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Abstract

We study data fusion under the assumption that data source-specific variation is

irrelevant and only shared variation is relevant. Traditionally the shared variation

has been sought by maximizing a dependency measure, such as correlation of linear

projections in Canonical Correlation Analysis. In this traditional framework it is

hard to tackle overfitting and model order selection, and thus we turn to probabilistic

generative modeling which makes all tools of Bayesian inference applicable. We

introduce a family of probabilistic models for the same task, and present conditions

under which they seek dependency. We show that probabilistic CCA is a special

case of the model family, and derive a new dependency-seeking clustering algorithm

as another example. The solution is computed with variational Bayes.
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1 Introduction

We study the task of modeling dependencies between two data sets of co-

occurring or paired samples (x,y). In other words, the task is to find what

is shared by, or statistically in common between x and y. The underlying

assumption is that variation within either data set alone is more noisy, or

at least less interesting than the variation that is in common. Example tasks

include translation where the x and y are sentences in different languages, or

analysis of measurement data from two different kinds of noisy sensors, such

as different gene expression array platforms, that measure the same system.

This task has been classically solved by Canonical Correlation Analysis (CCA)

[8,9], or more recently by other methods that maximize mutual information

[4,5,16,18]. Mutual information measures deviation from independence and is

hence arguably a very good objective function for finding dependencies. Un-

fortunately it is defined for distributions and not data sets, and hence cannot

handle well the uncertainty stemming from small size of data sets. Estimation

of mutual information is particularly difficult because of the “large p, small

n” problem which is commonplace in bioinformatics, for instance, where the

dimensionality p may be large although the number of samples n is small.

Alternative Bayes factor-based dependency measures have been proposed for

this task [11], but even they are so far unable to take all uncertainties into

account.

The underlying principle behind the traditional methods is to transform the

original data into more compact representations, for which the dependency

is maximized. Usually the remaining data set-specific variation in the data
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is ignored and not modeled at all, which causes difficulties in assessing the

quality of the solution and in avoiding overfitting. We will approach the same

problem from the opposite direction, trying to build for the data collection a

generative description that contains both shared and data set-specific effects.

This leads us to Bayesian generative modeling of joint distributions, in this

case of p(x,y), which is a traditional well-justified framework for modeling

(small) data sets. There is no reason in general, however, to expect a model of

joint distributions to focus on dependencies. In this paper we introduce ways

of building joint density models capable of detecting dependencies between

data sources.

We introduce a generic model structure for data fusion applications, and show

how applying standard Bayesian machinery (see e.g. [7]) to models having

that structure makes them find dependencies between data sets. Special cases

work analogously to the classical methods, but are still generative models with

all their advantages. In particular, we show how the proposed model struc-

ture leads to a recent probabilistic interpretation of CCA [3] when certain

restrictive assumptions, namely linearity of projections and Gaussianity of

distributions, are made. We then proceed to introduce a practical clustering

method for the same task, and treat it in a full-Bayesian way using the vari-

ational approximation (see e.g. [10]). The purpose is to demonstrate how the

generative modeling approach leads to practical improvements.

The connection between classical CCA and a probabilistic variant [3] is that

the maximum likelihood solution of the latter is equivalent to the former. The

connection between dependency measures and likelihood has been pointed

out in special cases also before, for example by [5] in the context of discrete

variables. They were able to turn maximization of mutual information in a
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co-clustering task into a maximum likelihood problem by assuming that the

marginal densities of the clusters are known exactly. We extend the idea to

non-discrete data, where it is not feasible to assume known marginal densities,

by assuming flexible models for the data set-specific variation. We show that

introducing such sources of variation into the model and integrating them

out allows us to use likelihood more generally as a score function for fitting

dependency-seeking models.

2 Generative model for finding dependencies between data sets

We define the task of finding dependencies as detecting a shared signal between

two measurements 1 . The measurements are assumed to be generated as

x = f(z|Wx) + g(zx|Bx) + ǫx,

y = f(z|Wy) + g(zy|By) + ǫy, (1)

where the ǫx and ǫy denote noise and the f(·) and g(·) are deterministic

functions that transform the latent signals z to the observation space. W =

[Wx;Wy], B = [Bx;By] are parameters of these functions. In other words, it

is assumed that the observed data x depends on two latent signals. The signal

z is shared with data y and the signal zx is not. The two signals add to form

the actual observations.

The data fusion problem is to find the shared latent variables z given x and/or

y, as well as the parameters Wx and Wy of the mappings from z to the ob-

served data. The latent variables are the fused output, whereas the parameters

1 The formulation extends directly to more than two measurements, but the for-

mulas are presented for the simplest case throughout the paper
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are used to interpret the result. In general, this requires estimating Bx and

By, but zx and zy need not be explicitly constructed.

For solving the data fusion problem we will use probabilistic modeling. Bayesian

generative modeling gives good tools for controlling the model complexity and

for avoiding overfitting to small data sets, which are extremely difficult tasks

in the traditional approaches.

We will starting by giving a full-Bayesian treatment only to the latent variables

z, zx, and zy. The rest of the parameters will be optimized by maximizing the

likelihood of the parameters, given the set of observations and the model (1).

We need to specify prior distributions for all of the latent variables, z, zx and

zy, as well as the noise distributions. Additionally, as in all modeling, we will

need to specify model families, here for f(·) and g(·). The resulting model is

illustrated as a graphical model in Figure 1.

The fundamental task in the data fusion problem is to solve for the assumed

shared signal z. The naive approach would be to find all the parameters and

latent variables in (1) by maximizing the likelihood, and only consider the

shared part when interpreting the results. However, the computation would

be inefficient and, as discussed later, would not necessarily find the correct

signal. Instead, we will use the rigorous Bayesian way of treating the remain-

ing latent variables as nuisance parameters and marginalize them out. After

marginalizing out the zx and zy we still need to optimize the parameters W

and B, and as a final result we are interested in the posterior distribution of

z given x and/or y. That quantity provides the best possible estimate of the

latent signal, based on the available observations.

Marginalization over zx (and similarly for zy) means performing the inte-
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Fig. 1. Graphical representation of the generative model structure used to detect

dependencies. The model assumes a shared signal z between the two observed vari-

ables x and y, as well as signals zx and zy that are specific to each data set.

gration
∫

p(z, zx, zy,x,y)dzx, which may in general be difficult but here sim-

plifies to p(z)p(zy)p(y|z, zy)
∫

p(x|z, zx)p(zx)dzx because of the independence

assumptions given in Figure 1. Furthermore, z is constant in the integration,

and we can use p(x̃|zx) in place of p(x|z, zx) by denoting x̃ = x − f(z|Wx).

The additive nature of the model thus makes the marginalization tractable for

a wide spectrum of model families, as the marginalization only involves the

terms g(zx|Bx) and ǫx.

3 Canonical correlation analysis

Canonical correlation analysis (CCA) [8,9] is a classical linear model for find-

ing dependencies between two data sets. It is formulated as a search for the

linear transformations Ux and Uy such that each dimension of Uxx corre-

lates maximally with the corresponding dimension of Uyy. CCA thus finds

what the two data sets have in common by explicitly maximizing the correla-

tion. The solution can be effectively computed by solving a certain generalized

eigenvalue problem. The solution is a unique global optimum but the method

is known to overfit to small data sets (see e.g [8] for an overview of classi-

cal CCA, including a kernel-based extension). In this section we show how
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the probabilistic interpretation of CCA [3] can be derived from the model

structure (1) (Figure 1). This derivation makes possible extensions; a sample

extension is given in the next Section. Throughout the derivation we consider

only the formulas for the x-space; the y-space is completely analogous.

As CCA works with linear projections the f and g in (1) need to be linear as

well, giving f(z|Wx) = Wxz and g(zx|Bx) = Bxzx. Furthermore, we make the

common choice of the noise being independent Gaussian with equal variance

in each dimension, ǫx = N(0, σ2
xI). The prior distributions of the z, zx, and zy

are all assumed to be Gaussian with zero mean and unit covariance matrix,

analogously to the probabilistic interpretation of principal component analysis

(PCA) [15,17].

In summary, in the generative model with the above assumptions we have

x ∼ N(Wxz + Bxzx, σ
2
xI),

z, zx ∼ N(0, I),

and in order to infer z we need to marginalize out the latent variables zx. As

explained in the previous section the marginalization only involves an integral

over p(x̃|zx)p(zx), where x̃ = x −Wxz.

As the prior p(zx) is Gaussian and it is multiplied with a linear term we can

integrate zx out analytically, obtaining x̃ ∼ N(0,BxB
T
x + σ2

xI) (see e.g. [15]

for general cases of integrals in Gaussian latent variable models). This is a

normal distribution where the covariance matrix has been parameterized to

have rank dzx
+ 1. Here dzx

is the number of dimensions in zx (assuming rows

of Bx are linearly independent).

If we assume that dzx
+ 1 matches the dimensionality of x we can change the
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parameterization of the generative model to x̃ ∼ N(0,Ψx). Here Ψx is a freely

parameterized positive definite matrix, and the parameterizations are equiva-

lent since both provide a non-constrained covariance matrix. This special case

is equivalent to a recent probabilistic interpretation of Canonical Correlation

Analysis (CCA) [3], as will be shown next.

Doing the same marginalization for zy, again assuming that the dimensionality

of zy is large enough to enable a non-constrained covariance matrix Ψy, leads

to the generative model

z ∼ N(0, I),

x|z ∼ N(Wxz,Ψx),

y|z ∼ N(Wyz,Ψy).

This is exactly the model proposed in [3] for interpreting CCA probabilisti-

cally. As shown in [3], the maximum likelihood estimates of Wx and Wy are

related to the classical CCA solution by Wx = ΣxUxQx and Wy = ΣyUyQy,

where Σx and Σy are the empirical covariance matrices. Qx and Qy are arbi-

trary matrices with spectral normal smaller than one, such that QxQ
T
y = P,

where P is a diagonal matrix that contains the canonical correlations.

More importantly, the expectations of the latent variables z given the data

lie in the subspace found by CCA. As explained in Section 2, the posterior

distribution of the shared latent signal is the quantity we are interested in,

and the expectation is the best point estimate of that distribution. The exact

connection to CCA holds for E[z|x] and E[z|y], and while these are interesting

quantities as such the probabilistic model gives also a better estimate of the

shared signal as E[z|x,y]. It is more accurate since it utilizes all the avail-

able information. The equivalent combination of information in the case of
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traditional CCA would be the mean of the canonical scores, a quantity that

is not commonly used in CCA analysis. It has been pointed out recently [14],

however, that when using CCA as a preprocessing method the mean of the

canonical scores is a feature that extracts common variation from a collection

of data sets.

The original probabilistic formulation has a rotational ambiguity in the sense

that the actual CCA components are not revealed. In [1] a straightforward

way is proposed for solving the true components by a post-processing step,

which makes it possible to use the probabilistic method in a way completely

analogous to classical CCA.

Traditionally CCA has been solved directly with linear algebra, and the prob-

abilistic version can be solved using an expectation maximization (EM) algo-

rithm presented in [3]. As discussed above, that solution implicitly assumes

that the dimensionalities of the zx and zy are sufficiently high to produce a

non-constrained covariance matrix. The model structure in Figure 1 does not

require making this assumption, however, and in Table 1 we give a more gen-

eral EM algorithm for linear projections. The algorithm includes a step that

follows directly from the theory, that is a step that updates the Wx, Wy, and

z after having marginalized the zx and zy out, but also an additional step that

marginalizes the z out to enable estimation of the Bx and By.

The computational complexity of a single iteration of the algorithm is cubic in

the dimensionalities of the data sets, and linear in the number of samples. This

equals the computational complexity of traditional algorithms used for solving

CCA, but in practice the iterative EM algorithm is considerably slower. It is

still easily computable for relatively large data sets, and more general since it
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Table 1

EM algorithm for optimizing the extended probabilistic CCA repeats the two steps

until convergence. The second step can be repeated a few times in a row to improve

the convergence of the data set-specific models, avoiding unnecessary use of the

parameters Wx and Wy to model effects specific to each data.

1. • Assume that Bx and By are fixed, and marginalize over zx and zy to get

Ψx = BxB
T
x + σ2

xI and Ψy = ByB
T
y + σ2

yI.

• Update the parameters W = [Wx;Wy] using

W = ΣAT
(

M + AΣAT
)

−1
.

Here M =
(

I + WT Ψ−1W
)

−1
, A = MWT Ψ−1, and Ψ is a block-diagonal

matrix that consists of Ψx and Ψy. The Σ is the joint sample covariance

matrix.

2. • Marginalize over z to get Ψx = WxW
T
x + σ2

xI.

• Update Bx with

Bx = ΣxA
T
x

(

Mx + AxΣxA
T
x

)

−1
,

where Mx =
(

I + BT
x Ψ−1

x Bx

)

−1
, Ax = MxB

T
x Ψ−1

x , and Σx is the sample

covariance of x.

• Update σ2
x using

σ2
x =

1

dx
trace

(

Σx − ΣxA
T
x BT

x − WxW
T
x

)

,

where dx is the dimensionality of x, and Bx is the new value just updated.

• Repeat the above two substeps for parameters related to y, replacing all

subscripts x with y.

provides also the projections Bx and By.
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3.1 The role of the data set-specific latent signals

In the previous section the connection to CCA was derived for the special

case of the latent signal space for the data set-specific variation having full

dimensionality. It is important to realize that this is the only case where the

connection to CCA holds. More generally, the proposed model structure (1)

focuses entirely on detecting the shared latent signal z only if the latent signals

zx and zy have full-dimensionality. In other words, the part of the model (1)

that is specific to x, g(zx|Bx), needs to be capable of modeling any non-shared

variation within x.

If that requirement is not satisfied the model may still be a good generative

description of the data collection, but it will not detect the shared effect z

correctly. As an extreme example we may consider a special case where the

dimensionality of zx and zy is zero, meaning that the data set-specific part is

omitted completely. The model then reduces to a trivial latent variable model

for the concatenation of x and y, and we get essentially a probabilistic PCA

[17]. The only difference is that both data spaces now have a separate noise

parameter. In practice the model will fail to discover dependencies between

data sets, since it uses the assumed shared latent signal to describe also varia-

tion that is specific to either data alone, the reason being that the single latent

signal needs to describe the whole data generation process and has no other

way for modeling the data set-specific variation.

The requirement also clarifies the need for marginalizing over the zx and zy

instead of simply finding the maximum likelihood estimate also for them. As

the models are required to be flexible there would be serious risk for overfitting
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these less interesting signals, leading to the opposite problem: The model

might prefer describing also some of the shared effects by the latent signals zx

and zy, not correctly detecting all the dependencies in z.

4 Dependency-seeking clustering

In Section 3 we showed how a classical dependency maximization method

CCA can be derived from (1). In the case of CCA the advantage of the prob-

abilistic approach is in enabling robust analysis of small data sets, whereas

for large sets it may in practice still be easier to use classical CCA instead.

Changing and relaxing the modeling assumptions gives new models which still

detect shared signals. Next we give an example demonstrating that (1) is not

merely a re-interpretation of a classical method, but opens up possibilities for

novel methods. In particular, these methods may not have direct traditional

counterparts.

An interesting variant is obtained by assuming that the shared signal forms

clusters. This is particularly useful for two reasons: with clusterings it is pos-

sible to approximate nonlinear functions, and clusterings are readily inter-

pretable in practical data analyses. We will derive a model which assumes a

clustered shared signal and Gaussian data set-specific sources. Alternatively,

the data set-specific signal could be assumed to be clustered, although such a

model would be computationally more difficult.

The clustering effect can be achieved by changing the prior distribution of

z. Instead of drawing z from a Gaussian we use a multinomial distribution

(making it a scalar z instead of a vector), assuming that there is a discrete set of
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possible values for the shared signal. Otherwise we use the same distributions

as in Section 3, namely zx, zy ∼ N(0, I) and ǫx, ǫy ∼ N(0, σ2I). The function

f(z|Wx) will here be Wxz̃, where z̃ is the latent signal decoded as a binary

vector where the zth value is one and all others are zero (i.e., the value of

z picks a single column from the matrix Wx), and g(zx|Bx) = Bxzx like in

CCA.

Following the guidelines in Sections 2 and 3.1 we again assume that the data

set-specific signals zx and zy are of a sufficiently high dimension and marginal-

ize over them. As this part of the model is identical to the CCA model in

Section 3, we can readily utilize the results from there. The result of the

marginalization is x ∼ N(µk
x,BxB

T
x + σ2

xI), where µk
x = Wxz̃, the mean pa-

rameter chosen by the latent variable z having value k. The assumption of full

dimensionality for the data set-specific signals again gives equivalent param-

eterization in the form x ∼ N(µk
x,Ψx), and we can directly write the final

clustering model as

z ∼ Mult(α),

[x;y]|z ∼ N(µk,Ψ). (2)

Here Ψ = [Ψx, 0; 0,Ψy], a block-diagonal matrix consisting of the Ψx and

Ψy, and µk = [µk
x; µ

k
y ]. The multinomial for z is parameterized by α to allow

clusters to have different weights.

In summary, the model is a normal mixture model for data where the two

feature vectors have been concatenated, with the restriction that the covari-

ance of the clusters has a block-diagonal structure. The intuitive approach to

clustering such data would be to use a full covariance matrix. It would in this

case lead to individual clusters modeling also some of the dependencies be-
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tween data sets, and even though that solution might be better in terms of the

likelihood it would still be worse for making inferences on the dependencies.

In the other extreme where the covariance matrix would be restricted to be

completely diagonal the model would use the cluster structure to model also

within-data variation, again losing some of the dependencies. This latter effect

is analogous to CCA reducing to PCA if the data set-specific components are

removed, as mentioned in Section 3.1.

Note that the formulation suggests that the covariance matrix should be re-

stricted also in cases where the variables in both data sets are expected to be

correlated (for example, due to being measurements of the same objects with

different sensors), as long as the task is to detect dependencies. This is because

we specifically want to capture the real link between the two data sets into

the cluster structure, instead of in the within-cluster covariance. This contra-

dicts the traditional view of Bayesian data analysis that all prior information

should be included in the model structure as well as possible.

It is additionally worth noting that the model structure as written in (1)

suggests that all clusters should have the same covariance matrix. This can be

relaxed by allowing g(·) to depend also on z, which arguably makes more sense

in the case of a clustering model. The only change in the model would be that

Ψ would then be replaced by Ψk, an individual parameter for each cluster. We

could equivalently have written (1) in that form, but left the dependency out

to clarify the CCA derivation, as the independency assumption would have

been made anyway for the CCA model. In all of the clustering experiments

in this paper the covariance matrices have been defined separately for each

cluster.
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4.1 Variational Bayes for the clustering model

It would be straightforward to derive an EM algorithm to optimize (2). Here

we, however, treat the estimation process in a fully Bayesian way to get the

full advantages of the generative approach. Rigorous Bayesian treatment al-

lows choosing the model complexity (i.e., the number of clusters), and the

result incorporates knowledge of the uncertainty of the obtained parameters.

In particular, the issue of overfitting that was one of the original reasons to

pursue the generative approach can be solved much more effectively than by

using maximum likelihood as the model fitting criterion.

We start by defining the model as a fully Bayesian version with priors for the

model parameters, as follows:

α|λ0 ∼ Dir(λ0)

z|α ∼ Mult(α)

Γk
x|ν

0
x,Ψ

0
x ∼ W (ν0

x,Ψ
0
x) (3)

Γk
y|ν

0
y ,Ψ

0
y ∼ W (ν0

y ,Ψ
0
y)

µk|Γk,µ0,β0 ∼ N(µ0, 1/β0(Γk)−1)

(x,y)|z,Γ,µ ∼ N(µk, (Γk)−1).

Here the superscript k denotes the cluster, and Γk is the block-diagonal pre-

cision matrix for cluster k that consists of Γk
x and Γk

y , both drawn from the

Wishart distribution W . The model is illustrated graphically in Figure 2, and

it is very similar to the model proposed in [2] for a multivariate Gaussian

mixture with non-constrained covariance matrices. The crucial difference here

is the block diagonal covariance matrix which forces the model to focus on

modeling dependencies.
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Fig. 2. Graphical representation of the Bayesian clustering model for detecting de-

pendencies between data sets. Shaded nodes represent observed variables, whereas

the rest are latent variables (z) or model parameters. The plates indicate repetition

over samples (N) and clusters (K), and the hyperparameters have not been drawn

for clarity.

As values for the hyperparameters we use

λ0 = 1, β0 = 1, ν0
x = dx, ν0

y = dy

for the scale parameters, and the mean and precision hyperparameters are set

by empirical Bayes based on the observed data. In detail, µ0 is set to the

mean of the data, and Ψ0
x is given by 0.1ν0

xΛx where Λx is a diagonal matrix

containing the variances of x (and similarly for y). This means that the prior

covariance of the clusters is diagonal with variance proportional to that of the

data.

Denote all model parameters collectively by Θ, and use V to denote all

observed variables (both x and y) and Z for all latent (unobserved) vari-

ables. In the Bayesian approach we are interested in the posterior distribution

P (Θ, Z|V ) (and here eventually P (Z|V ) if the focus is solely on detecting the

shared signal), which would be the justified distribution of the possible an-

swers given the observed data. Unfortunately solving the posterior exactly is
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intractable for most interesting models, including (3). Several methods, such

as sampling (see e.g. [7]), variational approximation [10] and expectation prop-

agation [13] have been proposed for approximative inference, each having their

own advantages and disadvantages. Here a variational Bayes (VB) approach

is adopted.

We will here briefly describe the VB to the degree necessary for deriving a

posterior approximation for (3). In VB the posterior distribution P (Θ, Z|V )

is approximated by a variational distribution Q(Θ, Z), where tractability is

achieved by assuming that the latent variables and parameters are indepen-

dent given the observed variables, Q(Θ, Z) = Q(Θ)Q(Z). The task is then to

find the Q(Θ, Z) such that the difference between P (Θ, Z|V ) and Q(Θ, Z),

measured by the Kullback-Leibler divergence

KL(Q||P ) =
∫ ∫

Q(Θ, Z) log
Q(Θ, Z)

P (Θ, Z|V )
dΘdZ

is minimized. Equivalently, we can write log(P (V )) = L(Q) + KL(Q||P ),

where

L(Q) =
∫ ∫

Q(Θ, Z) log
P (V, Z,Θ)

Q(Θ, Z)
dΘdZ, (4)

which shows that minimizing the KL-divergence maximizes a lower bound

L(Q) for the true marginal likelihood log(P (V )), since the KL-divergence is

always positive, and zero only if Q(Θ, Z) = P (Θ, Z|V ).

We choose a fully factorized form for the approximation Q(Θ, Z). Then the

form of the approximation follows directly from free-form optimization of the

objective function, and we need not specify the functional form. In an iterative

updating scheme we can update Z and Θ alternatingly, which directly leads to

Q(Z) ∝ exp (
∫

ΘQ(Θ) logP (D,L|Θ)dΘ). Furthermore, it can be shown that

for exponential family distributions using conjugate priors the optimal form
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for the approximation Q(Θ) is the same as that of the prior for the actual

model. In the model (3) only conjugate priors are used, and thus we get

Q(Θ) = Q(α)
∏

k

Q(Γk)Q(µk|Γk),

where Q(α) = Dir(λ) and Q(µk|Γk) = N(ρk, 1/βk(Γk)−1). Due to the block-

diagonal nature of the covariances we have Q(Γk) = W (νk
x ,Ψ

k
x)W (νk

y ,Ψ
k
y).

The parameters of the approximation can be learned using an algorithm closely

resembling EM. Since the model is very close to a normal Gaussian mixture

model we derive the update formulas following [2]. The only difference between

the models is in the parameterization of the covariance matrices, and conse-

quently changes need to be made only to the parts involving the covariance

matrix. This directly gives us the expectation formula

γkn ∝ α̃k(Γ̃
k
)1/2e−(vn−ρk)T

Γ̄
k
(vn−ρk)e

−

dv

2βk (5)

where γkn denotes the probability for the nth sample to belong to the kth

cluster. Here log α̃k = ψ(λk) − ψ(
∑

j λ
j), log Γ̃

k
=
∑dx

j=1 ψ((νk
x + 1 − j)/2) +

∑dy

j=1 ψ((νk
y + 1 − j)/2) − log |Ψk

x| − log |Ψk
y| + dv log(2), and Γ̄

k
is a block-

diagonal matrix that contains νk
x(Ψk

x)
−1 and νk

y (Ψk
y)

−1 on its diagonal. The

ψ(·) denotes the digamma function, derivative of the logarithm of the gamma

function. In all formulas d denotes the dimensionality of the corresponding

variable, and vn = [xn;yn] is the concatenation of the values for the nth

sample.

For the maximization step we first define the following terms:

Nk =
N
∑

n=1

γkn, µ̄k =
1

Nk

N
∑

n=1

γknvn,

Σk =
1

Nk

N
∑

n=1

γkn(vn − µ̄k)(vn − µ̄k)T .
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They enable expressing the updates as

λk = λ0 +Nk, βk = β0 +Nk, µk = (Nkµ̄k + β0ρ0)/(Nk + β0), (6)

following [2]. In practice we can re-utilize the update formulas from [2] for the

covariance matrix as well, but they have to be applied to blocks corresponding

to x and y separately. Each block is equivalent to the whole covariance matrix

in the basic Gaussian mixture, giving

νk
x = Nk + ν0

x, Ψk
x = Nk

(

Σk
x +

β0

Nk + β0
(µ̄k

x − ρ0
x)(µ

k
x − ρ0

x)
T

)

+ Ψ0
x (7)

as the update formula for the covariance block of x and similarly for y. The

subscript x denotes picking the part related to the x from the corresponding

parameter that was defined for v = [x;y].

In summary, we have an iterative algorithm that proceeds by alternating two

steps: (i) Estimation of the latent signal using (5), and (ii) Updating the

parameters of the posterior approximation Q(Θ, Z) using (6) and (7). The

algorithm is run until the lower bound L(Q) in (4) stops improving, and the

final value of L(Q) can be used for model order selection as it is effectively the

marginalized likelihood of the model minus a term that penalizes for model

complexity in a justified way.

5 Experiments

Here we verify empirically some of the properties claimed in the previous sec-

tions. These experiments are not a comprehensive study on the performance of

the methods, but aim to demonstrate the kinds of effects one should anticipate,

and know how to deal with, when using probabilistic models for dependency
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exploration tasks.

5.1 CCA and complexity of the data set-specific models

In Section 3 we claimed that the generative model only implements CCA when

sufficiently complex models for the data set-specific effects are used. Here we

demonstrate that the EM algorithm for extended CCA indeed converges to

the classical CCA solution given full complexity, and show that this does not

hold for lower complexity.

For this purpose we used a simple generated data set that has a subspace

(four dimensions) with significant correlation, while the rest of the dimensions

(eight) in both data spaces are independent noise. The data was sampled

from a single Gaussian with the given dependency structure, the correlations

being 0.9, 0.6, 0.3, and 0.2, and three of the independent dimensions in both

data sets having larger variance than the shared dimensions (2.0, 3.0, and 4.0

compared to the 1.0 for all the other dimensions). A set of 1000 samples was

drawn from the distribution, and the solutions were computed using the EM

algorithm (Table 1) for various complexities of the data set-specific models.

The results were computed as averages over 100 different data sets from the

same distribution.

For each model complexity we compute a four-dimensional projection (4-

dimensional latent variables z), and solve the rotational ambiguity using the

procedure described in [1] to obtain four separate components. In Figure 3

the correlations extracted by these components are shown as a function of the

data set-specific model complexity, and it is evident that too low a complexity
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Fig. 3. Demonstration that the data set-specific models need to be of full complex-

ity for the shared model to capture the dependencies between the data sets. On

the x-axis we have the dimensionality of the latent variables of the data set-spe-

cific models, and with maximal value (here 11) we obtain the four true correlations

(0.9, 0.6, 0.3 and 0.2), with slight discrepancy due to the relatively small number of

samples. If less complex data set-specific models are used the shared model under-

estimates the correlations, and eventually with zero complexity (the leftmost point)

the method reduces to probabilistic PCA that does not focus on correlations at

all. The four lines depict the correlations on the four components extracted by the

method, and dashed horizontal lines mark the true correlations.

leads to decreased performance in finding the canonical directions. Only the

rightmost solution with full complexity finds the true correlations, and already

the solution with complexity of just 2 fewer dimensions mixes severely the two

largest components, while still finding roughly the correct subspace.

5.2 Relationship between CCA and the clustering model

In order to demonstrate what the clustering model does, and in particular its

relation to the CCA, we run it on a simple toy data set. In Figure 4 two two-

dimensional data sets are presented, with projection vectors indicating the
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CCA direction. The clustering model was applied to the same data, and the

cluster centroids and covariance matrices of the clusters have been overlaid on

top of the figure. The number of clusters was chosen so that the lower bound

for the marginalized likelihood (4) was maximized.

It is worth noting that the cluster centroids do not lie on the CCA projec-

tion, but instead follow the distribution of the data. The important thing is

that when projected to the CCA component the clusters are well separated,

indicating that the same structure that is found by CCA is retained. The

model still tries to describe the generative process of the data, which forces

the centroids to be closer to the actual data. Here the CCA solution is still

fairly good, but if the data sets were further away from being Gaussian the

clustering model would be a clear improvement over CCA.

5.3 Analysis of yeast stress

As a more realistic example, we cluster yeast genes based on expression mea-

surements made in different stressful treatments. The measurement data was

obtained from [6], and preprocessed as in [14]. We treat the time series mea-

sured in different conditions as data sets, and seek to cluster the genes so that

dependencies between the measurements are captured by the cluster structure.

The common thing between the measurements should be that all contain a

general stress response, and here we can externally validate the performance

of the clustering algorithm by checking whether it groups known environmen-

tal stress response (ESR) genes [6] into the same clusters. This is a two-class

problem, each gene either is or is not an ESR gene. If the clustering takes the

dependencies correctly into account the cluster index should correlate with
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Fig. 4. Illustration of the relationship between how the clustering model and CCA.

The two figures present two two-dimensional data sets that have high correlation

(0.85) along a one-dimensional subspace. The CCA solution is drawn as a line to

both figures, and the centroids and covariance matrices of the clustering model are

also displayed. Here the clusters find essentially the same dependency as CCA, but

still describe the data well by following the shape of the data. Note that in the

left subfigure the variation is two times higher in the direction orthogonal to the

dependent subspace, but the cluster centroids still lie on the one-dimensional CCA–

subspace due to being able to model the data set-specific variation by stretching

the covariance matrices.

the sample being an ESR gene.

We took a set of five different conditions with total dimensionality of 38,

and compared the clustering model to the naive alternative of clustering the

concatenation of the data sets using a joint distribution model, here a mixture

of Gaussians with a non-constrained covariance matrix [2]. Both models use a

variational approximation. As a goodness measure we use the “classification

accuracy” of the clustering: for each left-out sample we calculate how big a

proportion of the training samples in the same cluster belonged to the same

class. The final measure is the average of that measure over all ESR genes in the

left-out data, essentially measuring the capability of the clustering to collect
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ESR genes into clusters with few non-ESR genes. The leave-out procedure was

constructed so that a random subset of samples (half) was chosen for training

and the methods were tested on the remaining half. The presented results are

averaged over 10 such randomizations.

The five data sets allow studying 10 different pairings of two data sets. The

results for the clustering model (3) and the comparison method have been

collected into Table 2. The number of clusters for both methods was fixed to

8, which gave the best lower bound for the true marginal likelihood for the

comparison model in a preliminary test with a random subsample of the data;

the proposed model would have supported a larger number of clusters, but in

order to not bias the goodness measure we chose a suboptimal value for our

model.

We see that in 6 cases the clustering model using the block-structured co-

variance matrix gives significantly (p-value below 0.01; t-test) better score,

indicating that the ESR labeling correlates with the clustering. In 4 of the re-

maining cases the difference is not significant, and in only one case the average

accuracy is higher for the comparison method. The results illustrate also how

the choice of the data sets is important; if there is no interesting correlation

structure then focusing on the dependencies cannot help, and if the depen-

dency is not related to the effect we are studying then it drives the results to

the wrong direction.

Note also that for all pairs not involving DTT the comparison method pro-

duced a significantly better lower bound for the likelihood, revealing that if

our task was simply to find the best model for the whole collection we should

have chosen that model instead. This illustrates that finding the dependencies
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Table 2

Accuracy of the clustering methods in detecting the ESR genes from pairs of mea-

surements of stressful experiments. Each cell presents the results for an analysis

run on a pair of experiments. The first figure is the accuracy of the dependency-

seeking clustering method (in percentage units), and the second the accuracy of

a standard joint model. Boldface indicates significant differences (paired t-test). A

random allocation of genes into clusters would give an accuracy of 14.1%.

Heat2 Nitrogen Diamide DTT

Heat1 46.1/38.5 49.1/40.7 43.3/40.0 44.4/39.0

Heat2 - 50.7/45.3 44.8/44.2 48.1/41.8

Nitrogen - - 48.8/42.7 47.8/45.1

Diamide - - - 42.8/43.5

and describing the whole data are different tasks, even though we can use

standard generative modeling techniques for both.

Even though all the formulas have been presented for two data sets the method

generalizes directly to more than two. To demonstrate the performance on a

larger collection we ran the same experiment for a collection of three, four and

five data sets. For the collection of both heat-shocks and nitrogen depletion the

average accuracy of the model (3) was 51.1%, and adding diamide treatment to

the collection increased it further to 51.5%. Finally, using all five data sets gave

an accuracy of 51.6%. While the differences between these three figures are not

significant, they are all above the best accuracy obtained with any pair of data

sets. For the comparison method the corresponding accuracies were 41.4%,

41.9% and 45.3% using the same collections. Here the best results from a pair

of data sets are actually better than what was obtained using three or four
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data sets, and the proposed clustering method is always significantly better

than the comparison method, despite the comparison method still providing

significantly better lower bound for the likelihood.

6 Discussion

In this paper we studied the use of generative models for finding dependencies

between data sets. Traditionally, dependencies have been sought by explicitly

optimizing a measure of dependency, using methods such as Canonical Corre-

lation Analysis (CCA) or various clustering methods to optimize the mutual

information. Recently CCA has been interpreted as a generative model, which

lead us to study whether generative models could be used for dependency

exploration tasks even more generally.

We specified a general model family for data fusion, including dependent

(shared) and data set-specific signals. We showed that a basic probabilistic

treatment leads to CCA in the case of linear projections and Gaussian noise.

In particular, it was shown that the dependencies are correctly found only

when the model family is such that the data set-specific part of the model is

flexible enough to describe all the variation in each data set. Furthermore, the

latent signals for those parts need to be marginalized, which is made tractable

in the model family by the assumption of the observed signal being an additive

combination of shared and data set-specific signals.

To give an example of generalizations from the basic CCA model we derived

a clustering method capable of detecting dependencies, based on the same

model structure. The model was treated in a fully Bayesian way by presenting
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a variational Bayes approximation for the posterior distribution. The model

shows how the full advantage of the extra robustness provided by the gen-

erative interpretation of dependency seeking methods can be utilized, giving

for example a justified criterion for choosing the number of clusters. Recently

also CCA has been treated in a fully Bayesian way [12,19], complementing the

solution provided here for the clustering model.

The presented models here were reasonably simple, always making the as-

sumption that variation within each data set can be explained by a linearly

transformed Gaussian latent variable. The main reason for this was computa-

tional tractability. Even though the assumption of additive signals simplifies

the marginalization process, further approximations are probably needed to

develop methods where the assumptions for the data set-specific signals would

be more complex. Extending to models with more complex shared signal, ei-

ther in form of non-linear mapping or non-Gaussian latent variable, should be

easier, since we need not marginalize over the shared latent variables.
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