
TKK Dissertations 132
Espoo 2008

A CONCEPTUAL MODELLING APPROACH TO
SOFTWARE VARIABILITY
Doctoral Dissertation

Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering

Timo Asikainen

TKK Dissertations 132
Espoo 2008

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission
of the Faculty of Information and Natural Sciences for public examination and debate in Auditorium
AS1 at Helsinki University of Technology (Espoo, Finland) on the 1st of August, 2008, at 12 noon.

Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering

Teknillinen korkeakoulu
Informaatio- ja luonnontieteiden tiedekunta
Tietotekniikan laitos

Timo Asikainen

A CONCEPTUAL MODELLING APPROACH TO
SOFTWARE VARIABILITY
Doctoral Dissertation

Distribution:
Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering
P.O. Box 9210
FI - 02015 TKK
FINLAND
URL: http://www.soberit.tkk.fi/
Tel. +358-9-451 4851
Fax +358-9-451 4958
E-mail: reports@soberit.tkk.fi

© 2008 Timo Asikainen

ISBN 978-951-22-9484-8
ISBN 978-951-22-9485-5 (PDF)
ISSN 1795-2239
ISSN 1795-4584 (PDF)
URL: http://lib.tkk.fi/Diss/2008/isbn9789512294855/

TKK-DISS-2495

Multiprint Oy
Espoo 2008

AB
ABSTRACT OF DOCTORAL DISSERTATION HELSINKI UNIVERSITY OF TECHNOLOGY

P. O. BOX 1000, FI-02015 TKK
http://www.tkk.fi/

Author Timo Asikainen

Name of the dissertation

Manuscript submitted January 10, 2008 Manuscript revised June 24, 2008

Date of the defence August 1, 2008

Article dissertation (summary + original articles)Monograph
Faculty
Department

Field of research
Opponent(s)
Supervisor
Instructor

Abstract

Keywords conceptual modelling, variability, feature modelling, software architecture, metamodelling

ISBN (printed) 978-951-22-9484-8

ISBN (pdf) 978-951-22-9485-5

Language English

ISSN (printed) 1795-2239

ISSN (pdf) 1795-4584

Number of pages 84 p. + app. 81 p.

Publisher Helsinki University of Technology, Department of Computer Science and Engineering

Print distribution Helsinki University of Technology, Department of Computer Science and Engineering

The dissertation can be read at http://lib.tkk.fi/Diss/2008/isbn9789512294855/

A Conceptual Modelling Approach to Software Variability

×
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering
Conceptual modelling
Professor Alexander Felfernig
Professor Tomi Männistö
Docent Timo Soininen

×

Variability is the ability of a system to be efficiently extended, changed, customised or configured for use in a
particular context. Increasing amounts of variability are required of software systems. The number of possible variants
of a software system may become very large, essentially infinite. Efficient methods for modelling and reasoning about
software variability are needed and numerous such languages have been developed. Most of these languages either
lack a solid conceptual foundation or a rigorous formal semantics, or both.

In this dissertation, three novel software variability modelling languages, KOALISH, FORFAMEL and KUMBANG,
which synthesises KOALISH and FORFAMEL, are developed. The languages are based on concepts found relevant to
modelling software variability in scientific literature and practice, namely features and software architecture. They
synthesise and clarify the concepts defined in a number of previous languages. Ideas first developed in product
configuration research for modelling variability in non-software products are elaborated and integrated into the
languages. A formal semantics is given for the languages by translation to weight constraint rule language (WCRL).

One of the goals of this dissertation is to enable the representation of software variability knowledge at different levels
of abstraction in a uniform manner, preferably using an existing conceptual modelling language with a formal
semantics. Unfortunately, it turns out that no existing language meets these requirements. Consequently, a novel
conceptual modelling language, NIVEL, with the necessary capabilities is developed in this dissertation. The modelling
concepts of NIVEL are not based on software variability. Consequently, NIVEL can be applied in domains other than
software variability and is hence generic and contributes to the theory of conceptual modelling. A formal semantics
enabling automated, decidable reasoning is given for NIVEL by translation to WCRL.

NIVEL is used to give an alternative definition of KUMBANG. The alternative definition is more compact and easily
understandable than the original one. Major parts of the semantics of KUMBANG are captured by the semantics of
NIVEL. The definition of KUMBANG in terms of a generic modelling language also brings software variability
modelling closer to other forms of modelling, thus making software variability modelling less of an isolated discipline.

AB
VÄITÖSKIRJAN TIIVISTELMÄ TEKNILLINEN KORKEAKOULU

PL 1000, 02015 TKK
http://www.tkk.fi/

Tekijä Timo Asikainen

Väitöskirjan nimi

Käsikirjoituksen päivämäärä 10.1.2008 Korjatun käsikirjoituksen päivämäärä 24.6.2008

Väitöstilaisuuden ajankohta 1.8.2008

Yhdistelmäväitöskirja (yhteenveto + erillisartikkelit)Monografia
Tiedekunta
Laitos
Tutkimusala
Vastaväittäjä(t)
Työn valvoja
Työn ohjaaja

Tiivistelmä

Asiasanat käsitteellinen mallintaminen, varioituvuus, piirremallinnus, ohjelmistoarkkitehtuuri, metamallinnus

ISBN (painettu) 978-951-22-9484-8

ISBN (pdf) 978-951-22-9485-5

Kieli englanti

ISSN (painettu) 1795-2239

ISSN (pdf) 1795-4584

Sivumäärä 84 s. + liitt. 81 s.

Julkaisija Teknillinen korkeakoulu, Tietotekniikan laitos

Painetun väitöskirjan jakelu Teknillinen korkeakoulu, Tietotekniikan laitos

Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/2008/isbn9789512294855/

Ohjelmistojen varioituvuuden käsitteellinen mallintaminen

×
Informaatio- ja luonnontieteiden tiedekunta
Tietotekniikan laitos
Käsitteellinen mallintaminen
Professori Alexander Felfernig
Professori Tomi Männistö
Dosentti Timo Soininen

×

Varioituvuudella tarkoitetaan järjestelmän kykyä tulla tehokkaasti laajennetuksi, muutetuksi, mukautetuksi tai
konfiguroiduksi tiettyä käyttötarkoitusta varten. Ohjelmistojärjestelmiltä vaaditaan yhä enemmän varioituvuutta, ja
järjestelmän mahdollisten varianttien lukumäärä voi olla erittäin suuri, käytännössä ääretön. Varioituvuuden
mallintamiseen ja sitä koskevaan päättelyyn tarvitaan tehokkaita menetelmiä. Tätä tarkoitusta varten on kehitetty
monia eri kieliä, joista kuitenkin puuttuu selkeä käsitteellinen perusta, täsmällinen formaali semantiikka tai molemmat.

Tässä väitöstyössä kehitetään kolme ohjelmistojen varioituvuuden mallinnuskieltä, KOALISH, FORFAMEL ja
KUMBANG, joista KUMBANG yhdistää kaksi edellistä. Kielet perustuvat piirteen ja ohjelmistoarkkitehtuurin
käsitteisiin, jotka on aiemmassa tutkimuksessa ja käytännössä havaittu tärkeiksi varioituvuuden mallintamisen
kannalta. Kielet yhdistelevät ja selkeyttävät aiemmissa varioituvuuden mallinnuskielissä määriteltyjä käsitteitä sekä
sisältävät tuotekonfiguroinnin piirissä syntyneitä ajatuksia. Kielille määritellään formaali semantiikka erään
sääntöpohjaisen tiedonesittämiskielen, WCRL:n (Weight Constraint Rule Language), avulla.

Väitöstyön eräänä tavoitteena on mahdollistaa ohjelmistojen varioituvuuteen liittyvän tietämyksen esittäminen eri
abstraktiotasoilla yhtenäisesti, mieluiten käyttäen olemassaolevaa käsitteellisen mallintamisen kieltä. Koska mikään
olemassa oleva kieli ei täytä näitä vaatimuksia, kehitetään tarkoitukseen sopiva kieli, NIVEL, osana väitöstyötä. NIVEL
on yleiskäyttöinen siinä mielessä, että sen sisältämät mallinnuskäsitteet eivät perustu eivätkä käyttökohteet siten rajoitu
ohjelmistojen varioituvuuden mallintamiseen. Näin ollen NIVEL edistää käsitteellisen mallinnuksen teoriaa. NIVEL:lle
määritellään WCRL:n avulla automaattisen, ratkeavan päättelyn mahdollistava formaali semantiikka.

KUMBANG:lle annetaan vaihtoehtoinen määrittely NIVEL:n avulla. Vaihtoehtoinen määrittely on tiiviimpi ja
helppotajuisempi kuin alkuperäinen. Merkittävä osa KUMBANG:n semantiikasta saadaan esitettyä suoraan NIVEL:n
semantiikan avulla. Lisäksi annettava vaihtoehtoinen määrittely sitoo ohjelmistojen varioituvuuden mallintaminen
osaksi yleistä käsitteellistä mallintamista.

7

Acknowledgements

This dissertation was prepared in the Laboratory of Software Business and Engi-
neering, Department of Computer Science and Engineering, Helsinki University of
Technology. The graduate assistantships of Helsinki Graduate School in Computer
Science and Engineering (HeCSE) and the Department of Computer Science and
Engineering are gratefully acknowledged, as well as research-project funding from
the Academy of Finland, the Finnish Funding Agency for Technology and Innova-
tion (Tekes) and the Technology Industries of Finland Centennial Foundation.

I wish to thank my colleagues in the laboratory for a stimulating working en-
vironment. In particular, I am grateful to my supervisors, Docent Timo Soininen
and, later, Professor Tomi Männistö, for their advice and constructive criticism.
In addition, I extend thanks to Professor Ilkka Niemelä from the Laboratory for
Theoretical Computer Science for his guidance, especially that relating to knowl-
edge representation. Finally, I am indebted to the preliminary examiners, Associate
Professor Krzysztof Czarnecki and Professor Kai Koskimies, for their insightful com-
ments that helped to improve the dissertation.

Timo Asikainen

8

9

Contents

Acknowledgements 7

Contents 9

List of Publications 11

1 Introduction 13

1.1 Background . 13

1.2 Research problem and questions . 14

1.3 Methodology . 14

1.3.1 Overall approach . 15

1.3.2 Synthetisation . 16

1.3.3 Practices . 16

1.4 Scope . 17

1.5 Contribution . 18

1.6 Outline of the dissertation . 19

2 Review of the literature 20

2.1 Software product family . 20

2.2 Feature modelling . 21

2.3 Modelling product family architectures 22

2.3.1 Koala . 23

2.3.2 xADL 2.0 . 24

2.4 Modelling . 25

2.5 Modelling in software engineering 26

2.6 Metamodelling . 27

2.6.1 Metaness . 27

2.6.2 Strict metamodelling . 28

2.6.3 Ontological and linguistic instantiation 28

2.6.4 Unified modelling elements 29

2.6.5 Deep instantiation . 30

2.7 Metamodelling languages and frameworks 31

2.7.1 UML . 31

2.7.2 MOF . 32

2.7.3 Telos . 32

2.8 Product configuration . 33

2.9 Weight constraint rule language . 33

2.9.1 Syntax of weight constraint rules 34

2.9.2 Stable model semantics . 34

2.9.3 Rules with variables . 35

2.9.4 Computational complexity and implementation 36

10

3 Software variability modelling languages 37
3.1 Levels of abstraction . 37
3.2 Formalisation principles . 37
3.3 Definition of abstract syntax and main language elements 39
3.4 Taxonomy of composable types . 39
3.5 Compositional structure . 41
3.6 Attribute . 44
3.7 Interface and connection . 45
3.8 Constraints . 47
3.9 Instantiation . 48

4 Nivel—a metamodelling language 49
4.1 Language elements . 50
4.2 Formal semantics . 51

5 Defining Kumbang using Nivel 52
5.1 Levels of abstraction . 52
5.2 Taxonomy of composable types . 52
5.3 Compositional structure . 52
5.4 Attribute . 55
5.5 Interface and connection . 56
5.6 Instantiation . 59

6 Discussion and comparison with previous work 61
6.1 Software variability modelling languages 61

6.1.1 Conceptual basis . 61
6.1.2 Language definition . 63
6.1.3 Formal semantics . 65

6.2 Metamodelling languages . 67
6.2.1 Conceptual basis . 68
6.2.2 Formal semantics . 69

7 Further work 70

8 Conclusions 72

References 74

11

List of Publications

This dissertation consists of an overview and of the following publications which are
referred to in the text by their Roman numerals.

I Timo Asikainen, Timo Soininen, and Tomi Männistö. 2003. A Koala-
Based Approach for Modelling and Deploying Configurable Software Prod-
uct Families. In: Frank van der Linden (editor), 5th International Work-
shop on Product Family Engineering (PFE-5), volume 3014 of Lecture
Notes in Computer Science, pages 225–249. Springer.

II Timo Asikainen, Tomi Männistö, and Timo Soininen. 2006. A Unified
Conceptual Foundation for Feature Modelling. In: Liam O’Brien (editor),
10th International Software Product Line Conference (SPLC 2006), pages
31–40. IEEE Computer Society.

III Timo Asikainen, Tomi Männistö, and Timo Soininen. 2007. Kumbang: A
Domain Ontology for Modelling Variability in Software Product Families.
Advanced Engineering Informatics 21, no. 1, pages 23–40.

IV Timo Asikainen and Tomi Männistö. Nivel: A Metamodelling Language
with a Formal Semantics. Accepted for publication in Software and Sys-
tems Modeling.

The author of this dissertation is the principal author of all these publications.
He is responsible for all the research reported and the text in the publications. The
other authors (Tomi Männistö and Timo Soininen) have participated in developing
the ideas presented in the publications, supervised and given instruction in the
research described in them and made suggestions for their improvement.

12

13

1 Introduction

The chapter begins with a description of the background of this dissertation. The
research problem and detailed research questions are defined next, followed by a
description of the research methodology applied in the dissertation. The scope and
main contributions are discussed in the two subsequent sections. The chapter is
concluded with an outline of the dissertation.

1.1 Background

Variability is the ability of a system to be efficiently extended, changed, customised
or configured for use in a particular context [114]. There is a growing demand for
variability of software and a significant research interest in the topic, as exemplified
by the workshops and special issues devoted to it, see, e.g., [125, 26, 77, 24, 98, 83].
Products that incorporate variability are useful for various purposes: they can be
used to address multiple user segments, allow price categorisation, support various
hardware platforms and operating systems, provide different sets of features for
different needs and cover different market areas with different languages, legislation
and market structure.

Software product families, or software product lines, as they are also called, have
become an important means for implementing variability [23, 34]. A software prod-
uct family is commonly defined as consisting of a common architecture, a set of
reusable assets used in systematically producing individual products and the set of
products thus produced [23]. Another definition considers a common managed set of
features satisfying the specific needs of a market segment as a defining characteristic
of a software product family [34].

A software product family may contain thousands of variation points [25, 18]
and the number of individual products in a family may be essentially infinite. There
may be complex interdependencies between different variation points; finding a prod-
uct matching a specific set of customer requirements while taking into account the
various interdependencies is both error-prone and time-consuming [34, 45]. Conse-
quently, rigorous methods for representing and efficiently reasoning about software
variability are needed. A large number of software variability modelling languages
have been proposed. An important class of such languages is based on modelling
the common and variable features of a product family [63, 64, 37, 36, 75, 133, 40,
39, 132, 20, 17]; a number of languages for modelling product family architectures
have been reported [130, 44].

However, most, if not all, software variability modelling languages leave room
for improvement in conceptual and semantic rigour. That is, the conceptual basis
of such languages is not accurately defined through a syntax, either abstract or con-
crete. Furthermore, the semantics of such languages is described only informally
using natural languages or, if formal details are provided, only an outline of the
formalisation is presented. Instead, many authors seem to be more concerned with
details of the notation or concentrate on developing tool support before the concep-
tual basis for such tools has been established. This condition severely undermines

14

the practical applicability of variability modelling languages and methods based
on these, prevents systematic reasoning, both automated and other forms, about
the languages and makes comparing such languages with each other unnecessarily
difficult.

1.2 Research problem and questions

This dissertation strives to contribute to the theory of software variability manage-
ment by developing novel software variability modelling languages with emphasis on
conceptual clarity and rigorous, formal semantics. The research problem addressed
is twofold, and further divided into more detailed research questions:

1. What kind of languages are best suited for representing knowledge on software
variability?

(a) What is the conceptual basis of such languages?

(b) How should the conceptual basis of such languages be defined?

(c) What is the formal semantics of such languages?

2. What kind of languages are best suited for defining the conceptual basis of
the above-mentioned kind of languages?

(a) What is the conceptual basis of such languages?

(b) What is the formal semantics of such languages?

A language referred to in the first research problem will be termed a software
variability modelling language and a language referred to in the second research
problem a metamodelling language. The definition of a conceptual basis will be
termed abstract syntax.

Note that the two research problems resemble each other: both problems call
for the identification of existing modelling languages, or in the absence of such
languages, for their development. This is also reflected in the research questions
that are the same for both problems, with the exception that the issue of how to
define a conceptual basis for metamodelling languages is not dealt with.

1.3 Methodology

This section describes the research methodology applied in this dissertation. First,
the overall approach used in this dissertation is explained. Thereafter, a number
of methodological principles applied in implementing the overall approach are dis-
cussed.

15

1.3.1 Overall approach

The research method adopted in this dissertation is the constructive one. A con-
structive research method is motivated by the fact that, in the absence of previous
languages adequately addressing the research problem, new languages must be con-
structed to solve it.

According to Kasanen et al. [65], the main phases of the constructive research
process in the context of management accounting research are:

1. Find a practically relevant problem which also has research potential.

2. Obtain a general and comprehensive understanding of the topic.

3. Innovate, i.e., construct a solution idea.

4. Demonstrate that the solution works.

5. Show the theoretical connections and the research contribution of the solution
concept.

6. Examine the scope of applicability of the solution.

Another research method that is constructive by nature is design science. Hevner
et al. propose the following guidelines for design science in information systems
research [59]:

1. Design as an artefact : Design-science research must produce a viable artefact
in the form of a construct, a model, a method, or an instantiation.

2. Problem relevance: The objective of design-science research is to develop
technology-based solutions to important and relevant business problems.

3. Design evaluation: The utility, quality, and efficacy of a design artefact must
be rigorously demonstrated via well-executed evaluation methods.

4. Research contributions : Effective design-science research must provide clear
and verifiable contributions in the areas of the design artefact, design foun-
dations, and/or design methodologies.

5. Research rigor : Design-science research relies upon the application of rigorous
methods in both the construction and evaluation of the design artefact.

6. Design as a search process : The search for an effective artefact requires utiliz-
ing available means to reach desired ends while satisfying laws in the problem
environment.

7. Communication of research: Design-science research must be presented effec-
tively both to technology-oriented as well as management-oriented audiences.

16

Although neither of the above-discussed approaches to constructive research ap-
plies, as such, to development of conceptual modelling languages, the approaches do
provide a methodological framework: the constructive approach includes identifying
a relevant research problem (phases 1 and 2 according to Kasanen et al. [65]; guide-
line 2 according to Hevner et al. [59]), constructing a solution to the problem using
scientific practices (3 [65]; 1 and 5 [59]) and evaluating the solution and showing its
theoretical contribution (4, 5 and 6 [65]; 3, 4 and 7 [59]).

In this dissertation, the relevance of the research problem is mainly motivated by
previous research: both software variability and metamodelling languages are estab-
lished research topics, see Section 1.3.2 for details. In addition, managing software
variability is of great practical relevance, as discussed in Section 1.1. The scien-
tific practices used to construct the solutions are iterated in Section 1.3.3. Finally,
the theoretical contribution of the constructed conceptual modelling languages is
demonstrated by motivating the most important design decisions underlying them
and comparing them with previous work in Chapter 6.

1.3.2 Synthetisation

The software variability modelling languages developed in this dissertation synthe-
sise, unify and extend previous approaches to software variability. The synthesised
languages are based on the notions of feature and software product family architec-
ture. These notions have attracted most research interest as the conceptual bases
for modelling variability and hence provide a solid starting point for the software
variability modelling languages developed in this dissertation.

In addition, the software variability modelling languages incorporate a number of
ideas originating from the product configuration domain [110, 48], where variability
has been studied in the domain of non-software, mainly mechanical and electronics,
products. More specifically, these ideas help to add conceptual rigour to previous
software variability modelling languages.

The metamodelling languages developed in this dissertation synthesise modelling
constructs found in previous conceptual modelling languages, such as UML (Uni-
fied Modeling Language) [119, 121], ER (entity-relationship) modelling [33] and Te-
los [87]. In addition, the metamodelling languages incorporate a number of recent
ideas, most importantly, strict metamodelling [6], distinction between ontological
and linguistic instantiation [9, 69], unified modelling elements [7] and deep instan-
tiation [4, 11] and the role data model [14] dating back to 1977.

1.3.3 Practices

As discussed in Section 1.2, this dissertation emphasises the abstract syntax and
formal semantics of the conceptual modelling languages developed in it. Abstract
syntax is favoured over concrete syntax due to the fact that the interest in this
dissertation lies in the conceptual basis of the modelling languages; a concrete syntax
involves details such as keywords and ordering of language elements irrelevant from
this point of view and may draw attention away from the essence [116].

17

Giving a modelling language a formal semantics brings a number of benefits.
First, without a semantics, a language only amounts to a collection of notations.
Such a collection may well be useful for communication purposes, but may lead into
disputes over the proper usage and interpretation of the notations [46]. Although the
semantics of a modelling language would be intuitively clear, it may still not be pre-
cise enough to enable rigorous reasoning and implementing model transformations
required, e.g., in a model-driven approach to software development.

The importance of a formal semantics is also emphasised by the large number of
papers formalising parts of UML, e.g., [46, 78, 21, 131, 71]. Giving a modelling lan-
guage under development a formal semantics may help detect errors and omissions
in its specification: as an example, the authors of Telos report that “ambiguities and
inconsistencies were discovered during the process of constructing a formal account
of the language” [87]. Finally, it is particularly useful to give a formal semantics to
a metamodelling language: the domain-specific languages defined by metamodels
expressed in that language are given at least a partial semantics, as demonstrated
in Chapter 5.

On the other hand, it is not the case that a language with a formal seman-
tics would in general be unacceptable to users [55]. Instead, such a language can
be made accessible through a suitable concrete syntax or supporting tools. This
is an approach sometimes referred to as “logic through the backdoor” in artificial
intelligence research [107].

This dissertation follows the knowledge representation hypothesis [106, 29]. Ac-
cording to the hypothesis, knowledge must be represented explicitly and declara-
tively using some logic-like language: explicitness implies that knowledge is repre-
sented in a direct and unambiguous way; declarativeness means that the semantics
of the representation is specified without reference to how the knowledge is applied
procedurally.

1.4 Scope

As suggested by the detailed research questions and discussed in Section 1.3.3, the
focus of this dissertation lies in conceptual basis and formal semantics of conceptual
modelling languages. Consequently, other aspects related to language definition,
most importantly concrete syntax, pragmatics and tool support, are given little or no
emphasis. Also, approaches to implementing variability similar to, e.g., generative
programming [37] and the approaches suggested by Svahnberg et al. [114] and Santos
et al. [100], as well as case studies with industrial software product families are
outside the scope of this dissertation.

The software variability modelling languages developed in the dissertation are
based on the notions of feature and software product family architecture. Conversely,
other concepts that could have served as a basis for such languages are left out:
for instance, behavioural aspects of software are not addressed. Also, the software
variability modelling languages developed do not include issues such as evolution [76,
44], model metrics [132, 19] and staged configuration [38, 40] deemed important by
a number of researchers.

18

As demonstrated in Chapter 5, the metamodelling languages are designed to
ensure their suitability for modelling software variability, which may affect their
applicability in other domains. On the other hand, the languages do not explicitly
commit to concepts stemming from the software variability domain but instead, as
discussed in Section 1.3.2, are based on established conceptual modelling languages
(UML, ER modelling and Telos) and a number of recent ideas. Still, the languages
exclude a number of issues considered important in previous research, such as class-
valued attributes, a theory of parts and wholes [15] or a notion of time.

1.5 Contribution

The contribution of this dissertation is organised around three software variabil-
ity modelling languages (Koalish [I], Forfamel [II] and Kumbang [III]) and a
metamodelling language, Nivel [IV]. In the terminology of the constructive research
discussed in Section 1.3, these languages play the role of solution.

The three software variability modelling languages are based on different con-
cepts and are defined abstract syntax using progressively sophisticated methods.
Lessons learnt in developing Koalish [I] were taken into account when developing
Forfamel [II]; Kumbang [III] embodies lessons learnt from both Koalish and
Forfamel. On the other hand, all three languages have in common that they
are given a formal semantics by translation to WCRL (Weight Constraint Rule
Language) [105] which enables automated and other forms of reasoning about the
languages.

Koalish [I] is an extension of Koala [130, 128, 129], a component model and
an architecture-description language developed at Philips Consumer Electronics.
The component diagram notation of UML, since version 2.0, is based on concepts
similar to those underlying Koala, which further supports the practical relevance of
Koala. Koalish extends Koala through a number of variability mechanisms. Most
importantly, the definition of the compositional structure of components in Koalish
may include a number of possible types for the part and the number of components
occurring as a part may be specified using a cardinality; Koala only allows a single
possible type of which exactly one instance must always occur as a part. Similarly,
it is possible to define two or more alternative types for an interface in Koalish,
whereas Koala only allows a single type. In addition, Koalish abstracts a number of
variability mechanisms defined in Koala in terms of implementation. The concrete
syntax of Koalish is given using the extended Backus–Naur form (EBNF); the
abstract syntax of Koalish is defined only implicitly as a by-product

Forfamel [II] is a feature modelling language that builds on the foundation of
the first feature modelling language, FODA (Feature-Oriented Domain Analysis) [63]
and includes a number of extensions, such as feature cardinalities [36, 32] including
or-features [37] and group cardinalities [39] as special cases, and attributes [36, 40,
38]. Unlike previous feature modelling languages, Forfamel is based on a distinc-
tion between feature types occurring in feature models describing software product
families and their instances, features, occurring in configurations, each describing
an individual product in the product family. Consequently, Forfamel is closer to

19

conceptual modelling languages including the notion of instantiation, such as UML
and ER modelling. In addition, Forfamel strives to add conceptual clarity and
semantic rigour to previous feature modelling languages. The abstract syntax for
Forfamel is given using a UML class diagram.

Kumbang [III] unifies Koalish and Forfamel and hence architecture- and
feature-based variability modelling, respectively, into a single language: the vari-
ability of a software product family can be modelled from two points of view si-
multaneously. In addition, the interrelations between these points of view can be
specified using implementation constraints, intuitively stating what is required of an
architecture to deliver a certain feature. In spite of the possibility of relating the
two views using implementation constraints, the two views are independent of each
other in that they are governed by their internal well-formedness and consistency
rules; satisfying the implementation constraints cannot result in either of the views
becoming internally inconsistent. An abstract syntax for Kumbang is defined using
a UML profile, which gives insight to the applicability of the UML profile mechanism
to language definition.

In the context of this dissertation, the primary purpose of Nivel [IV] is to
serve as a language for defining the abstract syntax of software variability modelling
languages. The suitability of Nivel for this purpose is demonstrated in Chapter 5
where KumbangNivel, an alternative definition of Kumbang using Nivel, is given.
KumbangNivel is more compact and easily understandable than the definition of
Kumbang given in [III]. KumbangNivel also shows that software variability mod-
elling can be seen as an application area for metamodelling languages in addition
to, or even instead of, a domain of research of its own.

Nivel also contributes to the theory of conceptual modelling languages, es-
pecially that of metamodelling. Nivel is based on concepts—class, instantiation,
association, generalisation, attribute and value—found in many previous conceptual
modelling languages, such UML and ER modelling. These concepts are generalised
to enable modelling on any number of levels in a uniform manner. In addition,
Nivel incorporates a number of recent ideas including strict metamodelling [6],
distinction between ontological and linguistic instantiation [9], unified modelling el-
ements [7] and deep instantiation [4, 11]. A formal semantics enabling automated
and other forms of reasoning is given for Nivel by translation to WCRL.

1.6 Outline of the dissertation

The remainder of this dissertation is structured as follows. An overview of the liter-
ature relevant to this dissertation is provided in Chapter 2. The software variability
modelling languages Koalish, Forfamel and Kumbang are defined and given
a formal semantics in Chapter 3, followed by an overview of Nivel in Chapter 4.
Chapter 5 introduces KumbangNivel, an alternative definition of Kumbang given
in terms of Nivel. Next follow a discussion and comparison with previous work
(Chapter 6) and an outline for further work (Chapter 7). Some concluding remarks
are provided in Chapter 8.

20

2 Review of the literature

This chapter provides an overview of the literature relevant to this dissertation.
First, a brief introduction to software product families is given. Thereafter, the
notions of feature and product family architecture and languages for modelling soft-
ware variability based on them are discussed in Sections 2.2 and 2.3, respectively.
Modelling in general and in software engineering in particular are covered in Sec-
tions 2.4 and 2.5. Metamodelling is studied in Section 2.6 followed by overviews of
a number of metamodelling languages in Section 2.7. Section 2.8 gives an introduc-
tion to product configuration domain, where variability of (non-software) products
has been studied. The chapter is concluded in Section 2.9 with an introduction
to WCRL, a knowledge representation language that will be used to give formal
semantics to conceptual modelling languages developed in subsequent chapters.

2.1 Software product family

This section introduces the concept of software product family, or line, an alternative
term used. Software product families are an important means for implementing
software variability. There are a number of definitions for the concept [23, 34].
Clements and Northrop define the concept as follows [34]:

A software product line is a set of software-intensive systems sharing
a common, managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed from a
common set of core assets in a prescribed way.

Bosch defines the concept somewhat differently [23]:

A software product line consists of a product line architecture and a
set of reusable components that are designed for incorporation into
the product line architecture. In addition, the product line consists of
the software products that are developed using the mentioned reusable
assets

The two definitions share the notion of a set of reusable or core assets. Also,
both definitions include the set of products or systems developed using these assets.
The definition by Clements and Northrop identifies satisfying“the specific needs of a
particular market segment” as a defining characteristic of a software product family,
whereas Bosch’s definition emphasises the role of product line (family) architecture.

The activities related to software product family engineering are typically organ-
ised into two phases, namely the development and deployment [23]; other authors
use the terms domain and application engineering to refer to roughly the same phe-
nomena, respectively [37]. During the development process, the software product
family architecture and components implementing the common part, i.e., compo-
nents present in all individual products in the product family, are implemented. The

21

Car

Horsepower Air conditioningTransmission

Manual Automatic

Figure 2.1: A sample FODA model, adapted from [63]

deployment process involves deriving individual products from the product family,
based on a set of specific market or customer requirements. The architecture and
components from the above-discussed development process form the basis for the
deployment process: they are adapted to match the requirements for the individual
product being deployed. However, in a typical case, product-specific code must be
developed to implement product-specific requirements that are not covered by the
assets from the development process.

2.2 Feature modelling

In this section, a brief overview of feature modelling is provided. The section begins
with an introduction to FODA [63], the first feature modelling language reported,
followed by a discussion on its most important extensions.

In FODA, a feature is defined as an attribute of a system that directly affects end
users [63]. Later, the definition of feature has been extended to “a system property
that is relevant to some stakeholder” [40].

The variability of a software product family can be represented by organising
the common and variable features of the family into a feature model. Figure 2.1
illustrates a sample feature model in FODA. Syntactically, a feature model is a
tree the root of which is termed the root feature, sometimes referred to as concept ;
in the model of Figure 2.1, the root feature is Car . The root feature may have
other features as its subfeature and these may, in turn, have other features as their
subfeature, etc.

There are a number of subfeature kinds: a mandatory subfeature (Transmission
and Horsepower in the sample model) must be selected whenever its parent (Car)
is selected; an optional feature (Air conditioning) may, but needs not, be selected
whenever its parent is selected. An alternative subfeature consists of a set of features
of which exactly one must be selected whenever the parent feature is selected; in
Figure 2.1, Manual and Automatic form an alternative subfeature of Transmission.

An individual product is described by a configuration consisting of a set of fea-
tures; the product is said to deliver the features in the configuration. A valid configu-
ration of a feature model consists of a subset of the features in the feature model and
obeys the rules defined in the feature model, most importantly the above-described

22

rules for selecting subfeatures. The task of finding a feature configuration matching
a specific set of requirements for an individual product at hand is termed configu-
ration task. Note that with the exception of the root feature, all other features in
a valid configuration must be subfeatures of some other feature. This requirement
will be referred to as the groundedness property of feature modelling.

A number of feature modelling languages extend FODA. The most important
extensions include directed-acyclic-graph (DAG)-formed feature models, feature car-
dinalities, attributes and or-features, or more generally, group cardinalities.

In some feature modelling methods, feature models and configurations may take
the form of a DAG [64, 99, 36, 41] , i.e., a feature may be a subfeature of more
than one feature. This possibility is referred to as reference attribute [36] or feature
reference attribute [41]. It is said that the two or more parents share the subfeature.

A feature cardinality [36, 32] specifies how many times a subfeature may and must
appear in a valid configuration. A mandatory feature corresponds to cardinality 1,
and an optional subfeature to cardinality 0..1. Other cardinalities, such as 2..4 (must
appear at least two and at most four times), and 1..* (at least once), can be defined.

In some languages, features may have attributes [36, 40, 39]. An attribute is a
value characterising a feature. There are different variants of attributes: a feature
may be restricted to have at most one attribute [40] or any number of attributes
may be allowed [36].

An or -feature [37] is a subfeature kind similar to an alternative feature, with the
difference that at least one of the alternatives must be selected. More generally, a
feature group consists of two or more features out of which a number specified by
the group cardinality must be included in each valid configuration. As an example,
an alternative feature corresponds to a group cardinality of 1 and an or-feature to
a group cardinality of 1..*.

In order to distinguish feature groups from other subfeatures, the term soli-
tary subfeature is used to refer to a subfeature that is not a member of a feature
group [39] and the terms feature cardinality and group cardinality when referring to
cardinalities in the context of solitary feature and feature group, respectively.

Feature modelling languages have been given formal semantics by translation
to various languages, such as propositional logic [75, 17, 133, 42], binary decision
diagrams [124, 42], constraint programming [19, 20], higher-order logic [62] and
grammars [39, 17].

2.3 Modelling product family architectures

In this section, an overview of the notion of software architecture and languages for
representing software architecture is provided. Thereafter, languages for modelling
software product family architectures are discussed.

The level of design concerning the overall structure of software systems is com-
monly referred to as the software architecture level of design. This level includes
structural issues such as the organisation of a system as a composition of compo-
nents, the protocols for communication, the assignment of functionality to design
elements, etc. [50]. A definition of software architecture is [16]:

23

CSystem

server : CServer

client :
CClient

dbase : CDbquery :
IRpc2

rcvreq :
IRpc2

sendreq :
IRpc

m

Figure 2.2: The architecture of a client-server system represented using Koala.

The software architecture of a program or computing system is the
structure or structures of the system, which comprise software com-
ponents, the externally visible properties of those components, and
the relations among them.

A large number of languages for modelling software architecture, or architecture-
description languages (ADL) have been reported: Wright [3], Acme [51], C2 [79] and
Rapide [73] are examples of ADLs focusing on different aspects of architectural de-
scription. ADLs have been surveyed by Medvidovic and Taylor [80]. Most ADLs
employ component as the basic concepts for describing software architecture; a com-
ponent is typically defined as a locus of computation. Further, most ADLs include
concepts for describing the connection points of components, typically termed port,
and entities mediating communication between components, termed connector.

Most ADLs are intended for describing the architecture of a single system and
thus lack concepts for modelling variability. Hence, most of them are not directly
applicable to modelling product family architecture. However, there are exceptions
to this rule, including Koala [130], and xADL 2.0 [123] that will be discussed next.

2.3.1 Koala

Koala [130, 128, 129] is a component model and an ADL developed at Philips Con-
sumer Electronics in order to enable embedded software to be built more efficiently.
Figure 2.2 contains an example of an architecture description in Koala.

A component is defined as “an encapsulated piece of software with an explicit
interface to its environment” [130]. The interface of a component consists of one
or more interfaces. An interface type is a “small set of semantically related func-
tions” [130]. A function corresponds to a function signature, e.g., in the C program-
ming language. Each interface of a component is typed and identified by a name.
An interface type a is termed a subtype of interface type b if (and only if) the set of
functions in a is a superset of those in b; similarly, b is termed a supertype of a.

An interface has a d irection based on which it is termed either a required or
a provided interface1: a required (provided) interface signals that the component

1The terms requires and provides interface are used instead of required and provided interface,
respectively, by van Ommering et al. [130].

24

requires (provides) the service described by the interface type from (to) its environ-
ment.

Both required and provided interfaces are identified by a name. In Figure 2.2, the
component type CClient requires an interface named sendreq of type IRpc; interfaces
of type IRpc2 are provided by the names rcvreq and query by the component types
CServer and CDb, respectively.

A component may have other components as its part or, in other words, contain
other components. A part is identified by a name that describes the role of the
contained component within the containing component, i.e., whole. In Figure 2.2,
component type CSystem contains components of type CClient and CServer by the
names client and server , again respectively. CServer further contains a component
of the type CDb by the name dbase. A part is encapsulated in the sense that it can
only be accessed from within the containing component.

The unit of implementation in Koala is module. For example in Figure 2.2, the
interface query is implemented in module m.

There may be connections between pairs of interfaces. A provided interface in
a part may be connected to a provided interface in its whole: in Figure 2.2, the
interface rcvreq is connected to the interface query . It is said that the connection
is from rcvreq to query ; the terms source and target interface are likewise used,
respectively. In a similar vein, a required interface in a part may be connected to an
interface of its whole. Finally, a required interface may be connected to a provided
interface, given that the components with the two interfaces are parts of the same
component, as is the case for interfaces sendreq and rcvreq in Figure 2.2.

A configuration is defined as a component that is not part of any other component
and has no interfaces. In a valid configuration, the connections must obey a set
of rules referred to as the Koala connection constraints in this dissertation: each
interface that is not implemented in a module must be connected to exactly one
other interface according to the above-described rules. Further, in each connection,
the target interface must be a subtype of the source interface.

Koala incorporates a number of variability mechanisms. A configuration is char-
acterised by a set of parameters. Configurations with different parameters are con-
sidered different: the functionality of a system may directly vary based on the pa-
rameters. Further, parameter values may affect which interfaces are connected. An
interface may be declared optional, implying that the component with the interface
may, but needs not to, have the interface when instantiated in a configuration.

The semantics for Koala is given in terms of the outputs of tools operating on
the language.

2.3.2 xADL 2.0

xADL 2.0 [43, 123] is an infrastructure for rapid development of ADLs based on the
Extended Markup Language (XML). Hence, xADL 2.0 is not merely an ADL, but
provides facilities for defining customised ADLs. In this dissertation, the focus is
set on the conceptual core of xADL 2.0; the extension mechanisms are ignored.

The basic modelling elements of xADL 2.0 include component type, connector
type and interface type. A component may be composed of other components. An

25

interface is a connection point of a component. Interfaces may be bound using a
connector. The variability modelling elements of xADL 2.0 include optional element,
variant type and optional variant element. An optional element has the intuitive
semantics that it may be, but is not required to be, included. A variant type
pertains to a choice between two or more elements. An optional variant element is
both an optional element and a variant type. The control over whether to include an
optional element and which variant should be selected is in Boolean guards, which
are Boolean expressions on a number of variables.

2.4 Modelling

In this dissertation, a definition of model by Stachowiak [111] is adopted. According
to the definition, a model must possess three features:

1. Mapping feature: A model is based on an original.

2. Reduction feature: A model only reflects a (relevant) selection of an original’s
properties.

3. Pragmatic feature: A model needs to be usable in place of an original with
respect to some purpose.

As suggested by the definition and discussed by Kühne [69, 68], being a model
or an original, or system [69] or system under study [104, 53], alternative terms
used, are not intrinsic properties of entities but roles played by them in a binary
relationship.

Models are expressed using a modelling language. The term language element
will be used to refer to entities constituting a modelling language. Examples of
language elements include proposition and connective in propositional logic and
entity and relationship in ER modelling. Entities constituting models are referred
to as model elements.

A distinction between the abstract and concrete syntax of modelling language is
made. The terms are defined in a similar manner as has been done for programming
languages [116]: it is customary to use Backus-Naur Form (BNR) in the definition
of concrete syntax. Abstract syntax, on the other hand, pertains to the definition
of the conceptual basis of a language. Hence, the abstract syntax of a language
ignores issues related to represention, such as the choice of particular keywords and
delimiters, and the ordering of language elements.

Besides syntax, the semantics of a modelling language is likewise of interest.
Intuitively, semantics pertains to the meaning of a modelling language. There are
several styles of giving a language a semantics [116]. In general, the definition of
a semantics includes specifying a semantic domain and a semantic mapping [56].
The semantic domain may be a mathematical domain, as is the case in denotional
semantics, or another language, as is the case in translational semantics [116]. The
semantic mapping is a function relating the syntactic elements of the modelling
language with the elements of the semantic domain. The term formal semantics is

26

used if the semantic domain is either a mathematical domain or a language with a
formal semantics, e.g., propositional logic.

Finally, in spirit of Stachowiak’s pragmatic feature, the potential utility of models
and modelling language as a means for expressing models is adopted as an under-
lying guideline for this dissertation. As phrased by Box and Draper [28, p. 424]:
“Essentially, all models are wrong, but some are useful.”

2.5 Modelling in software engineering

Modelling plays a prominent role in software engineering. A large number of dif-
ferent approaches to modelling have emerged, each supported by different forms
of languages, processes and tools. In this section, a brief overview of the different
approaches is provided.

One way of classifying models is to distinguish between descriptive and pre-
scriptive model [74], or forward-looking and backward-looking model [53], roughly
alternative terms used. A descriptive model “mirrors an existing original” and a
prescriptive one is “used as a specification of something to be created” [74]. Just
as being a model is not an intrinsic property of an entity, being a descriptive or
descriptive model is not an intrinsic property of an entity, but of the relationship
between a model and an original. The same entity may play both a prescriptive and
descriptive role, possibly at different times; such a model is termed transient [74].

Although being prescriptive or descriptive is not a property of a model, let alone
of a modelling language or paradigm, some approaches to modelling can be charac-
terised either as prescriptive or descriptive. For example, in the context of object-
oriented software development, in object-oriented analysis there is “an emphasis on
finding and describing the objects—or concepts—in the problem domain whereas in
object-oriented design, there is “an emphasis on defining software objects and how
they collaborate to fulfil the requirements” [72]. Hence, object-oriented analysis can
be characterised as descriptive and design as prescriptive.

The conceptual modelling initiative defines a level of system description that
is “closer to the human conceptualisation of a problem domain” and can “serve
as knowledge bases to be used by an expert system and as starting points for a
system implementation” [31]. Further, “the descriptions that arise from conceptual
modelling activities are intended to be used by humans, not machines” [86]. Hence,
conceptual modelling can be characterised as predominantly descriptive.

On the other hand, model-driven engineering, or alternatively, model-driven de-
velopment (MDD), is commonly defined as “the systematic use of models as primary
engineering artefacts throughout the engineering lifecycle”. Model-driven engineer-
ing has emerged as an approach supplementary to third-generation programming
languages as a means for constructing concrete software [101, 49]. Modelling lan-
guages have been envisaged as making the current, third-generation programming
languages obsolete in a manner similar to that in which compilers largely removed
the need for writing assembler or binary code [8]. The Model Driven Architecture
(MDA) [84] initiative of the OMG (Object Management Group) is an example of

27

an approach to model-driven engineering. To summarise, model-driven engineering
represents a predominantly prescriptive modelling approach.

The modelling languages developed in this dissertation are termed conceptual in
reference to the ideas of prescriptive model and conceptual modelling.

2.6 Metamodelling

This section begins with a discussion of the notion of metaness. The main body of
the section consists of an overview of different ideas related to metamodelling.

2.6.1 Metaness

The notion of metaness often occurs when modelling is discussed, especially in the
software engineering context. In this dissertation, a characterisation of metaness by
Kühne [69] is adopted. The characterisation is based on a binary relation R and the
relation Rn defined for n ≥ 1 as:

e1R
n e2 =

{
e1 R e2 if n = 1

∃ e : e1 Rn−1 e ∧ e R e2 if n ≥ 2

A relation suitable for building metalevels is required to satisfy three properties:
the acyclic, anti-transitive and level-respecting properties [69]. The level-respecting
property implies the anti-transitive property [69] and the acyclic property, see Ap-
pendix B of [IV]. Hence, the level-respective property defined as [69]

∀n, m : (∃ e1, e2 : e1 Rn e2 ∧ e1 Rm e2)→ n = m

suffices to characterise a relation suitable for building metalevels.
Given a relation R suitable for building metalevels, element e1 can be charac-

terised as meta with respect to e2 if (and only if) e1R
ne2 for n ≥ 2. For example,

if R is the binary relation modelOf (m, o), m is termed a model of original o and
modelOf 2(m, o) implies that m is a metamodel of o. Further, each element m corre-
sponds to a level, or metalevel or layer, alternative terms used. The level correspond-
ing to m is said to be above the level corresponding to o whenever modelOf p(m, o)
for p ≥ 1; conversely, the level corresponding to o is said to be below the one corre-
sponding to m. Finally, the terms top and bottom are used to refer to levels above
and below all other levels, respectively.

If R is the instanceOf (i, t) relation, i is said to be an instance of t and t a type
of i. Finally, if instanceOf p(i, t), i is termed an instance of order p of t. Instances
of order 2 or higher are collectively termed higher-order instances.

The above characterisation of metaness is in accordance with a number of def-
initions of metamodel, such as “a model of models” [84]. As previously suggested
by Kühne [69], in this dissertation metamodels are not exclusively regarded as def-
initions of domain-specific languages, although they can in some circumstances be
interpreted as such; other authors have adopted the opposite view [104, 119, 95].

28

A language suitable for expressing model hierarchies consisting of three or more
models will be termed a metamodelling language. The more generic term metamod-
elling framework will be used to refer to methodologies suitable for expressing model
hierarchies consisting of at least three models that may consist of more than one
individual language, e.g., the OMG framework consisting of UML [119, 121], the
Meta Object Facility (MOF) [81] and the Object Constraint Language (OCL) [92].

2.6.2 Strict metamodelling

The strict metamodelling rule has been formulated as follows [6]:

In an n-level modeling architecture, M0, M1, . . . ,Mn−1, every element
of an Mm-level model must be an instance-of exactly one element of an
Mm+1-level model, for all m < n− 1, and any relationship other than
the instance-of relationship between two elements X and Y implies
that level(X) = level(Y).

In effect, the rule requires that the instance-of relation may not cross levels in
the sense that a (model) element would be an instance of another element two or
more levels above. Also, the rule requires an element, except one on the M0 level, to
be an instance of a single element only; that is, multiple classification is not allowed.

2.6.3 Ontological and linguistic instantiation

Many metamodelling frameworks are based on a single form of instantiation. For
example, in the OMG framework, each level, except the top, is characterised as an
instance of the level next above it and the top level, containing MOF, as an instance
of itself. Language elements, such as Metaclass , Class and Object , are on the top
level, as illustrated in Figure 2.3 (a).

However, it has been argued that resorting to a single form of instantiation leads
to a number of problems, such as dual classification [7], also termed ambiguous
classification [4], and class/object duality [7]. As an example of dual classification,
Collie in Figure 2.3 (a) is classified as both as an instance of Class and Breed ;
as another example, Lassie is both an instance of Object and Collie. Further in
Figure 2.3 (a), class/object duality is exemplified in Collie that is both an instance
of Breed and the class of Lassie.

As a remedy against problems arising in metamodelling frameworks based on a
single form of instantiation, it has been suggested that metamodelling frameworks
should distinguish between two forms of instantiation, termed the logical and physi-
cal dimension [7, 10], or alternatively, ontological and linguistic instantiation [9, 69].
In this dissertation, the latter set of terms is adopted.

As the term linguistic suggests, linguistic instantiation pertains to the (abstract
syntax of the) language used to represent model elements or, in other words, the
form model elements take [4, 7]. In terms of model and language elements as defined
and discussed in Section 2.4, linguistic instantiation is a relation between model and
language elements where the former play the role of instance and the latter that of

29

(a) (b)

Class Object

Breed

M3

Metaclass

M2

M1

Lassie

M0

yearReg

age=7

Collie
yearReg=1888
age ontological

instance-of

O1

O0

L0 L1

O2

ontological
instance-of

Collie
yearReg=1888
age

Class

Object

linguistic
instance-of

linguistic
instance-of

type

instance

Metaclass
linguistic

instance-of

type

instance

Breed
yearReg

Lassie
age=7

Figure 2.3: (a) A metamodelling framework based on a single form of instantiation.
(b) Ontological and linguistic instantiation. Adapted from [69].

class or type. An ontological instantiation relationship relates two models or model
elements that are in the same domain of discourse, e.g., biology or retail sales, but
on different levels [69].

Figure 2.3 (b) illustrates the distinction between ontological (dashed vertical
arrows) and linguistic instantiation (dashed horizontal arrows). In the figure, Lassie
is an ontological instance of Collie and a linguistic instance of Object . Collie, on the
other hand, is an ontological instance of Breed and a linguistic instance of Class .
Breed is a linguistic instance of Metaclass .

Note that ontological instantiation, either between levels or individual model
elements, must be represented using some language element. However, not all con-
ceptual modelling languages provide a construct for this purpose. For example,
in UML class diagrams it is not possible to express that a class is an instance of
another class, although it is possible to include InstanceSpecifications representing
the instances of classes in models; similarly in ER modelling, it is not possible to
express that an entity or relationship is an instance of another entity or relationship,
respectively, although the materialization

2.6.4 Unified modelling elements

In a multilevel modelling framework, model elements on a level are typically repre-
sented using the same language element: for example, in Figure 2.3 (b), level O0 is

30

associated with Object , level O1 with Class and level O2 with Metaclass . Should
another ontological level be added, a new language element would need to be in-
troduced, probably termed Metametaclass in this case. Alternatively, if it is not
possible to add language elements when needed, the maximum number of available
ontological levels is determined by the set of language elements at hand [7].

The notion of unified modelling elements is based on the observation that model
elements on intermediate levels, i.e., other than the top and bottom level, are uni-
form in the sense that they exhibit both characteristics of classes and objects. Con-
sequently, the model elements can be represented by a single language element,
termed the unified modelling element2. Further, model elements on the top and
bottom levels can be viewed as special cases: top-level elements with a degenerate
object and bottom-level elements with a degenerate type facet. In order to assign
model elements to levels, the unified modelling element includes an integer attribute
for level. [7]

In Figure 2.3 (b), O1 is an intermediate level and the class Collie is both an
instance of Breed and the type of Lassie. This figure can be redrawn, employ-
ing the notion of unified modelling elements, as Figure 2.4 (a). In the figure, the
unified modelling element ModelElement unifies Metaclass , Class and Object in
Figure 2.3 (b). The model elements Breed , Collie and Lassie are all instances of
ModelElement .

2.6.5 Deep instantiation

The situation in which a model element may have higher-order instances is referred
to as deep instantiation as opposed to the case of shallow instantiation where only
first-order instances can be represented [4, 7].

The maximum order of instances of a class is specified by its potency [4, 7].
Potency is a non-negative integer assigned independently for each class that is not
an instance of another class. An instance of a class has the potency value of its type
decremented by one. However, the potency value may not be less than zero. Hence,
the potency of a class gives the maximum order of its instances. A class under the
notion of shallow instantiation is of potency 1.

Under deep instantiation, it is useful to enable a model element to characterise
its higher-order instances. As an example, in Figure 2.4 (b) the attribute denoted
age2 implies that each second order instance of Breed , e.g., Lassie, has a value for
age; the intuition is that every dog must have an age. More generally, each attribute
of a class is assigned an integer value termed potency that resembles the potency
assigned for classes in that an instance of the class has an attribute by the same
name as its type but with the potency decremented by one; an attribute of potency
one turns into a value in an instance. [4, 7]

In Figure 2.4 (b), the attribute age of Breed is of potency 2. Further, by virtue
of being an instance of Breed , Collie has an attribute by the same name but of
potency 1. Finally, a value (7) is assigned for age in Lassie.

2Note that the term unified modelling element adopted from [7] is somewhat incompatible with
the terminology of model and language element adopted in this dissertation.

31

(a) (b)

ontological
instance-of

O1

O0

L0 L1

O2

ontological
instance-of

Collie
yearReg=1888
age

linguistic
instance-of

linguistic
instance-of

linguistic
instance-ofBreed

yearReg

Lassie
age=7

ModelElement
level

ontological
instance-of

O1

O0

L0 L1

O2

ontological
instance-of

Collie1

yearReg=1888
age1

ModelElement

linguistic
instance-of

linguistic
instance-of

linguistic
instance-of

Lassie0

age=7

level
potency

Breed2

yearReg1

age2

Figure 2.4: (a) Unified modelling elements. (b) Deep instantiation.

The ability of classes to characterise their higher-order instances need not be
restricted to attributes. Instead, the notion of deep instantiation can be extended
to cover, e.g., associations and constraints. Thus extended, a metamodel can be
used to define a semantics for a (domain-specific) modelling language in addition
to abstract syntax. The notion of deep instantiation will be extended as outlined
above in Nivel [IV] and the applicability of Nivel to software variability modelling
languages will be demonstrated in Section 5 of [IV] and in Chapter 5.

2.7 Metamodelling languages and frameworks

In this section, an overview of a number of metamodelling languages and frameworks
is provided.

2.7.1 UML

UML is often used to define language metamodels. A kind of metamodel can be
defined using a profile consisting of a number of stereotypes. Each stereotype defines
an extension that can be applied to one or more metaclasses, such as Class . A
stereotype may define additional properties and constraints that become properties
and constraints of the instances of a metaclass to which the stereotype is applied.

32

To construct a language metamodel using profiles and stereotypes, one needs
to map the language elements to UML metaclasses. That is, for each language
element, one must find the UML metaclass that best matches the intended abstract
syntax and semantics of the language element and create a stereotype extending that
metaclass. Note that the abstract syntax and semantics of a UML metaclass may
only be restricted by stereotypes. Hence, the abstract syntax for the selected UML
metaclass must contain a superset of features intended for the language element,
e.g., associations from the language element to other elements, and the semantics of
the UML metaclass must be less restrictive than that of the language element.

Finally, if a suitable mapping between the language elements and UML meta-
classes is found, one needs to define suitable properties and constraints for the
stereotypes to achieve the desired semantics. There is no standard way for defining
the constraints, although the UML specification itself applies OCL [92]. Note also
that UML itself has no standard formal or otherwise rigorous semantics that would
enable automated or otherwise formal reasoning about the language. Consequently,
no semantics is obtained for the profile or the language defined using the profile,
besides the intuitive descriptions given in the UML standard [121].

The profile mechanism is characterised as a “lightweight” and “not a first-class”
extension mechanism [121, pp. 647–648] and the Meta Object Facility (MOF) [81]
as the mechanism for first-class extensibility.

2.7.2 MOF

MOF is endorsed by the OMG as a metamodelling facility providing support for
any number of layers [81, p. 8]:

Note that key modeling concepts are Classifier and Instance or Class
and Object , and the ability to navigate from an instance to its metaob-
ject, i.e., its classifier. This fundamental concept can be used to han-
dle any number of layers, sometimes referred to as metalevels. The
MOF 1.4 Reflection interfaces allow traversal across any number of
metalayers recursively.

Unfortunately, the MOF specification [81] is, at best, ambiguous and vague in
specifying an abstract syntax and a semantics for the language elements (Classifier
and Instance) referred to in the quotation above. Also, the specification does not
provide examples of how MOF is applied in metamodelling.

2.7.3 Telos

Telos [87] is a language that can be used to represent knowledge using any number
of metalevels. Elements on different levels are represented uniformly as individuals
that may likewise uniformly be described using attributes. Individuals and attributes
are collectively termed propositions.

Propositions are organised based on three dimensions : aggregation, generalisa-
tion and classification. Aggregation is used to collect attributes related to a propo-
sition into objects. Generalisation pertains to organising propositions into general-
isation hierarchies. Classification refers to the requirement that each proposition

33

is an instance of one or more propositions, or classes. The instance-of relation is
used to characterise propositions using various terms: a token has no instances and
is intended to represent concrete entities in the domain of discourse, a simple class
with only tokens as instances, a metaclass with only simple classes as instances,
a metametaclass with only metaclasses as instances etc. Each such term defines a
plane of which there may be an unbounded number. A class that may have instances
along more than one such plane is termed an ω-class. [87]

The classes constituting the definition of Telos, e.g., the above-described classes
Individual , Attribute and Proposition, are included in the classification hierarchy
and serve as examples of ω-classes.

2.8 Product configuration

This section provides an overview of product configuration research, a subfield of
artificial intelligence [47].

Research in the product configuration domain is based on the notion of con-
figurable product : a configurable product is a product such that each individual
product is adapted to the requirements of a particular customer order. Historically,
the configurable products studied in the domain have been non-software products,
typically mechanical and electronics ones. A modular structure is typical of a config-
urable product: individual product consist of pre-designed components and selecting
different components leads to different product variants. [109]

The possibilities for adapting a configurable product are predefined in a config-
uration model that explicitly and declaratively defines the set of legal products. A
specification of an individual product, configuration, is produced in the configuration
task based on the configuration model and a set of customer requirements.

There are two widely cited conceptualisations of configuration knowledge [110,
48]. The most important concepts in these are: components, ports, resources, and
functions. A component represents a distinguishable entity in a product: a config-
uration is composed of components that may be composed of other components.
A port is a connection interface of a component. Ports may be connected with
each other. A component may produce and consume resources ; the production and
consumption of each resource must be balanced. Finally, a function is an abstract
characterisation of a product that, e.g., a customer could use to describe it.

2.9 Weight constraint rule language

In this section, a brief overview of Weight Constraint Rule Language (WCRL) [105]
is provided. The overview provided in this section is based on Section 3 of [IV].

WCRL is a general-purpose knowledge representation language syntactically sim-
ilar to logic programs with a declarative formal semantics based on the stable model
semantics of logic programs: the rules of the program are interpreted as constraints
on a solution set for the program, whereas the usual logic programming paradigm
is based on a goal-directed backward chaining query evaluation [88].

34

2.9.1 Syntax of weight constraint rules

A weight constraint rule is an expressions of the form

C0 ← C1, . . . , Cn

where each Ci is a weight constraint. A weight constraint is of the form:

L ≤ {a1 = wa1 , . . . , an = wan , not b1 = wb1 , . . . , not bm = wbm} ≤ U

where each ai and bj is an atom. Atom a and not-atom not b are called literals. Each
literal is associated with a weight: e.g., wa1 is the weight of a1. The numbers L and U
are the lower and upper bound of the constraint, respectively.

A number of notational shorthands are used. Constraints where every weight
has value one, i.e., constraints of the form

L ≤ {a1 = 1, . . . , an = 1, not b1 = 1, . . . , not bm = 1} ≤ U

are termed cardinality constraints and written as

L {a1, . . . , an, not b1, . . . , not bm}U

A missing lower bound is interpreted as −∞ and a missing upper bound as ∞.
A rule of the form

{a1, . . . , an} ← C1, . . . , Cn

is termed a choice rule. Constraints of the form 1 ≤ {l = 1}, where l is a literal, are
written simply as l.

The shorthand
← C1, . . . , Cn

is used for rules where the head C0 is an unsatisfiable constraint, such as 1 ≤ {}.
This kind of rules are termed integrity constraints. Finally, rules with an empty
body, that is, of the form

C0 ←

are termed facts.

2.9.2 Stable model semantics

A set of literals S is defined to satisfy a weight constraint if (and only if):

l ≤
∑
ai∈S

wai
+
∑
bi /∈S

wbi
≤ u

That is, a weight constraint is satisfied if the sum of weights of the literals satisfied
by S is between the lower and upper bounds. A weight constraint rule is satisfied
by a set of atoms S if and only if the head C0 is satisfied whenever each constraint
Ci in its body is satisfied. A program P is defined as a set of weight constraints. P
is satisfied by S if and only if every weight constraint rule in P is satisfied by S.

35

A set of atoms S is a stable model of program P if (i) S satisfies P and (ii) S
is justified by P . Intuitively, S is justified or grounded by P if every atom a in S
has a non-circular justification. An atom is justified by a program if it appears in
the head of a satisfied rule. Non-circular justification requires in addition that the
body of the justifying rule is satisfied without assuming a.

Example Consider the program:

0 ≤ {a = 1, b = 1} ≤ 2← a

The set of atoms {a} satisfies the only rule in program, and thus the program itself.
However, the atom a only has a circular justification: the body is obviously not
satisfied without assuming a. Hence, {a} is not a stable model of the program. The
only stable model is the empty set.

2.9.3 Rules with variables

For practical purposes, WCRL has been extended with a form of variables and
function symbols. In more detail, domain-restricted rules with variables are allowed.
Intuitively, a domain-restricted program P is divided into two parts: PDo containing
the definition of domain predicates and POt containing all the other rules. The form
of rules in PDo is restricted in such a way that PDo has a unique finite stable model.
All the rules in POt must be domain-restricted in the sense that every variable
occurring in a rule must appear in a domain predicate which occurs positively in
the body of the rule. The domain predicates in PDo are defined using stratified rules
allowing a form of recursion [115].

A rule with variables is treated as a shorthand for all its ground instantiations
with respect to the Herbrand universe of the program, i.e., the set of atoms that
can be composed by applying functional composition from the basic symbols. The
ground instantiation contains all the rules that can be obtained by substituting
each variable in the rule with one of its possible values, restricted by one or more
domain predicates. The atoms occurring in ground rules thus formed are termed
the Herbrand base of the program and a model consisting of such atoms a Herbrand
model.

Example The use of variables and domain predicates can be demonstrated using
the structure of a company board as an example. The people and their sexes that
can possibly serve in a board are represented using facts such as female(alice) ←
and male(bob)← . Values such as alice and bob are termed object constants in this
dissertation and must begin with a lower-case letter. The rules

person(X)← female(X)

person(X)← male(X)

provide the definition for the unary domain predicate person. Variables, such as X
in the above rules, must begin with an upper-case letter.

36

The predicate member(x) gives that x is a board member. The fact

5 {member(X) : person(X)} 7←

gives that a board consists of at least five and at most seven members. The fact is
also an example of a rule including a conditional literal. A conditional literal is of the
form l : d, where l is any predicate and d is a domain predicate. When instantiated, a
conditional literal corresponds to the sequence of literals l′ obtained by substituting
the variables in l by all the combinations allowed by the domain predicate d. For
example, with the above-mentioned facts, the rule would be instantiated into

5 {member(alice), member(bob)} 7←

which is obviously not satisfied.
The fact that a board has a chair and may have a vice-chair is captured by the

following two facts, respectively:

1 {chair(X) : person(X)} 1←
0 {vice(X) : person(X)} 1←

The rules
member(X)← chair(X), person(X)

member(X)← vice(X), person(X)

state the requirement that both the chair and the vice-chair are also board members.
Finally, an integrity constraint can be used to rule out the possibility that the

chair and the vice-chair are the same person:

← chair(X), vice(X), person(X)

Note that the literal person(X) is required to make the above rule domain-restricted.

2.9.4 Computational complexity and implementation

Given a ground WCRL program P , i.e., one not containing variables, and a set of
atoms S, deciding whether S is a stable model of P can be decided in polynomial
time. Deciding whether program P has a stable model is NP-complete.

An inference system smodels3 implements WCRL and has been shown to be
competitive in performance compared with other solvers, especially in the case of
problems involving structure [105].

3See http://www.tcs.tkk.fi/Software/smodels/

http://www.tcs.tkk.fi/Software/smodels/

37

3 Software variability modelling languages

This chapter is the first of the three chapters describing the artefacts constructed
in this dissertation. In this chapter, an overview of three software variability mod-
elling languages, Koalish [I], Forfamel [II] and Kumbang [III], are provided.
In addition, a formal semantics for the languages is given by translation to WCRL.
Examples of the languages can be found in the original publications [I], [II] and [III].

The chapter is organised as follows. Next, in Section 3.1, follows a discussion on
the levels of abstraction the software variability modelling languages are based on.
The formalisation principles applied in the translation to WCRL are presented in
Section 3.2. The main body of the languages will be discussed in the remaining sec-
tions. As the three languages share many concepts and are formalised analogously,
the discussion is organised based on the language elements, such as taxonomy of
composable types, compositional structure etc. Differences between the languages
are discussed separately for each language element in their respective sections.

3.1 Levels of abstraction

The software variability modelling languages are based on three levels of abstraction
illustrated in Figure 3.1. The highest level is the metalevel containing the meta-
model for the languages. The next level is the model level on which variability
models are located. A variability model is a representation of the variability in a
software product family. In the terminology of Section 2.1, a variability model is
typically constructed in the development phase or during domain engineering. The
third and lowest level termed instance level contains configurations. Intuitively, a
configuration represents an individual product. Finding a configuration matching a
particular set of requirements for an individual product at hand is a problem related
to the deployment phase, or application engineering. A variability model defines a
possibly empty set of configurations that are valid with respect to the model.

The metalevel and the model level, and the model level and the instance level
are related to each other in a similar manner: in both cases, the former can be
characterised as a model of the latter. Further, in both cases, entities on the former,
e.g., Server and Database in Figure 3.1, can be termed types of the latter and
entities on the latter, e.g., :Server and :Database can be termed instances of the
entities on the former. The terms type and instance are also used as absolute terms
when referring to entities on the type and instance levels, respectively. Finally, a
relationship between types on the model level is termed a definition.

3.2 Formalisation principles

A formal semantics for the software variability modelling languages is given by
translation to WCRL [105]. The approach followed can be termed translational
semantics [82]: the syntactic constructs of a language are mapped onto constructs
of another language, one with a semantics defined. This mapping is denoted by

38

metalevel

Type Definition

Server

Database

part

whole

whole

part

db

model level

instance level

:Server

:Database

whole

part

:db

Figure 3.1: Three levels of abstraction in the software variability modelling lan-
guages Koalish, Forfamel and Kumbang

the symbol tL, where L ∈ {Koalish,Forfamel,Kumbang}. Further, in the
terminology of [56], the semantic mapping is tL and the semantic domain is WCRL.

In symbols: tL : VL 7→ W , where VL denotes the set of syntactically well-formed
variability models in language L andW the set of WCRL programs. Note that both
the mapping and the set of syntactically valid models are different for each of the
variability modelling languages.

The formal semantics captures the notion of a valid configuration. The mapping
tL is constructed in a way such that each stable model of tL(M), where M ∈ VL,
corresponds to a valid configuration of M .

The WCRL program t(M) can be partitioned into two parts: an axiomatic
part tL,a and a model-specific part tP(M) related to a particular model M . The
axiomatic part tL,a contains rules shared by all models M ∈ VL. Rules in the
model-specific part and axiomatic part will be termed model-specific and axiomatic
rules, respectively. Axiomatic rules will be boxed to distinguish them from the
model-specific rules. When introducing model-specific rules, phrases such as “for
each component type t and part definition d” will be used to make explicit the
context in which the rule is introduced. Note that the translation is modular in the
sense that model elements can be translated independently of each other.

The rules in the model-specific part tP(M) can further be decomposed into two
parts: a part encoding the types and definitions appearing in a particular variability
model and a part specifying a large enough number of instances of each type to cover
all the valid configurations of M .

A number of syntactic conventions are adopted. As required by the WCRL
syntax, variables begin with an upper-case and object constants with a lower-case

39

letter. Names of non-domain predicates are printed in bold . For some predicates,
both a domain and a non-domain variant are used; in these cases, the latter will be
identified by a lower-case subscript p for “possible”, e.g., hasPartp.

3.3 Definition of abstract syntax and main language elements

The syntax of each of the three software variability modelling languages is defined
using a different method in the respective original publications. As can be recalled
from Section 1.2, the focus of this dissertation is on the abstract (as opposed to
concrete) syntax of the conceptual modelling languages developed. Consequently,
the syntax of the variability modelling languages will mostly be discussed at an
abstract level.

For Koalish, no explicit abstract syntax is given in [I]. Instead, a concrete syntax
is given using EBNF, see Figure 3.2. Being based on Koala [130], the basic language
elements of Koalish include component that may contain other components as
its parts. In addition, components may have connection points termed interface. A
distinction between types and instances is made both for components and interfaces.

The abstract syntax of Forfamel is defined in [II] using a UML class model,
see Figure 3.3. The most important language element in Forfamel is feature. A
feature may have subfeatures. The subfeatures of a feature give its compositional
structure; it is also said that a feature is composed of other features. A distinction
between feature types and their instances, features, is made.

A UML profile is constructed in [III] to define an abstract syntax and a form
of semantics for Kumbang. The profile, including the constituting stereotypes and
taxonomic relations between them, is illustrated in Figure 3.4. Note that the profile,
as illustrated in Figure 3.4, does not itself define an abstract syntax or any form of
semantics for Kumbang but does so only when considered in conjuction with the
relevant elements in the UML metamodel (Classifier , Property , etc.). Kumbang
synthesises Koalish and Forfamel. Consequently, its main language elements
include both component, interface and feature. Just as in Koalish and Forfamel,
a distinction between types and instances is made for all main language elements.

In the remainder of this chapter, component and feature types will collectively
be referred to as composable types.

3.4 Taxonomy of composable types

Composable types, excluding component types in Koalish, may be organised in
generalisation hierarchies using the taxonomic isa relation. For types tsub and tsuper ,
isa(tsub , tsuper) implies tsub is a subtype of tsuper and tsuper is a supertype of tsub .

A composable type may be abstract. An abstract type may not have direct
instances or, in other words, an instance of an abstract type must always be an
instance of a subtype of the type.

Semantics Formal semantics for the software variability modelling languages will
be given under headings such as this. The semantics will be given separately for each

40

〈koalish model〉 ::= Koalish model 〈identifier〉 root component
〈identifier〉 〈type definition〉*

〈type〉 ::= 〈component type〉 | 〈interface type〉 | 〈attribute type〉
〈component type〉 ::= component type 〈identifier〉 { 〈section〉* }
〈interface type〉 ::= interface type 〈identifier〉 { (〈identifier〉 ;)* }
〈attribute type〉 ::= attribute type 〈identifier〉 = { 〈valuelist〉 }

〈section〉 ::= 〈attribute section〉 | 〈provides section〉 |
〈requires section〉 | 〈constraint section〉 |
〈contains section〉

〈contains section〉 ::= contains 〈part definition〉*
〈attribute section〉 ::= attributes 〈attribute definition〉*
〈provides section〉 ::= provides 〈interface definition〉*
〈requires section〉 ::= requires 〈interface definition〉*
〈connects section〉 ::= connects 〈connection〉*
〈constraint section〉 ::= constraints 〈constraint〉*
〈part definition〉 ::= 〈identifier list〉 〈identifier〉 [〈cardinality〉] ;

〈attribute definition〉 ::= 〈identifier〉 〈identifier list〉 ;
〈interface definition〉 ::= 〈identifier〉 〈interface details〉 (, 〈interface details〉)* ;
〈interface details〉 ::= 〈identifier〉 (optional | grounded)

[(optional | grounded)]
〈connection〉 ::= 〈identifier〉 [. 〈identifier〉] = 〈identifier〉 [. 〈identifier〉] ;
〈cardinality〉 ::= [〈integer literal〉 [- 〈integer literal〉]]

〈identifier list〉 ::= 〈identifier〉 | (〈identifier〉 〈identifier list end〉*)
〈value list〉 ::= 〈value〉 (, 〈value〉)*
〈value〉 ::= 〈integer literal〉 | 〈identifier〉

Figure 3.2: The concrete syntax of Koalish in EBNF, excluding the syntax for
constraints. Adapted from [I].

language element in their respective sections; this is possible, as the semantics for
different language elements are modular in the sense that rules formalising different
language elements do not interfere with each other. For example, in this section the
semantics for taxonomy of component types will be given.

A type in a variability model is represented using a predicate symbol; Table 3.1
contains a summary of how different model elements in variability models and con-
figurations are represented in WCRL. The unique name assumption is adopted: each
type is represented by exactly one predicate symbol and a predicate symbol may not
represent more than one type; the same assumption is adopted for other language
elements as well. The predicate symbol representing type t will be simply t. An
instance is represented by an object constant.

For each pair of types (tsub , tsuper) in the isa relation, introduce the rule:

tsuper(I)← tsub(I)

41

value
Enumerated value

1..*

*
possible value

name
isAbstract

Feature type
name
Feature model

contains
1..**

{subset}

root type
* 1

name
Attribute value type contains **

(b)

Configuration

1

*

valid configuration

(a)

1

*

name
isAbstract

Feature type

type

name
Attribute

name
Subfeature

**
1..*

*

contains
*

1..*

1

root
feature

*

Configuration

Feature

{subset}

value
Enumerated value

(c)

name
isAbstract

Feature type

Constraint

name[0..1]
allowedCardinality[1..*]
similarityDef[1]

Subfeature definition

name
Attribute value type

name[1]
allowedCardinality[1..*]

Attribute definition

1..*
possible

type

*

isa
subtypesupertype
**

1

*

1

*

«enumeration»
Similarity

same
different
none

*

1
: Similarity

type

Figure 3.3: The abstract syntax of Forfamel given as a UML class model [II].

3.5 Compositional structure

Composable instances, i.e., components and features, may be characterised using
a compositional structure, i.e., components (features) may have other components
(features) as their part. The compositional structure is specified using part defini-
tions in composable types. A part definition relates a whole type and a number of
possible part types. In addition, a part definition contains a part name, a cardinality
and a similarity value4, with the exception that a part definition in Koalish does
not contain a similarity value.

The part name identifies the role in which instances of the possible part types

4The term definition was used instead of value in the original publications [I], [II] and [III] when
referring to properties of part and interface definitions.

42

«stereotype»
KumbangType

«stereotype»
ComposableType

«stereotype»
FeatureType

«stereotype»
ComponentType

«stereotype»
FeatureInstance

«stereotype»
ComponentInstance

«stereotype»
ComposableInstance

«stereotype»
KumbangInstance

«stereotype»
InterfaceInstance

(a)

(b) (c)

«stereotype»
InterfaceType

«stereotype»
AttributeType

«profile»
Kumbang

«stereotype»
FeatureType

«stereotype»
ComposableInstance

«stereotype»
FeatureInstance

«stereotype»
ComponentInstance

«stereotype»
KumbangModel

rootFeature:FeatureType[0..1]
rootComponent:componenttype[0..1]

KumbangConfiguration
«stereotype»

(from Kernel)
Classifier

«metaclass»«stereotype»
KumbangType

different
same
none

«enumeration»
Similarity

(from Kernel)
DataType

«metaclass»

(from Interfaces)
Interface

«metaclass»

(from Kernel)
InstanceSpecification

«metaclass»«stereotype»
KumbangInstance

«stereotype»
InterfaceInstance

/direction:Direction
/isBehavior:boolean

(from Kernel)
InstanceSpecification

«metaclass»«stereotype»
Connection

«stereotype»
ConnectionConstraint

required
provided

«enumeration»
Direction

(from InternalStructures)
Port

«metaclass»

types:InterfaceType[*]
isOptional:boolean
direction:Direction
/targets:InterfaceDefinition[*]

«stereotype»
InterfaceDefinition

«stereotype»
ComposableType

«stereotype»
ComponentType

(from InternalStructures)
StructuredClassifier

«metaclass»

(from BasicComponents)
Component
«metaclass»

types:ComposableType[*]
similarity:Similarity

«stereotype»
PartDefinition

(from InternalStructures)
Property

«metaclass»

«stereotype»
AttributeDefinition

(from Kernel)
Property

«metaclass»

(from BasicComponents)
Connector

«metaclass»

«stereotype»
InterfaceType

«stereotype»
AttributeType

(from Models)
Model

«metaclass»

Figure 3.4: The absract syntax of Kumbang profile given as a UML profile [III].

are parts of instances of the whole type. The cardinality is an integer range [L..U]
with the semantics that a whole in a valid configuration must have at least L and
at most U parts by the part name.

The similarity value is one of same, different and none. The value same implies
that the parts of each whole in a valid configuration must be of the same type,
whereas different implies they must be of different types. If the value is none, no

43

Table 3.1: Representation of language elements in the software variability mod-
elling languages in WCRL

Model element WCRL representation

Type t Unary predicate symbol t(i): i is an instance of t
Instance i Object constant i
Attribute type a Unary predicate symbol a(v): v is a value in a
Possible attribute value e Object constant e
Function f Object constant f

restrictions on the respective types are implied.
In a variability model, exactly one component and feature type must be defined

as the root type, with the exception that if the model does not include component or
feature types, no respective root type need or may be defined. A valid configuration
must contain exactly one instance of each root type, termed root instance, and any
other instance in the configuration must be a part of a whole. It is said that an
instance is justified by either being the root instance or a part of a whole.

Semantics A valid configuration must contain exactly one instance of each root
type. That an instance i is justifiably in configuration is represented by the unary
predicate in(i). See Table 3.2 for an overview of the predicates used in the formali-
sation. The predicate rootK(i) gives that instance i is an instance of the root type
for K ∈ {C,F}, where C stands for “component” and F for “feature”.

A valid configuration must contain, for each K, exactly one instance of the root
type:

1 {in(I) : rootK(I)} 1← (3.1)

For each root type t of the kind K, a rule of the form

rootK(I)← t(I)

is introduced.
The ternary predicate hasPart(w, p, n) gives that instance w has instance p

as its part with the part name n. For each part definition with part name n in
composable type w with cardinality [L, U], introduce a rule:

L {hasPart(W,P, n) : hasPartp(W,P, n)}U ← in(W), w(W) (3.2)

Further, if the similarity value is same, the parts must be of the same type. There-
fore, for each subset {p1, p2} , p1 6= p2 of the set of possible part types in the part
definition, introduce a rule of the form:

← hasPart(W,P1, n), hasPartp(W,P2, n),

hasPart(W,P1, n), hasPartp(W,P2, n), w(W), p1(P1), p2(P2)
(3.3)

44

Table 3.2: Predefined predicates used in the formalisation of the software variabil-
ity modelling languages in WCRL. Predicates for which a corresponding domain
predicate is defined, denoted by subscript p, have the column p checked.

Predicate p Semantics

in(i) The instance i is justified in the configuration.
rootK(i) The instance i is the root feature for K.
hasPart(w, p, n) × Instance w has instance p as its part with name n.
hasAttr(i, n, v) Instance i has value v for attribute name n.
hasInt(c, i, n) × Component c has interface i with name n.
prov(i) The interface i is a provided interface.
req(i) The interface i is a required interface.
grounded(i) The provided interface i is grounded.
cn(s, t) × The interface s is connected to interface t.
pc(s, t) The pair of interfaces (s, t) is place compatible.

Finally, if similarity takes value different , a rule of the form

← hasPart(W,P1, n), hasPartp(W,P2, n),

hasPart(W,P1, n), hasPartp(W,P2, n), w(W), p(P1), p(P2)
(3.4)

is introduced for each possible part type p.
An instance that is a part of a whole is justifiably in the configuration:

in(P)← hasPart(W,P,N), hasPartp(W,P,N) (3.5)

3.6 Attribute

Instances may be characterised by attributes. An attribute is a name–value pair.
Attribute definitions in types are used to specify which attributes their instances
may and must have. An attribute definition consists of a name and an attribute
type5. An attribute type is identified by a name and consists of a finite set of
possible values an attribute of the type may take.

Semantics An attribute type is represented in WCRL using a predicate symbol
and its constituting values by object constants. The predicate a(v) gives that at-
tribute type a contains value v. Hence, for each attribute type a and possible value v,
a fact of the form

a(v)←

is introduced.

5The term attribute value type is used instead of attribute type in [II].

45

Attribute definitions are translated into rules as follows. For each attribute
definition of type t with name n and attribute type a, introduce a rule of the form:

1 {hasattr(I, n, V) : a(V)} 1← in(I), t(I)

3.7 Interface and connection

A component instance may have interfaces. An interface consists of a set of func-
tions, each of which is an enumerated value. An interface has a direction, either
provided or required and may be grounded.

A component type specifies the interfaces its instances may and must have using
interface definitions. An interface definition consists of an interface name, a non-
empty set of possible interface types and direction, optionality and groundedness
values.

The interface name specifies the role in which an interface is an interface of
the component. The set of possible interface types contains the interface types the
instances of which may occur as interfaces of instances of the component type with
the interface name.

An interface type consists of a set of functions. An interface has the same func-
tions as its type.

Just as an interface is either a provided or a required interface, the direction in
an interface definition takes one of the values provided and required . An interface
with the name of the definition has the same value for direction as its definition.

The optionality value in an interface definition takes one of the values optional
and mandatory . The value mandatory implies that an instance of the component
type must have an interface with the interface name, whereas the value optional
implies that an instance may, but needs not, have such an interface. The definition
is termed mandatory or optional based on the optionality value.

The groundedness is a Boolean value. An interface based on the definition is
termed grounded if (and only if) the groundedness value is true. A grounded in-
terface corresponds to an interface that is implemented in a module in Koala, see
Section 2.3.1.

A valid Koalish configuration must satisfy the Koala connection constraints.

Semantics In the formalisation, an interface type is represented by a unary predi-
cate symbol. Interfaces instances and functions are represented by object constants.

The predicate hasFunc(i, f) gives that interface i contains function f . For each
interface type t and function f contained in t, introduce a rule of the form:

hasFunc(I, f)← t(I)

The ternary predicate hasInt(c, i, n) gives that component c has interface i with
name n. For each interface definition with name n in component type t, a rule of
the following form is introduced:

L {hasInt(C, I, n) : hasIntp(C, I, n)} 1← in(C), t(C)

46

where L is 0 if the definition is optional and 1 otherwise.
The notion of subtyping between interfaces is formalised as follows. The pred-

icate subtypeOf (isub , isuper) gives that interface isub is a subtype of isuper , i.e., the
functions contained in isub is a superset of those contained in isuper :

subtypeOf (Isub , Isuper)← not notSubtypeOf (Isub , Isuper),

hasIntp(Csub , Isub , Nsub), hasIntp(Csuper , Isuper , Nsuper)
(3.6)

where the auxiliary predicate notSubtypeOf (i1, i2) holds for the pair (i1, i2) if i2
contains a function not contained in i1:

notSubtypeOf (I1, I2)← hasFunc(I2, F), not hasFunc(I1, F) (3.7)

The relative positions and directions of pairs of interfaces that may be connected
according to the Koala connection constraints are illustrated in Figure 3.5, see also
Figure 2.2. Such a pair (Ifrom , Ito) is termed place compatible and the fact that the
pair is place compatible is represented by the binary domain predicate pc(Ifrom , Ito).

The case illustrated in Figure 3.5 (a) is captured by the rule:

pc(Ifrom , Ito)← hasIntp(Cfrom , Ifrom , Nfrom), hasIntp(Cto , Ito , Nto),

hasPartp(Cto , Cfrom , Pfrom), req(Ifrom), req(Ito)
(3.8)

the case in Figure 3.5 (b) by the rule:

pc(Ifrom , Ito)← hasIntp(Cto , Ito , Nto), hasIntp(Cfrom , Ifrom , Nfrom),

hasPartp(Cfrom , Cto , Pto), prov(Ito), prov(Ifrom)

and the case in Figure 3.5 (c) by the rule

pc(Ifrom , Ito)← hasIntp(Cfrom , Ifrom , Nfrom), hasIntp(Cto , Ito , Nto),

hasPartp(C, Cfrom , Pfrom), hasPartp(C, Cto , Pto), Cfrom 6= Cto , req(Ifrom), prov(Ito)

The predicate cn(ifrom , ito) gives that interface ifrom is connected to interface ito .
The corresponding predicate cnp(i1, i2) representing the possibility that the pair of
interfaces is defined as:

cnp(Ifrom , Ito)← subtypeOf (Ito , Ifrom), pc(Ifrom , Ito) (3.9)

Intuitively, a pair of interfaces (i1, i2) may be bound if the target interface i2 is a
subtype of the source interface i1 and the pair is place compatible.

Connections between pairs of interfaces are enabled by the rule:

0 {cn(Ifrom , Ito)} 1← in(Ifrom), in(Ito), cnp(Ifrom , Ito)

47

C

Cfrom

(c)(b)(a)

Cfrom

CtoIfrom Ito

Cto

Cfrom Ifrom Ito CtoIfrom Ito

Figure 3.5: Possibilities for connecting interfaces in Koalish and Kumbang.
(a) Between a pair of required interfaces. (b) Between a pair of provided interfaces.
(c) From a required to a provided interface.

Finally, it is required that each non-ground interface must be bound to at least
one

← {cn(Ifrom , Ito) : cnp(Ifrom , Ito)} 0,

hasIntp(C, Ifrom , N), in(Ifrom), not grounded(Ifrom)
(3.10)

and at most one other interface

← 2 {cn(Ifrom , Ito) : cnp(Ifrom , Ito)} ,

hasIntp(C, Ifrom , N), in(Ifrom), not grounded(Ifrom)
(3.11)

3.8 Constraints

When modelling software variability, it may be the case that not all relevant in-
terrelations between elements can be expressed using the constructs described in
previous sections. Therefore, the variability modelling languages include the notion
of constraint. Constraints can be defined for composable types. Syntactically, a con-
straint is a Boolean condition that can be evaluated in the context of a composable
instance. In a valid configuration, all constraints of all instances must evaluate to
true.

The variability modelling languages are not committed to any specific constraint
language. However, as an example of a suitable constraint language, an overview of
Kumbang constraint language is given in [III].

In Kumbang, it is necessary to enable the specification of interdependencies be-
tween the two points of view. The related mechanism is a special case of constraints
termed implementation constraints. Such constraints are attached to feature types
and describe what must be true of the architecture in order for the feature to be
delivered by a product in the family. Even though the feature and the architec-
ture view may be related through implementation constraints, the two views are
still independent of each other in that they are both subject to well-formedness and
consistency rules of their own. Consequently, it is not possible that either of the
views becomes inconsistent in a valid configuration in order to satisfy one or more
implementation constraints.

48

Input: composable type wt to be instantiated
Output: set of rules representing wi, an instance of wt

let wi be a new object constant
add fact wt(wi)←
foreach part definition d of wt do

if d.similarity = different then
maxCard := 1

else
maxCard := d.card.upper

foreach composable type t ∈ d.part do
foreach pt ∈ t ∪ t.subtypes do

if pt.isAbstract then continue
for j := 1 to maxCard do

pi := instantiate(pt)
add fact hasPartp(wi, pi, d.name)←

foreach interface definition d of w do
foreach interface type it ∈ d.types do

let ii be a new object constant
add fact hasIntp(wi, ii, d.name)←
if d.direction = provided then

add fact provided(ii)←
else

add fact required(ii)←
if d.isGrounded = true then add fact grounded(ii)←

return wi

Figure 3.6: Algorithm instantiate(t) for instantiating a variability model,
initially called with each root type as the input parameter in turn. For sim-
plicity, same symbols are used for model elements and the object constants
representing them.

3.9 Instantiation

In addition to the above-discussed rules representing variability models, rules defin-
ing the elements that may possibly appear in a configuration must be explicitly
represented in the WCRL encoding of the variability model; in other words, a vari-
ability model must be instantiated. The idea is that a number of instances and
relationships between them large enough to cover any valid configuration of the vari-
ability model are created. In addition, the instances are assigned types and places
in the compositional hierarchy using the ternary domain predicates hasPartp and
hasIntp and direction and possible groundedness is specified for interfaces through
the unary predicates provided , required and grounded . An algorithm based on the
idea is presented as Figure 3.6; note that the algorithm is not about solving the
configuration task related to a variability model.

49

Association

Class
name:string [0..1]
/level:natural
potency:natural
isAbstact:Boolean
/mayDefineAttributes:Boolean
instancesMayHaveAttributes:Boolean
/superclassing:{none,single,multiple}
instanceSuperclassing:{none,single,multiple}

1

instancetype

(direct)
instanceOf

name:string
Role

hasRole

1

11..*

hasAttr

superclass subclass

Value
name:string
value

1hasValue

(direct)
subclassOf

0..1

Attribute
name:string
potency:natural
cardinality:Cardinality
domain:Domain

Model
numberOfLevels:natural
multipleClassification:Boolean

topLevel 1..*

Cardinality
lower:natural
upper:natural [0..1]

CardinalityConstraint
cardinality:Cardinality
potency:natural

GeneralisationSet
name:string
isCovering:Boolean
isDisjoint:Boolean

playsRoleIn

Domain
name:string
value [*]

Figure 4.1: The abstract syntax of Nivel given as a UML class model [IV]

4 Nivel—a metamodelling language

Nivel [IV] is a metamodelling language developed as a part of this dissertation.
Nivel does not commit to a single modelling paradigm, such as object-orientation,
and therefore covers a large variety of different modelling purposes. Nivel is based
on a core set of modelling concepts, i.e., class, instantiation, association, general-
isation, attribute and value, and incorporates a number of recent ideas including
strict metamodelling [6], distinction between ontological and linguistic instantia-
tion [9, 69], unified modelling elements [7] and deep instantiation [4, 11]. Nivel
supports modelling on any number of levels in a uniform manner.

The abstract syntax of Nivel is illustrated in Figure 4.1 using the UML class
diagram notation. However, the figure is not intended to serve as an exhaustive
description of the abstract syntax of Nivel, let alone as a definition of a semantics
for Nivel. Instead, the figure is intended to give an intuitive account of the concepts
of Nivel to a reader familiar with the UML class diagram notation.

Nivel elaborates on its underlying concepts in various ways. The notion of
deep instantiation previously defined for classes and attributes is extended to cover
associations. A role in an association may be played by several classes that do not

50

share a superclass. Generalisations between associations are considered in detail,
including cases in which roles are redefined in subclasses. Both multiple classification
and restricting to single classification are supported. Classes at a higher level exercise
control over their instances in terms of whether and how they may participate in
generalisations and define attributes.

4.1 Language elements

In this section, a brief overview of the language elements of Nivel is provided.

Class is the central language element of Nivel in the sense all other language
elements are directly related to class. A class is an entity with an identity that can
be used to distinguish a class from other classes. A model consists of a set of classes,
some of which are top-level classes.

Instantiation is a binary relation between classes. If the pair (i, t) is in the
relation, class i is termed an instance of t, and class t a type of i. A restriction to
single classification can be made, in which case a class not on the top level must be
an instance of exactly one class; otherwise such a class must be an instance of at
least one type. No type may be defined for a top-level class.

A class may simultaneously be an instance and a type. Hence, being and instance
or a type are not intrinsic properties of a class but roles played by a class in the
instanceOf relation. The potency of a class gives the maximum order of its instances.

There can be generalisations between pairs of classes. A generalisation is a
binary relationship between a pair of classes (a, b), represented using the subclassOf
relation. The class a is termed a subclass of b, and class b a superclass of a. An
instance of a subclass is also an instance of all the superclasses of the subclass.

A generalisation may belong to a generalisation set. All generalisations in a gen-
eralisation set must share the same superclass. Disjointness and covering constraints
may be applied to generalisation sets. In the former (latter) case, an instance of the
superclass of the generalisation set must be an instance of at most (least) one of the
subclasses of the generalisation set.

A class may have attributes and named values. An attribute describes what
values the instances, including higher-order instances, of a class may and must have.
The ability to describe higher-order instances is achieved using the potency of an
attribute: an instance of a class has the same attributes as the class but the potency
decremented by one. When a class with an attribute of potency 1 is instantiated,
the instance has a corresponding value. Hence, an attribute of potency p describes
the instances of order p of the class.

An association is a relationship among a set of classes. An association defines a
set of roles each of which is played by one or more classes, which is in contrast with
associations (relations) in most previous conceptual modelling languages, such as
UML and ER modelling, where a role must be played by exactly one class. Also in
contrast with such languages, an association in Nivel is also a class and may hence
have higher-order instances. Consequently, an association in Nivel may specify a
relationship of interest between higher-order instances of the participating classes.

51

Table 4.1: Some predicates used in the WCRL encoding of Nivel. Symbols in
the Variants column: ‘p’ – possible, ‘d’ – direct, ‘D’ – declared, ‘t’ – transitive,
‘−’ – actual, ‘Der ’ – derived. The semantics are described for the actual variant.
Non-domain predicates are printed in bold . Adapted from [IV].

Predicate Variants Semantics
class(c) − p Object constant c represents a class
topLevel(c) − D Class c is on top level
subclassOf(a, b) − p d D Class a is a subclass of class b
instanceOf(i, t) − p d pd D Der Class i is an instance of class t
singleClassification none No multiple classification is allowed
abstract(c) none Class c is abstract
onLevel(c, l) none Class c is on level l
hasAttr(c, n, p, d, l, u) − p D Class c has attribute named n with

potency p, domain d, cardinality
lower bound l and upper bound u

hasValue(c, n, v) − p D Class c has value v under name n
association(a) Class a is an association
hasRole(a, r) − p D Association a has role r
playsRoleIn(c, r, a) − d p D Class c plays role r in association a;

(c, r, a) is a roleplay

4.2 Formal semantics

A formal semantics is given for Nivel by translation to Weight Constraint Rule
Language (WCRL) [IV]. The formal semantics enables decidable, automated rea-
soning about Nivel. Table 4.1 contains a summary of predicates used in the formal
encoding of Nivel relevant for KumbangNivel to be discussed next.

52

5 Defining Kumbang using Nivel

This chapter shows how Kumbang can be defined using Nivel. Intuitively, the
definition is given as a mapping from the language elements of Kumbang, as il-
lustrated in Figure 3.4, to a set of Nivel elements constituting the top-level of a
model. The term KumbangNivel will be used to refer to the resulting Nivel model.

The structure of this chapter parallels that of Chapter 3. First, the levels of
abstraction employed in KumbangNivel are studied in Section 5.1. Thereafter fol-
low sections on the taxonomy of types (Section 5.2), compositional structure (Sec-
tion 5.3) and attribute (Section 5.4). Interface and connection are the topic of
Section 5.5. The chapter is concluded in Section 5.6 with a discussion on the in-
stantiation of model elements that may possibly appear in a valid configuration.

5.1 Levels of abstraction

KumbangNivel consists of three levels. The top level, i.e., level 0, is illustrated
in Figure 5.1. Variability models are represented by the first-order instances of
KumbangModel and located on level 1. Configurations are represented by the second-
order instances of KumbangModel and are thus on level 2. The elements constituting
variability models and configurations are discussed in the subsequent sections.

5.2 Taxonomy of composable types

Figure 5.1 (a) illustrates the taxonomy of classes used to represent types and in-
stances in Kumbang. The root of the taxonomy, KumbangType, is an abstract class
of potency 2. The first-order instances of KumbangType represent types in variability
models and the second-order instances represent instances in configurations.

Of the two direct subclasses of KumbangType, InterfaceType is a concrete class
that represents the idea of an interface. ComposableType is abstract and repre-
sents the idea of a composable entity. The concrete subclasses of ComposableType,
ComponentType and FeatureType, represent components and features, respectively.

Any number of superclasses may be defined for a composable type, which is
enabled by setting the attribute instanceSuperclassingMultiple of ComposableType
to true, as denoted by the two-headed arrow in the illustration of the class in Fig-
ure 5.1 (a).

5.3 Compositional structure

The representation of compositional structure in KumbangNivel is illustrated in
Figure 5.1 (c). The core construct is the abstract binary association hasPart with
roles whole and part , both played by ComposableType. The first-order instances of
the association represent part definitions and the second-order instances part-whole
relationships in configurations. The name, cardinality and similarity value of a part
definition are represented as attributes of hasPart .

53

KumbangType2

ComposableType2

ComponentType2 FeatureType2

InterfaceType2 KumbangModel2

model

root
FeatureType2

model

root 0..1;12

ComponentType2

(a) (b)

(c)

(f)

(d)

a

0..1;12

hasComponent2

partwhole

ComponentType2
0..12 partwhole

FeatureType2

(e)

rootComponent2

rootFeature2

partwhole

ComposableType2

hasPart 2

name
cardinalityLower
cardinalityUpper[0..1]
similarity:{different, same, none}

from

to

InterfaceType2

connection2

function[*]

from

to

hasInterface2

/placeCompatible

hasSubfeature2

hasInterface2

name
optional:Boolean
grounded:Boolean
direction:{required, provided}

component

interface

ComponentType2

InterfaceType2

12

Figure 5.1: The top level of KumbangNivel, i.e., Kumbang represented using
Nivel. The syntactic constructs adopted from UML class diagrams are used in
roughly the same meaning in Nivel as in UML; novel constructs are explained in the
text. (a) Taxonomy of Kumbang types. (b) Model and roots. (c) Compositional
structure. (d) The notion of subtyping for interfaces (first-order instances) and
connections between interfaces (second-order instances). (e) Place compatibility.
(f) Interfaces of components.

54

The hasPart association is specialised for component and feature types into
concrete associations hasComponent and hasSubfeature, respectively. For both spe-
cialised associations, both roles are redefined in a way such that a component may
only have other components as its part and a feature may only have other fea-
tures as its subfeature. Further, an additional cardinality constraint applies to
hasComponent : a component may only be a part of a single whole.

The idea of root is illustrated in Figure 5.1 (b). The associations rootComponent
and rootFeature are both of potency 2. The first-order instances of the associations
represent the idea of a root type in a variability model and the second-order instances
that of a root instance in a configuration.

Cardinality constraints apply to both associations. As discussed in Section 3.5, at
most one root component type and root feature type may be defined for a Kumbang
model. Further, if a root type, either component or feature, is defined, a configura-
tion must contain exactly one instance of the type.

Constraints A number of additional constraints supplementing the metamodel
presented in Figure 5.1 are needed to complete the semantics of KumbangNivel.
They are given under separate headings such as this.

When discussing the constraints, reference is made to the corresponding rules in
Chapter 3 to highlight the interrelation between the two approaches to formalising
Kumbang. In case two or more similar constraints are needed, only one of them
may be written out and the rest be omitted to improve readability. Just as in
Chapter 3, the convention that non-domain names of predicates are printed in bold
is adopted. See Table 4.1 for reference on the Nivel predicates appearing in the
constraints.

The restrictions implied by the similarity attribute of the hasPart association
are encoded as follows for the value same:

← hasPart2(W,P1, N), hasPart2
p(W,P1, N),

hasPart2(W,P2, N), hasPart2
p(W, P2, N), P1 6= P2,

instanceOf D(D, hasPart),

hasValue(D, similarity , same), hasValuep(D, similarity , same),

hasValue(D, name, N), hasValuep(D, name, N),

playsRoleIn(W, whole, D), playsRoleInp(W, whole, D),

instanceOfd(P1, T1), instanceOf p(P1, T1),

instanceOfd(P2, T2), instanceOf p(P2, T2), T1 6= T2,

instanceOf p(T1, composableType), instanceOf p(T2, composableType)

cf. Rule 3.3. In the above rule, the ternary predicate hasPart2(w, p, n) is the tuple
representation of the second order instances of the hasPart association and gives that
composable instance w has composable instance p as its part with name n; a possible
variant of the predicate is defined with the obvious semantics. The corresponding
rule for the value different is similar and omitted for brevity.

55

The unary predicate justified(i) gives that instance i is justified. An instance
may be justified by being a root instance; cf. Rule 3.1:

justified(I)← fRoot2(I, C), fRootp(T,M),

instanceOf pd(I, T), instanceOf pd(C, M)

where the predicate fRootp(t, m) is the tuple representation of the rootFeature as-
sociation giving that feature type t is the root feature type in Kumbang model m.
Further, the predicate fRoot2(f, c) is the tuple representation of the second-order
instances of the rootFeature association giving that feature f is the root feature in
configuration c.

A component root is justified in a similar manner; the related rules are omitted
for brevity.

In addition to being justified by being a root instance, an instance may be
justified by being a part of some other instance, cf. Rule 3.5:

justified(P)← hasPart2(W,P,N), hasPart2
p(W,P,N)

No instance without justification may appear in a valid configuration:

← instanceOf tp(I, kumbangType, 2), class(I), not justified(I)

The cardinality values of part definitions are given a semantics as follows. The
case of too few parts is ruled out by the integrity constraints:

←
{
hasPart2(Wi, P, N) : hasPart2

p(Wi, P,N)
}

L− 1,

hasValue(D, cardLower , L), hasValuep(D, cardLower , L), L ≥ 1,

hasValue(D, name, N), hasValuep(D, name, N),

playsRoleIn(Wt, whole, D), playsRoleInp(Wt, whole, D),

instanceOf(Wi, Wt), instanceOf p(Wi, Wt)

cf. Rule 3.2. The case of too many parts is covered by an analogous rule that is
omitted for brevity.

5.4 Attribute

A composable type may be characterised by attributes. This is enabled by setting
the attribute instancesMayDefineAttributes to true for ComposableType, as illus-
trated by the letter a in the top-right corner of ComposableType in Figure 5.1 (a).

Attributes in Kumbang are mandatory in the sense that exactly one value must
be selected for each attribute in a valid configuration, whereas attributes in Nivel
may be specified a cardinality enabling both optional and set-valued attributes.

Constraints The lower bound of attributes of composable types is required to be
equal to 1:

← hasAttrD(I,N, P, D, L, U), instanceOf p(I, composableType), L 6= 1

The upper bound must likewise equal 1:

← hasAttrD(I,N, P, D, L, U), instanceOf p(I, composableType), U 6= 1

56

5.5 Interface and connection

An interface type in Kumbang is represented by an instance of InterfaceType, see
Figure 5.1 (d). The functions of an interface type are represented using the function
attribute. Similarly, the Interfaces in configurations are represented by the second-
order instances of InterfaceType.

An interface definition in a Kumbang model is represented by a first-order in-
stance of the binary association hasInterface of potency 2, see Figure 5.1 (f). The
two roles of the association, component and interface are played by ComponentType
and InterfaceType, respectively. The association has a number of attributes corre-
sponding to the various values of interface definition discussed in Section 3.7. That
an interface must be an interface of a single component is captured by a cardinality
constraint. The interfaces of components in a configuration are represented by the
second-order instances of hasInterface.

The notion of subtyping is represented by the first-order instances of the binary
association connection with roles from and to both played by InterfaceType, see
Figure 5.1 (d). Connections between interfaces are represented using the second-
order instances of connection.

The notion of place compatibility is represented by the placeCompatible associ-
ation, see Figure 5.1 (e). The two roles of the association, from and to, are both
played by hasInterface.

Constraints Just as components and features, interfaces must be justified:

justified(I)← hasInterface2(C, I,N), hasInterface2
p(C, I,N)

where the ternary predicate hasInterface2(c, i, n) is the tuple representation of the
second order instances of hasInterface association. The semantics is that compo-
nent c has interface i as its interface with name n.

A suitable number of interfaces must appear in a valid configuration. The case
of too few interfaces is ruled out as follows:

←
{
hasInterface2(Ci, I, N) : hasInterface2

p(Ci, I, N)
}

0,

hasValue(St, optional , false), hasValuep(St, optional , false),

hasValue(St, name, N), hasValuep(St, name, N),

playsRoleIn(Ct, component , St), playsRoleInp(Ct, component , St),

instanceOf(Ci, Ct), instanceOf p(Ci, Ct)

The case of too many interfaces is covered by a similar rule that is omitted for
brevity.

The Koala connection constraints discussed in Sections 2.3.1 and formalised in
Section 3.7 must be stated as constraints in KumbangNivel as well.

As a part of expressing these constraints, the extension of a number of asso-
ciations must be derived using special constraints. The notion of derived model
elements is not part of Nivel as defined in the scope of this dissertation [IV]. How-
ever, the derivations discussed below are needed to make KumbangNivel complete
and also serve as examples of derivations.

57

The binary predicate notSubtypeOf (i1, i2) giving that interface type i1 is not a
subtype of i2 is defined as follows, cf. Rule 3.7:

notSubtypeOf (Ifrom , Ito)←
not hasValueD(Ifrom , func, F), hasValueD(Ito , func, F),

instanceOf D(Ifrom , interfaceType), instanceOf D(Ito , interfaceType)

Next, the binary predicate notSubtypeOf can be used to derive the first-order
instances of the connection association, cf. Rule 3.6:

instanceOf Der(cn(Ifrom , Ito), connection)← not notSubtypeOf (Ito , Ifrom),

instanceOf D(Ifrom , interfaceType), instanceOf D(Ito , interfaceType)
(5.1)

In the above rule, the binary function symbol cn (for “connection”) is used to con-
struct a new object constant unique to the pair of interfaces (ifrom , ito) and the set
of first order instances of the connection. Further in the rule, instanceOf Der(i, t) is
a domain predicate with the semantics that i is a derived instance of t, the subscript
Der for “derived”. A derived instance is a special case of a possible instance: a
derived instance may but needs not appear in a valid configuration. The predicate
must be introduced for reasons related to the notion of domain restrictedness in
WCRL; this notion and different classes of predicates used in the formalisation of
Nivel are discussed in more detail in [IV].

The roleplays in the derived instances must be likewise derived separately for
the from role:

playsRoleInD(Ifrom , from, cn(Ifrom , Ito))←
instanceOf Der(cn(Ifrom , Ito), connection),

instanceOf D(Ifrom , interfaceType), instanceOf D(Ito , interfaceType)

(5.2)

The derivation for the to role is omitted for brevity.
The derived first-order instances of connection must appear in a valid configu-

ration as derived or in other words, it may not be the case that a derived instance
does not appear in a configuration:

← not instanceOfd(cn(Ifrom , Ito), connection),

instanceOf Der(cn(Ifrom , Ito), connection),

instanceOf D(Ifrom , interfaceType), instanceOf D(Ito , interfaceType)

(5.3)

The notion of place compatibility is represented using the placeCompatible as-
sociation. Instances of the association are derived for the three cases illustrated in
Figure 3.5. Case (a) is represented by the rule

instanceOf Der(pc(Dfrom , Dto), placeCompatible)←
instanceOf D(Dfrom , hasInterface), instanceOf D(Dto , hasInterface),

playsRoleInD(Cfrom , component , Dfrom), instanceOf D(Cfrom , componentType),

playsRoleInD(Cto , component , Dto), instanceOf D(Cto , componentType),

playsRoleInD(Cfrom , part , Dpart), playsRoleInD(Cto , whole, Dpart),

instanceOf D(Dpart , hasComponent),

hasValueD(Dfrom , direction, required), hasValueD(Dto , direction, required)

58

cf. Rule 3.8. In the above rule, the binary function symbol pc stands for “place
compatible” and is used for similar purposes as the symbol cn in Rule 5.1. Cases (b)
and (c) are covered by similar rules that are omitted for brevity.

As in the case of connection above, the roleplays in the derived instances of
placeCompatible must be derived using separate rules. The rules are similar to
Rule 5.2 and hence omitted. Also in parallel with Rule 5.3, the derived instances
of the association must be included in a valid configuration; this rule is likewise
omitted for brevity.

The second-order possible instances of connection representing connections be-
tween interfaces in configurations, are derived as follows:

instanceOf Der(cn2(Ifrom , Ito), cn(Tfrom , Tto))←
instanceOf Der(cn(Tfrom , Tto), connection),

instanceOf D(Ifrom , Tfrom), instanceOf D(Tfrom , interfaceType),

instanceOf D(Ito , Tto), instanceOf D(Tto , interfaceType),

instanceOf D(Lfrom , Dfrom), playsRoleInD(Ifrom , interface, Lfrom),

instanceOf D(Lto , Dto), playsRoleInD(Ito , interface, Lto),

instanceOf Der(pc(Dfrom , Dto), placeCompatible),

instanceOf D(Dfrom , hasInterface),

playsRoleInD(Dfrom , from, pc(Dfrom , Dto)),

instanceOf D(Dto , hasInterface),

playsRoleInD(Dto , to, pc(Dfrom , Dto))

(5.4)

cf. Rule 3.9. The binary binary function symbol, cn2 is similar to cn and pc above,
but now the context is the second-order instances of the connection association. In
the derived instances, the source (from) interface will be a supertype of the target
(to) interface and the relative positions of the interfaces will be place compatible,
as required by the Koala connection constraints. The derivation of the roleplays for
the derived associations is again analogous to Rule 5.2 and hence omitted.

Finally, the constraints on connections between interfaces must be formulated.
Towards this end, an auxiliary predicate cn2

p(ifrom , ito) giving the tuple representa-
tion of the possible second-order instances of the connection association:

cn2
p(Ifrom , Ito)←

instanceOf D(Ifrom , Tfrom), instanceOf D(Tfrom , interfaceType),

instanceOf D(Ito , Tto), instanceOf D(Tto , interfaceType),

instanceOf Der(cn2(Ifrom , Ito), cn(Tfrom , Tto)),

instanceOf Der(cn(Tfrom , Tto), connection)

For actual connections, cn2(ifrom , ito) is defined as:

cn2(Ifrom , Ito)← cn2
p(Ifrom , Ito),

instanceOf D(Ifrom , Tfrom), instanceOf D(Ito , Tto),

instanceOfd(cn2(Ifrom , Ito), cn(Tfrom , Tto)),

instanceOf D(Tfrom , interfaceType), instanceOf D(Tto , interfaceType)

59

The above-defined predicates can now be used to express the constraint that
each non-grounded interface must be connected to exactly one interface. This is
achieved by stating that it may not be the case that such an interface is connected
to no interface:

←
{
cn2(Ifrom , Ito) : cn2

p(Ifrom , Ito)
}

0,

playsRoleIn(Ifrom , interface, Lfrom), playsRoleInD(Ifrom , interface, Lfrom),

instanceOfd(Lfrom , Dfrom), instanceOf D(Lfrom , Dfrom),

instanceOf D(Dfrom , hasInterface), hasValueD(Dfrom , grounded , false)

cf. Rule 3.10, or to two or more interfaces:

← 2
{
cn2(Ifrom , Ito) : cn2

p(Ifrom , Ito)
}

,

playsRoleIn(Ifrom , interface, Lfrom), playsRoleInD(Ifrom , interface, Lfrom),

instanceOfd(Lfrom , Dfrom), instanceOf D(Lfrom , Dfrom),

instanceOf D(Dfrom , hasInterface), hasValueD(Dfrom , grounded , false)

cf. Rule 3.11.

5.6 Instantiation

As in the case described in Section 3.9, the elements that may possibly appear in
configurations must be explicitly represented as WCRL rules. An algorithm based
on ideas similar to the one given as Figure 3.6 can be used in conjunction with Nivel
as well. However, the algorithm must be adjusted to accommodate the differences
in the knowledge representation schemes adopted here and in Chapter 3. Such an
algorithm is given as Figure 5.2.

60

Input: composable type wt to be instantiated
Output: set of rules representing wi, an instance of wt

let wi be a new object constant
add fact instanceOf D(wi, wt)←
foreach dt such that dt:hasPart ∧ wt ∈ dt→whole do

let di be a new object constant
add fact instanceOf D(di, dt)←
add fact playsRoleInD(wi, whole, di)←
if dt.similarity = different then

maxCard := 1
else

maxCard := dt.cardinalityUpper
foreach t such that t:composableType ∧ t ∈ dt→part do

foreach pt ∈ t ∪ t.subtypes do
if pt.isAbstract then continue
for j := 1 to maxCard do

pi := instantiate(pt)
add fact playsRoleInD(pi, part , di)←

foreach dt such that dt:hasInterface ∧ wt ∈ dt→component do
let di be a new object constant
add fact instanceOf D(di, dt)←
add fact playsRoleInD(wi, component , di)←
foreach it such that it:interfaceType ∧ it ∈ dt→interface do

let ii be a new object constant
add fact playsRoleInD(ii, interface, di)←

return wi

Figure 5.2: Algorithm instantiate(t) for instantiating a composable type in
KumbangNivel model, initially called for the component and feature roots as
the input parameter. For notational simplicity, same symbols are used for
model elements and the object constants representing them. In the algorithm,
a→r denotes the set of classes playing role r in association a, i : t a Boolean
that is true if (and only if) i is an instance of t, and c.a the value named a of
class c.

61

6 Discussion and comparison with previous work

In this chapter, it is shown how the constructions described in three preceding chap-
ters address the research problems and questions posed in Section 1.2 and compares
to previous work. The chapter is structured according to the research problem: Sec-
tion 6.1 addresses the first research problem, related to software variability modelling
languages whereas Section 6.2 iterates on the second problem concerning metamod-
elling languages. Both sections are further divided into subsections based on the
detailed research questions.

6.1 Software variability modelling languages

This section elaborates on the three software variability modelling languages devel-
oped in this dissertation, namely Koalish [I], Forfamel [II] and Kumbang [III]
and on how they address the first research problem. The research questions related
to the research problem will be answered in their respective subsections.

6.1.1 Conceptual basis

The conceptual bases of the software variability modelling languages draw from a
number of sources. The notions of software architecture and feature underlying
Koalish and Forfamel, respectively, are adopted from the software engineering
domain, within which research on software variability is centred around the notion
of software product family. A product family architecture [23] and a managed set of
features [34] are defining characteristics of a software product family, see Section 2.1.

While the main concepts of the three software variability modelling languages
stem from the software engineering domain, many aspects of the language design are
drawn from the product configuration domain, especially the configuration ontology
by Soininen et al. [110].

The three-level organisation of the software variability modelling languages (see
Section 3.1) resembles the three-level basic structure of the configuration ontology
by Soininen et al. [110]: both are based on three levels and the roles of the levels
are roughly equivalent. A similar approach has been suggested in the context of
feature modelling [32], with the three levels termed family-metamodelling, family
modelling and application modelling roughly corresponding to the three levels in
the above-discussed approaches.

As discussed in Section 2.3, a large number of ADLs have been suggested [80].
Most of these are intended for single-system modelling and hence are not well, if at
all, suited for modelling variability. The most important exceptions are Koala [130,
128, 129] and xADL 2.0 [43, 123].

Even though intended for describing single-system architecture, the modelling
concepts of any ADL could in principle have been extended with variability mecha-
nisms. Koala was chosen as the basis for extension due its practical relevance: unlike
most, if not all, other ADLs, Koala is in industrial use. This choice has later gained
additional support: since version 2.0 of UML, its component diagram notation is

62

based on concepts similar to those underlying Koala [120]. Koala has also influenced
the Com2 component model [96].

Koalish extends Koala through a number of variability mechanisms. Most im-
portantly, the definition of the compositional structure of components in Koalish
may include a number of possible types for the part and the number of components
occurring as a part may be specified using a cardinality; Koala only allows a single
possible type of which exactly one instance must occur as part. Similarly for in-
terfaces, multiple alternative types may be specified in Koalish whereas the type
of an interface is fixed in Koala. The variability mechanisms of Koala defined in
implementation-related terms are given a more abstract treatment in Koalish.

Forfamel synthesises previous feature-modelling languages in the sense that
it covers the conceptual core shared by most, if not all, previous feature-modelling
languages and includes a number of extensions, such as shared subfeatures, feature
and group cardinalities and attributes.

A number of factors differentiate previous feature-modelling languages from each
other and from Forfamel. A key factor is how the concept of configuration is
defined. In most feature-modelling languages, a configuration is defined as a set of
features, or more specifically, as a subset of the features appearing in the feature
model. In Forfamel, on the other hand, a configuration consists of a set of features
that are instances of feature types organised in a feature model and further includes
the subfeature relationship and the attributes of features.

More complex conceptions of configuration have likewise been adopted in previ-
ous feature-modelling languages: a configuration may contain instances of features
in feature models [32]; alternatively, a configuration can be represented by strings
encoding the subfeature relation [39].

While a configuration defined as a subset is a sufficiently expressive structure
in basic forms of feature modelling, e.g., in FODA [63], a more complex notion
of configuration is required to conceptualise a number of extensions. First, if two
or more features may share a subfeature, as is the case in, e.g., FORM [64], a
configuration defined as a set of features fails to capture the intended subfeature
relation. That is, it may not be clear of which features a given feature is a subfeature
and the problem of deciding whether a configuration is valid with respect to a model
becomes NP-hard [103].

Second, the notion of feature cardinality [36, 32, 39] allows (in a sense) the same
feature to occur two or more times as a subfeature of a parent. Again, a configuration
defined as a subset fails to capture the intended subfeature relation. In Forfamel,
the problem is avoided by considering each feature in a configuration as a distinct
instance of a feature type in the model; a similar approach is followed by Cechticky
et al. [32]. Alternatively, in the grammar-based approach by Czarnecki et al. [39],
strings representing configurations are ordered collections that allow repetitions of
tokens representing features.

Third, attributes of features likewise call for more complex conceptions of con-
figuration. In Forfamel, the attributes of features are represented by a ternary
relation between the feature, attribute name and value. In previous work on fea-
ture modelling and attributes [36, 40, 39], attributes in feature models have been

63

defined similarly as in Forfamel; the question of how attributes are reflected in
configurations is not given much attention.

The concept of subfeature definition is similar to the concept of part definition in
the configuration ontology by Soininen et al. [110]. In essence, a subfeature definition
is a reified relationship between a whole type and one or more possible part types
with its own set of properties, such as name and cardinality. In previous work
on feature modelling, such properties have mostly been assigned to the subfeature
itself; however, a similar approach is followed in the work by Czarnecki et al. [39, 40],
although in the latter, the reification is “implicit in the metamodel”.

The notion of subfeature definition in Forfamel unifies the notions of solitary
subfeature and feature group. Hence, a subfeature definition includes as special
cases notions such as optional subfeature and or-features. The similarity attribute
is needed to distinguish between cases corresponding to selection from a group of
features (value different) and repeating the same subfeature a number of times
(same). For a more detailed discussion on the differences between the notions of
subfeature definition in Forfamel and subfeature in previous feature-modelling
methods, see [II].

Kumbang is motivated by the observation that in some software product fam-
ilies, it may not be sufficient to model the variability from either the architecture
or feature point of view alone; instead, both may be required. Hence, Kumbang
unifies Koalish and Forfamel in that the language can be used to model the vari-
ability from both an architectural and a feature point of view in a uniform manner
including implementation constraints relating the two points of view; this is also the
most important contribution of Kumbang from the conceptual point of view.

An important contribution of Kumbang is that the architecture and feature
points of view are independent of each other: both points of view are subject to
well-formedness and consistency rules of their own stemming from Koalish and
Forfamel, respectively. As a result, the introduction of implementation constraints
may not lead to either of the views becoming inconsistent in a valid configuration.
Further, unlike in some previous work, e.g., [35], no extra analysis is required to
ensure the consistency of either of the points of view.

6.1.2 Language definition

The abstract syntax of Koalish is defined using a combination of natural language
and a concrete syntax definition in EBNF, see Figure 3.2 and [I]. Following de-
scriptions in natural language does not require knowledge of any formal language.
In addition, natural language can be used to provide intuitive explanations of the
language constructs. On the other hand, natural language is almost inevitably am-
biguous and descriptions given in natural language tend to be lengthy and, unlike
graphical notation at its best, cannot be understood at a glance. Therefore, natural
language descriptions best supplement formal definitions.

A concrete syntax given in EBNF or some other notation has the benefit of being
precise and unambiguous. On the other hand, such a syntax includes details that
are irrelevant from the conceptual point of view and clutter up the definition. Also,

64

the means for expressing well-formedness constraints are limited in EBNF compared
with, e.g., cardinality constraints in Nivel or multiplicities in UML class diagrams.

The abstract syntax of Forfamel is defined using a UML class diagram, see
Figure 3.3. This approach is motivated by the fact that UML class diagrams are
widely used as a conceptual modelling language for various domains [72] and can
therefore be assumed to be well understood, at least in the software engineering
community. However, the approach introduces a number of problems.

First, UML class diagrams are based on two levels occupied by classes and in-
stances, whereas the variability modelling languages are best represented using three
levels, as shown in Section 3.1, Figure 3.1 and discussed in Section 6.1.1. Therefore,
as previously argued by Atkinson and Kühne [11], there is a mismatch between the
number of levels, so both types and instances have to be represented as classes.
Further, a number of modelling constructs that are included in UML had to be
replicated for the Forfamel metamodel, including the notion of abstractness of a
feature type and attributes of and the subclassing relations between feature types.
Also, UML does not provide a formal or otherwise rigorous semantics for what is
required of a feature to be an instance of a feature type or, more generally, for a
model element an instance of another model element.

In previous work on feature modelling, natural language [63, 64, 54, 37, 126,
75, 19, 17] and UML class diagrams [36, 32, 133, 38, 40, 39, 30] have been the
predominant approaches to specifying the abstract syntax for feature models. In
most languages, an abstract syntax is defined for feature models only, excluding
configurations; this may in part be due to the fact that a configuration is defined as
a subset of the features appearing in the feature models.

The abstract syntax of Kumbang is defined using a UML profile based on the
approach described in Section 2.7.1. Applying the profile mechanism enables mod-
elling on three levels and thus overcomes some of the above-discussed difficulties
related to using standard UML class diagrams.

However, as discussed in Section 2.7.1, the profile mechanism introduces a set of
problems of its own. First, the stereotypes included in profiles are technically exten-
sions to UML language and not intended for representing domain (meta)types [11].
Also, the relation between stereotypes and classes is different from the one between
classes and their instances, either objects on M0 or InstanceSpecifications on M1.
From a cognitive point of view, a profile, such as the one given in Figure 3.4 is
hardly self-explaining but extensive knowledge of UML and its implicit semantics
is required to comprehend such a description. Moreover, the profile mechanism has
itself been criticised for ambiguity, e.g., with respect to whether only classes or all
metaclasses may be extended, and problems in its semantics [58]. Also, from the
pragmatic point of view, in the context of UML 1.4 [122], there has been confusion
about whether stereotypes apply to classes, objects or both [12].

An alternative definition of Kumbang using Nivel, KumbangNivel, is given in
Chapter 5, Figure 5.1; see also [IV] for a representation of Forfamel using Nivel.
As Nivel supports models spanning an arbitrary number of levels, the three levels
of abstraction in Kumbang can be represented using Nivel in a straightforward
manner. Just as seen in relation to Forfamel in [IV], the number of model elements

65

needed to represent Kumbang is significantly smaller using Nivel than a UML pro-
file, cf. Figures 5.1 and 3.4: there is no need to represent classes at the instance level
(KumbangConfiguration, KumbangInstance and its subclasses, and Connection) in
the Nivel variant. Further, unlike in the case of representing Forfamel using a
UML class diagram, the definition of concepts such as attribute, abstractness and
subclassing needs not be replicated. The association concept in Nivel can be used
to represent part definitions in a straightforward manner, see Figure 5.1 (c).

6.1.3 Formal semantics

The software variability modelling languages are given formal semantics by trans-
lation to Weight Constraint Rule Language (WCRL) [105], see Chapter 3. WCRL
is well suited for the purpose for a number of reasons. First, WCRL has a declara-
tive formal semantics. The language is decidable and of reasonable computational
complexity while still including a form of variables, predicates and function sym-
bols that facilitate knowledge representation. Although general-purpose, WCRL
has been shown to be well suited for representing variability of non-software prod-
ucts [108]: the semantics of WCRL include a notion of groundedness that has been
argued to be useful in both the product configuration [107] and feature-modelling do-
main, see Section 2.2; cardinalities can be represented using cardinality constraints
in a succinct manner. The smodels inference system operating on WCRL has been
shown to be competitive in performance compared with other solvers, especially
in the case of problems including structure [105]. The smodels system is available
under the GNU Public Licence.

An alternative formal semantics for Kumbang is defined in Chapter 5 as a part of
KumbangNivel. The bulk of the formal semantics is based on the formal semantics of
Nivel. A number of further semantic issues is captured using standard cardinality
constraints as defined, e.g., in ER modelling; however, cardinality constraints in
Nivel have not yet been defined a systematic translation to WCRL or given a
formal semantics by other means. The residual part of the semantics is represented
using WCRL integrity constraints.

The number of rules required to express the residual constraints is moderate
(ca. 20), and many of the rules are simple and resemble each other, e.g., the rules
for deriving the roleplays in derived associations, see Rule 5.2 for an example. Some
of the rules, e.g., Rule 5.4, are lengthy, which is in part due to issues related to
WCRL and in part to the inherent complexity of the underlying domain, in this
case Koala connection constraints.

The semantics given in terms of Nivel includes well-formedness checks on the
variability models in a declarative form, which is an advantage over the translation
defined in Chapter 3 where such checks have to be performed using other means,
e.g., procedurally in compiler-like tools [III]. Also, the correctness of the translation
depends on the correctness of the instantiation algorithm: there is no rule that
prevents an interface instance from being both a provided and a required interface,
an abstract type having instances etc.

Previous work on modelling product family architectures has not emphasised

66

formal semantics. Specifically, in the case on xADL 2.0 [44], semantics are considered
the responsibility of the ADL developer. No formal or declarative semantics is given
for Koala.

Feature-modelling languages have been given formal semantics using a range of
knowledge representation languages, such as propositional logic [75, 133, 17], binary
decision diagrams [124, 42], constraint programming [19, 20], and grammars [39, 17].
A generic semantics covering a number of feature-modelling languages have been
defined in terms of set theory [102, 103].

As can be recalled from Section 2.2, the groundedness property of feature mod-
elling requires that a subfeature (s) may be included in a valid configuration only if
its parent (p) is included. In propositional logic, the requirement is captured by the
formula:

s→ p (6.1)

intuitively stating that if s is included in the configuration, so must p. Formulae
of the above kind must be included in the formalisation in addition to formulae
capturing the subfeature relations themselves. As an example, the formula

p→ s1 ∨ s2 (6.2)

could be used to represent that p has an or-feature consisting of s1 and s2 as its sub-
feature. The semantics of the WCRL, on the other hand, includes a groundedness
property, which enables capturing the groundedness property for feature modelling
in a concise manner. As an example, the above-discussed or-feature can be repre-
sented by a rule of the form Rule 3.2:

1 {s1, s2} ← p (6.3)

Formula 6.1 correctly captures the notion of groundedness when configurations
are restricted to trees. However, if shared subfeatures are allowed, the formulae
of the form 6.1 lead to the counterintuitive semantics that if feature s is included
in a configuration, all its parent must be included as well. This problem can be
circumvented by replacing Formula 6.1 by

s→ p1 ∨ . . . ∨ pn (6.4)

where {p1, . . . pn} is the set of parent features of s. While formulae of this kind
capture the intuition, they combine knowledge from different model elements and
thus make the translation non-modular, i.e., model elements, in this case subfeatures,
cannot be translated independently of each other.

From an application point of view, it is important that the formal language
employed enables automated reasoning. Efficient algorithms and solvers have been
devised for propositional logic, constraint satisfaction problem, binary decision dia-
grams and WCRL. Consequently, formalisations based on these languages are sup-
ported by such solvers. On the other hand, a formalisation that does not commit to
a specific well-defined computational problem or knowledge representation language,
e.g., the one given by Schobbens et al. [102, 103] based on set theory, does not enjoy

67

such support. Then again, such a formalisation is free from restrictions due to any
solver and may thus better enable investigating and proving formal properties [116].
Finally, proprietary modelling languages and solvers, e.g., OPL (optimization pro-
gramming language) [127] and CPLEX6, respectively, used by Benavides et al. [19],
may provide a wide range of modelling facilities and highly efficient reasoning but
may not lend themselves for formal investigations.

Binary decision diagrams [1] are a means for representing Boolean functions. A
propositional formula, e.g., one representing a feature model, can be interpreted as
a Boolean function of all its propositions. Hence, binary decision diagrams can be
used to represent and reason about feature models.

In practical settings, reduced ordered binary decision diagrams are used. Given
a formula, constructing such a diagram is computationally expensive, requiring in
the worst case a time exponential in the length of the formula. However, once con-
structed, many computational tasks of interest can be solved in at most polynomial
time with respect to the size of the diagram. [42] Hence, binary decision diagrams
and algorithms operating on these are an alternative for satisfiability solvers as tools
for reasoning about feature models represented using propositional logic.

Propositional logic and constraint programming are not as such well suited for
formally representing the more complex notions of configuration including type-
instance and part-whole relationships and attributes discussed in Section 6.1.1. As
shown in Chapter 3 for WCRL, predicate and variables ranging over object constants
enable the concise representation of the above-mentioned notions. Still, the form of
WCRL employed in this dissertation is decidable: the WCRL is not a true first-order
language; instead, a WCRL program with variables is a shorthand for the all the
ground instantiations of its rules [IV], [105]. A similar scheme could be devised for
propositional logics, as has been done for, e.g., the planning problem [66]. However,
with the exception of Forfamel, no such approach has been presented for feature
modelling.

A feature model expressed in a language that allows unbound feature cardinal-
ities (denoted by “*”) for solitary features may have valid configurations that are
infinite. Neither propositional logic nor WCRL enable reasoning about infinite mod-
els and hence configurations. Instead, first-order and higher-order logics could be
used. Likewise, the stable model semantics underlying WCRL has been extended
towards infinite models [22]. However, the ability of reasoning about infinite models
comes at the cost of losing decidability. Alternatively, decidable subsets of such
languages can be used, such as description logics [13] and finitary programs [22].
However, such subset imply syntactic restrictions that many, especially practioners,
may find hard to accept.

6.2 Metamodelling languages

This section elaborates on the second research problem, related to metamodelling
languages. In particular, the two subsections show how the related research ques-
tions are addressed.

6See http://www.ilog.com/products/cplex/

http://www.ilog.com/products/cplex/

68

6.2.1 Conceptual basis

In this section, certain concepts of Nivel are discussed and reflected against previous
work; see [IV] for a more detailed discussion of the conceptual basis of Nivel.

In short, the conceptual basis of Nivel consists of concepts (class, instantia-
tion, association, generalisation, attribute and value) found in existing modelling
languages, most importantly UML, ER modelling and Telos. These concepts have
been generalised to allow modelling on any number of levels in a uniform manner
using the notions of unified modelling elements [7] and deep instantiation [4, 11].

On the other hand, Nivel does not include a number of modelling concepts
essential in some modelling languages: examples include class-valued attributes,
also termed properties [121, 2], and powertypes [93, 121, 52]. If included in Nivel,
these concepts would be redundant, at least to an extent: class-valued attributes can
in most cases be replaced by binary associations and powertypes by instantiation.

Unlike in UML and ER modelling, a role in Nivel can be played by more than
one class. Hence, the concept of role resembles the concept by the same name in
the Lodwick modelling language [112], which is in turn based on the role concept
defined by Bachman [14] and revisited by Steimann [113]. In Lodwick, each role
is still played by a single role type filled by a number of natural types. However, the
taxonomy of role types is separate from that of natural types.

The concept of part definition in the software variability modelling languages
serves as an example of the utility of the role concept of Nivel and Lodwick.
A part definition cannot be represented in a straightforward manner using typical
conceptual modelling concepts for relationships, such as an UML association or
a relationship as defined in ER modelling, the problematic issue being multiple
possible part types that do not necessarily share a supertype. In principle, the
problem could be overcome by introducing a supertype for the purpose where a
suitable one does not pre-exist. However, the resulting supertypes are in a sense
artificial and their number may become large. Hence, these types may pollute the
taxonomy by drawing attention away from the “true” taxonomic relations. This
approach has also been discouraged when modelling the variability of non-software
products [118].

On the other hand, part definitions can be represented using Nivel associations
in a straightforward manner; see Figure 5.1. Lodwick is also relatively well suited
for the purpose: although a role type filled by the possible part types still must be
introduced, the role types do not interfere with the taxonomy of natural types.

Of previous work on metamodelling languages, MOF [81] promises to handle any
number of levels. However, as mentioned in Section 2.7.2, the MOF specification [81]
is ambiguous about the abstract syntax and semantics needed to support the claimed
ability to define such layers. Further, unlike Nivel, MOF is committed to the
object-orientated paradigm through the use of terms such as “object”, “navigation”,
“serialization”, “operation”, “reference”, “interchange” etc. and makes references to
specific technologies, such as XML and the Java programming language. Finally,
there seems to be no attempt to give MOF a formal semantics.

Telos [87] resembles Nivel in that an individual, roughly corresponding to a class
in Nivel, may be an instance of one or more individuals. Also, individuals may have

69

attributes and there may be generalisations between them in both Telos and Nivel.
However, there are important differences between the languages. Telos is based on
extensive use of attributes, whereas Nivel includes the association concept as a
language primitive. Unlike Nivel, Telos includes no notion of strictness. Finally,
while Nivel strives to distinguish between model elements, language elements and
the formal entities representing these, Telos seems to intentionally mix all three.

6.2.2 Formal semantics

This section elaborates on formalising metamodelling languages, particularly from
the point of view of Nivel.

Nivel has been given a formal semantics by translation to WCRL [IV]. The
benefits of WCRL as a knowledge representation language in general have been
discussed in Section 6.1.3 and in particular for Nivel in [IV].

As a point of comparison with formalising generic knowledge representation lan-
guages, Berardi et al. [21] have given UML class diagrams with a limited form
of constraints and ignoring implementation issues a “natural” formal semantics by
translation to first-order predicate logic and subsequently to EXPTIME-decidable
description logics. The encoding in first-order predicate logic serves as a point of
reference in the sense that it is possible to argue for the correctness of other formal-
isations by showing that it is equivalent to the first-order encoding.

In the case of Nivel, following a similar approach would bring a number of
benefits. Perhaps most importantly, unlike WCRL, first-order predicate logic is a
well-known knowledge representation language. Consequently, a first-order encod-
ing would be readily understandable by a wider audience than one given in WCRL.
Further, should Nivel be given an alternative semantics in terms of a knowledge
representation language other than WCRL, a first-order encoding would likely pro-
vide an easier point of comparison than one in WCRL.

On the other hand, unlike in the case of first-order predicate logic and description
logics, it is questionable whether an encoding in first-order predicate logic is more
natural than one in WCRL: specifically, the lack of a groundedness property in
first-order predicate logic implies that some form of frame axioms are required to
prevent elements without justification appearing in a valid model. The absence of
cardinality constraints in first-order predicate logic would likewise complicate the
encoding.

First-order predicate logic could be used as a basis for inferences. Unlike when
using WCRL as described in Chapters 3 and 5 and shown in Figures 3.6 and 5.2,
respectively, unrestricted first-order predicate logic does not require an a priori in-
stantiation of model elements, thus resulting in a more simple translation. Of course,
this would come at the cost of losing decidability. A third approach is to resort to
decidable subsets of first-order predicate logic, e.g., the description logics DLRifd

and ALCQI used by Berardi et al. [21]. However, as discussed in Section 6.1.3, the
decidability of such languages comes at the cost of syntactic restrictions.

70

7 Further work

The work presented in this dissertation can be extended in various ways. The soft-
ware variability modelling languages developed in this dissertation include either
one (Koalish, Forfamel) or two (Kumbang) points of view on the variability
of a software product family. In general, more than two such points of view may
be useful. As an example, in a car periphery system case study [III], [60], the in-
tuitiveness and thus utility of the model could have been improved by using four
such points of view: hardware architecture, software architecture, features provided
to the customer and features of the operating environment. Likewise, it has been
suggested that modelling variability in services, such as insurance and telecommu-
nications services, requires four points of view [57].

Although such points of view may be used to represent different real-world phe-
nomena, different points of view may be based on a small set of ideas, such as
compositional structure and connections. As an example, consider the two spe-
cialisations of the part definition concept in Figure 5.1 (c). Consequently, given
the metamodelling capabilities of Nivel, it would seem reasonable to specify such
points of view as instances of a generic model of a point of view. The generic model
would hence be located one level above the current top level of, e.g., Kumbang, see
Figure 5.1. This approach is made appealing by the fact that developing variability
modelling languages and supporting tools from scratch is a task requiring significant
expertise and effort.

The semantics given in this dissertation for Nivel and software variability mod-
elling languages capture the notion of a valid model and configuration, respectively,
but fail to capture the notion of an incomplete model, i.e., a model that must be
supplemented with further model elements to become a valid model. In the context
of software variability, this situation arises during interactive configuration [85] or
more generally, in staged configuration [40]. The topic has already been identified
for further work in 2000 [107]. Also, it has been argued that the line between types
and instances in such cases is unclear [97]. Extending the semantics to cover the
notion of incomplete models is therefore an important topic for further work.

Although Nivel covers the most important conceptual modelling concepts, there
are a number of concepts that could be integrated into the language. Class-valued
attributes, or properties, are extensively used in object-oriented programming and
design and would likely be a relevant alternative for binary associations in many
modelling scenarios. Including a notion of time in Nivel would enable represent-
ing knowledge and reasoning about temporal properties, including notions such as
evolution [76] and dynamic vs. static typing.

In its current form, Nivel includes a number of restrictions that may be un-
necessarily strong. The strict metamodelling rule [6] could be weakened to enable
more flexible modelling styles. Possible approaches include modelling spaces [5] and
allowing associations between classes on different levels. Also, the requirement that
all roles of an association must be specified on the top level may be unnecessarily
strong and could be weakened.

71

A constraint language must be defined for Nivel in order to capture the po-
tentially complex dependencies between model elements, especially if used in a
model-driven engineering context. As a first step, a semantics could be specified
for different forms of cardinality constraints as found [117]. Further, deriving model
elements using constraints is extensively used in the UML specification [121] and
has also been studied outside the standard [94]. Hence, generalising the cases of
derived model elements presented in Section 5.5 is a topic for further research.

There are many conceivable forms of tool support for Nivel. A graphical mod-
elling tool for creating Nivel models could be more usable than a textual language.
Such a tool should support both using the model elements on a given level as a
domain-specific language for the level next below it and simply creating models
that may contain instantiation relationships between model elements, e.g., similar
to Figure 6 in [IV]. Likewise, a programming interface for Nivel could be developed;
such interfaces could also be generated for specific Nivel models. A database-like
implementation similar to ConceptBase [67] is also conceivable. Finally, program-
ming languages based on the concepts of Nivel could be devised in a manner similar
to DeepJava [70].

Any modelling language, either abstract or concrete, and any modelling tool
supporting such a language can always be used to create models that are not useful
or could be significantly improved on. Therefore, developing artefacts of the above-
mentioned kind is not enough to make a practical impact on software engineering
practices. In addition and more importantly, software engineering students must be
taught the underlying paradigm and trained to apply it in practical contexts.

72

8 Conclusions

Variability is the ability of a system to be efficiently extended, changed, customised
or configured for use in a particular context. Increasing amounts of variability are
required of software systems, either embedded or stand-alone. The number of pos-
sible variants of a software system may be very large. Therefore, efficient methods
for managing, modelling and reasoning about software variability are needed. Nu-
merous such methods have been developed. However, most such methods either
lack a solid conceptual foundation or are not given a rigorous formal semantics, or
both; instead, many authors seem to be more concerned with details of the concrete
syntax than the underlying concepts and more interested in providing their methods
with tool support than a declarative semantics. Consequently, reasoning about the
properties of these languages and comparing them with each other is unnecessarily
difficult.

In this dissertation, three novel software variability modelling languages, namely
Koalish, Forfamel and Kumbang synthesising the two previous ones, are de-
veloped. The languages are based on concepts found relevant to modelling software
variability in scientific literature and practice, namely feature and product family
architecture. They synthesise and clarify the concepts underlying a number of previ-
ous languages. Ideas first developed in product configuration research for modelling
variability in non-software products are elaborated on and integrated into the lan-
guages. A formal semantics is given for the languages by translation to WCRL. The
smodels inference system operating on WCRL enables automated, decidable and
efficient reasoning about the languages.

One of the goals set for this dissertation was to enable modelling software vari-
ability knowledge at different levels of abstraction in a uniform and systematic man-
ner, preferably using an existing conceptual modelling language with a formal se-
mantics. During the course of the work it turned out that no language with the
desired modelling capabilities existed. Consequently, a novel conceptual modelling
language, Nivel, with the necessary capabilities is developed. Nivel is generic
in the sense that its modelling concepts are not specific to software variability or
some other similar domain. Instead, Nivel is based on a number of core concepts
of previous conceptual modelling languages and incorporates a number of recent
ideas including strict metamodelling, distinction between ontological and linguistic
instantiation, unified modelling elements and deep instantiation. Hence, Nivel con-
tributes to the theory of conceptual modelling, particularly that of metamodelling.
A formal semantics enabling automated, decidable reasoning is given for Nivel by
translation to WCRL.

The suitability of Nivel for defining software variability modelling languages is
demonstrated through KumbangNivel. It is argued that KumbangNivel is more
compact and easily understandable definition of Kumbang than the original spec-
ification given as a UML profile, or the specifications of Koalish and Forfamel
using an EBNF grammar and a UML class diagram, respectively. Major parts
of the semantics of Kumbang are captured by the semantics of Nivel. Defining

73

Kumbang in terms of a generic modelling language also brings software variabil-
ity modelling closer to other forms of modelling, thus making software variability
modelling less of an isolated discipline.

In conclusion, this dissertation contributes to the theory of software variability
modelling by introducing software variability modelling languages that integrate
concepts previously considered important in the software variability domain with a
number of ideas established in the context of product configuration. The resulting
languages add conceptual clarity and semantic rigour to previous languages; these
qualities are further improved when defined using Nivel, a metamodelling language
also developed in this dissertation. Nivel itself significantly contributes to the
theory of conceptual modelling in general and metamodelling in particular. Further
work is required to make the languages developed in this dissertation a practical
alternative to the currently predominating modelling languages and tools.

74

References

[1] Sheldon B. Akers. 1978. Binary Decision Diagrams. IEEE Transactions on
Computers c-27, no. 6.

[2] Marcus Alanen and Ivan Porres. 2008. A Metamodeling Language Supporting
Subset and Union Properties. Software and Systems Modeling 7, no. 1.

[3] Robert Allen and David Garlan. 1997. A Formal Basis for Architectural
Connection. ACM Transactions on Software Engineering and Methodology
6, no. 3, pages 213–249.

[4] Colin Atkinson and Thomas Kühne. 2001. The Essence of Multilevel Meta-
modeling. In: Martin Gogolla and Cris Kobryn (editors), Fourth Interna-
tional Conference on the Unified Modeling Language (UML 2001), volume
2185 of Lecture Notes in Computer Science, pages 19–33. Springer.

[5] Colin Atkinson and Thomas Kühne. 2001. Processes and Products in a
Multi-Level Metamodeling Architecture. International Journal of Software
Engineering and Knowledge Engineering 11, no. 6, pages 761–783.

[6] Colin Atkinson and Thomas Kühne. 2002. Profiles in a Strict Metamodeling
Framework. Science of Computer Programming 44, no. 1, pages 5–22.

[7] Colin Atkinson and Thomas Kühne. 2002. Rearchitecting the UML Infras-
tructure. ACM Transactions on Modeling and Computer Simulation 22, no. 4,
pages 290–321.

[8] Colin Atkinson and Thomas Kühne. 2002. The Role of Metamodeling in
MDA. In: International Workshop in Software Model Engineering (in con-
junction with UML’02).

[9] Colin Atkinson and Thomas Kühne. 2003. Model-Driven Development: A
Metamodeling Foundation. IEEE Software 20, no. 5, pages 36–41.

[10] Colin Atkinson and Thomas Kühne. 2005. Concepts for Comparing Modeling
Tool Architectures. In: Lionel Briand and Clay Williams (editors), 8th Inter-
national Conference on Model Driven Engineering Languages and Systems
(MoDELS 2005), pages 398–413.

[11] Colin Atkinson and Thomas Kühne. 2007. Reducing Accidental Com-
plexity in Domain Models. Software and Systems Modeling, in press.
DOI: 10.1007/s10270-007-0061-0.

[12] Colin Atkinson, Thomas Kühne, and Brian Henderson-Sellers. 2002. Stereo-
typical Encounters of the Third Kind. In: Jean-Marc Jézéquel, Heinrich
Hussmann, and Stephen Cook (editors), 5th International Conference on
The Unified Modeling Language (UML 2002), volume 2460 of Lecture Notes
in Computer Science, pages 100–114. Springer.

75

[13] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider (editors). 2003. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press.

[14] C. W. Bachman and M. Daya. 1977. The Role Concept in Data Models. In:
Third International Conference on Very Large Data Bases (VLDB), pages
464–476. IEEE Computer Society.

[15] Franck Barbier, Brian Henderson-Sellers, Annig Le Parc, and Jean-Michel
Bruel. 2003. Formalization of the Whole-Part Relationship in the Unified
Modeling Language. IEEE Transactions on Software Engineering 29, no. 5,
pages 459–470.

[16] Len Bass, Paul C. Clements, and Rick Kazman. 1999. Software Architecture
in Practice. Addison-Wesley, Boston (MA).

[17] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas.
In: Obbink and Pohl [91], pages 7–20.

[18] Don Batory, David Benavides, and Antonio Ruiz-Cortes. 2006. Automated
Analysis of Feature Models: Challenges Ahead. Commununications of the
ACM 49, no. 12, pages 45–47.

[19] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. 2005. Auto-
mated Reasoning on Feature Models. In: Oscar Pastor and João Falcão
e Cunha (editors), 17th Conference on Advanced Information Systems Engi-
neering (CAiSE 2005), volume 3520 of Lecture Notes in Computer Science.
Springer.

[20] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. 2005. Using
Constraint Programming to Reason on Feature Models. In: William C. Chu,
Natalia Juristo Juzgado, and W. Eric Wong (editors), 17th International
Conference on Software Engineering and Knowledge Engineering (SEKE’05),
pages 677–682.

[21] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. 2005. Rea-
soning on UML Class Diagrams. Artificial Intelligence 168, no. 1-2, pages
70–118.

[22] Piero A. Bonatti. 2004. Reasoning with Infinite Stable Models. Artificial
Intelligence 156, no. 1, pages 75–111.

[23] Jan Bosch. 2000. Design and Use of Software Architectures: Adapting and
Evolving a Product-Line Approach. Addison-Wesley, Boston (MA).

[24] Jan Bosch (editor). 2004. 2nd Groningen Workshop on Software Variabil-
ity Management: Software Product Families and Populations. University of
Groningen, Groningen, The Netherlands.

76

[25] Jan Bosch. 2004. Software Variability Management. In: Nord [90], pages
315–316.

[26] Jan Bosch. 2004. Software Variability Management (Introduction to Special
Issue on Software Variability Management). Science of Computer Program-
ming 53, no. 5, pages 255–258.

[27] Jan Bosch and Charles Krueger (editors). 2004. 8th International Conference
on Software Reuse: Methods, Techniques and Tools (ICSR 2004), volume
3107 of Lecture Notes in Computer Science. Springer.

[28] George E. B. Box and Norman R. Draper. 1987. Empirical Model-building
and Response Surfaces. John Wiley & Sons.

[29] Ronald J. Brachman and Hector J. Levesque (editors). 1985. Readings in
Knowledge Representation. Morgan Kaufman.

[30] Alexandre Braganca and Ricardo J. Machado. 2007. Automating Mappings
between Use Case Diagrams and Feature Models for Software Product Lines.
In: 11th International Software Product Line Conference (SPLC 2007) [61],
pages 3–12.

[31] Michael L. Brodie, John Mylopoulos, and Joachim W. Schmidt (editors).
1984. On Conceptual Modelling—Perspectives from Artificial Intelligence,
Databases, and Programming Languages, Topics in Information Systems.
Springer.

[32] Vaclav Cechticky, Alessandro Pasetti, O. Rohlik, and Walter Schaufelberger.
2004. XML-Based Feature Modelling. In: Bosch and Krueger [27], pages
101–114.

[33] Peter P. Chen. 1976. The Entity-Relationship Model—Toward a Unified View
of Data. ACM Transactions on Database Systems 1, no. 1, pages 9–36.

[34] Paul C. Clements and Linda Northrop. 2001. Software Product Lines—
Practices and Patterns. SEI Series in Software Engineering. Addison-Wesley,
Boston (MA).

[35] Krzysztof Czarnecki and Michal Antkiewicz. 2005. Mapping Features to Mod-
els: A Template Approach Based on Superimposed Variants. In: R. Glück
and M. Lowry (editors), 4th International Conference on Generative Pro-
gramming and Component Engineering (GPCE), pages 422–437.

[36] Krzysztof Czarnecki, Thomas Bednasch, Peter Unger, and Ulrich W. Eise-
necker. 2002. Generative Programming for Embedded Software: An Indus-
trial Experience Report. In: Don S. Batory, Charles Consel, and Walid Taha
(editors), ACM SIGPLAN/SIGSOFT Conference on Generative Program-
ming and Component Engineering (GPCE 2002), volume 2487 of Lecture
Notes in Computer Science, pages 156–172. Springer.

77

[37] Krzysztof Czarnecki and Ulrich W. Eisenecker. 2000. Generative Program-
ming. Addison-Wesley, Boston (MA).

[38] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. 2004. Staged
Configuration Using Feature Models. In: Nord [90], pages 266–283.

[39] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. 2005. Formal-
izing Cardinality-based Feature Models and Their Specialization. Software
Process: Improvement and Practices 10, no. 1, pages 7–29.

[40] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. 2005. Staged
Configuration through Specialization and Multilevel Configuration of Feature
Models. Software Process: Improvement and Practices 10, no. 2, pages 143–
169.

[41] Krzysztof Czarnecki and Chang Hwan Peter Kim. 2005. Cardinality-based
Feature Modeling and Constraints: A Progress Report. In: International
Workshop on Software Factories at OOPSLA 2005.

[42] Krzysztof Czarnecki and Andrzej Wasowski. 2007. Feature Diagrams and
Logics: There and Back Again. In: 11th International Software Product
Line Conference (SPLC 2007) [61], pages 23–34.

[43] Eric Dashofy, André van der Hoek, and Richard M. Taylor. 2002. An Infras-
tructure for the Rapid Development of XML-Based Architecture Description
Languages. In: 24th International Conference on Software Engineering (ICSE
2002), pages 266–276. ACM.

[44] Eric Dashofy, André van der Hoek, and Richard M. Taylor. 2005. A Com-
prehensive Approach for the Development of Modular Software Architecture
Description Languages. ACM Transactions on Software Engineering and
Methodology 14, no. 2, pages 199–245.

[45] Sybren Deelstra, Marco Sinnema, and Jan Bosch. 2005. Product Derivation
in Software Product Families: A Case Study. Journal of Systems and Software
74, no. 2, pages 173–194.

[46] Andy Evans, Robert B. France, Kevin Lano, and Bernhard Rumpe. 1998.
The UML as a Formal Modeling Notation. In: Jean Bézivin and Pierre-
Alain Muller (editors), The First International Workshop on The Unified
Modeling Language (UML ’98), volume 1618 of Lecture Notes in Computer
Science, pages 336–348. Springer.

[47] Boi Faltings and Eugene C. Freuder. 1998. Special Issue on Configuration.
IEEE Intelligent Systems 14, no. 4, pages 29–85.

[48] Alexander Felfernig, Gerhard Friedrich, and Dietmar Jannach. 2001. Concep-
tual Modeling for Configuration of Mass-Customizable Products. Artificial
Intelligence in Engineering 15, no. 2, pages 165–176.

78

[49] Robert B. France, Sudipto Ghosh, Trung Dinh-Trong, and Arnor Solberg.
2006. Model-driven Development Using UML 2.0: Promises and Pitfalls.
Computer 39, no. 2, pages 59–66.

[50] David Garlan. 2001. Software Architecture. In: John J. Marciniak (editor),
Encyclopedia of Software Engineering. John Wiley & Sons, New York.

[51] David Garlan, Robert T. Monroe, and David Wile. 1997. Acme: An Archi-
tecture Description Interchange Language. In: J. Howard Johnson (editor),
The 1997 Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON’97).

[52] Cesar Gonzalez-Perez and Brian Henderson-Sellers. 2006. A Powertype-based
Metamodelling Framework. Software and Systems Modeling 5, no. 1, pages
72–90.

[53] Cesar Gonzalez-Perez and Brian Henderson-Sellers. 2007. Modelling Software
Development Methodologies: A Conceptual Foundation. Journal of Systems
and Software 80, no. 11, pages 1778–1796.

[54] Martin Griss, John Favaro, and Massimo d’Alessandro. 1998. Integrating
Feature Modelling with the RSEB. In: Fifth International Conference on
Software Reuse, pages 76–85. IEEE Computer Society.

[55] Anthony Hall. 1990. Seven Myths of Formal Methods. IEEE Software 7,
no. 5, pages 11–19.

[56] David Harel and Bernhard Rumpe. 2004. Meaningful Modeling: What’s the
Semantics of “Semantics”? IEEE Computer 37, no. 10, pages 64–72.

[57] Mikko Heiskala, Juha Tiihonen, Timo Soininen, and Andreas Anderson. 2006.
Four-worlds Model for Configurable Services. In: Joint Conference of Interna-
tional Mass Customization Meeting (IMCM’06) and International Conference
on Economic, Technical and Organisational Aspects of Product Configura-
tion Systems (PETO’06), pages 199–216.

[58] Brian Henderson-Sellers and Cesar Gonzalez-Perez. 2006. Uses and Abuses
of the Stereotype Mechanism in UML 1.x and 2.0. In: Nierstrasz et al. [89],
pages 16–26.

[59] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. 2004.
Design Science in Information Systems Research. MIS Quarterly 28, no. 1,
pages 75–105.

[60] Lothar Hotz, Katarina Wolter, Thorsten Krebs, Sybren Deelstra, Jos Nijhuis,
and John MacGregor. 2006. Configuration in Industrial Product Families—
The ConIPF Methodology. IOS Press.

79

[61] IEEE Computer Society. 2007. 11th International Software Product Line
Conference (SPLC 2007).

[62] Mikoláš Janota and Joseph Kiniry. 2007. Reasoning about Feature Models in
Higher-Order Logic. In: 11th International Software Product Line Conference
(SPLC 2007) [61], pages 13–22.

[63] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and
Spencer A. Peterson. 1990. Feature-Oriented Domain Analysis (FODA)—
Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineer-
ing Institute, Carnegie Mellon University.

[64] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and
Moonhang Huh. 1998. FORM: A Feature-Oriented Reuse Method with
Domain-Specific Reference Architectures. Annals of Software Engineering
5, pages 143–168.

[65] Eero Kasanen, Kari Lukka, and Arto Siitonen. 1993. The Constructive Ap-
proach in Management Accounting Research. Journal of Management Ac-
counting Research 5, pages 243–264.

[66] Henry Kautz and Bart Selman. 1992. Planning as Satisfiability. In: 10th
European Conference on Artificial intelligence (ECAI ’92), pages 359–363.
John Wiley & Sons.

[67] Bryan M. Kramer, Vinay K. Chaudhri, Manolis Koubarakis, Thodoros
Topaloglou, Huaiqing Wang, and John Mylopoulos. 1991. Implementing Te-
los. ACM SIGART Bulletin 2, no. 3, pages 77–83.

[68] Thomas Kühne. 2006. Clarifying Matters of (Meta-) Modeling: An Author’s
Reply. Software and Systems Modeling 5, no. 4, pages 395–401.

[69] Thomas Kühne. 2006. Matters of (Meta-) Modeling. Software and Systems
Modeling 5, no. 4, pages 369–385.

[70] Thomas Kühne and Daniel Schreiber. 2007. Can Programming Be Liber-
ated from the Two-Level Style: Multi-Level Programming with DeepJava.
In: Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy
L. Steele Jr. (editors), 22nd Annual ACM SIGPLAN Conference on Ob-
ject Oriented Programming Systems and Applications (OOPSLA ’07), pages
229–244. ACM.

[71] Kevin Lano. A Compositional Semantics of UML-RSDS. Software and Sys-
tems Modeling, in press. DOI: 10.1007/s10270-007-0064-x.

[72] Craig Larman. 2002. Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and the Unified Process, 2nd edition.
Prentice-Hall.

80

[73] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug
Bryan, and Walter Mann. 1995. Specification and Analysis of System Archi-
tecture Using Rapide. IEEE Transactions on Software Engineering 21, no. 4,
pages 336–355.

[74] Jochen Ludewig. 2003. Models in Software Engineering—An Introduction.
Software and Systems Modeling 2, no. 1, pages 5–14.

[75] Mike Mannion. 2002. Using First-Order Logic for Product Line Model Val-
idation. In: Gary J. Chastek (editor), Second International Conference on
Software Product Lines (SPLC2), volume 2379 of Lecture Notes in Computer
Science, pages 176–187. Springer.

[76] Tomi Männistö. 2000. A Conceptual Modelling Approach to Product Fam-
ilies and Their Evolution. Ph.D. thesis, Helsinki University of Technology,
Department of Computer Science and Engineering, Espoo, Finland.

[77] Tomi Männistö and Jan Bosch (editors). 2004. Software Variability Manage-
ment for Product Derivation—Towards Tool Support, a workshop in SPLC
2004. Helsinki University of Technology, Helsinki University of Technology,
Espoo, Finland.

[78] William E. McUmber and Betty H. C. Cheng. 2001. A General Framework for
Formalizing UML with Formal Languages. In: 23rd International Conference
on Software Engineering (ICSE 2001), pages 433–442.

[79] Nenad Medvidovic, Peyman Oreizy, James E. Robbins, and Richard M. Tay-
lor. 1996. Using Object-Oriented Typing to Support Architectural Design
in the C2 Style. In: 4th ACM SIGSOFT Symposium on Foundations of
Software Engineering, pages 24–32.

[80] Nenad Medvidovic and Richard M. Taylor. 2000. A Classification and Com-
parison Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering 26, no. 1, pages 70–93.

[81] 2006. Meta Object Facility (MOF) Core Specification, OMG Available Speci-
fication, version 2.0. Technical Report formal/06-01-01, Object Management
Group.

[82] Bertrand Meyer. 1990. Introduction to the Theory of Programming Lan-
guages. Prentice Hall, New York.

[83] Tomi Männistö, Eila Niemelä, and Mikko Raatikainen (editors). 2007. Soft-
ware and Services Variability Management Workshop—Concepts, Models
and Tools.

[84] 2003. MDA Guide version 1.0.1. Technical report, Object Management
Group (OMG).

81

[85] Varvana Myllärniemi. 2004. Kumbang Configurator—A Tool for Configuring
Software Product Families. Master’s thesis, Helsinki University of Technol-
ogy, Department of Computer Science and Engineering.

[86] John Mylopoulos. 1992. Conceptual modeling and Telos. In: P. Loucopoulos
and R. Zicari (editors), Conceptual Modeling, Databases, and CASE, pages
49–68. John Wiley & Sons.

[87] John Mylopoulos, Alex Borgida, Matthias Jarke, and Manolis Koubarakis.
1990. Telos: Representing Knowledge about Information Systems. ACM
Transactions on Information Systems 8, no. 4, pages 325–362.

[88] Ilkka Niemelä. 1999. Logic Programs with Stable Model Semantics as a
Constraint Programming Paradigm. Annals of Mathematics and Artificial
Intelligence 25, no. 3-4, pages 241–273.

[89] Oscar Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio (editors).
2006. 9th International Conference on Model Driven Engineering Languages
and Systems (MoDELS 2006), volume 4199 of Lecture Notes in Computer
Science. Springer.

[90] Robert L. Nord (editor). 2004. Third Software Product Line Conference
(SPLC 2004), volume 3154 of Lecture Notes in Computer Science. Springer.

[91] Henk Obbink and Klaus Pohl (editors). 2005. 9th International Software
Product Line Conference (SPLC 2005), volume 3714 of Lecture Notes in
Computer Science. Springer.

[92] 2006. Object Constraint Language, OMG Available Specification, version 2.0.
Technical Report formal/06-05-01, Object Management Group.

[93] James Odell. 1994. Power Types. Journal of Object-Oriented Programming
7, no. 2, pages 8–12.

[94] Antoni Olivé. 2003. Derivation Rules in Object-Oriented Conceptual Model-
ing Languages. In: Johann Eder and Michele Missikoff (editors), 15th Inter-
national Conference on Advanced Information Systems Engineering (CaISE
2003), volume 2681 of Lecture Notes in Computer Science, pages 404–420.
Springer.

[95] Richard F. Paige, Phillip J. Brooke, and Jonathan S. Ostroff. 2007.
Metamodel-based Model Conformance and Multiview Consistency Checking.
ACM Transactions on Software Engineering and Methodology 16, no. 3.

[96] Chong-Mok Park, Seokjin Hong, Kyoung-Ho Son, and Jagun Kwon. 2007. A
Component Model Supporting Decomposition and Composition of Consumer
Electronics Software Product Lines. In: 11th International Software Product
Line Conference (SPLC 2007) [61], pages 181–192.

82

[97] Hannu Peltonen, Tomi Männistö, Kari Alho, and Reijo Sulonen. 1994. Prod-
uct Configurations—An Application for Prototype Object Approach. In:
Mario Tokoro and Remo Pareschi (editors), 8th European Conference for
Object-Oriented Programming (ECOOP 94), volume 821 of Lecture Notes in
Computer Science, pages 513–534. Springer.

[98] Klaus Pohl, Patrick Heymans, Kyo-Chul Kang, and Andreas Metzger (ed-
itors). 2007. First International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS).

[99] Matthias Riebisch, Kai Böllert, Detlef Streitferdt, and Ilka Philippow. 2002.
Extending Feature Diagrams with UML Multiplicities. In: Proceedings of
the Sixth Conference on Integrated Design and Process Technology (IDPT
2002).

[100] André L. Santos, Kai Koskimies, and Antónia Lopes. 2006. A Model-Driven
Approach to Variability Management in Product-Line Engineering. Nordic
Journal of Computing 13, no. 3, pages 196–213.

[101] Douglas C. Schmidt. 2006. Guest Editor’s Introduction: Model-Driven En-
gineering. Computer 39, no. 2, pages 25–31.

[102] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux.
2006. Feature Diagrams: A Survey and a Formal Semantics. In: 14th IEEE
International Requirements Engineering Conference (RE 2006), pages 136–
145. IEEE Computer Society.

[103] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and
Yves Bontemps. 2007. Generic Semantics of Feature Diagrams. Computer
Networks 51, no. 2, pages 456–479.

[104] Ed Seidewitz. 2003. What Models Mean. IEEE Software 20, no. 5, pages
26–32.

[105] Patrik Simons, Ilkka Niemelä, and Timo Soininen. 2002. Extending and
Implementing the Stable Model Semantics. Artificial Intelligence 138, no.
1-2, pages 181–234.

[106] Brian C. Smith. 1982. Reflection and Semantics in a Procedural Language.
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.

[107] Timo Soininen. 2000. An Approach to Knowledge Representation and Rea-
soning for Product Configuration Tasks. Ph.D. thesis, Helsinki University
of Technology, Department of Computer Science and Engineering, Espoo,
Finland.

[108] Timo Soininen, Ilkka Niemelä, Juha Tiihonen, and Reijo Sulonen. 2001. Rep-
resenting Configuration Knowledge with Weight Constraint Rules. In: AAAI

83

Spring 2001 Symposium on Answer Set Programming: Towards Efficient and
Scalable Knowledge Representation and Reasoning.

[109] Timo Soininen and Markus Stumptner. 2003. Introduction to Special Issue
on Configuration. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 17, no. 1-2, pages 1–2.

[110] Timo Soininen, Juha Tiihonen, Tomi Männistö, and Reijo Sulonen. 1998.
Towards a General Ontology of Configuration. Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing 12, no. 4, pages 357–372.

[111] Herbert Stachowiak. 1973. Allgemeine Modelltheorie. Springer, Wien–New
York.

[112] Friedrich Steimann. 2000. On the Representation of Roles in Object-Oriented
and Conceptual Modelling. Data & Knowledge Engineering 35, no. 1, pages
83–106.

[113] Friedrich Steimann. 2007. The Role Data Model Revisited. Applied Ontology
2, no. 1, pages 89–103.

[114] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. 2005. A Taxonomy of
Variability Realization Techniques. Software—Practice and Experience 35,
no. 8, pages 705–754.

[115] Tommi Syrjänen. 2001. Omega-restricted Logic Programs. In: Proceedings of
the 6th International Conference on Logic Programming and Nonmonotonic
Reasoning, volume 2713 of Lecture Notes in Artificial Intelligence, pages 267–
280. Springer.

[116] Arthur H. M. ter Hofstede and H. A. Proper. 1998. How to Formalize it?
Formalization Principles for Information System Development Methods. In-
formation and Software Technology 40, no. 10, pages 519–540.

[117] Bernhard Thalheim. 1992. Fundamentals of Cardinality Constraints. In:
Günther Pernul and A Min Tjoa (editors), 11th International Conference on
the Entity-Relationship Approach (ER ’92), volume 645 of Lecture Notes in
Computer Science, pages 7–23.

[118] Juha Tiihonen, Timo Lehtonen, Timo Soininen, Antti Pulkkinen, Reijo Sulo-
nen, and Asko Riihihuhta. 1998. Modeling Configurable Product Families. In:
4th WDK Workshop on Product Structuring. Delft University of Technology.

[119] 2007. Unified Modeling Language: Infrastructure, version 2.1.1. Technical
Report formal/2007-02-06, Object Management Group (OMG).

[120] 2005. Unified Modeling Language: Superstructure, version 2.0. Technical
Report formal/05-07-04, Object Management Group (OMG).

84

[121] 2007. Unified Modeling Language: Superstructure, version 2.1.1. Technical
Report formal/2007-02-05, Object Management Group (OMG).

[122] 2001. OMG Unified Modeling Language Specification, version 1.4. Technical
report, Object Management Group (OMG).

[123] André van der Hoek. 2004. Design-time Product Line Architectures for Any-
Time Variability. Science of Computer Programming 53, no. 3, pages 285–
304.

[124] Tijs van der Storm. 2004. Variability and Component Composition. In:
Bosch and Krueger [27], pages 157–166.

[125] Jilles van Gurp and Jan Bosch (editors). 2003. Software Variability Manage-
ment Workshop, volume IWI preprint 2003-7-01. University of Groningen,
Groningen, The Netherlands.

[126] Jilles van Gurp, Jan Bosch, and Mikael Svahnberg. 2001. On the Notion of
Variability in Software Product Lines. In: Working IEEE/IFIP Conference on
Software Architecture (WICSA 2001), pages 45–54. IEEE Computer Society.

[127] Pascal van Hentenryck. 1999. The OPL Optimization Programming Lan-
guage. MIT Press.

[128] Rob van Ommering. 2002. Building Product Populations with Software Com-
ponents. In: 24th International Conference on Software Engineering (ICSE
2002), pages 255–265.

[129] Rob van Ommering. 2004. Building Product Populations with Software Com-
ponents. Ph.D. thesis, University of Groningen, The Netherlands.

[130] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee.
2000. The Koala Component Model for Consumer Electronics Software. IEEE
Computer 33, no. 3, pages 78–85.

[131] Michael von der Beeck. 2006. A Formal Semantics of UML-RT. In: Nierstrasz
et al. [89], pages 768–782.

[132] Thomas von der Maßen and Horst Lichter. 2005. Determining the Variation
Degree of Feature Models. In: Obbink and Pohl [91], pages 82–88.

[133] Wei Zhang, Haiyan Zhao, and Hong Mei. 2004. A Propositional Logic-Based
Method for Verification of Feature Models. In: Jim Davies, Wolfram Schulte,
and Michael Barnett (editors), 6th International Conference on Formal Engi-
neering Methods (ICFEM 2004), volume 3308 of Lecture Notes in Computer
Science, pages 115–130. Springer.

ISBN 978-951-22-9484-8
ISBN 978-951-22-9485-5 (PDF)
ISSN 1795-2239
ISSN 1795-4584 (PDF)

	Acknowledgements
	Contents
	List of Publications
	1 Introduction
	1.1 Background
	1.2 Research problem and questions
	1.3 Methodology
	1.3.1 Overall approach
	1.3.2 Synthetisation
	1.3.3 Practices

	1.4 Scope
	1.5 Contribution
	1.6 Outline of the dissertation

	2 Review of the literature
	2.1 Software product family
	2.2 Feature modelling
	2.3 Modelling product family architectures
	2.3.1 Koala
	2.3.2 xADL 2.0

	2.4 Modelling
	2.5 Modelling in software engineering
	2.6 Metamodelling
	2.6.1 Metaness
	2.6.2 Strict metamodelling
	2.6.3 Ontological and linguistic instantiation
	2.6.4 Unified modelling elements
	2.6.5 Deep instantiation

	2.7 Metamodelling languages and frameworks
	2.7.1 UML
	2.7.2 MOF
	2.7.3 Telos

	2.8 Product configuration
	2.9 Weight constraint rule language
	2.9.1 Syntax of weight constraint rules
	2.9.2 Stable model semantics
	2.9.3 Rules with variables
	2.9.4 Computational complexity and implementation

	3 Software variability modelling languages
	3.1 Levels of abstraction
	3.2 Formalisation principles
	3.3 Definition of abstract syntax and main language elements
	3.4 Taxonomy of composable types
	3.5 Compositional structure
	3.6 Attribute
	3.7 Interface and connection
	3.8 Constraints
	3.9 Instantiation

	4 Nivel---a metamodelling language
	4.1 Language elements
	4.2 Formal semantics

	5 Defining Kumbang using Nivel
	5.1 Levels of abstraction
	5.2 Taxonomy of composable types
	5.3 Compositional structure
	5.4 Attribute
	5.5 Interface and connection
	5.6 Instantiation

	6 Discussion and comparison with previous work
	6.1 Software variability modelling languages
	6.1.1 Conceptual basis
	6.1.2 Language definition
	6.1.3 Formal semantics

	6.2 Metamodelling languages
	6.2.1 Conceptual basis
	6.2.2 Formal semantics

	7 Further work
	8 Conclusions
	References

