Manual , Automatic) of which exactly one
must be selected whenever the parent feature is selected.



18 Timo Asikainen, Tomi Männistö

An individual product of the system family is de-
scribed by a set of features that obeys the rules of the
feature model. Such a set is termed a feature configura-
tion, or simply configuration. The task of finding a valid
configuration matching a specific set of requirements is
termed configuration task.

A feature (other than the root feature) in a valid
configuration must be justified by a subfeature in the
model. That is, no other features than those required
and enabled by the subfeatures in the model may be
included in a configuration.

A number of feature modelling languages extending
FODA have been suggested, see, e.g., [12,13]. Most pop-
ular extensions include feature cardinalities, attributes
and or-features, or more generally, group cardinalities.

A feature cardinality [13] specifies how many times
a subfeature must be selected into a configuration. A
mandatory feature corresponds to cardinality 1, and an
optional subfeature to cardinality 0..1. Other cardinali-
ties can be defined, such as 2..4 (two to four subfeatures
must be selected) and 1..* (at least one subfeature must
be selected). In some approaches, features may have at-
tributes [13].

An or-feature [12] is a subfeature kind similar to an
alternative feature, with the difference that at least one
of the alternatives must be selected.

5.2 Using Nivel to define a feature modelling language

In this subsection, we show how Nivel can be used
to define a feature modelling language. The discussion
is based on a feature modelling language called For-
famel [1], although some aspects of the language have
been left out to simplify the discussion.

In Forfamel, a distinction is made between feature
types occurring in feature models, and their instances,
termed features, appearing in (feature) configurations.
Similarly for the notion of subfeature, Forfamel distin-
guishes between subfeature definitions involving feature
types, and the subfeature relation between features. For-
famel supports four cardinality values for subfeature def-
initions: mandatory , optional , or , and any ; each possible
subfeature type may be instantiated at most once. Fea-
ture types may have attributes that are reflected as val-
ues in their instances. A single supertype may be defined
for a feature type.

5.2.1 Forfamel metamodel in Nivel Figure 11 illus-
trates the Forfamel metamodel in Nivel. As a point of
reference, Figure 12 contains a corresponding metamodel
represented as a UML class diagram.

The metamodel contains two classes, FeatureModel
and FeatureType, and the association subfeature, all of
potency 2. An instance of FeatureModel represents a fea-
ture model and a second-order instance a feature config-
uration. Similarly, the instances of FeatureType repre-

FeatureModel2
model root

11,2

partwhole

subfeature2

cardinality: {mandatory, optional, or, any}
name

FeatureType2 a

Fig. 11 A Nivel metamodel for Forfamel

sent feature types and the second-order instances fea-
tures. Finally, the instances of subfeature represent the
subfeature definitions involving feature types and the
second-order instances the subfeature relations between
features.

5.2.2 Additional rules The major part of the intended
semantics of feature models is captured by the semantics
of Nivel. However, a small number of additional rules
are needed. These will be discussed in the following.

First, it is required for simplicity that there is at most
one feature model in each Nivel model:

← 2 {instanceOf d(M, featureModel) :
instanceOf pd(M, featureModel)}

The subfeature association must be given additional
semantics. Towards this end, we define the ternary pred-
icate subf 2(w, p, n) with the semantics that feature w
has feature p as its subfeature under name n; the super-
script gives the order of instances of the association, in
this case 2:

subf 2(W, P,N)← playsRoleIn−,p(W, whole, Si),

playsRoleIn−,p(P, part , Si), hasValue−,p(St, name, N),

instanceOf d,pd(Si, St), instanceOf pd(St, subfeature)

Note that the name N is a value of the subfeature
definition St relating feature types, although the related
elements are features, located on the level next below.
Hence, the rule demonstrates that values and other prop-
erties of types are visible to their instances in WCRL.

As an example of applying subf 2, the cardinality
value optional is given a semantics as follows:

← 2
{

subf 2(W, P,N) : subf 2
p(W, P,N)

}
,

hasValue−,p(St, cardinality , optional),
hasValue−,p(St, name, N),

instanceOf −,p(Wi, Wt), playsRoleIn−,p(Wt, whole, St)

The notion of justification is represented by the pred-
icate justified(f) with the semantics that feature f is
justified. A feature may be justified either by being a
root feature

justified(F )← root2(F,C), root1
p(T, M),

instanceOf pd(F, T ), instanceOf pd(C, M)



Nivel: A metamodelling language with a formal semantics 19

Feature

instance

type

subfeature
name

part

whole

AttributeDefinition
name
type
lowerBound:integer
upperBound:integer[0..1]

subfeatureDefinition
name
cardinality:{mandatory, optional, or, any}

partFeatureType
name
isAbstract:boolean whole

subtype supertype

Value
name
value

hasValue

instance

type

instanceOf instanceOfd

(a)

(b)

FeatureModel
root

1
FeatureType

name
isAbstract:boolean

(c)

Configuration
root

1 Feature

isa

Fig. 12 The Forfamel metamodel as a UML class diagram. (a) Classes related to feature types and features, (b) feature model
and (c) configuration. Adapted from [1]

where the predicate root2(f, c) is a tuple representation
of the rootFeature association giving that feature f is a
root feature in configuration c; or by being a subfeature
of another feature:

justified(F )← subf 2
−,p(W, F,N)

No feature without a justification may appear in a
valid configuration:

← instanceOf tp(F, featureType, 2), class(F ),

not justified(F )

For purposes to be explained in the next subsection,
we restrict the allowed subfeature definitions in such a
way that any valid configuration is guaranteed to be fi-
nite. One way for achieving this is to first consider the
binary predicate subf 1

p(w, p) with the semantics that a
feature of type w possibly has a subfeature of type p:

subf 1
p(W, Psub)← playsRoleInp(W, whole, S),

playsRoleInp(P, part , S),

instanceOf p(S, subfeature), subclassOf p(Psub , P )

The transitive closure subf 1
tp of subf 1

p is defined as:

subf 1
tp(W, P )← subf 1

tp(W, P0),

subf 1
p(P0, P ), instanceOf p(W, featureType)

The desired effect can now be achieved using a simple
integrity constraint:

← subf 1
tp(C, C), instanceOf p(C, featureType) (23)

Intuitively, the rule forbids any feature type an instance
of which could possibly have a transitive subfeature of
the same type.

5.2.3 Configuration task The Configuration Task
was informally defined in Section 5.1 as: Given a feature
model and a specific set of requirements for an individ-
ual product, find a valid configuration of the model. In
this section, we will define the Configuration Task
for Forfamel defined in Nivel.

A feature model consists of first-order instances of
the top level classes and hence constitutes level 1 of the
input model. That the feature model is taken as given
implies that the problem is to check it. Hence, rules sim-
ilar to those given Section 4.10 Nivel Check applying
exclusively to first-order instances of the top-level classes
can be used. As an example of such rules,

← instanceOf pd(I, T ), not instanceOf d(I, T ),

topLevel(T )

gives that the feature types, subfeature definitions and
feature models are actualised as declared, cf. Rule 22.

On the other hand, the level 2 model elements consti-
tuting a valid configuration are subject to no additional
constraints, with the exception that if a configuration is
declared, it must be actualised:

← instanceOf tp(C, featureModel , 2), not class(C)

On the contrary, the attributes of feature types may take
any value in their respective domains when instantiated
in features:

hasValueD(I, N, V )← instanceOf pd(I, T ),

instanceOf pd(T, featureType),

hasAttrp(T, N, 1, D, L, U), contains(D,V )

Hence, finding a valid configuration can be charac-
terised as a search problem. The search space S, con-
sisting of elements that may possibly appear in a config-
uration, must be explicitly given in the input model. S



20 Timo Asikainen, Tomi Männistö

Input: feature type ft to be instantiated
Output: set of rules representing fi, an instance of ft

let fi be a new object constant
add fact instanceOf D(fi, ft)←
foreach st such that st:subfeature ∧ ft ∈ st→whole do

let si be a new object constant
add fact instanceOf D(si, st)←
add fact playsRoleIn(fi,whole, si)←
foreach pt such that pt:featureType ∧ pt ∈ st→part do

foreach t such that subtypeOf (t, pt) do
if t.isAbstract then continue
i := instantiate(t)
add fact playsRoleInD(i, part , si)←

return fi

Fig. 13 Algorithm instantiate(t) for generating the search
space S for a feature model, initially called with the root
feature type as the input parameter. For simplicity, same
symbols are used for model elements and the object constants
representing them. Shorthands used: i:t ↔ instanceOf (i, t),
a→r = {c : playsRoleIn(c, r, a)}.

must include a number large enough of features and sub-
feature relationships to cover any valid configuration. A
finite S meeting this requirement can be generated using
the algorithm given as Figure 13, provided that Rule 23
is satisfied.

5.2.4 Example feature model Figure 14 (a) illustrates a
sample feature model describing a family of text editors.
A text editor can manage different file formats (doc, rtf,
pdf), has a clipboard of capacity between 1 to 10 items
and at least one equation editor (primary) and option-
ally a secondary one, and supports spell checking in one
to three languages in the set English, French and Dutch.
A valid configuration of the model is illustrated in Fig-
ure 14 (b).

The sample model can be represented in WCRL in
a similar manner as was shown for the running exam-
ple of Figure 6 in Figure 7. The only part of the model
requiring special care is the constraint that the primary
and secondary equation editors must not be of the same
type; this can be represented in WCRL as follows:

← subf 2
−,p(W, E1, primary), subf 2

−,p(W, E2, secondary),

instanceOf pd(E1, T ), instanceOf pd(E2, T )

5.3 Discussion

The number of model elements needed to represent the
Forfamel concepts is significantly reduced in the Nivel
metamodel, shown in Figure 11, compared with the UML
variant shown in Figures 12 (a) through (c): the classes
Feature, Configuration and subfeature need not be ex-
plicitly represented in the Nivel variant, as they are rep-
resented by the second-order instances of FeatureType,
FeatureModel and subfeature, respectively.

In addition, the instantiation between feature types
and features, and abstractness and attributes of and sub-
classing relation between feature types could be repre-
sented the language elements of Nivel. In the UML
variant these must be explicitly specified through asso-
ciations instanceOf , instanceOf d, and isa, and classes
Attribute and AttributeDefinition. In conclusion, Nivel
helped in reducing the accidental complexity in the For-
famel metamodel in the sense defined and envisaged by
Atkinson and Kühne [7].

In addition to abstract syntax, the Nivel metamodel
for Forfamel captures the major part of the semantics of
Forfamel; a number of additional rules were required to
complete the semantics. However, the number and com-
plexity of the additional rules is modest compared with
what would have been required to define a semantics for
Forfamel from scratch. The same applies to the UML
metamodel for Forfamel: the metamodel specifies a syn-
tax for feature models and configurations but says noth-
ing about their interrelations. Hence, constraints sup-
plementing the UML metamodel, e.g., in OCL (Object
Constraint Language) [30], would have to cover the en-
tire Forfamel semantics.

The implementation of the case study in WCRL and
results from test runs are discussed in Section 6.1

6 Discussion and comparison to previous work

In this section, we first discuss the validation currently
existing for Nivel. Thereafter, we motivate and discuss
the choice of WCRL as the knowledge representation
language for Nivel. Section 6.3 shows how ideas dis-
cussed in Section 2 are reflected in Nivel, followed by
a comparison between Nivel and previous metamod-
elling frameworks. Finally, individual language elements
of Nivel are discussed in Section 6.5.

6.1 Validation

In this section, we discuss how Nivel has been vali-
dated. The purpose of the validation is not to evaluate
the individual modelling concepts underlying Nivel: as
mentioned in the introduction, the concepts as such do
not represent a novel contribution of Nivel. The core
concepts of Nivel are all established in the modelling
community and the more recent ideas incorporated in
Nivel have been argued for in length [3,4,5,6,7,35].

Instead, the primary purpose of the validation is to
verify that the translation t from Nivel to WCRL is
faithful in the sense that there is a bijective mapping
between the stable models of t(M) and the valid models
of M for each well-formed M . In other words, we wish
to ascertain that the formalisation matches the notion
of valid model and overall intuition of the language ele-
ments as described in Section 4.



Nivel: A metamodelling language with a formal semantics 21

(a)

«rootType»
TextEditor

EquationEditor

EqMaster MathPal

SpellCheckingClipboard
capacity: {1..10}

supportedFormat: {doc, rtf, pdf} [1..*]

{type(primary) <> type(secondary)}

primary secondary
«optional»

DutchEnglish French

language
«any»

«rootInstace»
:TextEditor

:SpellChecking:Clipboard
Capacity=5

supportedFormat: {doc, rtf, pdf} [1..*]

:EqMaster:MathPal

primary secondary

:Dutch:English

language language

(b)

Fig. 14 (a) A sample feature model. (b) A sample feature configuration that is valid with respect to the above model.

A secondary goal of the validation is to check whether
the stable models can be found efficiently enough for
practical purposes, e.g., in an interactive modelling tool,
to check whether a model is valid after each change.

We have implemented the axiomatic rules presented
in Section 4, including those defining the Nivel Check
problem in Section 4.10, using the WCRL syntax ac-
cepted by the smodels system; see Section 3.4 and the
references there for details on smodels. Similarly, we have
implemented the feature modelling case study, including
both the rules discussed in Section 5.2.2 and 5.2.3 and
the example model illustrated in Figure 14 (a). Finally,
we have created a number of other test models, including
the running example of Figure 6.

It is easy to check by hand that the feature model
in Figure 14 (a) has 1,960 valid configurations. This is
also the number of stable models found by the smodels
system given the corresponding WCRL program as in-
put; a number of configurations were checked manually
to verify that they are intuitively valid. Finding the first
stable model took approximately 0.2 seconds (average
over 10 runs) and all stable models were found in ap-
proximately 0.5 seconds on a Pentium D CPU 3.00 GHz
desktop computer.

Other test models gave similar results: the results
from test runs were intuitively correct. The processing
time needed has been very acceptable: e.g., verifying that
the running example represents a valid model requires
approximately 0.02 seconds.

To conclude, the results from the test runs support
the hypothesis that the formalisation captures the in-

tended semantics of Nivel and that the implementa-
tion in WCRL could be used in tools supporting Nivel
or metamodels expressed in it. In particular, the seman-
tics given for Forfamel, predominantly based on the se-
mantics of Nivel, seems to provide a basis for a sound
and efficient tool supporting the Configuration Task
similar to what has been described in, e.g., [2].

The files related to the current implementation and
instructions for downloading and running the smodels
system can be found on a dedicated webpage2.

6.2 Choice of knowledge representation language

In this section, we motivate the choice of WCRL as a
knowledge representation language for Nivel and con-
trast it with other formal languages.

WCRL possesses a number of characteristics that
make it appropriate for representing knowledge in gen-
eral and Nivel in particular. A declarative formal se-
mantics has been given for WCRL. Although the lan-
guage includes a form of variables, predicates and func-
tion symbols, it is still decidable and of reasonable com-
putational complexity. An efficient implementation for
the language, smodels, is available under the GNU Pub-
lic Licence.

For the case of Nivel in particular, cardinality con-
straints allow the compact representation of a number of
Nivel language elements, most noteworthy cardinality
bounds in attributes and cardinality constraints. Fur-
ther, the mapping given in Section 4 is modular in the

2 See http://www.soberit.tkk.fi/nivel/

http://www.soberit.tkk.fi/nivel/


22 Timo Asikainen, Tomi Männistö

sense that each model element can be translated inde-
pendently of other elements. The translated program is
polynomial in size with respect to the input model. We
also claim that the translation is relatively easy to un-
derstand : most model elements are mapped into simple
facts, the most notable exception being cardinality con-
straints that result in slightly more complex but stan-
dard rules; the axiomatic rules and rules encoding com-
putational problems are likewise relatively simple. Thus,
the translation can also be easily automated. Finally,
as discussed in the previous subsection, the translated
model is detailed enough to enable automated reasoning.

The groundedness principle is a semantic property
of WCRL instrumental in achieving the above-discussed
desirable characteristics. As can be recalled from Sec-
tion 3.2, each atom in a stable model must be grounded.
The principle enables deducing, e.g., that class(c) can
be in a stable model based on Rules 1 and 8 only. The
groundedness principle helps to avoid so-called frame ax-
ioms and thus leads to a more compact formulation of
Nivel than could otherwise have been achieved.

Besides WCRL, other knowledge representation lan-
guages include a form of groundedness principle. An
important class are typical logic programming systems,
such as Prolog implementations. However, such systems
are different from WCRL in a fundamental respect: their
task is to compute a yes/no answer, or more generally,
an answer substitution, for a given query. WCRL, on
the other hand, is based on the answer set programming
paradigm where no explicit query is needed. Instead,
each stable model of a program represents a solution (in
Nivel, valid model) to the problem (an input model)
encoded by the program. The answer set programming
paradigm seems to suite Nivel better than the query-
oriented one: querying for a valid model would require
the definition of a predicate capturing the notion of valid
model, hence resulting in a larger number of axiomatic
rules.

Another difference between WCRL and Prolog-like
systems is that WCRL rules may include weight con-
straints whereas Prolog-like languages must be extended
to allow forms of constraints in rules; such integrated sys-
tems are known under the constraint logic programming
paradigm [20]. However, constraints in WCRL are an in-
tegral part of the language and its declarative semantics,
whereas constraint logic programming is typically based
on at least a partially procedural semantics. Further,
weight constraint rules can themselves be understood as
constraints on the solutions [29].

On the other hand, Berardi et al. [9] have given UML
class diagrams with a limited form of constraints and
ignoring implementation issues a “natural” formal se-
mantics by translation to first-order predicate logic and
subsequently to EXPTIME-decidable description log-
ics. The encoding in first-order predicate logic serves as a
point of reference in the sense that it is possible to argue

for the correctness of other formalisations by showing
that it is equivalent to the first-order encoding.

In the case of Nivel, following a similar approach
would bring a number of benefits. A WCRL encoding
would probably be readily understandable to a wider
audience than a WCRL one. Similarly, a first-order en-
coding would likely provide an easier point of compari-
son for formalisations of Nivel in alternative knowledge
representation languages.

On the other hand, unlike in the case of first-order
predicate logic and description logics, it is questionable
whether an encoding in first-order predicate logic is more
natural than one in WCRL: specifically, the lack of a
groundedness property in first-order predicate logic im-
plies that some form of frame axioms would be required
to prevent elements without justification appearing in a
valid model.

First-order predicate logic could be used as a basis
for inferences. Unlike when using WCRL as described
in Section 5.2.3 and shown in Figures 13, unrestricted
first-order predicate logic does not require an a priori in-
stantiation of model elements, thus resulting in a more
simple translation. Of course, this would come at the
cost of losing decidability. A third approach is to resort
to decidable subsets of first-order predicate logic, e.g.,
the description logics DLRifd and ALCQI used by Be-
rardi et al. [9]. However, such subsets imply syntactic
restrictions that many, especially practioners, may find
both unintuitive and hard to accept.

6.3 Recent metamodelling ideas

In this section, we discuss how Nivel relates to the no-
tions of strict metamodelling, distinction between on-
tological and linguistic instantiation, unified modelling
elements and deep instantiation.

Nivel adheres to the strict metamodelling rule [4]:
each class is an instance of a class on a level next above
it and other relationships between classes (generalisation
and association) may not cross levels. However, if mul-
tiple classification is adopted, a class may be a direct
instance of more than one class. See Appendix B for a
detailed discussion and proofs.

Nivel commits to the distinction between linguis-
tic and ontological instantiation. Nivel itself is taken
as a language. This implies that language elements illus-
trated in Figure 5, are not model elements and are thus
not included in models, such as the one illustrated in
Figure 6; in particular, language elements do not form
the top level of Nivel models. Also, we do not suggest
that language elements are instances of themselves, at
least not in the sense described by the instanceOf rela-
tion discussed in Section 4.

The relationship between model and language ele-
ments can be termed linguistic instantiation. As an ex-
ample, in the sample model of Figure 6, ProductType is a



Nivel: A metamodelling language with a formal semantics 23

linguistic instance of Class. Conversely, the instanceOf
relation in Nivel models, can be termed ontological.

However, the rules given in Section 4 cannot be used
to check whether in instantiation in a Nivel model is
ontological in the sense defined in [6,22]: ontological in-
stantiation is based on the meaning of model elements
in terms of a system external to the model, i.e., its orig-
inal. Hence, one cannot in general perform such a check
based on the information available in the model alone.

The Nivel concept of class, and association as a kind
of class, is an implementation of the idea of unified mod-
elling elements: a class has characteristics typical to both
classes and objects in other modelling languages: a class
can assume both the role of a type and an instance,
have both attributes and values, and participate in as-
sociations of different potencies.

Finally, the notion of deep instantiation is embod-
ied in Nivel in classes, including associations, attributes
and cardinality constraints. The key construct in imple-
menting deep instantiation is potency.

6.4 Metamodelling languages and frameworks

In this section, we discuss how Nivel compares to a
number of previous metamodelling frameworks.

MOF (Meta Object Facility) promises to support any
number of levels through its “ability to navigate from an
instance to its metaobject, i.e., its classifier” [27]. How-
ever, a number of issues differentiate MOF from Nivel.
To begin with, the original purpose of MOF was to pro-
vide a standard way of accessing run-time metainforma-
tion about objects [5]. Consequently, MOF is commit-
ted to the object-orientated paradigm through the use
of terms such as navigation and reference. Further, MOF
makes reference to specific technologies such as XML.

Unlike Nivel, MOF neither makes a distinction be-
tween linguistic and ontological instantiation nor com-
mits to the notion of unified modelling elements. MOF
includes no notion of deep instantiation and seems to
make no guarantees about the strictness of models ex-
pressed in it. Further, MOF is allegedly self-defining and
constitutes the top level of model hierarchies defined in
it, such as the UML four-layer architecture [38].

Another example of a metamodelling framework that
does not subscribe to the strict metamodelling rule is
the LOOPS scheme for metalevels, known as the Golden
Braid. In LOOPS Object, Class and MetaClass pairwise
instantiate each other (in that order) and inherit from
each other (in reverse order); in addition, MetaClass is
an instance of itself [10]. Clearly, the concepts of instan-
tiation and inheritance (generalisation) are incompatible
in Nivel and LOOPS.

UML [39] can be used to define a metamodel through
a profile consisting of a number of stereotypes. Each
stereotype defines an extension that can be applied to
one or more metaclasses, such as Class. A stereotype

may define additional properties and constraints that
become properties and constraints of the instances of a
metaclass to which the stereotype is applied.

However, the profile mechanism provides only limited
support for metamodelling. First, the number of levels
in a profile-based approach is restricted to three. Fur-
ther, stereotypes are technically extensions to UML lan-
guage and not intended for representing domain (meta)-
types [7]. The relation between stereotypes and classes
is different from the one between classes and their in-
stances, either objects on M0 or InstanceSpecifications
on M1. Moreover, the profile mechanism has itself been
criticised for ambiguity, e.g., with respect to whether
only classes or all metaclasses may be extended, and
problems in its semantics [19]. Also, from the pragmatic
point of view, there has been confusion about whether
stereotypes apply to classes, objects or both [8].

Telos [28] resembles Nivel in that an individual,
roughly corresponding to a class in Nivel, may be an
instance of one or more individuals. Also, individuals
may have attributes and there may be generalisations
between them in both Telos and Nivel. However, there
are important differences between the languages. Telos
is based on extensive use of attributes, whereas Nivel
includes the association concept as a language primitive.
Unlike Nivel, Telos includes no notion of strictness. Fi-
nally, in strong contrast with Nivel, Telos seems to in-
tentionally unify model elements, language elements and
the formal entities representing them.

6.5 Nivel language elements

6.5.1 Generalisation An important question related to
generalisation is whether multiple superclasses are al-
lowed or not. For example, in the Java programming
language a class may extend at most one class, whereas
UML makes no similar restriction.

Given the intended versatility of Nivel, the language
is equipped with support for multiple superclasses as well
as a means for restricting the number of direct super-
classes to one, or disallowing them altogether.

It has been argued that covering and disjointness con-
straints attached to generalisation sets are in practice
the most commonly used constraint in UML class dia-
grams [9], which serves as a motivation for including the
concept of generalisation set in Nivel.

6.5.2 Instantiation The ability to explicitly represent
instantiation relationships enables Nivel to be credited
as a metamodelling language.

A key issue related to instantiation is the question
whether multiple classification is allowed or not. Single
instantiation is commonly assumed in object-oriented
modelling and programming, although UML seems to
equivocate on the issue. On the other hand, multiple



24 Timo Asikainen, Tomi Männistö

classification is a reasonable means for modelling con-
cepts such as roles and phases. Again, recalling its in-
tended versatility, Nivel supports both multiple classi-
fication and enables a model to be restricted to single
classification.

6.5.3 Attribute and value In previous work on deep in-
stantiation, value has been considered as a special case of
attribute, i.e., as an attribute of potency 0 [3]; in Nivel,
value is defined as a language element of its own. A num-
ber of arguments support this decision. First, attributes
and values are syntactically different, as shown in Fig-
ure 5 and reflected in predicates hasAttr and hasValue.
Second, the semantics of instantiating an attribute of
potency greater than 1, as captured by Rule 15, is dras-
tically different from that of instantiating an attribute
of potency 1 into values, cf. Rule 18.

6.5.4 Association Unlike in most previous conceptual
modelling languages, a role in Nivel can be played by
one or more classes that do not share a superclass; a
similar approach has been suggested by Steimann [35].
Arguably, assuming multiple superclasses can be defined
for a class, the same effect can be achieved by defining a
common superclass for the classes playing a certain role
in an association. However, this may lead to a undesir-
ably large number of classes that are in a sense artificial.

We also elaborate on association generalisation, espe-
cially on role redefinitions in association subclasses. Al-
though the notion of association redefinition is included
in UML since version 2.0, no detailed semantics has been
given: “The interaction of association specialization with
association end redefinition and subsetting is not de-
fined” [39, p. 57]. On the other hand, Costal et al. have
considered association redefinition as a mechanism for
imposing additional constraints on associations [11] but
similarly as UML and unlike Nivel, have not discussed
whether and how the notion of redefinition is related to
generalisations between associations.

6.5.5 Constraint Nivel defines no constraint language
of its own, with the exception of cardinality constraints.
However, as demonstrated in the case study on feature
modellign in Section 5, it is possible to include arbitrary
WCRL rules in the translated model t(M). WCRL en-
ables quantification over finite domains and it is straight-
forward to represent the standard Boolean connectives
using weight constraint rules [29].

However, adopting WCRL as the constraint language
for Nivel would introduce a number of problems. First,
arbitrary rules can easily be used to manipulate seman-
tics given to predicates in axiomatic rules; however, this
can be avoided with simple syntactic checks. More im-
portantly, the potential users of Nivel cannot be as-
sumed to be familiar with WCRL and thus to be able
write constraints in it. This problem seems not to pertain

to WCRL only, but also to other viable constraint lan-
guages, such as OCL or first-order logic: based on our
experience, engineers and other professionals involved
in software development typically seem not to be well
familiar with the idea of expressing constraints in any
knowledge representation language.

The cardinality constraints of Nivel resemble those
in entity-relationship modelling [37] and to a lesser ex-
tent those in UML. In UML, cardinality constraints are
look-across constraints expressed using the multiplicities
of individual ends and consequently and, in the case of
associations with more than two ends, often too weak
and awkward from the designer point of view [9].

7 Conclusions and further work

We have presented Nivel, a novel conceptual modelling
language capable of expressing models spanning an ar-
bitrary number of levels. Nivel synthesises and elabo-
rates on a number of ideas introduced in the metamod-
elling community. The modelling facilities of Nivel are
demonstrated using a case study in feature modelling
and an example based on product hierarchies.

Nivel is given a formal semantics by translation
to WCRL, a general-purpose, decidable knowledge rep-
resentation language syntactically similar to logic pro-
grams. This enables both automated and other forms of
reasoning about Nivel.

There are a number of possible ways to extend the
work presented in this paper: conceptual extensions, con-
crete modelling languages and tool support, and case
studies. We will briefly elaborate on each of these.

Although Nivel covers the most important concep-
tual modelling concepts, there are a number of additional
concepts that could be integrated in the language. A
constraint language is needed to capture the potentially
complex dependencies that may occur between model
elements. As a first step, a semantics could be speci-
fied for different forms of cardinality constraints [37].
Also, the notion of deriving model elements using con-
straints could be studied [31]. The strict metamodelling
rules could be weakened to enable more flexible mod-
elling style. The current requirement that all roles of
an association must be specified on the top level may
be unnecessarily strong and could be weakened. Includ-
ing a notion of time in Nivel would enable represent-
ing knowledge and reasoning about temporal properties
of models, including notions such as dynamic vs. static
typing. Finally, class-valued attributes would likely be a
useful alternative for binary associations.

For practical purposes, concrete modelling languages
and supporting tools are required. There are many con-
ceivable forms of tool support. An elementary form of
support would be a concrete syntax for Nivel and an
automated translation from this syntax to WCRL. A
graphical modelling tool could be more usable than a



Nivel: A metamodelling language with a formal semantics 25

textual language. Likewise, a programming interface for
Nivel could be implemented; such interfaces could also
be generated for individual Nivel models.

Finally, case studies are needed to demonstrate the
practical utility of Nivel.

A Additional rules

This appendix contains the axiomatic rules that were
skipped in Section 4.

A.1 Generalisation

A declared subclass is a possible class:

classp(Csub)← subclassOf D(Csub , Csuper )

Multiple allowed superclasses for a class implies that
a single superclass may be defined:

superclassingSingle(I)←
superclassingMultiple(I), classp(C)

A possible generalisation between top-level classes al-
ways becomes an actual one:

subclassOf d(Csub , Csuper )←
subclassOf D(Csub , Csuper ), topLevel(Csuper )

A root class, as represented by the topLevelD predi-
cate, may not be a subclass:

← topLevelD(Csub), subclassOf D(Csub , Csuper )

A.2 Instantiation

A declared instance is a possible class, cf. Rule 8:

classp(I)← instanceOf D(I, T )

A class declared to be on the top level and all its
possible subclasses are on the top level:

topLevel(Csub)← topLevelD(Csuper ),
subclassOf p(Csub , Csuper )

The extension of the level(l) predicate is defined us-
ing a model-specific constant maxLevel :

level(0..maxLevel)←

The construct used is a shorthand way of stating that
level(l) holds for all values l between 0 and maxLevel ,
both included.

The predicate instanceOf tp(i, t, o) gives that class i
is a possible instance of class t of order o. The subscript t
stands for “transitive”. The rule for order 1 is:

instanceOf tp(I, T, 1)← instanceOf p(I, T ) (24)

and for higher orders:

instanceOf tp(I, T, O + 1)← instanceOf p(I, T0),

instanceOf tp(T0, T, O), classp(T ), level(O)

A corresponding predicate, instanceOf tpd , is defined
for the case of direct instantiation. For order 1, we write:

instanceOf tpd(I, T, 1)← instanceOf pd(I, T )

and for higher orders:

instanceOf tpd(I, T, O + 1)← instanceOf pd(I, T0),

instanceOf tpd(T0, T, O), classp(T ), level(O)

A non-root top-level class is assigned a potency as
follows:

hasPotency(Csub , P )← hasPotencyD(Csuper , P ),
topLevelD(Csuper ), subclassOf p(Csub , Csuper )

Direct implied instantiations for possible predicates
are represented as follows, cf. Rule 11:

instanceOf pd(Isub , T )← instanceOf D(Isuper , T ),

subclassOf p(Isub , Isuper )

A similar rule can be written for the non-direct case, cf.
Rule 12:

instanceOf p(Isub , Tsuper )← instanceOf pd(Isuper , Tsub),

subclassOf p(Tsub , Tsuper ), subclassOf p(Isub , Isuper )

The definition of superclassingMultiple is similar to
that of superclassingSingle, cf. Rule 13:

superclassingMultiple(I)←
instanceSuperclassingMultiple(T ),

instanceOf d,pd(I, T )

A.3 Generalisation set

We define the predicate inGSet(csub , g) as a projection
from inGSet(csub , csuper , g) with the semantics that csub
is a subclass in generalisation set g. The rule for the
possible case is:

inGSetD(Csub , G)← inGSetD(Csub , Csuper , G)

and for the actual one:

inGSet(Csub , G)← inGSet−,D(Csub , Csuper , G)

The binary predicate gSetOf (g, csuper ) with the se-
mantics that g is a generalisation set of csuper is defined
in a similar manner. For the possible case, we write:

gSetOf D(G, Csuper )← inGSetD(Csub , Csuper , G)

and for the actual one:

gSetOf (G, Csuper )← inGSet−,D(Csub , Csuper , G)



26 Timo Asikainen, Tomi Männistö

The unary domain predicate gSet(g) is defined with
the semantics that g is a generalisation set:

gSet(G)← gSetOf D(Csuper , G)

The requirement that all the generalisations in a gen-
eralisation set must share the same superclass is repre-
sented as an integrity constraint:

← 2 {gSetOf (G, Csuper ) : gSetOf D(G, Csuper )} , gSet(G)

A.4 Attribute

A declared attribute of a class is a possible attribute for
its instances, cf. Rule 15:

hasAttrp(I, N, P −O,D, L,U)←
hasAttrD(T, N, P, D, L, U),

instanceOf tp(I, T, O), P > O

and for its subclasses, cf. Rule 16:

hasAttrp(Csub , N, P,D, L, U)←
hasAttrD(Csuper , N, P,D, L, U),

subclassOf p(Csub , Csuper )

On the top level, a declared attribute always turns
into an actual one:

hasAttr(C, N, P,D, L, U)←
hasAttrD(C, N, P,D, L, U), topLevel(C)

A.5 Value

A value declared for a superclass is a possible value of
its subclasses:

hasValuep(Csub , N, V )← hasValueD(Csuper , N, V ),
subclassOf p(Csub , Csuper )

A.6 Association

A direct instance of an association is an association:

association(I)← association(T ), instanceOf d,pd(I, T )

Similarly for a subclass of an association:

association(Asub)← association(Asuper ),
subclassOf −,p(Asub , Asuper )

Roles can be declared for root classes only:

← hasRoleD(A, R), not topLevelD(A)

and only for associations:

← hasRoleD(A, R), not association(A)

A role that is declared for an association turns into
an actual role of the association:

hasRole(A, R)← hasRoleD(A, R)

and into a possible role:

hasRolep(A, R)← hasRoleD(A, R)

Instances of an association of all orders have the same
possible roles, cf. Rule 19:

hasRolep(I, R)← hasRoleD(T, R), instanceOf tp(I, T, O)

A role declared for a superclass is a possible role of
its subclasses, cf. Rule 21:

playsRoleInp(C, R, Asub)← playsRoleInD(C, R, Asuper ),

subclassOf p(Asub , Asuper )

A direct roleplay implies an ordinary, non-direct one:

playsRoleIn(C, R, A)← playsRoleInd,D(C, R, A)

The top level is a special case: a declared roleplay be-
comes an actual one, given that the association exists
and has the relevant role:

playsRoleIn(C, R, A)← playsRoleInD(C, R, A),
hasRole(A, R), topLevel(C), topLevel(A)

(25)

B Level-respectiveness and strictness in Nivel

In this appendix, we show that the instanceOf relation
in Nivel meets the requirements for a relation suitable
of building metalevels [22]. The acyclic, anti-transitive
and level-respecting properties are defined as:

acyclic: ∀e1, e2, n : e1 Rn e2 → ¬e2 R e1

anti-transitive: ∀n ≥ 2 : Rn ∩R = ∅
level-respecting:

∀n, m : (∃e1,e2 : e1 Rn e2 ∧ e1 Rm e2)→ n = m

To see that instanceOf is level-respecting, note that
level-respectiveness amounts to saying that each instan-
tiation path from e1 to e2 is of the same length. In
Nivel, the length of the path equals the difference in
the level numbers of the respective elements; each class
is guaranteed to be on a single level by Rules 9 and 10.

Level-respectiveness implies anti-transitivity [22]. In
addition, level-respectiveness implies acyclicity: acyclic-
ity can alternatively be formulated as excluding paths
from elements to themselves:

(∀e1, e2, n : e1 Rne2 → ¬e2 R e1)↔ ∀e, n : ¬e Rne

Assume that R is not acyclic, i.e., ∃e, n : e Rne for
e = e0 and n = m. By the definition of Rn, it is also
the case that e0 R2me0. But this is a contradiction with
the definition of level-respecting, with m 6= 2m. Hence, a



Nivel: A metamodelling language with a formal semantics 27

relation that is not acyclic cannot be level-respecting, or
in other words, a level-respecting relation is necessarily
acyclic. We conclude that the instanceOf relation is a
relation able to build metalevels.

To show strictness, we split the strict metamodelling
rule [4] into three requirements:
1. Every element of an Mm-level model must be an

instance-of at least one element of an Mm+1-level
model, for all m < n− 1.

2. Every element of an Mm-level model must be an
instance-of at most one element of an Mm+1-level
model, for all m < n− 1.

3. Any relationship other than the instance-of relation-
ship between two elements X and Y implies that
level(X) = level(Y ).
The first requirement is reflected in Nivel for classes,

including associations, as follows. Class c can be in a
valid model, represented by the predicate class(c), for
two reasons. First, based on Rule 8, a class can be in
a model by virtue of being a direct instance of another
class. Rule 9 guarantees that an instance is on the next
level below its type. Second, according to Rule 1, a class
can be in a model by being on the top level. This corre-
sponds to the exception made for the Mn−1-level. Hence,
Nivel adheres to the first requirement.

Nivel is not strict in the sense of the second require-
ment: a class is allowed to be an instance of multiple ele-
ments. However, single instantiation can be enforced by
setting the singleClassification attribute for the model.

Nivel conforms to the third requirement, with asso-
ciation and generalisation as the relationships other than
instance-of. For associations, Rule 25 guarantees that
this is the case for the top level: only top-level classes
may play roles on the top level. For other levels, this is
guaranteed by Rule 20: each class playing a role in an
association must be an instance of a class playing the
same role in the type of the association. Recalling that
Rule 9 guarantees that each instantiation results in the
level of the class being incremented by one, we have the
desired result.

To show the same for generalisations, let us assume
generalisation (A, B) where A is on a level above B;
this is illustrated in Figure 15 (a). Class B is on level
m + 1 by virtue of being a direct instance of C on level
m + 2 and A on level m by being an instance of D on
level m + 1. Rule 12 implies that A is an instance of C.
Hence, A is an instance of both C and D and must be on
both levels m and m+1. This is in conflict with Rule 10,
a contradiction.

The case where a subclass is on a level below its
superclass is shown in Figure 15 (b). The instantiation
(B, D) is implied by Rule 12, resulting in a contradiction.

References

1. Asikainen, T., Männistö, T., Soininen, T.: A unified con-
ceptual foundation for feature modelling. In: L. O’Brien

C

B

A

D

m

m+2

(a)

m+1

C

B

A

D

m

m+2

(b)

m+1

Fig. 15 Generalisations between classes on different levels
are not possible. (a) Subclass on a level below its superclass.
(b) Subclass on a level above its superclass.

(ed.) Proceedings of the 10th International Software
Product Line Conference (SPLC 2006), pp. 31–40 (2006)

2. Asikainen, T., Männistö, T., Soininen, T.: Kumbang:
A domain ontology for modelling variability in soft-
ware product families. Advanced Engineering Informat-
ics 21(1), 23–40 (2007)

3. Atkinson, C., Kühne, T.: The essence of multilevel meta-
modeling. In: M. Gogolla, C. Kobryn (eds.) Proceedings
of The Fourth International Conference on the Unified
Modeling Language UML 2001), Lecture Notes in Com-
puter Science, vol. 2185, pp. 19–33 (2001)

4. Atkinson, C., Kühne, T.: Profiles in a strict metamod-
eling framework. Science of Computer Programming
44(1), 5–22 (2002)

5. Atkinson, C., Kühne, T.: Rearchitecting the UML infras-
tructure. ACM Transactions on Modeling and Computer
Simulation 22(4), 290–321 (2002)

6. Atkinson, C., Kühne, T.: Model-driven development: A
metamodeling foundation. IEEE Software 20(5), 36–41
(2003)

7. Atkinson, C., Kühne, T.: Reducing accidental complex-
ity in domain models. Software and Systems Modeling
(2007). DOI 10.1007/s10270-007-0061-0

8. Atkinson, C., Kühne, T., Henderson-Sellers, B.: Stereo-
typical encounters of the third kind. In: J.M. Jézéquel,
H. Hussmann, S. Cook (eds.) Proceedings of the 5th
International Conference on the Unified Modeling Lan-
guage (UML 2002), Lecture Notes in Computer Science,
vol. 2460 (2002)

9. Berardi, D., Calvanese, D., Giacomo, G.D.: Reasoning
on UML class diagrams. Artificial Intelligence 168(1-2),
70–118 (2005)

10. Bobrow, D.G., Stefik, M.: The LOOPS manual. Tech.
rep., Xerox Corporation (1983)

11. Costal, D., Gómez, C.: On the use of association redefini-
tion in UML class diagrams. In: D.W. Embley, A. Olivé,
S. Ram (eds.) 25th International Conference on Concep-
tual Modeling (ER2006), Lecture Notes in Computer Sci-
ence, vol. 4215, pp. 513–527 (2006)

12. Czarnecki, K., Eisenecker, U.W.: Generative Program-
ming. Addison-Wesley, Boston (MA) (2000)

13. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged con-
figuration through specialization and multilevel configu-
ration of feature models. Software Process: Improvement
and Practices 10(2), 143–169 (2005)



28 Timo Asikainen, Tomi Männistö

14. Evans, A., France, R.B., Lano, K., Rumpe, B.: The UML
as a formal modeling notation. In: Selected papers from
the First International Workshop on The Unified Model-
ing Language UML’98, Lecture Notes in Computer Sci-
ence, vol. 1618, pp. 336–348 (1999)

15. van Gigch, J.P.: System design, modeling and metamod-
eling. Plenum Press (1991)

16. Hall, A.: Seven myths of formal methods. IEEE Software
7(5), 11–19 (1990)

17. Harel, D., Rumpe, B.: Meaningful modeling: What’s the
semantics of ”semantics”?. IEEE Computer 37(10), 64–
72 (2004)

18. Henderson-Sellers, B., Bulthuis, A.: COMMA: Sample
metamodels. JOOP 9(7), 44–48 (1996)

19. Henderson-Sellers, B., Gonzalez-Perez, C.: Uses and
abuses of the stereotype mechanism in UML 1.x and 2.0.
In: 9th International Conference on Model Driven En-
gineering Languages and Systems (MoDELS 2006), pp.
16–26

20. Jaffar, J., Lassez, J.L.: Constraint logic programming.
In: POPL ’87: Proceedings of the 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming
Languages, pp. 111–119. ACM Press (1987)

21. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E.,
Peterson, S.A.: Feature-oriented domain analysis
(FODA)—feasibility study. Tech. Rep. CMU/SEI-90-
TR-21, Software Engineering Institute, Carnegie Mellon
University (1990)

22. Kühne, T.: Matters of (meta-) modeling. Software and
Systems Modeling 5(4), 369–385 (2006)

23. Kühne, T., Steimann, F.: Tiefe Charakterisierung. In:
Modellierung 2004, pp. 121–133 (2004). In German.

24. Ludewig, J.: Models in software engineering—an intro-
duction. Software and Systems Modeling 2(1), 5–14
(2003)

25. McUmber, W.E., Cheng, B.H.C.: A general framework
for formalizing UML with formal languages. In: Pro-
ceedings of the 23rd International Conference on Soft-
ware Engineering (ICSE 2001), pp. 433–442 (2001)

26. Meyer, B.: Introduction to the Theory of Programming
Languages. Prentice Hall, New York (1990)

27. Meta Object Facility (MOF) core specification, OMG
available specification, version 2.0. Tech. Rep. formal/06-
01-01 (2006)

28. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.:
Telos: Representing knowledge about information sys-
tems. ACM Transactions on Information Systems 8(4),
325–362 (1990)

29. Niemelä, I.: Logic programs with stable model seman-
tics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25(3-4), 241–273
(1999)

30. Object constraint language, OMG available specification,
version 2.0. Tech. Rep. formal/06-05-01, Object Manage-
ment Group (2006)

31. Olivé, A.: Derivation rules in object-oriented conceptual
modeling languages. In: J. Eder, M. Missikoff (eds.)
Proceedings of the 15th International Conference on Ad-
vanced Information Systems Engineering, Lecture Notes
in Computer Science, vol. 2681, pp. 404–420 (2003)

32. Simons, P., Niemelä, I., Soininen, T.: Extending and im-
plementing the stable model semantics. Artificial Intel-
ligence 138(1-2), 181–234 (2002)

33. Soininen, T.: An approach to knowledge representation
and reasoning for product configuration tasks. Ph.D.
thesis, Helsinki University of Technology (2000)

34. Stachowiak, H.: Allgemeine Modelltheorie. Springer
(1973)

35. Steimann, F.: Role = interface: A merger of concepts.
Journal of Object-Oriented Programming 14(4), 23–32
(2001)

36. Syrjänen, T.: Omega-restricted logic programs. In: Pro-
ceedings of the 6th International Conference on Logic
Programming and Nonmonotonic Reasoning, Lecture
Notes in Artificial Intelligence, vol. 2713, pp. 267–280
(2001)

37. Thalheim, B.: Fundamentals of cardinality constraints.
In: G. Pernul, A.M. Tjoa (eds.) Proceedings of the 11th
International Conference on the Entity-Relationship Ap-
proach (ER’92), Lecture Notes in Computer Science, vol.
645, pp. 7–23 (1992)

38. Unified Modeling Language: Infrastructure, version
2.1.1. Tech. Rep. formal/2007-02-06, Object Manage-
ment Group (OMG) (2007)

39. Unified Modeling Language: Superstructure, version
2.1.1. Tech. Rep. formal/2007-02-05, Object Manage-
ment Group (OMG) (2007)


	Introduction
	Modelling and metamodelling
	Weight Constraint Rule Language
	Nivel---a metamodelling language
	Case study in feature modelling
	Discussion and comparison to previous work
	Conclusions and further work
	Additional rules
	Level-respectiveness and strictness in Nivel

