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A distributional clustering model for continuous data is reviewed and new meth

optimizing and regularizing it are introduced and compared. Based on samples of d

valued auxiliary data associated to samples of the continuous primary data, the con

data space is partitioned into Voronoi regions that are maximally homogeneous in t

the discrete data. Then only variation in the primary data associated to variation

discrete data affects the clustering; the discrete data ‘‘supervises’’ the clustering. Beca

whole continuous space is partitioned, new samples can be easily clustered by the con

part of the data alone. In experiments, the approach is shown to produce more homo

clusters than alternative methods. Two regularization methods are demonstrated to

improve the results: an entropy-type penalty for unequal cluster sizes, and the inclus

model for the marginal density of the primary data. The latter is also interpretable as

kind of joint distribution modeling with tunable emphasis for discrimination and the m

density.
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1. Introduction
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Models exist for discovering components underlying co-occurrences of n
variables [4,5,14], and for the joint distribution pðc;xÞ of continuous x 2 X �

discrete data c [12,13,18]. We consider the related task of clustering the cont
primary data by conditional modeling such that the clusters become ‘‘releva
or ‘‘informative of’’ the discrete auxiliary data, i.e., capable of predicting pðcj

discriminative approach is expected (and indeed found) to result in cluster
informative about c than those obtained by modeling the joint distributio
continuity of x distinguishes the setting from that of (classic) distributional clu
[20,22,26].

The task, coined discriminative clustering (DC), is different from classifica
that the number of clusters is not constrained to be equal to the number of
which for clustering purposes may be much too high or low. In DC, the d
cluster structure of the X-space is the primary outcome, even to the degree t
distributional parameters predicting pðcjxÞ within a cluster can be integrated

The main application area for DC is in data exploration or mining. Alterna
when c is interpreted as an existing probabilistic partitioning of X, DC can be
alter the coarseness of the partitioning.

A prototypical application would be grouping of existing customers of a co
on the basis of continuous covariates (x; including, for instance, coordin
residence, age, etc.) into clusters that are informative of the buying behavior
customers across several product categories (c). New real or potential custom
then be clustered even before they have made their first purchases. Other po
applications include finding prototypical gene expression patterns to refine e
functional classifications of genes [21], clustering of financial statements to d
different ways to descend into bankruptcy, and partitional clustering in genera
a variable c is used to automatically guide the feature selection.

In this paper, an earlier model for DC [21] is reviewed and extended. O
implementation of the earlier model was simple and it had interesting connect
neural computation, but for practical data analysis it had a shortcoming:
formulated for distributions of data instead of finite data sets, which implies
cannot take the uncertainty caused by the finiteness of the sample rigorous
account. In this paper, we formulate DC in Bayesian terms, which has the add
benefit that the parameters the earlier method included for modeling the au
data c can be integrated out from the cost function.

The model cannot be optimized directly by gradient-based algorithms,
show that complementing a conjugate gradient algorithm with a smooth
partitions gives comparable results to the much more time-consuming sim
annealing (SA). To further improve the performance, the model is addit
regularized in two alternative ways: by penalizing from unequal cluster si
alternatively by adding to the cost function a term modeling the primary da
latter is equivalent to generative modeling of the full joint distribution pðc;xÞ
primary and auxiliary data, but also interpretable as a tunable compromise b
modeling pðxÞ and pðcjxÞ.
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based models in their task, and both of the regularization methods o
form pure DC. In most cases, the new Bayesian optimization method pe
better than the older stochastic on-line algorithm, and requires less tim
optimization.
2. DC model
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We will start by reviewing the basic DC model [15,21], and by simultan
clarifying its relationship with maximum likelihood estimation. Although d
from the original derivation, the perspective here makes a Bayesian ex
possible.

The goal of DC is to partition the primary data space into clusters that are (
in the primary space and (ii) homogeneous and predictive in terms of auxiliar
(The connection between homogeneity and predictivity of the clusters is d
below.) Locality is enforced by defining the clusters as Voronoi regions
primary data space: x belongs to cluster j, x 2 Vj , if kx�mjkpkx�mkk fo
The Voronoi regions are uniquely determined by the parameters fmjg.

Homogeneity is enforced by assigning a distributional prototype denoted b
pðcjx; x 2 VjÞ to each Voronoi region j, and searching for partitionings cap
predicting auxiliary data with the prototypes. The resulting model is a pie
constant generative model for c conditioned on x, with the log likelihood

L ¼
X

j

X
x2Vj

logcj;cðxÞ.

The probability of class i within the jth Voronoi region Vj is predicted
cji ¼ pðcijx;x 2 VjÞ, and cðxÞ denotes the class of sample x.

In summary, the assumed data-generating mechanism is simple: The prima
x are covariates that determine the cluster membership j (the relation
deterministic given the parameters of the clusters). The auxiliary data c ar
generated by a cluster-specific multinomial having parameters cji. This gen
mechanism is assumed throughout the paper.

Asymptotically for large data sets,

L / �
X

j

Z
Vj

DKLðpðcjxÞ;wjÞpðxÞdxþ const.,

where DKL is the Kullback–Leibler divergence between the observed distribu
auxiliary data and the prototype. This is the cost function of K-means cluste
vector quantization (VQ) with the distortion measured by DKL. In this
maximizing the likelihood of the model therefore maximizes the distrib
homogeneity of the clusters.

It can be shown [21] that maximizing (2) is equivalent to maximizi
mutual information between the auxiliary variable and the partitioning,
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clustering criterion [2]. Asymptotically DC performs VQ in Fisher metric
the restriction of Voronoi regions being those of the original, usually Eu
metric [15].
2.1. Optimization
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When DC was introduced (although not under its current name), an
stochastic algorithm for optimizing the cost function (2) was derived [21
gradient of the cost is non-zero only at the borders of the Voronoi regions,
overcome this difficulty the regions are softened or smoothed. The re
algorithm is briefly reviewed here.

The smoothing is performed by introducing membership functions yjð

to (2). The values of the membership functions vary between 0 andP
jyjðxÞ ¼ 1. The smoothed cost function is

E0
KL ¼

X
j

Z
yjðx; fmgÞDKLðpðcjxÞ;wjÞpðxÞdx.

One possible form for the memberships is the normalized Gaussian,

yjðxÞ ¼ ZðxÞ�1expð�kx�mjk
2=2s2Þ,

where Z normalizes the sum to unity for each x. The value of the param
controlling the smoothness can be chosen with a validation set.

The smoothed cost is then minimized with the following algorithm. Den
i.i.d. data pair at the on-line step t by ðxðtÞ; cðtÞÞ and index the (discrete) value
by i, that is, cðtÞ ¼ ci. Draw two clusters, j and l, independently, with proba
given by the values of the membership functions fykðxðtÞÞgk. To ke
distributional parameters summed up to unity, reparameterize them by the
max’’, logcji ¼ gji � log

P
m expðgjmÞ. Adapt the prototypes by

mjðt þ 1Þ ¼ mjðtÞ � aðtÞ xðtÞ �mjðtÞ
� �

log
cliðtÞ

cjiðtÞ
,

gjmðt þ 1Þ ¼ gjmðtÞ � aðtÞ cjmðtÞ � dmi

h i
,

where dmi is the Kronecker delta. Due to the symmetry between j and l, it is p
(and evidently beneficial) to adapt the parameters twice for each t by swappin
l in (5) and (6) for the second adaptation. Note that no updating of the m take
if j ¼ l; then mjðt þ 1Þ ¼ mjðtÞ. During learning the parameter aðtÞ de
gradually toward zero according to a schedule that, to guarantee conve
must fulfill the conditions of the stochastic approximation theory.

For finite data, the algorithm maximizes the conditional likelihood (
heuristically smoothing the clusters to get a computable gradient.
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The earlier DC algorithm [21] was motivated by maximization of the em
mutual information. Asymptotically, for large amounts of data, empirical
information is a justified measure of homogeneity or dependency. Maximiza
mutual information was re-interpreted in the previous section as ma
likelihood estimation, which uses smoothed cluster memberships as an optim
trick. The new interpretation opens up the possibility of Bayesian extension
small data sets, an alternative, potentially better-behaving form of DC is obtai
marginalizing the likelihood (1), as introduced next. It turns out th
distributional prototypes fwjg can be analytically integrated out from the po
distribution of fmjg and fwjg given data, to leave only the parameters fmjg

Voronoi regions. This is convenient and should improve the results by takin
account the uncertainty associated with the fwjg. Our goal is to partition the p
space instead of predicting the classes by the fwjg, and hence the predictions
needed.

The auxiliary data are denoted by DðcÞ, and the primary data by DðxÞ. We the
to find the set of clusters fmjg which maximizes the marginalized posteri
integration is over all the wj)

MAPDC ¼ pðfmjgjD
ðcÞ;DðxÞÞ ¼

Z
fwjg

pðfmjg; fwjgjD
ðcÞ;DðxÞÞdfwjg.

In this paper, the improper prior pðfmjg; fwjgÞ / pðfwjgÞ ¼
Q

jpðwjÞ is used,

the factors pðwjÞ /
Q

ic
n0

i
�1

ji are Dirichlet priors with the parameters n0
i co

to all j. Dirichlet distribution is the conjugate of the multinomial distributio
is therefore convenient. By Bayes rule and marginalization, the postrior1

given by

MAPDC /

Z
fwjg

pðDðcÞjfmjg; fwjg;D
ðxÞÞpðfwjgÞdfwjg

¼
Y

j

Z
wj

pðD
ðcÞ
j jwjÞpðwjÞdwj

/
Y

j

Z
wj

Y
i

c
n0

i
þnji�1

ji dwj ¼
Y

j

Q
iGðn

0
i þ njiÞ

GðN0 þ NjÞ
.

Here nji is the number of samples of class i in cluster j, D
ðcÞ
j is the auxiliary

cluster j, Nj ¼
P

inji, and N0 ¼
P

in
0
i .

The final objective function (8) is thus the posterior probability of the
centroids given the data. Assuming the DC task, the objective is meaning
comparing various alternative methods, and it can be used as an optim
criterion by searching the maximum a posterior (MAP) estimate. In practice,
1Also interpretable as marginalized maximum likelihood here, since the prior for fmjg is improper.
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log pðfmjgjD
ðcÞ;DðxÞÞ ¼

X
ij

logGðn0
i þ njiÞ �

X
j

logGðN0 þ NjÞ þ const.

for computational simplicity. Notice that the connection to mutual informa
retained in the marginalization process. Maximizing the posterior asympto
maximizes the mutual information between the clusters and auxiliary
(Appendix A).
3.1. Optimization
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Plain marginalized DC is unsuitable for gradient-based optimization for th
reason as the infinite-data cost (2): the gradient would be affected only by sam
the (typically zero-probability) border of the clusters. This problem was
avoided by a smoothing approach, and similar smoothing is possible also
marginalized DC. The smoothed ‘‘number’’ of samples is nji ¼

P
cðxÞ¼iyjðxÞ,

cðxÞ is the class of x and yjðxÞ is a smoothed cluster ‘‘membership functio
defined in (4). In the experiments, the smoothing is only used for optimizati
smoothing is used when evaluating the clustering results. The value f
smoothing parameter s is again selected by validation.

The smoothed MAP objective function (9) becomes

log pðfmjgjD
ðcÞ;DðxÞÞ ¼

X
ij

logG n0
i þ

X
cðxÞ¼i

yjðxÞ

 !
�
X

j

logG N0 þ
X
x

 

þ const.

For normalized Gaussian membership functions (4), the gradient of the ob
function with respect to the jth model vector is (Appendix B)

s2 q
qmj

log pðfmjgjD
ðcÞ;DðxÞÞ ¼

X
x;l

ðx�mjÞylðxÞyjðxÞðLj;cðxÞ � Ll;cðxÞÞ,

where

Lji 
 Cðnji þ n0
i Þ �CðNj þ N0Þ.

Here C is the digamma function, the derivative of the logarithm of G. Any st
gradient-based optimization algorithm can be used to maximize (10); w
conjugate gradients.

Alternatively, the objective function (9) can be optimized directly by sim
annealing (SA). The above-described smoothed optimization method is com
with SA in the experimental section of this paper. In each iteration of
candidate step is generated by making small random displacements to the pro
vectors. The step is accepted if it increases the value of the objective function.
it decreases the objective function, it is accepted with a probability tha
decreasing function of the change in the objective function.
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identity matrix and T is the temperature parameter that was decreased linearl
1 to 0.1. The parameter s was chosen in preliminary experiments using a val
set. A displacement step that decreases the objective function by DE is accepte
the probability expð�DE=TÞ.
4. DC produces optimal contingency tables
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A large number of methods for analyzing statistical dependencies b
discrete-valued (nominal or categorical) random variables on the basis
occurrence frequencies or contingency tables exist, many of which are classic
for example, [1,9–11]). An old example, due to Fisher, is to measure wheth
order of adding milk and tea affects the taste. The first variable indicates the o
adding the ingredients, and the second whether the taste is better or wo
medicine, one variable could indicate health status and the other demog
groups. The resulting contingency table is tested for dependency of the ro
column variables.

Given discrete-valued auxiliary data, the result of any clustering method
analyzed as a contingency table: The possible values of the auxiliary v
correspond to columns and the clusters to rows of a two-dimensional
Clustering compresses the potentially large number of multivariate conti
valued observations into a manageable number of categories, and the conti
table can be tested for dependency. Note that the difference from the traditio
of contingency tables is that the row categories are not fixed; instead, the clu
method tries to find a suitable categorization. The question here is, is discrim

clustering a good way of constructing such contingency tables? The answer is th
optimal in a sense introduced below. First, however, we have to consid
problem of finite sample sizes.

For large sample sizes the sampling variation of the cell frequencies in th
becomes negligible. Then empirical mutual information, approaching th
mutual information as more data become available, would be a natural mea
dependency between the margins of the contingency table.

The various ways to take into account the effects of small sample sizes
small cell frequencies of contingency tables have been a subject of much re
Bayesian methods cope well with small data sets; below we will derive a conn
between a simple Bayesian approach (a special case of [11]), and our DC m
The classical results were derived for contingency tables with fixed margin cate
while we optimize the categories.

A type of Bayesian test for dependency in contingency tables is ba
computing the Bayes factor against the hypothesis H of statistical independe
the row and column categories [11]

PðfnjigjH̄Þ

PðfnjigjHÞ
.



Here H̄ is the negation of H, that is, it is the alternative hypothesis that the margins
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are dependent. In practice, the hypotheses will be formulated as (Dirichlet)
either as a product of marginal priors (independency) or over all cells (depend

In the special case of one fixed margin (the auxiliary data) in the contingency
and the prior defined in Section 3 with n0

i 
 n0 for all i, the Bayes fa
proportional to (8) (Appendix C). MAP estimation of discriminative clusters
equivalent to constructing a dependency table that results in a maximal Bayes
under the constraints of the model.
5. Regularization
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A problem with pure DC is that the categories may overfit to ap
dependencies in a small data set. Two regularization methods for the margi
DC (8) are introduced in this section to reduce overfitting. The firs
straightforward attempt to improve optimization, while the latter is interp
as joint distribution modeling. Such an explicit modeling of the ‘‘covariates’’ (
improve discrimination, especially with small data sets (cf. [19]).

5.1. Emphasizing equal cluster sizes

In the first, rather non-parametric regularization method, equal distribu
data into the clusters is favored, which is useful at least in avoiding ‘‘dead cl
after bad initialization. The ‘‘equalized’’ or ‘‘penalized’’ objective function is

CEQðfmjgÞ ¼
X

ij

logGðn0
i þ njiÞ � ð1 þ lEQÞ

X
j

logGðN0 þ NjÞ,

where lEQ40 is a parameter governing the amount of regularization. As the n
of data samples increases, (12) divided by N approaches mutual informatio
lEQ times the entropy of the clusters (plus a term that does not depend
parameters; see Appendix A). Hence, the larger lEQ is, the more solution
roughly equal numbers of samples in the clusters are favored.

An alternative to equalization would be to use the prior n0
i also in place of N

effect would be similar to that of (12) in the sense that the second part of t
function would become more important. Such a prior would be inconsistent fr
viewpoint of the derivation of (8) in Section 3, but the prior is wholly justified
Bayes factor interpretation (Section 4).

5.2. Modeling the marginal density of primary data

Discriminative methods that model the conditional probability pðcjxÞ may
from the regularizing effects of modeling the marginal pðxÞ. To investigate w
this is the case with DC, we complemented it to the full joint distribution m

pðc;xjfmjg; fwjgÞ ¼ pðcjx; fmjg; fwjgÞpðxjfmjgÞ
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(13) are parameterized by the same centroids fmjg. As will be made explicit
and (15), the special kind of parameterization makes it possible to interpret
an adjustable compromise between modeling pðxÞ and pðcjxÞ.

Here we use a standard mixture of Gaussians to model pðxÞ, with is
Gaussians with covariances s2

MoGI and centers fmjg.

5.2.1. MAP estimation of clusters of the joint model

With the (improper) prior pðfmjg; fwjgÞ / pðfwjgÞ ¼
Q

jpðwjÞ, the posterior (
the extra factorY

x2DðxÞ

X
j

rj expð�lMoGkx�mjk
2Þ,

where lMoG ¼ 1
2s2

MoG

, and rj are the weights of the Gaussians. The parameter l

used instead of the variances of Gaussians to better illustrate the regularizing
of the term: lMoG ¼ 0 means no regularization.

Correspondingly, the log posterior of the joint model becomes

log pðfmjgjD
ðcÞ;DðxÞÞ /

X
ij

logGðn0
i þ njiÞ �

X
j

logGðN0 þ NjÞ

þ
X
x2DðxÞ

log
X

j

rj expð�lMoGkx�mjk
2Þ,


 MAPDC � EMoGðlMoGÞ 
 CMoGðfmjgÞ,

where �EMoGðlMoGÞ is proportional to the log-likelihood of the mixt
Gaussians, and CMoGðfmjgÞ is the final objective function. The model for p

be interpreted as an additive regularization term of the cost function. A chang
value of lMoG makes the focus of the clustering shift between DC and trad
mixture-based clustering. In practice, the value of lMoG will be chosen u
validation set to maximize the unregularized cost (8).

5.2.2. K-means regularization

This interpretation suggests a simpler, partly heuristic regularization: replac
log-cost of a mixture of Gaussians by the (negative) cost function of Euclid
means clustering, that is,

EVQ ðlVQÞ ¼
X

j;x2V j

lVQkx�mjk
2.

Here lVQ has a similar role as the lMoG in the mixture of Gaussians.
While using K-means instead of a mixture of Gaussians is not probabili

rigorous,2 it is intuitively meaningful (we can think of it as making a comp

2K-means clustering can be derived probabilistically from the so-called ‘‘classification mixture
the final log-posterior would end up having an extra term proportional to log ZðfmjgÞ, where ZðfmjgÞ is a

sum of Gaussian integrals over the Voronoi regions. Computing ZðfmjgÞ is infeasible.



between the Kullback–Leibler divergence in (2) and the Euclidean distance in EVQÞ

-means

(15)
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and computationally simple. The tunable compromise between DC and K

clustering is apparent if the cost is written as

CVQðfmjgÞ ¼ MAPDC � EVQðlVQÞ ¼ MAPDC � lVQEVQð1Þ.
6. Related methods
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Below, connections to some related problems and approaches of data an
including feature selection and various clustering criteria, are briefly discusse

6.1. Automatic feature extraction

Proper manual feature selection and extraction is an indispensable but lab
first step in data analysis. Automated methods have been develop
complementing it, especially in pattern recognition applications.

If feature extraction does not change the topology of the input space it is
general operation than a change of the metric, and DC can be (asympto
interpreted as a change of metric [15]. Nevertheless, it may be advisable
automatic feature extraction methods as preprocessing for DC for two reas
The clusters of DC are defined to be Euclidean Voronoi regions in the data
Their shape could, in principle at least, be tuned by transforming the feature
(ii) Dimensionality reduction reduces the number of parameters and regulari
solution. Additionally, any desired changes in the topology by discont
transformations can be included as preprocessing steps before DC.

6.2. DC by pre-estimating densities

A possible alternative approach to DC would be to first find a density es
p̂ðcjxÞ for the data and then apply more or less standard clustering algorithm
metric that is based on the estimated densities (see [16]). The most straightfo
proximity measure between two points x and y would be DKLðp̂ðcjxÞ; p̂ðcjyÞ
does not keep the clusters local in the primary data space, however. Instead, a
locally equivalent to the KL divergence should be generated with the help
Fisher information matrix for two close-by points.

The problem of the approach is that it involves two unrelated criteria: o
density estimation and another one for clustering. It is hard to see how t
costs could be made commensurable in a principled way. Still, the approach
as a practical data engineering tool, and has been applied [16] to self-org
maps [17].

6.3. Generative co-occurrence models

The term co-occurrence model refers to a model of the joint occurrences of n
variables. For example, in document clustering, the two nominal variables co
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deling
bilistic
n such
uced a

he field
latent

y, as a
utions

ARTICLE IN PRESS

S. Kaski et al. / Neurocomputing 69 (2005) 18–4128
the occurrences of words within the documents.
From the statistical point of view, the most straightforward method of mo

co-occurrence data of x and y would be to postulate a parameterized proba
model pðx; yjyÞ and estimate its parameters y by using a conventional criterio
as the maximum likelihood. Based on this approach, Hofmann [14] has introd
class of mixture models, both for the marginals and the joint distribution. In t
of text document analysis, he coined the joint distribution model probabilistic
semantic indexing (PLSI).

Conceptually, DC can be seen as a co-occurrence model, or, more exactl
special kind of a distributional clustering model for the conditional distrib
pðcjxÞ of the continuous margin x, with the clusters restricted to be local.
6.4. Classic distributional clustering and the information bottleneck (IB)
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Distributional clustering is another term for clustering one margin of co-occu
data, introduced by Pereira et al. [20]. The IB principle [26,22] gives a
justification for the classic distributional clustering.

Although the IB was originally introduced for categorical variables, the pr
itself has commonalities with the theory of DC. We therefore discuss the bot
in some length here.

Tishby et al. [26] get their motivation from the rate distortion theory of Sh
and Kolmogorov (see [8] for a textbook account). In the rate distortion
framework, one finds an optimal representation—or conventionally, codeboo
a set of discrete symbols when a cost in the form of a distortion function des
the effects of a transmission line is given.

In our notation, the authors consider the problem of building an o
representation V for a discrete random variable X. The optimality
representation is measured by its capability to represent another random v
C, possibly after being distorted by a noisy transmission channel such a
compression. The representation v for an input sample x could in the determ
case be given by a function vðxÞ, but in general the relationship is stochas
described by the density pðvjxÞ. The overall frequency of the codes is described
marginal density pðvÞ.

In the rate distortion theory, the real-valued distortion function dðx; vÞ is as
to be known, and the mutual information IðX ;V Þ is minimized with respect
representation pðvjxÞ, subject to the constraint EX ;V fdðx; vÞgok (this is mad
intuitive below). At the optimum the conditional distributions defining the cod
are

pðvljxÞ ¼
pðvlÞ exp½�bdðx; vlÞ�P

jpðvjÞ exp½�bdðx; vjÞ�
,

where b is a constant that depends on k. In the information bottleneck, the n
mutual information �IðC;V Þ is used as the average distortion EX ;V fdðx; vÞg.
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information IðC;V Þ, earlier presented as the negative distortion, is maximize

is, the representation V is made as informative about C as possible, given a
value for IðX ;V Þ, which is now interpretable as a kind of resource limitation
representation V.

The functional to be minimized becomes IðX ;V Þ � bIðC;V Þ, and its vari
optimization with respect to the conditional densities pðvjxÞ leads to (16) wit

dðx; vjÞ ¼ DKLðpðcjxÞ; pðcjvjÞÞ.

The result is self-referential through pðcjvÞ, and therefore does not constit
algorithm for finding the pðvjxÞ and pðcjvÞ. An explicit solution can be obtained
iterative algorithm that resembles the Blahut–Arimoto algorithm (cf. [8]).

In order to clarify the connection to DC, consider a continuous data space
bottleneck principle of defining partitions (16) can at least informally be exten
this case: For a continuous x and the asymptotic case of a large e
(de)regularization parameter b, the bottleneck clusters in (17) become V
regions of the Kullback–Leibler distortion, were X categorical or no
Kullback–Leibler Voronoi regions would be non-local in the X-space. In p
IB for continuous data would require additional parameterization of the clus
DC, clusters have been parameterized as Voronoi regions in the X-space, giv
additional bonus of local clusters. Locality eases interpretation and m
important in some applications.

The cost functions of IB and (asymptotical) DC have a common term, the
information IðC;V Þ. The bottleneck has an additional term for keeping the com
of the representation low, whereas the complexity of discriminative clus
restricted by their number, parameterization, and in practice by regularization

Like the original mutual information or KL-distortion cost of DC, the cos
is defined for distributions instead of data sets. The straightforward way of ap
such a cost function to finite data sets is to approximate the densities by the em
distributions (see Section 2).

At the limit of crisp clusters, or for uniform distribution of x, IB is equiva
finding a maximum likelihood solution of a certain multinomial mixture mod
To our knowledge, no marginalization procedures similar to marginalized D
been proposed.

In summary, DC can be interpreted to extend the original distributional clu
paradigm by introducing a continuous variable. The concept of local clusters
asymptotic connection to metrics described in [15] are not even meaningful
discrete co-occurrence setup. In practical applications the continuity
parameterization of the partitions necessary, and the implementation of di
native clustering becomes very different from the classic co-occurrence mode

6.5. Generative models for the joint density of mixed-type variables

It is popular to use finite mixture models for the so-called model-based clus
In the models, each data sample x is generated by one of a finite num
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densities. The models can be fitted to data by, e.g., maximizing the likelihoo
the EM algorithm.

In a model for paired data it has been assumed that each generator generat
the discrete c and the continuous x, from a multinomial and a Gaussian distri
respectively [13,18]. This model for the joint density pðc;xÞ is called m
discriminant analysis (MDA2).

DC models only the conditional density pðcjxÞ. While conditional densities
derived from models of the joint density by the Bayes rule, it is possib
conditional models perform better because they focus resources more directly
conditional density. Section 7 provides empirical support for this hypothesis

On the other hand, regularization by joint modeling (Section 5.2) tur
towards the traditional joint density models, and we believe that ma
compromise between the two extremes provides better generalization ability.
7. Experiments
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The experiments are divided into three parts. First, DC is demonstrate
simple toy data set to illustrate its discriminative properties and the ef
regularization. Second, the new finite-data (marginalized) variant is compare
the older stochastic algorithm using standard machine learning data sets. T
optimization algorithms (Section 3.1) for the marginalized DC are addit
compared. Finally, the two regularization principles (Section 5) are tested to fi
how much they help when there are few training samples. The closest alte
mixture-based methods are included for reference in all comparisons to demo
that DC solves a problem not addressed by standard clustering methods.
Fig. 1. The VQ-regularized DC model (15) makes a compromise between the plain DC and ordinary K-

means (VQ). From the viewpoint of plain DC (lVQ ¼ 0; left), only the vertical dimension is relevant as the

distribution of the binary auxiliary data c was made to change monotonically and only in that direction. A

compromise representation for the data is found at lVQ ¼ 0.02 (middle). The algorithm turns into

ordinary VQ when lVQ!1 (right). Circles denote the Voronoi region parameters fmjg and gray shades

the density pðxÞ.
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The Voronoi region centers fmjg of the VQ-regularized model (15) are sh
Fig. 1 for three different values of the regularization parameter lVQ. Data
samples) were from an isotropic 2D Gaussian with a vertically varying pðcjxÞ. S
come from two classes, 5000 samples each, and pðc1jxÞ increases monotonicall
bottom to top. Naturally, pðc2jxÞ ¼ 1 � pðc1jxÞ then increases from top to b
For small values of lVQ, the original cost function of DC is minimized, a
clusters represent only the vertical direction of the X-space, where the cond
distribution pðcjxÞ changes. When lVQ increases, the clusters gradually s
represent all variation in x, converging to the K-means solution for large lVQ.
compromise would be found with the mixture of Gaussians regularization (14)

7.2. Comparison with the stochastic DC

The performance of the older stochastic on-line algorithm presented in Sect
and the two optimization algorithms for maximizing the marginalized posterio
in Section 3.1 are compared here on three real-life data sets. Two standard m
models, a mixture of Gaussians modeling pðxÞ and MDA2 modeling pðc;
Section 6.5), are included for reference. Thus, the comparisons also show w
discriminative modeling outperforms ordinary clustering methods in its task.

7.2.1. Materials and methods

The algorithms were compared on three data sets: the Landsat satellite d
dimensions, six classes, and 6435 samples) and the Letter Recognition da
dimensions, 26 classes and 20,000 samples) from the UCI Machine Le
Repository [3], and speech data from the TIMIT collection [25]. Altogether,
samples were picked up from the TIMIT material, classified into 41 groups of
(phonetic sounds), and encoded into 12 cepstral components.

First, the best values for the smoothing parameter s were sought in a se
preliminary runs. The data sets were partitioned into 2, 5, and 10 clusters, us
class indicators as the auxiliary data. For each number of clusters, solution
computed at 30 logarithmically spaced values of the smoothing parameter s
and at 30 similar values of the spread of the Gaussians of the mixture m
Another set of 30 logarithmically spaced values was tried for the width
jumping kernel in SA.

The cluster prototypes (centers) of all models were initialized to random
from data. A conservatively large number of iterations was chosen: 10
iterations for the mixture models, and 100,000 times the number of clusters
stochastic iterations with the non-marginalized DC and SA with marginalize
The maximal number of iterations for the marginalized DC optimized with con
gradients was set to 29, but the algorithm converged well before that in mos

All the prior parameters n0
i were set to unity. The adaptation coefficient a in

the old stochastic algorithm decreased piecewise-linearly from 0.05 to zero, a
coefficient in (6) was two times larger.
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(9) of the cluster prototypes, computed from held-out data. Note that the au
parts of the held-out data are not used in any way in computing the cluster id
(which are a function of the primary data alone).

The posterior probability is a justified measure for the goodness of discrim
clusters, irrespective of how the clusters are generated. It is somewhat probl
however, that it is also the cost function of some of our own methods. Therefo
main conclusion to be drawn from the comparisons is that DC does w
promises. An alternative goodness measure would be the empirical
information of the cluster identities and the nominal auxiliary data label
produces practically identical results (not shown).

7.2.2. Results

The significance of the performance differences was tested with two-tailed
over 10-fold cross-validation runs (Table 1). For each combination of a mode
cluster count, the smoothing parameter of the model was fixed to its best value
in the preliminary phase of the experiments.

The best DC variant was always significantly better than either of the n
methods. On Landsat and TIMIT data sets, the marginalized MAP varian
best regardless of the number of clusters. In the more interesting cases, the fiv
ten-cluster solutions, the best result is obtained with the conjugate g
algorithm. On the Letter Recognition data, the old stochastic algorithm pr
the best results, but the difference to the marginalized DC optimized with con
gradients is insignificant.
Table 1

Average cost (negative log posterior) of the algorithms over ten-fold cross-validation trials

Data Nc CG MAP SA MAP sDC MoG MDA2

Landsat 2 833.86 828.75 953:78 913:87 918:86

Landsat 5 472.40 493.03 701:10 623:09 649:77

Landsat 10 432.81 455:07 550:52 504:74 494:64

TIMIT 2 4651:1 4537.8 4577.3 4577:8 4550:6

TIMIT 5 4514.9 4516.6 4548:4 4584:4 4579:9

TIMIT 10 4860.3 4874:9 4886:0 5085:6 4953:4

Letter 2 5904.2 5911.2 5928.3 6451:6 6126:7

Letter 5 5109.4 5050.0 5046.3 6330:4 5436:8

Letter 10 4704.8 4821:5 4632.3 6183:9 5186:0

Best performance for each cluster number (Nc) is shown in bold, and results with p-value under 0:01

(pairwise t-test) have been doubly underlined. Single underlining denotes p-value under 0.05. CG MAP:

MAP estimation of smoothed DC by a conjugate gradient algorithm; SA MAP: MAP estimation by

simulated annealing; sDC: DC by old stochastic algorithm; MoG: mixture of Gaussians; MDA2: a mixture

model for joint probabilities.
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their task than standard clustering algorithms, which is expected as they
problem not directly addressed by standard clustering. (ii) The new margi
version gives results better than (two of the three data sets) or comparable to
stochastic version. (iii) The two optimization algorithms of marginalized D
comparable, the conjugate gradient algorithm having a clear edge on ten-
solutions. Because of its clearly faster computation, it is therefore the pr
choice in most cases.

7.3. Effect of regularization

7.3.1. Methods

Next we compared the plain marginalized DC model and its regularized v
on two data sets, with the final performance of the models measured by th
DC objective function (9), that is, without any regularization. The closes
native mixture models were again included for reference, as was DC opt
with the stochastic on-line algorithm. To keep the experiment set mana
no regularization methods were applied to the stochastic algorithm. Th
also classical Euclidean VQ (K-means) was included for completeness, a
used for regularization in one of the models. The marginalized DC mode
optimized by the conjugate gradient algorithm, based on the results of th
vious section.

Since the effects of regularization were expected to be most apparent fo
data sets, the data were split into a number of smaller subsets on which a
independent tests were made. The Landsat data were left out, because it had t
samples for the test setup.

The Letter Recognition data were split into five subsets. Two-fold modeli
testing for each subset gave a total of ten repetitions of ten-cluster solution
width parameter of the mixture components and smoothing, and the regular
parameters were selected by five-fold cross-validation within each learning s
parameters fmjg were initialized to a random set of training samples. (Resul
the K-means initialization appearing in Table 2 are from experiments that
described later in the paper.)

A larger subset (99,983 samples) of the TIMIT collection was used, and it a
us to use ten subsets, resulting in 20 repetitions (with parameters withi
repetition selected by three-fold cross-validation).

7.3.2. Results

The best regularized methods were significantly better than plain margi
DC, which in turn produced better discriminative clusters than the re
methods. The results (columns ‘‘Letter rand’’ and ‘‘TIMIT rand’’ in Table
clear for the TIMIT data, where the old stochastic algorithm is also signifi
worse than the regularized marginalized DC. On the Letter Recognition data,
stochastic algorithm was the best, as in the previous set of experiments (Sectio
but the difference to the best marginalized DC is insignificant. Note th
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Table 2

Comparison of marginalized DC and its regularized versions DC-VQ (15), DC-MoG (14), and DC-EQ

(12) on two data sets, Letter Recognition and TIMIT

Method Letter rand Letter VQ TIMIT rand TIMIT VQ

sDC 4769.1 4830:8 13231 12792

DC 4961:9 4816:9 12981 12780

DC-VQ 4933:4 4779:5 12905 12767

DC-MoG 4843.0 4763:7 12876 12718

DC-EQ 4864:1 4699.8 12942 12757

MoG 6174:9 6210:8 13515 13494

VQ 6194:9 6194:9 13487 13487

MDA2 5206:4 5280:8 13012 12989

The first line (sDC) comes from the old stochastic algorithm. Mixture of Gaussians (MoG), plain K-means

(VQ), and joint density model MDA2 [13] have been included for reference. The results are presented for

both random and K-means (VQ) initialization. Key: see Table 1, and note that p-values are here computed

along columns, not rows.

S. Kaski et al. / Neurocomputing 69 (2005) 18–4134
marginalized DC also on the Letter Recognition data, although the differ
not visible in Table 2. Combined, these results show that regularization
marginalized DC, but the performance compared to the old stochastic algorith
depends on the data. The heuristic regularization with K-means seems t
slightly lower performance compared to the probabilistically justified mix
Gaussians, but the difference is not significant.

In Fig. 2, the effect of tuning the compromise between K-means and DC
regularization is demonstrated. As expected, increasing lVQ shifts the solutio
optimizing the posterior probability (9) towards optimizing the K-means erro
new finding is the slanted L-form: slight regularization improves the pre
power of the clusters for the test set. Replacing K-means with a mixture of Ga
gives a similar curve.

Finally we studied, by repeating the ten-cluster experiments of Table 2, w
replacing the random initialization with K-means would improve results and
variation between data sets. The results of almost all DC variants im
significantly (columns ‘‘Letter VQ’’ and ‘‘TIMIT VQ’’ in Table 2). Th
exception was the old stochastic algorithm on the Letter Recognition data;
expectation, its performance decreased. Regularized versions were still the be
their relative goodness varied.

The results from the regularization experiments can be summarized into
main points. (i) Regularization improves the performance of marginalized
small data sets. (ii) The relative performance of the two regularization pri
depends on the data. (iii) Initialization by K-means significantly improv
performance, and should be used instead of random initialization.
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Fig. 2. The effect of tuning the VQ-regularization on TIMIT data. The curves show how the two

components of the cost change as the amount of regularization is tuned. The two components are: K-

means cost (EVQ) and predictive power ((9); MAPDC). Small dots on the curves: VQ-regularized DC with

varying parameter lVQ; large dots from left to right: plain DC, MDA2, mixture of Gaussians (MoG), plain

K-means (VQ). Solid line: test set; dashed line: learning set. Results are averages over cross-validation

runs, and for computational reasons the parameter s of the DC runs was not cross-validated but kept

constant.
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An algorithm for distributional clustering of continuous data, interpre
covariates of discrete data, was reviewed and extended. With prototype distrib
of the discrete variable associated to Voronoi regions of the continuous data
the regions are optimized to ‘‘predict’’ the discrete data well. In experimen
method produced better-discriminating clusters than other common method

The core DC model for pðcjxÞ is very close to models proposed earl
classification (e.g. RBF [18]). In DC, however, the main outcome are clusters of x
enabled us to marginalize out the parameters producing predictions of c. The n
function takes into account the finite amount of data, and its maximization is equ
to maximizing a Bayesian measure for statistical dependency in contingency tab

Optimization of the new cost function leads to clustering results th
comparable to or better than those produced by the previously presented sto
on-line algorithm. We also augmented the new cost function by two regular
methods. Similar kinds of regularization approaches are applicable also for
infinite-data cost functions.

In addition to the new cost function, this paper contains three new em
results. (i) The fast optimization of smoothed Voronoi regions by con
gradients produces clusters comparable to those obtained by the considerabl
time-consuming simulated annealing (SA). (ii) The two regularization me
equalization of the cluster sizes and shifting towards a joint distribution
improve the results compared to plain DC. No conclusion could be dra
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K-means is superior to initialization by random data.
Regularization by joint distribution modeling is interpretable as the inclusio

term modeling the primary data in the cost function. The number of parameter
regularized models is independent of the regularization parameter l, and in th
the model complexity is fixed. A regularized model therefore makes a compr
tunable by l, in representing variation of x associated with changes in pðcjxÞ (t
task), and in representing all variation isotropically (the classical clustering ta
the experiments with regularization, performance on learning data is not im
while test set performance improves significantly. For some reason, the
allocating resources to modeling pðxÞ improves generalization with respect to

An adjustable combination of two mixture models was recently proposed fo
modeling of terms and hyperlinks in text documents [7]. Here a similar comb
improved a discriminative (conditional-density) model. The joint distri
modeling approach also makes it possible to treat primary data samples
the corresponding auxiliary part as partially missing data, along the li
‘‘semisupervised learning’’ proposed for classification tasks [24].

Finally, the improvement obtained by K-means initialization hints at a pr
optimization strategy that starts with standard clustering and tunes it gra
towards DC.
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Appendix A. Connection of the marginalized likelihood to mutual information

mation

jÞ

nji.
Consider the objective function of the penalized clustering algorithm,

CEQðfmjgÞ ¼
X

ij

logGðn0
i þ njiÞ � ð1 þ lÞ

X
j

logGðN0 þ NjÞ,

which (up to a constant) reduces to (9) if l ¼ 0. The Stirling approxi
logGðs þ 1Þ ¼ s log s � s þ Oðlog sÞ applied to (9) yields

CEQðfmjgÞ ¼
X

ij

ðnji þ kjiÞ logðnji þ kjiÞ � ð1 þ lÞ
X

j

ðNj þ kjÞ logðNj þ k

þ Oðlog NÞ,

where kji and kj are constants that depend on the prior. Note that NXNjX
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CEQðfmjgÞ ¼
X

ij

nji log nji � ð1 þ lÞ
X

j

Nj log Nj þ Oðlog NÞ.

Division by N then gives

CEQðfmjgÞ

N
¼
X

ij

nji

N
log

nji=N

Nj=N
� l

X
j

Nj

N
log

Nj

N
� l log N þ O

log N

N

 �
,

where nji=N approaches pji, that is, the probability of class i in cluster j, and
approaches pj as the number of data samples increases. Hence,

CEQðfmjgÞ

N
!
X

ij

pji log
pji

pjpi

�
X

i

pi log
1

pi

þ l
X

j

pj log
1

pj

� l log N,

where the first term is the mutual information, the second term is a constan
respect to fmjg), the third term is l times the entropy of pj, and the last term d
depend on the parameters.

For l ¼ 0 the result is equal to mutual information added by a constant.
Appendix B. Gradient of the marginalized likelihood

respect

Þ

ctions

lÞ�.

(B.1)
Denote for brevity tji ¼ nji þ n0
i and Tj ¼

P
itji. The gradient of (10) with

to mj is

q
qmj

log pðfmjgjD
ðcÞ;DðxÞÞ ¼

X
il

CðtliÞ
X

cðxÞ¼i

q
qmj

ylðxÞ �
X
x;l

CðTlÞ
q

qmj

ylðx

¼
X
x;l

½Cðtl;cðxÞÞ �CðTlÞ�
q

qmj

ylðxÞ.

It is straightforward to show that for normalized Gaussian membership fun

q
qmj

ylðxÞ ¼
1

s2
ðx�mjÞðdlj � ylðxÞÞyjðxÞ.

Substituting this to the gradient gives

s2 q
qmj

log pðfmgjDðcÞ;DðxÞÞ ¼
X
x;l

ðx�mjÞðdlj � ylðxÞÞyjðxÞ½Cðtl;cðxÞÞ �CðT

The final form (11) for the gradient results from applying the identityX
l

ðdlj � ylÞyjLl ¼
X

l

ylyjðLj � LlÞ

to (B.1).
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A connection between the posterior probability (8) and a Bayesian meas
statistical dependency in contingency tables is derived below. Note that in con
a connection with mutual information, which could in principle be used to m
statistical dependency, this connection is non-asymptotic.

Denote the number of samples in the ith auxiliary category, that is, the num
entries in the ith column margin of the contingency table, by nðciÞ. In our appl
of contingency tables, only this margin is fixed—the other consists
discriminative clusters and therefore depends on the cluster centroids fmg.

As explained in Section 4, evidence for dependence of the margin variables
quantified with the Bayes factor, implicating the relative strength of eviden
dependence (see [11] for an advanced treatment with infinite mixtures
computing the Bayes factor, assumptions of dependence and independen
encoded into the joint prior distribution of data over the cells: Under the hyp
H of independence between the rows and columns, the prior probability of
each cell is the product of margin (Dirichlet) prior probabilities, whereas un
hypothesis of dependence, the prior is simply one Dirichlet distribution o
the cells.

The Dirichlet distribution has a sharpness parameter which may be interpr
the amount of ‘‘prior data’’. For the hypothesis of dependence H̄, the Dirichle
with the same amount of prior data, denoted here by n0, in each cell of the
contingency table has been used. Under the hypothesis of dependence H, we
Dirichlet prior for the columns and the rows. For the row margin, a D
distribution with an equal amount of prior data for each row has been u
contrast to Good [11], we assume the same total amount of ‘‘prior data’’ und
hypotheses. Then the prior sample size of rows under H is N0 ¼

P
in

0, the pr
H̄ marginalized. The prior for the column margin follows similarly from cons
(detailed below). The Bayes factor against H, conditioned on the column m
is then

PðfnjigjfnðciÞg; H̄Þ

PðfnjigjfnðciÞg;HÞ
.

The denominator is

PðfnjigjHÞ ¼ Pðfnjig; fNjg; fnðciÞgjHÞ

¼ PðfnjigjfNjg; fnðciÞg;HÞPðfNjgjHÞPðfnðciÞgjHÞ.

The first factor, the frequencies of data in the table given the margins, follo
hypergeometric distribution, and the second factor PðfNjgjHÞ is

PðfNjgjHÞ ¼

Z
h

PðfNjgjhÞpðhjHÞdh,

where pðhjHÞ is the Dirichlet prior and h are the parameters of the multi
distribution. For multinomial data Nj with K nominal values and the D
prior with an equal amount N0 ¼

P
in

0 of prior data for each of the K



(formula 2.5 in [11]),

(C.3)

endent
is fixed
cy, the

le and
Þ, with
tical to
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PðfNjgjHÞ ¼
GðKN0ÞN!

Q
j GðNj þ N0Þ

GðN0Þ
KGðN þ KN0Þ

Q
j Nj !

.

We get a similar expression for the third factor PðfnðciÞgjHÞ, but as it is indep
of the cluster solution and only depends on the column margin fnðciÞg which
from the viewpoint of DC, we have omitted the derivation. (For consisten
columns would have the amount Kn0 of prior data.)

The numerator of (C.1) is

PðfnjigjfnðciÞg; H̄Þ ¼
PðfnjigjH̄Þ

PðfnðciÞgjH̄Þ
,

where PðfnjigjH̄Þ is similar to (C.3) but the products go over all cells of the tab
the prior data are n0 for each cell. We have PðfnjigjH̄Þ /

Q
i;j Gðnji þ n0

irrelevant factors omitted. The margin PðfnðciÞgjH̄Þ, on the other hand, is iden
PðfnðciÞgjHÞ and again a constant for DC.

After these considerations, the Bayes factor can be written as

PðfnjigjfnðciÞg; H̄Þ

PðfnjigjfnðciÞg;HÞ
¼

Q
i;jGðnji þ n0ÞQ
jðNj þ N0Þ

� const: ¼ pðfmjgjD
ðcÞ;DðxÞÞ � const:;

where the constant depends on neither Nj nor nji.
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