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ABSTRACT

Klami, A. (2008): Modeling of mutual dependencies. Doctoral thesis,
Helsinki University of Technology, Dissertations in Information and Computer Sci-
ence, TKK-ICS-D6, Espoo, Finland.

Keywords: canonical correlation analysis, clustering, data fusion, exploratory
data analysis, probabilistic modeling, learning metrics, mutual dependency, mu-
tual information

Data analysis means applying computational models to analyzing large collections
of data, such as video signals, text collections, or measurements of gene activities
in human cells. Unsupervised or exploratory data analysis refers to a subtask of
data analysis, in which the goal is to find novel knowledge based on only the data.
A central challenge in unsupervised data analysis is separating relevant and irrel-
evant information from each other. In this thesis, novel solutions to focusing on
more relevant findings are presented.

Measurement noise is one source of irrelevant information. If we have several
measurements of the same objects, the noise can be suppressed by averaging over
the measurements. Simple averaging is, however, only possible when the mea-
surements share a common representation. In this thesis, we show how irrelevant
information can be suppressed or ignored also in cases where the measurements
come from different kinds of sensors or sources, such as video and audio recordings
of the same scene.

For combining the measurements, we use mutual dependencies between them.
Measures of dependency, such as mutual information, characterize commonalities
between two sets of measurements. Two measurements can hence be combined
to reduce irrelevant variation by finding new representations for the objects so
that the representations are maximally dependent. The combination is optimal,
given the assumption that what is in common between the measurements is more
relevant than information specific to any one of the sources.

Several practical models for the task are introduced. In particular, novel
Bayesian generative models, including a Bayesian version of the classical method
of canonical correlation analysis, are given. Bayesian modeling is especially justi-
fied approach to learning from small data sets. Hence, generative models can be
used to extract dependencies in a more reliable manner in, for example, medical
applications, where obtaining a large number of samples is difficult. Also, novel
non-Bayesian models are presented: Dependent component analysis finds linear
projections which capture more general dependencies than earlier methods.

Mutual dependencies can also be used for supervising traditional unsupervised
learning methods. The learning metrics principle describes how a new distance
metric focusing on relevant information can be derived based on the dependency
between the measurements and a supervising signal. In this thesis, the approxima-
tions and optimization methods required for using the learning metrics principle
are improved.
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Data-analyysissä tutkitaan laskennallisia menetelmiä joilla voidaan tulkita suuria
tietoaineistoja, kuten videosignaaleja, tekstikokoelmia tai ihmisen geenien aktii-
visuusmittauksia. Ohjaamattomalla tai tutkivalla analyysilla tarkoitetaan data-
analyysin alalajia, jossa tavoitteena on löytää uutta tietoa pelkästään annetun tie-
toaineiston perusteella. Eräs ohjaamattoman data-analyysin keskeisistä haasteista
on hyödyllisen ja hyödyttömän informaation erottaminen toisistaan. Tässä väitös-
kirjassa esitetään uusia ratkaisuja hyödyllisiin löydöksiin keskittymiseksi.

Mittausvirheet ovat eräs hyödyttömän informaation lähde. Jos käytössä on
useita mittauksia samasta kohteesta, voidaan mittausvirheiden vaikutusta vähen-
tää ottamalla mittauksista keskiarvo. Tämä lähestymistapa on kuitenkin mahdolli-
nen vain silloin, kun mittaukset on esitetty keskenään samalla tavalla. Tässä väi-
töskirjassa osoitetaan kuinka hyödytöntä informaatiota voidaan karsia myös ta-
pauksissa, joissa mittaukset on saatu erilaisista lähteistä. Väitöskirjassa esitetyllä
tavalla voidaan yhdistää erimerkiksi samasta kohteesta tallennettua video- ja ääni-
signaalia.

Mittausten yhdistämiseen käytetään aineistojen välisiä riippuvuuksia. Riip-
puvuudella, jota voidaan mitata esimerkiksi yhteisinformaatiolla, voidaan luon-
nehtia kahden aineiston välisiä yhtäläisyyksiä. Kaksi aineistoa voidaankin siis
yhdistää hyödyllisemmän informaation korostamiseksi etsimällä niille uudet mah-
dollisimman paljon toisistaan riippuvat esitykset. Jos oletamme, että aineistojen
väliset yhtäläisyydet ovat kiinnostavampia kuin yhdelle aineistoille ominaiset piir-
teet, on tällainen yhdistämistapa paras mahdollinen.

Väitöskirjassa esitellään useita menetelmiä joilla kyseinen tehtävä voidaan rat-
kaista käytännössä. Erityisesti työssä esitellään uusia Bayesilaisia generatiivisia
malleja riippuvuuksien etsimiseksi. Eräs näistä on Bayesilainen versio kanoni-
sesta korrelaatioanalyysista. Bayesilainen mallintaminen on erityisen perustel-
tua pieniä tietoaineistoja analysoitaessa, ja generatiivisilla malleilla voidaankin
löytää riippuvuuksia luotettavammin esimerkiksi lääketieteen sovelluksissa, joissa
käytettävissä on usein vain vähän näytteitä. Väitöskirjassa esitellään myös mui-
hin mallitusperiaatteisiin perustuvia malleja; riippuvien komponenttien analyysi
on uusi menetelmä, jolla löydetään monimuotoisempia riippuvuuksia kuin aiem-
milla menetelmillä.

Aineistojen välisiä riippuvuuksia voidaan käyttää myös perinteisten ohjaamat-
tomien oppimismenetemien ohjaamiseen. Oppivan metriikan periaate kuvailee,
kuinka tutkittavan aineiston ja annetun ohjaussignaalin välisten riippuvuuksien
avulla voidaan muodostaa uusi, hyödylliseen informaatioon keskittyvä etäisyys-
mitta. Tässä työssä parannetaan oppivan metriikan käytössä tarvittavia approksi-
maatioita ja oppimismenetelmiä.
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Chapter 1

Introduction

1.1 General motivation and background

In this thesis, we consider exploratory analysis of multivariate data sets. Ex-
ploratory data analysis (EDA) is a subfield of data analysis, which is a field of
study using computational methods to analyze collections of data, such as mea-
surements made from industrial processes, collections of text extracted from the
internet, or sensor data from a video surveillance system. EDA considers the task
of extracting novel systematic properties from unknown data collections. Typical
methods include clustering to group similar measurements together, and visual-
ization of the data collection on a two-dimensional display.

A central subtask in exploratory analysis lies in defining what kinds of prop-
erties of the data are relevant. All systematic structures are not interesting; for
example, some properties might already be known to exist in the data, or the data
may be so complex that instead of studying all aspects of the data, we would want
to concentrate on a specific subset of them. Definition of relevance is necessarily
tied to the purpose of the analysis, and features or properties that are relevant for
one task might not be it for another task.

Most existing methods do not have rigorous solutions for defining relevance,
but instead the definition is hidden in the modeling assumptions and choices, such
as the selection of a distance measure. For example, an algorithmic clustering
method groups similar objects together, and the solution is determined by the
form of the similarity measure. Changing the distance measure changes the clus-
tering solution. Typically Euclidean or some other conventional distance measure
is used, which makes the choice of the representation for the objects crucial. Ap-
plication field expertise is needed to choose and preprocess the representations so
that relevant results are obtained. For established fields of research, there are often
good preprocessing techniques available, but developing those for novel application
fields requires significant amount of work.

In this thesis, we consider theory and practical methods for utilizing other data
sets to focus the analysis towards the interesting phenomena, aiming to provide
more relevant results with less manual work. The idea is to find structure visible
not only in the original data, but also in the other data sets with co-occurring ob-
servations. This moves up the definition of relevance one level higher in abstrac-
tion; instead of needing to specify directly which features reveal the interesting

1



CHAPTER 1. INTRODUCTION

differences, the user can specify other measurements of the same process.
In this thesis, the basic approach to utilizing other data sets for supervising

unsupervised learning is based on statistical dependencies. Information shared by
two data sets can be found by extracting representations that are mutually in-
formative of each other, i.e. are statistically dependent. This allows defining a
novel data fusion task for EDA: Combine two data sets by searching for statisti-
cal dependencies between them. This can also be regarded as a generalization of
noise reduction by averaging over replicate measurements. Averaging as such is
applicable only when the measurements share an identical form of representation,
but dependencies can be sought between measurements of different dimensionali-
ties. In both cases, we still get more accurate results by ignoring noise specific to
individual measurements.

In this thesis, the statistical dependencies between data sets are used to create
methods for two different settings. First, two parallel data sets can be analyzed
together so that they supervise each other. Neither of the data sets is considered
more important than the other, and the task is to find properties shared by both
data sets. An example of a useful application would be combining video and audio
data to find more relevant information. An unsupervised analysis of a video signal
alone would reveal all kinds of moving objects. By supervising the analysis with a
paired audio track we can focus on movement related to the audio track, and for
example find the face of a person talking. At the same time, we also improve the
analysis of the audio track, by being able to ignore sounds that are not related to
something shown on the video.

In the other setting, the task is non-symmetric. We wish to analyze only one of
the data sets, called the primary data, and the other is only used as a supervision
signal. In this thesis, the methods for this setting are based on the learning metrics
principle (Kaski and Sinkkonen, 2004), which gives a distance measure for the
primary data based on the dependencies. Replacing a traditional distance measure
with the learning metrics distance turns any unsupervised analysis method into a
partly supervised one. An example application could be the analysis of financial
data of companies. The learning metrics principle allows focusing the analysis to,
for example, information relevant for bankruptcy risk, while still providing useful
EDA results, such as illustrations on how changes in profitability or liquidity affect
the risk. Note that this differs from the task of classification, where we would be
interested in predicting the bankruptcy risk for new companies.

In this thesis, we consider the probabilistic approach to extracting and using
the dependencies. Some of the models use dependency measures that depend on
probability densities, while some define a generative description of the data in
the form of a hierarchical Bayesian model (see, e.g., Gelman et al. (2003)). The
probabilistic modeling framework was chosen due to its rigorous mathematical
justification in applications involving uncertainties, such as measurement errors in
data collections.

In this introductory part, several potential application fields for the methods are
discussed. In the publications, the main application field has been bioinformatics,
for three reasons:

1. There are efficient genome-wide measurement techniques that can be used to
measure, e.g., the activities of tens of thousands of genes at once. Large data
collections are hence measured all the time in this context.

2. The studied processes, typically related to how cells work, are very complex

2



1.2. CONTRIBUTIONS AND ORGANIZATION OF THE THESIS

and to a large extent unknown. There is hence a clear need for EDA.

3. Biologists have worked for decades to create different kinds of annotations for
genes and proteins. There exists therefore also additional information that can
be used to focus the analysis.

Despite the strong presence of bioinformatics applications in the publications, the
methods are more generic. Any application field roughly satisfying the above three
criteria could have been considered instead.

1.2 Contributions and organization of the thesis

In this thesis, two main types of contributions are presented. First, we introduce
a novel theory and approach to modeling, discussing how dependencies between
data sets can be used to focus EDA towards more relevant findings. Second, we
present methods for finding the dependencies, and apply them to solving practical
problems. In total, eight distinct methods or models for different kinds of tasks are
presented. A summary of these methods can be found in Table 7.1 in Chapter 7.

The three main contributions of the thesis can be summarized as:

1. Description of a data fusion scenario where the aim is to find relevant properties
shared by two or more data sets with co-occurring samples.

2. Development of theory and methods for finding statistical dependencies be-
tween two or more data sources using Bayesian generative models.

3. Development of practical methods for the task of “supervised unsupervised
learning”, based on the learning metric principle.

The thesis is structured as follows. Chapter 2 is an introduction to model-
ing and data analysis in general, explaining necessary background for the rest of
the thesis. In Chapter 3, measures of statistical dependency and methods for its
maximization are presented. A novel dependency-maximizing method is also in-
troduced. In Chapter 4, we explain how dependencies can be used to formulate a
data fusion approach for EDA, list potential application fields, and present a novel
data fusion method. These two chapters cover the first point on the list of main
contributions.

Chapter 5 is about using probabilistic generative models for finding dependen-
cies between data sets. First we discuss how such models can be built in general,
and then present concrete models for practical applications. Some of the mod-
els are treated in a fully Bayesian fashion. This chapter covers the second main
contribution.

In Chapter 6, methods based on the learning metric principle are considered.
It covers the third main contribution, discussing mainly practical methods for the
task. Finally, Chapter 7 concludes the thesis and lists possible future directions.

Throughout the thesis the ideas and formulations of the novel algorithms are
explained, but technical details found in the publications are often not repeated.
Presentation of some of the methods has been improved from the original, and
the methods are now presented in a unified framework that encompasses all of the
methods presented in the publications. In this introduction, the ideas and basic
principles of the methods are sometimes graphically illustrated, but numerical
results of comparisons present in the publications are not restated.
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Chapter 2

Modeling and exploratory
data analysis

2.1 Models in data analysis

In data analysis, models are used to describe collections of measurements or ob-
servations. The purpose is to summarize the process which created the data, so
that we can use the model for predicting future observations or understanding the
data.

The modeling task can be very roughly divided into three phases: Selecting
a collection of possible models, called a model family, choosing a criterion for
measuring how well a model describes the data, and choosing a specific model
that best describes the data that is being analyzed. Possible models are often
defined by a set of parameters, the values of which determine the specific model
within the family. The choice of the model is often called learning or fitting the
model, and, in practice, it means selecting the parameter values so that the chosen
criterion of fit, called the cost function, is maximized or minimized. All of these
choices depend heavily on the exact modeling task, as well as on the properties of
the data.

The cost function measures the quality of the model in describing the particular
data set. The choice of the cost function is crucial, since it determines in what sense
we want to describe the data. In short, the cost function characterizes what kinds
of mistakes or deviations in the description are penalized. After choosing the cost
function and the model family, the remaining problems are largely computational;
how to efficiently find a solution with a good cost function value.

2.1.1 Notation

In this thesis, a data set (also called data source) means a collection of N ob-
servations or samples, each of which is considered to be an instance of a random
variable. The samples are assumed to be independent and follow the same un-
derlying probability distribution, which is assumed to be unknown. In this thesis,
the samples are always represented as vectors of real of discrete values. The ele-
ments of those vectors are called features, and if we denote by D the number of
features then a data set can be represented by a matrix X that has N columns
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2.1. MODELS IN DATA ANALYSIS

and D rows. That is, X ∈ <D×N . Column vectors x ∈ <D are used to denote
individual samples, and x ∈ < is used for the special case of univariate samples.
When necessary, X will be used to denote the random variable corresponding to
x. Probabilities and probability densities are denoted by p(x) or p(x|θ), where θ
contains the parameters of a parametric representation. In most of the cases, the
term probability is used to describe both actual probabilities (for discrete x) and
probability densities (for continuous x).

Most of the models in this thesis rely on having two or more data sets with
co-occurring samples. To simplify notation, such models are introduced by using
only two data sets, X and Y. Co-occurrence means that xi, the ith sample in
X, is paired with yi. That is, they correspond to the same object. A pair of
such data sets could equivalently be represented as a single matrix with Dx +Dy

features, where Dx denotes the number of features in X and Dy the number of
features in Y. Treating the parts of the matrix separately as individual matrices
will, however, often simplify notation and improve the understandability of the
models.

All integrals presented in the thesis are definite, and the domain is always over
the support of the integrand, unless stated otherwise. For notational simplicity,
the domain is not explicitly written, with the understanding that

∫
p(x)dx means

integration of p(x) over all possible values of x. Typically, there will be no risk of
confusion about the domain of x, and usually it will be <D.

2.1.2 Generalization and overlearning

A central concept in modeling is the generalization ability of a model. A model
learned from a data set should not only describe that particular data set, but
also the underlying distribution p(x). This can be studied by measuring whether
the model generalizes to new observations that were not available in the learning
phase. A model that fits the training data but does not generalize well to new
observations is called overfitted or overlearned; it describes not only the process
generating the data, but also noise in the training data. A model that describes
the underlying probability distribution p(x), however, will generalize well to any
new observations following the same distribution.

A large part of the machine learning methodology is devoted to solving the issue
of overfitting, since it is present in most learning methods and model families.
The less there is data, the more severe the problem becomes, and thus simply
obtaining more data would be a handy solution in many cases. This is naturally
not always feasible due to possible costs involved in measuring the data, as well as
the computational cost of learning. Methods for handling small data sets without
overfitting are hence needed. Here, small refers to the number of samples N ; the
number of features D may still be large, making computational analysis of the
data necessary.

Measuring the generalization ability of a model is a non-trivial issue. Given
sufficient amount of data, we can leave part of the data out when learning the
model, and then measure the performance on the left-out data. This provides a
direct estimate on the generalization ability, but the estimate has high variance. A
better estimate is obtained with the so-called cross-validation procedure (see, e.g.,
Kohavi (1992)), where the model is learned several times, always using a subset of
the data for validation while using the rest for training. There are different variants
of cross-validation, such as K-fold cross-validation, where the data is divided into
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CHAPTER 2. MODELING AND EXPLORATORY DATA ANALYSIS

K subsets out of which K-1 are always used for training, and leave-one-out cross-
validation, where all but one sample are used in the training. An alternative
approach to measuring generalization ability is based on bootstrapping (Efron,
1979), which creates similar but not identical version of the available data set by
re-sampling observations.

Generally, a model is more likely to overfit if it is complex, that is, has high
effective dimensionality of parameters. A traditional approach to avoiding over-
fitting utilizes this idea by regularizing the model towards a simpler one. For
example, a nonlinear model can be regularized by changing the solution towards
a more linear solution, or the parameters of the model can be moved towards zero
or other neutral value. Given a way of estimating the generalization ability, be it
cross-validation, bootstrapping or something else, we can then choose the parame-
ters of the regularization procedure so that the generalization ability is maximized.
Many regularization methods can be implemented by adding a separate regular-
ization term to the cost function.

2.2 Probabilistic modeling and Bayesian analysis

Probabilistic models, also called statistical models, describe the generation of data
by probability distributions. Many of the methods described in this thesis follow
rather strictly the probabilistic modeling framework, and hence the basic con-
cepts are worth describing here. However, the fundamentals of probability theory
or descriptions of different probability distributions are not included. Sufficient
background for these can be found for example in (Bernardo and Smith, 1994),
but for the majority of the thesis the concepts of probability theory are not needed.

A parametric generative probabilistic model defines a probability distribution

p(x|θ),

where x denotes an observation vector and θ is a collection of model parameters.
The most straightforward approach to learning a model is to find an estimate of
the parameters θ, such that the density matches the data available for training,
and use the learned parameter values for future prediction. The match can be
measured by using the likelihood function, which can be stated for a particular
data set of conditionally independent (given θ) samples as

L(θ|X) =
N∏

i=1

p(xi|θ),

the product of probabilities or probability densities of different samples. Maximiz-
ing this with respect to θ gives the model with the highest likelihood of explaining
the specific observations we have. In practice, the logarithm of L(θ|X) is used in-
stead, since the logarithm factorizes the product into a sum of terms, one for each
data sample. This does not change the solution, since logarithm is a monotone
function.

Probabilistic models can be regularized by assigning prior distributions for
the parameter values. In short, we assume that the parameter values themselves
follow a certain probability distribution. This gives a regularizing effect if the prior
distribution prefers parameter values leading to simpler models, or to models that
are assumed more likely to be accurate prior to seeing the data X. The objective
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in the learning task is then changed from maximizing the likelihood to maximizing
the posterior probability of the parameters, taking into account both the likelihood
of the model and the prior distributions of the parameters. This moves the solution
towards the prior, not allowing the model to overfit as much to the data. The less
data we have, the stronger the effect of the prior is.

The posterior probability is obtained using the Bayes’ rule (Bayes, 1763/1958)

p(θ|X) =
p(X|θ)p(θ)

p(X)
, (2.1)

where p(θ) is the prior probability of the parameters, p(θ|X) is the posterior
probability of the parameters given the data, and p(X) =

∫
p(X,θ)dθ is the prior

predictive probability of X. Note that p(X) is independent of θ, and can thus be
ignored when searching for optimal θ. The task of maximizing p(θ|X) can then
be defined as

θ̂ = arg max
θ

N∑

i

log p(xi|θ) + log p(θ),

where the logarithm has been taken to enable factorizing the likelihood over the
data points, as well as to separate the prior as an additive penalty term.

The above formulation describes learning as the the task of estimating a single
parameter value that fits the data. However, typically we are not interested on the
actual parameter values, but instead primarily on the predictions of the model.
Better predictions can be made by considering a set of possible models instead
of a single one. In Bayesian analysis (Gelman et al., 2003), we consider the full
posterior distribution of the parameters, and change the modeling task from finding
a single best model to finding the posterior probability of each of the possible
models. In principle, this allows full control over the overfitting issue, since we can
use this uncertainty over models in all stages of analysis. If we know the posterior
distribution of the parameter values, we can integrate over the possible models
to get the expected prediction. In general, if we denote by f(θ) a function that
depends on the model, then the Bayesian estimate of f(·) given the observed data
is the expectation

Ep(θ|X)[f(θ)] =
∫
p(θ|X)f(θ)dθ. (2.2)

In full Bayesian analysis we cannot ignore p(X), since it is needed to normalize
p(θ|X) to be a probability distribution. Unfortunately, computing p(X) is non-
trivial for majority of the interesting models used in real data analysis. This causes
severe difficulties in both finding the posterior distribution and computing integrals
of the form (2.2), and has lead to extensive literature on approximation methods
(see, e.g., Gelman et al. (2003) for a good overview). Some of the methods will be
mentioned and briefly discussed in Chapter 5, where they are used for inference in
the models developed in this thesis.

It is worth mentioning that while the description of the Bayesian modeling
framework here proceeds at a very practical level, describing the prior as a regu-
larization and the posterior distribution as a method for avoiding the need to pick
a single solution, there is a rigorous theory behind the framework. Under rather re-
laxed assumptions, the Bayesian formalism can be considered a direct consequence
of being rational in presence of uncertainty (Bernardo and Smith, 1994). Hence,
all modeling should in principle be formulated as a Bayesian inference task, condi-
tioned on the prior beliefs of the modeler (which may be highly subjective expert
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opinions, or more objective beliefs obtained, for example, though empirical Bayes;
see Efron (2005) for a discussion on Bayesian analysis in a bit wider context). In
this thesis, the approach is, however, more practical; fully Bayesian analysis is ap-
plied only when needed, and modeling approaches based on optimization of costs
other than the posterior probability are accepted as reasonable approximations.

2.3 Modeling tasks

A useful viewpoint to modeling tasks is to consider a dichotomy into supervised
and unsupervised tasks, based on the goal of the modeling. The categories are
not exhaustive, however. In fact, the methods in this thesis borrow from both
modeling tasks.

In the following explanations, the citations to example methods have been left
out, since the details are not relevant for the rest of the thesis. Readers interested
in these general concepts of machine learning and data analysis are asked to consult
for example (Bishop, 2006) or (Duda et al., 1999).

2.3.1 Supervised learning

Supervised learning is perhaps the most intuitive of modeling tasks. The task is
to learn a mapping from x to y, given a set of example pairs {yi,xi}N

i=1. After
learning such a mapping, we can predict the value of y for new samples x. In
terms of probabilistic modeling, the task is to learn the conditional distribution
p(y|x), but also formulations based on more general mappings are possible.

Depending on the nature of y, the supervised learning tasks can be divided
into two main categories. If y is categorical, then the task is called classification;
we want to predict which category or class a new sample belongs to. The goal
can be either the prediction of the whole class distribution, or simply predicting
the most likely class for each sample. The latter approach allows deviating quite
far from the probabilistic formulation of learning the distribution p(y|x), by using
as a cost function simply the number of incorrect classifications or other more
direct measures of classification quality. Example classification methods include
K-nearest neighbor classifier, decision trees, and support vector machines.

In the case of continuous y, the task is usually called regression. In regression, y
can be either univariate or multivariate, and the problem is typically to learn some
summary statistics, such as the mean and variance, of the conditional distribution.
A classical regression method is linear least squares regression, whereas Gaussian
process regression is an example of a more advanced regression method.

2.3.2 Unsupervised learning

Unsupervised learning refers to the task of summarizing or modeling data, without
considering part of it as a target variable like in supervised learning. In terms
of probabilistic modeling, we can characterize unsupervised learning as finding
a model to represent the probability distribution p(x,y). By choosing a model
family with easily interpretable parameters, the data can be summarized through
the parameter values.

Typical unsupervised learning tasks include clustering, density estimation, vi-
sualization, and dimensionality reduction. In clustering, the task is to group sim-
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ilar observations together into clusters. This is traditionally performed either by
looking for a set of prototypes each describing a group of samples (e.g. K-means
clustering and mixture of Gaussians), or by recursive schemes merging or dividing
clusters into larger or smaller ones (e.g. agglomerative hierarchical clustering).
Spectral clustering methods, in turn, are based on application of linear algebra
to matrices of pairwise distances. Many of these different approaches are tightly
linked, and it is also possible, for example, to formulate K-means through pairwise
distances.

In density estimation, we are directly interested in the density function of
the underlying distribution, and estimate that by a parametric approximation
p̂(x,y|θ) or by non-parametric kernel density or nearest neighbor estimators. Di-
mensionality reduction, in turn, refers to methods that construct a lower-dimensional
version of a high-dimensional feature vector x. Dimensionality reduction can be
performed, for example, by linear projections (e.g. principal component analy-
sis), by explicitly optimizing a lower-dimensional representation (multidimensional
scaling methods), or by various more advanced methods. Special cases of dimen-
sionality reduction, where the dimensionality of the resulting representation is two
or three, can be used for visualizing high-dimensional data sets on a screen or
paper.

2.3.3 Combining the two basic tasks

Several different approaches that do not fall clearly into either of the two cate-
gories above have been introduced. Some of those are discussed here to provide
background for the methods of this thesis.

In this thesis, methods for analyzing x and y symmetrically, aiming to find what
is in common between them, are presented. This task, here coined as modeling
of dependencies, is fundamentally a special case of unsupervised learning, but it
has a close connection to supervised learning as well. The task in modeling of
dependencies is to find statistical dependencies between two sets of variables. In
practice, this is done by describing the dependencies in a way similar to how
the data is described in unsupervised learning. We can look for clusterings such
that the cluster indices given by two different clusterings are dependent, or we can
find projective transformations such that the lower-dimensional representations are
similar. The connection to supervised learning is that we can think of detecting
dependencies as a bi-directional supervised learning task; based on x we should
learn to predict y, and vise versa.

Another example of combining supervised and unsupervised learning discussed
in this thesis is the so-called supervised unsupervised learning. As discussed in
Chapter 6, it is actually a special case of the dependency modeling task, but since
also a closer connection can be found, it is worth mentioning here separately. The
task is to explore p(x) with a presence of a co-occurring y, and the aim is to
find properties of x that are informative of y as well. The models are familiar
unsupervised learning models, but the cost function in the learning takes also
p(y|x), the cost of supervised learning, into account.

Semi-supervised learning (Chapelle et al., 2006) is in a sense opposite to su-
pervised unsupervised learning. In semi-supervised learning, the task is to learn
a supervised model and to use unsupervised learning models to help that task. A
classical example is a classification setting where we only have the class labels y
for some of the training samples. In a purely supervised setting, the samples x for
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which there are no class labels would be ignored, whereas in semi-supervised learn-
ing they are used to improve the classification result. Semi-supervised learning will
not be discussed further in this thesis.

2.4 Exploratory data analysis

Of particular interest in this thesis is the task of exploratory data analysis, here
abbreviated EDA. EDA was named by Tukey (1977), and it considers looking at
data in order to suggest novel hypotheses. These hypotheses can be used as a basis
for futher data collection, or standard statistical hypothesis testing can be applied
to provide further insight on the findings. The hypothesis testing phase is often
called confirmatory data analysis (CDA), even though it is worth keeping in mind
that traditional hypothesis testing cannot formally confirm any hypothesis.

Most unsupervised learning methods are good candidates for the task of EDA,
since they provide as a result some kind of summaries. It is, however, also possible
to use supervised learning methods for EDA, for example by looking at which
features were useful for a certain classification task. This gives a hypothesis that
these particular features are related to the classification itself.

EDA is a conceptually difficult task, since the setting directly specifies that
there is little prior information on the data. In fully unsupervised EDA, it is
difficult to determine which results are useful or correct. In this thesis, partly
supervised approaches are considered to make EDA more clearly defined; the su-
pervision is used to focus fundamentally unsupervised methods on more relevant
findings. The supervision is provided through searching for statistical dependen-
cies between co-occurring data sets, which means that the supervision only comes
into play in defining the data sets, making the approach still feasible for EDA.
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Chapter 3

Maximization of statistical
dependency

In this chapter, we discuss the concept of statistical dependency and methods that
aim at finding dependencies between co-occurring variables. The basic concepts
and methods are presented here, whereas applications are discussed in the next
chapter.

3.1 Measures of dependency

3.1.1 What is dependency?

In this thesis, the notion of dependency refers to deviation from independency.
Independency can be defined either for events or for random variables; in this
thesis, the latter case is considered. Independency can be rigorously formulated
as a property of the joint probability function p(x,y): Random variables X and
Y are statistically independent if and only if p(x,y) = p(x)p(y) for all x and y.
This property generalizes directly to more than two variables: The joint density
factorizes into a product of marginal terms if the variables are independent.

Independency, as such, is thus a very clearly defined and simple concept. In
particular, it is essentially binary; either two variables are independent or they
are not. Dependency, however, is a continuous quantity. In addition to knowing
that two variables are not independent, we typically want to know how strong the
dependency is. In this section, several alternative formulations to measuring the
strength of dependency are presented.

3.1.2 Mutual information

Mutual information is a concept of information theory, measuring the statistical
dependency between two random variables (see, e.g., Cover and Thomas (1991)).
For discrete random variables, mutual information is defined as

I(X,Y ) =
∑
x

∑
y

p(x,y) log
p(x,y)
p(x)p(y)

, (3.1)
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where the summations go over all possible values of X and Y . In the continuous
case the sums are replaced by integrals, and p(x,y) denotes the joint density
function instead of probability, but otherwise the formula is identical.

Mutual information measures the information shared by random variables X
and Y , or, alternatively, how much knowing one of the variables reduces the un-
certainty about the other. In information theory, the uncertainty can be measured
by entropy (Shannon, 1948), and mutual information characterizes the decrease in
entropy when knowing one of the variables. Entropy of a discrete variable X is
defined as

H(X) = −
∑
x

p(x) log p(x),

giving the mutual information an equivalent formulation as

I(X,Y ) = H(X) +H(Y )−H(X,Y ).

If X and Y are independent, that is p(x,y) = p(x)p(y), then I(X,Y ) is zero. In
the other extreme where the variables are identical, the value reaches the entropy
of X (or Y ). That is, if you know the value of X then the entropy of Y is reduced
to zero. In general, I(X,Y ) cannot exceed the entropy of either variable.

An alternative view to mutual information is to consider it as the Kullback-
Leibler divergence between two distributions, one assuming that the variables
are independent, and the other not. Kullback-Leibler divergence (Kullback and
Leibler, 1951) is a measure of discrepancy between two distributions, defined as

dKL(p, q) =
∑
x

p(x) log
p(x)
q(x)

,

and thus mutual information can be written as dKL (p(x,y), p(x)p(y)).
In this work, mutual information is regarded as the standard definition for

the strength of statistical dependency. If p(x,y) was known we could use mutual
information to get an exact and accurate characterization of the dependency. In
practice, however, we only have finite data sets X and Y, and hence it is worth
considering also measures that can be more reliably estimated from small samples,
even though they might not correspond to mutual information.

3.1.3 Correlation

A classical measure of association or dependency between two univariate variables
x and y is Pearson’s correlation (Galton, 1886; Pearson, 1896), defined as

corr(X,Y ) = ρxy =
E[(x− E[x])(y − E[y])]√

E[(x− E[x])2]
√
E[(y − E[y])2]

, (3.2)

where E[·] denotes the expectation over the joint probability distribution p(x, y).
In practice, the expectations are often replaced by population means when esti-
mating the correlation, giving the sample correlation coefficient.

The values of correlation range from -1 to 1. The sign of the measure indicates
the nature of the relationship, while the absolute value tells the strength of the
dependency. The correlation is 1 or -1 for variables that are linearly dependent,
and 0 for statistically independent variables. The converse is generally not true;
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the correlation may be zero for non-independent variables, but for the special case
of multivariate normal distribution, a zero correlation also implies independence.

In fact, an even stronger connection holds for multivariate normal distribution.
It can be shown (see, e.g., Borga (2001)) that for jointly normal x and y (i.e. the
concatenation of x and y follows multivariate normal distribution) the correlation
and mutual information are related by

I(X,Y ) = −1
2

log
(
1− ρ2

xy

)
.

This implies that for jointly normal variables we can use correlation as a depen-
dency measure without loss of generality. For other distributions correlation is not
equivalent to mutual information, but should be regarded merely as a measure of
linear relationship.

3.1.4 Non-parametric correlation measures

As described in the previous section, Pearson’s correlation makes an implicit as-
sumption of multivariate normality of data. Non-parametric measures of correla-
tion have also been presented. These measures are based on ranks of the values,
and do not assume any particular type of distribution.

Spearman’s rank correlation ρS
xy (Spearman, 1904) can be regarded as com-

puting the Pearson’s correlation between the ranks of the observations on the two
variables, but in practice it can be computed directly based on differences between
the rankings as

ρS
xy = 1− 6

∑N
i d2

i

N(N2 − 1)
.

Here di denotes the difference between the ranks of xi and yi.
Another rank correlation is Kendall’s τ (Kendall, 1938), based on the concept

of concordance between sample pairs. A pair of samples is called concordant if
they are in the same order in the ranking within both variables, and discordant
otherwise. The measure can then be computed as

τxy =
2(C −D)
N(N − 1)

,

where C is the number of concordant pairs and D is the number of discordant
pairs.

Both Spearman’s correlation and Kendall’s τ are 0 for uncorrelated variables,
and 1 and -1 signify perfect correlation, i.e. identical ranks. While rank correlation
measures are applicable to a wider range of distributions than Pearson’s correla-
tion, due to their non-parametric nature, they are considerably more difficult to
use as an optimization criterion. This is because they are not differentiable, and
also due to their higher computational demand.

3.1.5 Bayes factors

Mutual information measures the deviation from independency through Kullback-
Leibler divergence between p(x,y) and p(x)p(y), which requires knowing the dis-
tributions. In order to estimate mutual information directly based on data, we
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will need to estimate the densities. For example Ihler et al. (2004) consider depen-
dency measures based on empirical estimation. However, if we are willing to make
some assumptions about the distributions, we often get a better estimate by using
a Bayesian measure of fit instead of explicitly estimating the mutual information.
For small sample sizes, such an estimate is typically more reliable and accurate
than using the mutual information directly, assuming that the distributional as-
sumptions are good enough.

Bayes factor (BF) (Kass and Raftery, 1995) is a ratio used to compare two
alternative models, measuring their relative fit. A BF between two models, H1

and H0, is given as

BF =
p(X,Y|H1)
p(X,Y|H0)

, (3.3)

where X and Y denote the data, divided here into two parts for apparent rea-
sons. That is, BF is the ratio of the marginal data densities under the two models.
For measuring dependency, we choose H0 to be a model that makes an indepen-
dency assumption p(X,Y|H0) = P (X|H0)P (Y|H0), and H1 to be a joint model
p(X,Y|H1). If the models are otherwise identical, the BF between them becomes
a dependency measure.

All the typical difficulties in computing the marginal likelihood apply for BF.
In order to be able to compute it, we need to marginalize the parameters θ0 and θ1

of the models out, either analytically or approximatively. For univariate discrete
data, this is relatively straightforward by assuming that counts of the pairs of x and
y follow a multinomial distribution with a Dirichlet prior. Good (1976) presents
practical formulas for different alternative scenarios with different constraints and
prior assumptions.

BF is not bounded from above by any simple expression, unlike mutual infor-
mation and correlation. Nevertheless, it is possible to characterize the strength
of dependency quantitatively. Kass and Raftery (1995) provide general guidelines
on interpreting the strength of evidence against H0. They are directly applica-
ble for interpreting the strength of dependency when H0 adds an independency
assumption to H1.

3.1.6 Kernel-based dependency measures

Correlation measures only linear relationship, but it can be extended to non-linear
dependencies by considering the correlation after applying non-linear functions to
the observations. Consider an operator C = corr(f(x), g(y)), where f(·) and g(·)
are arbitrary bounded univariate functions. Rényi (1959) shows that X and Y
are independent if and only if C is zero for all bounded functions f(·) and g(·).
Intuitively, there cannot be any dependency structure in the data if it cannot be
transformed into a space where there would be linear dependency. A non-linear
dependency measure, called maximal correlation, can then be defined as

ρmax = sup
f,g

corr (f(x), g(y)) .

Taking the supremum over all bounded functions is in general computationally
impossible, but in a reproducible kernel Hilbert space (RKHS), which consists of
all functions in which a pointwise evaluation is a continuous linear functional, it
can be replaced with a computationally feasible kernel-based measure. Gretton
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et al. (2005) define the Hilbert Schmidt Independence Criterion (HSIC) as the
squared Hilbert-Schmidt norm of the kernelized C. The HSIC can be estimated
relatively efficiently, the computational complexity being only N squared. Hence,
it is possible to build computational methods relying on optimization of HSIC.
Shen et al. (2007) give a variant of independent component analysis (ICA) through
minimization of HSIC, Song et al. (2008) formulate clustering though maximization
of HSIC between the samples and their cluster assignments, and L.Song et al.
(2008) present a dimensionality reduction method that preserves a relation with
given auxiliary information, such as class labels.

3.2 Maximization of dependency

A straightforward approach to modeling of dependencies starts from selecting a
specific dependency measure and the type of representations used. These fix the
modeling task, and the remaining problem is then simply to devise an algorithm
to optimize the selected dependency criterion. In this section, several practical
methods for modeling dependencies are explained. The methods differ both in the
choice of the dependency measure and the form of the representations, but they
all still aim to solve the same fundamental task of finding statistical dependencies
between the data sets.

3.2.1 Canonical correlation analysis

A classical method for seeking dependencies is the canonical correlation analysis
(CCA), originally proposed by Hotelling (1936). For a more recent explanation,
see for example (Hardoon et al., 2004). CCA assumes linear projections for repre-
sentations, and the cost function is the Pearson’s correlation.

Let us start with only one-dimensional projections. Then, the cost is to max-
imize corr(Sx, Sy), where Sx = uT

x X and Sy = uT
y Y. Here, ux and uy are pro-

jection vectors to be chosen to maximize the correlation. The norm of the pro-
jection vectors is not interesting since it factors out in the correlation (3.2), and
thus, we can arbitrarily fix the length to some suitable value. A logical choice is
uT

x Σxxux = 1 and uT
y Σyyuy = 1, where Σxx and Σyy are the covariance matrices

of X and Y , since these constraints allow expressing the covariance in a simpler
form. Lagrange’s technique for constrained optimization then gives the cost

uT
x Σxyuy +

λx

2
(1− uT

x Σxxux) +
λy

2
(1− uT

y Σyyuy),

where Σxy is the cross-covariance of X and Y , and λx and λy are Lagrange mul-
tipliers.

Algebraic manipulation of the derivatives of the above equation shows that
both Lagrange multipliers are equal to the maximal correlation between Sx and
Sy, i.e. λx = λy = ρ = uT

x Σxyuy. This allows expressing the optimization problem
as

ΣxyΣ−1
yy Σyxux = ρ2Σxxux

ΣyxΣ−1
xx Σxyuy = ρ2Σyyuy.

Solving these generalized eigenvalue problems gives a pair of projections ux and
uy, together with the maximal correlation ρ.
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After finding the projections with the highest correlation, we should look for
other projections that have maximal correlation, with the restriction that they are
orthogonal to the previous ones. In the case of CCA, the constraint is that the
projected values of different components should be uncorrelated. If we denote the
ith projection vector of the x-space by u(i)

x , then (u(i)
x )T XXT u(j)

x = 0 for all i 6= j.
This can be equivalently be written as (u(i)

x )T Σxxu
(j)
x = 0. Matrices Ux and Uy

are used to denote the whole set of projections.
In practice, we can find all projections at once by solving a generalized eigen-

value problem AU = ρBU, where U denotes the concatenation of Ux and Uy,
and

A =
(

0 Σxy

Σyx 0

)
, (3.4)

B =
(
Σxx 0
0 Σyy

)
. (3.5)

Solving this equation is straightforward (see (Melzer, 2002) for discussion on rel-
ative merits of the possible solution strategies), and it gives a unique global opti-
mum. CCA is hence fast to compute (linear in N and cubic in Dx and Dy) and
easy to use, which makes it a feasible choice for many applications. However, the
linearity and the implicit assumption of global normality, which follows from using
correlation as the cost function, are often too rigid constraints. It is also worth
noticing that CCA can only be applied in scenarios where the number of samples
N is considerably larger than the number of features D. If D was larger than
N , then there would always be perfect correlations due to the features not being
linearly independent, and, in practice, CCA already overfits severely if D is close
to N .

Extensions and generalizations of CCA

Classical CCA can be extended to more than two data sets in various ways (Ket-
tenring, 1971), each retaining some but not all properties of the ordinary two-
space CCA. Perhaps the most intuitive extension, called here the generalized CCA
(GCCA), is described for example in (Bach and Jordan, 2002). It is solved using
a generalized eigenvalue problem analogous to CCA, i.e. AU = λBU, where also
A and B follow the same structure. That is, B is a block-diagonal matrix of the
covariances of the data sets, and A is the covariance of the concatenation of all
data sets minus B. The generalization retains the connection to mutual informa-
tion (termed multi-information in case of several variables) in case of multivariate
normal data, and again a unique global optimum can be found, but the method has
no interpretation in terms of correlation, a measure defined only for two variables.

Other natural extensions of CCA are obtained by keeping the cost function
equal to the correlation, but changing the type of the projections. Sigg et al. (2007)
introduce a non-negative and sparse CCA, where the projection matrices should
have only a few positive elements while the rest are zero. The sparseness is achieved
by L1 regularization, while the non-negativeness is handled by adding constraints
to the optimization problem, formulated as iterated regression instead of directly
solving the eigenvalue problem. These constraints improve the interpretability of
CCA in applications where non-negativity is a desired property.

Several methods extending CCA to non-linear projections have been presented.
Becker and Hinton (1992) formulate a self-taught neural network for discovering
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surfaces in random-dot stereograms, although they do not explicitly mention CCA.
Instead of correlation, their method optimizes a different criterion that is still
equivalent to mutual information for Gaussian data. Becker (1996) discusses other
variants of the same basic principle. Both Hsieh (2000) and Lai and Fyfe (1999)
make the connection to CCA more explicit, by introducing non-linear CCA using
multilayer perceptrons (MLP) instead of linear projections. These methods have
the advantage of allowing non-linear mappings, but on the other hand they are
far more difficult to optimize than classical CCA. In particular, the property of
having a unique global optimum is lost.

Kumar et al. (2002) use radial basis function (RBF) networks to obtain non-
linear CCA by first making a non-linear transformation for the observations and
then using classical CCA on the transformed variables. This is closely related to
the kernel CCA (Fyfe and Lai, 2000; Akaho, 2001; Bach and Jordan, 2002), where
the RKHS theory is used to enable non-linear mappings through kernel functions.
A kernel K(xi,xj) over all pairs of samples can be used to efficiently compute inner
products between f(xi) and f(xj), so that the choice of the kernel implicitly defines
a function f(·) that maps the data samples into some typically high-dimensional
feature space. Despite the non-linearity, linear algebra still gives unique global
optimum for kernel CCA. While kernel CCA enables more complex mappings, it
has also a few downsides. First, the choice of kernel defines the mapping f(·)
only implicitly, and typically it is not possible to interpret the results in terms of
the original variables, causing difficulties in interpretation. Also, if using flexible
kernels that map the data implicitly into an infinite-dimensional feature space,
the solution needs to be regularized heavily. Otherwise the algorithm will always
find perfect correlations due to the fact that the dimensionality is higher than the
number of data points. Choosing the regularization as a function of the number
of samples is discussed in (Fukumizu et al., 2007).

3.2.2 Non-parametric dependent components

In this section, a novel generalization of CCA, introduced in Publication 1, is
presented. It extends CCA into data not following the normal distribution, by
replacing the correlation as a cost function with an empirical estimate of mutual
information. The method is still based on linear projections, and applicable to the
same setting as CCA.

For multivariate normal data, Pearson’s correlation is equivalent to mutual in-
formation, and hence CCA finds all potential dependencies. For non-normal data,
however, a better measure of dependency would be desirable. The non-parametric
correlation measures explained in Section 3.1.4 would be natural alternative can-
didates, but they are not particularly suited for optimization due to being based
on the ranks of the samples. This makes them non-differentiable, and also rather
computationally complex. Using Spearman’s correlation as optimization criterion
for one-dimensional projections is discussed in (Dehon et al., 2000), where pro-
jection pursuit strategy is used to find a single component at a time, with the
additional restriction that the set of possible projection vectors is limited to be
finite.

A computationally more feasible approach is to consider a numerical approx-
imation of the mutual information as the cost function. If the approximation is
chosen such that the cost remains computationally tractable and differentiable,
then the cost can be explicitly maximized by conventional optimization strategies.
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Publication 1 presents a novel method applying this strategy, here called DeCA
for dependent component analysis. The presentation shown here differs noticeably
from the one in the original publication, aiming to be more understandable and
following the basic framework used in the thesis.

The mutual information (3.1) has two properties that make it difficult as a
measure for continuous variables: It involves joint probability densities, and an
integral over the whole probability space. To enable optimization we need to
approximate both of these. In DeCA, the densities are estimated using Parzen
kernel estimates (Parzen, 1962)

p̂(xi) =
∑

j 6=i

N(xi|xj ,Σ),

where N(·|µ,Σ) denotes the density of the normal distribution with mean µ and
covariance Σ, and the summation is over all other data points. The difficult inte-
gration task is, in turn, solved by using a plug-in strategy where the integral over a
probability distribution is replaced by a sum over samples from that distribution.
Together with the density estimates, this leads to the approximation

I(Sx, Sy) =
∫ ∫

p(sx, sy) log
p(sx, sy)
p(sx)p(sy)

dsxdsy ≈
N∑

i=1

log
p̂(si

x, s
i
y)

p̂(si
x)p̂(si

y)
,

where si
x and si

y denote the projected variables associated with the ith sample pair,
and Sx and Sy denote the corresponding random variables. The estimator is con-
sistent (see Beirlant et al. (1997) and Paninski (2003) for discussion on estimating
entropy and mutual information), though not necessarily particularly accurate for
small sample sizes. Note that the original presentation in Publication 1 starts from
a rather different kind of formulation, namely the Bayes factor between hypotheses
of dependent and independent distributions, but the actual cost function is still
the same. The original publication mentions the asymptotic connection to mutual
information, but does not show it explicitly.

As the model family consists of linear projections, we have Sx = WT
x X where

Wx is a projection matrix. Here, Sx is a matrix consisting of the projections sx

of individual samples, and analogously for Sy. If Wx has Dx colums, then the
density estimation is performed on a space that has Dx +Dy dimensions. Density
estimation in high-dimensional spaces is difficult, and thus two simplifications are
made in DeCA. First, the method is optimized one component at a time, thus
needing to estimate the density only in a two-dimensional space, and the covariance
matrix of the Gaussian distributions used in the Parzen estimate is restricted to
be diagonal.

Given the approximation for the cost function, the task is simply to maxi-
mize it with respect to the projections wx and wy. In DeCA this is done with
the conjugate gradient method, but in principle any gradient-based optimization
method could be used. After finding the first component, the task is to find the
next component so that the projected variables are independent of each other.
Unfortunately, that is in practice difficult, and hence an approximative solution is
proposed in Publication 1: The contribution explained by the first component is
removed from data before searching for another component. This can be obtained
by the deflation procedure

X̃ = X−wxwT
x X,
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Figure 3.1: An illustration of the two density estimates used in DeCA. In subfigure (a) the
density is estimated in the joint projection space, whereas in subfigure (b) the joint density is
assumed to factorize as a product of two marginal densities. The joint estimate matches the
projected data (sx, sy), shown in subfigure (c), clearly more accurately. The illustration hence
shows an example of a case where the dependency between the two variables is high. DeCA
tries to find this kind of projection spaces. Note that for illustrational purposes the density is
here estimated by just 6 component densities, instead of the Parzen density estimate used in
DeCA. Light gray lines denote contours of the full density estimate, and dark thick lines depict
the component densities.

and analogously for Y. The second component is then estimated by applying
DeCA to X̃ and Ỹ. Alternatively, the orthogonality criterion of CCA (that is,
the projected variables are uncorrelated) could be used, which is achieved by the
deflation

X̃ = X
(
I− 1

‖wT
x X‖2 XT wxwT

x X
)
.

This approximates more closely the requirement of having independent projections.
The idea of the method is illustrated graphically in Figure 3.1, where two

density estimates are shown. High dependency is achieved if the estimate not
assuming dependency (i.e. modeling directly p(sx, sy)) is more accurate than the
one assuming dependency (modeling p(sx)p(sy)), and the model aims at finding
projections for which this difference is maximized. The figures illustrate a case
where the difference is clear, as can be seen from the poor estimate obtained with
the independence assumption.

Fisher and Darrell (2004) present a related method. The model is formulated
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as a hypothesis test: Find such projections that the hypothesis of the two latent
signals being dependent is more likely than the hypothesis of them being inde-
pendent. The test is formulated as a log-ratio, which is in turn re-interpreted as
mutual information. The mutual information is then approximated as

Î(Sx, Sy) = Ĥ(Sx) + Ĥ(Sy)− Ĥ(Sx, Sy),

where each entropy term is approximated using a separate second-order Taylor-
series, based on Parzen density estimates. Even though the original cost function,
as well as the density estimation technique, are the same, the resulting optimization
problem is different since the approximations used are different.

We became recently aware of another similar method by Yin (2004). Like
DeCA, the method maximizes a non-parametric estimate of mutual information in
the projection space with Gaussian kernels. The technical details of the methods
are very similar, including the same cost function, despite having been developed
independently. Compared to (Yin, 2004), the Publication 1 includes the connection
to the Bayes factor and empirical tests with much larger data sets, including a
comparison to kernel CCA. It also treats the case of more than two data sets,
by replacing mutual information with multi-information. Yin (2004), in turn,
includes tests for choosing how many significant components the data supports
and discusses the consistency of the method.

3.2.3 Associative clustering

All the previous methods have been examples of projection methods. Another
common model family is based on clustering. In unsupervised learning in general,
clustering has been an extremely widely studied task, but for the dependency
modeling task it is somewhat more complicated and therefore not as widely applied.
In our framework, changing from projections to clustering is in principle simple,
but the discrete cluster assignments mean that the approximations for the mutual
information and the optimization procedures are quite different.

In this section, a clustering algorithm for finding mutual dependencies is re-
viewed. Associative clustering (Kaski et al., 2005) (AC) is a simple clustering
model which, in a sense, extends K-means clustering into a case where the task is
to maximize dependencies between two clusterings. For a sample pair (x,y), two
cluster indices sx and sy are defined separately as

sx = k iff ‖x−mk
x‖2 < ‖x−mj

x‖2 for all j 6= k,

sy = k iff ‖y −mk
y‖2 < ‖y −mj

y‖2 for all j 6= k,

where mj
x denotes the jth cluster prototype in the x-space and similarly for y-

space. In other words, each sample is assigned to the cluster with the closest
prototype, separately for the x- and y-spaces.

Since the cluster indices are discrete, it is beneficial to consider an alternative
form of representation that helps in estimating the dependency between Sx and
Sy. A contingency table is a representation where the counts of samples having a
certain combination of sx and sy are collected as a two-dimensional table. Given
such a table, normalized to sum to one, we could estimate mutual information by
a simple summation directly using (3.1). However, for finite data, we can improve
the accuracy by using the Bayes factor (3.3) instead. Here, the model H1 assumes
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that the contents of the table are generated by a multinomial with an independent
parameter for each element, whereas H0 assumes that the parameters are formed
by a product of parameters for the marginals of the table. Following Good (1976),
we can integrate the parameters out, leading to

BF =

∏
i,j Γ(nij + n0)∏

i Γ(ni· + n0)
∏

j Γ(n·j + n0)
(3.6)

as the final measure. Here, nij is the number of samples in the (i, j)th cell in the
contingency table (that is, samples that have ith cluster in the x-space and jth
cluster in the y-space), n·j and ni· denote the column and row sums, and n0 is a
prior parameter. A high value of BF denotes dependency and a low value signals
independency.

The AC method is formulated as finding the cluster prototypes {mj
x}Kx

j=1 and

{mj
y}Ky

j=1 so that the Bayes factor of the induced contingency table is maximized.
This is, unfortunately, computationally difficult due to the discrete nature of the
contingency table; the cost is not differentiable. In AC, this is overcome by intro-
ducing a smoothed version of the contingency table. Specifying soft membership
functions for the clusters allows placing fractions of the samples into the clus-
ters. This makes the counts, and hence also the BF, differentiable with respect
to the centroids mx and my. The logarithm of (3.6) where the n are replaced
with the soft sums is then maximized with conjugate gradients. Again any other
gradient-based optimization method could be applied instead.

3.2.4 Symmetric information bottleneck

In the discrete domain, a family of methods has been developed around the concept
of information bottleneck (IB) (Tishby et al., 1999). The basic IB, discussed in
more detail in Chapter 6, is a directed model, aiming to cluster a discrete variable
so that the cluster assignment would be informative of another discrete variable.

In (Friedman et al., 2001), a symmetric variant of IB is presented, among
other variants, making the concept relevant also for dependency maximization. In
symmetric IB the task is to cluster two variables, here denoted by X and Y , so that
the cluster indices of the x-space, Sx, are informative of Y , and vise versa. As usual
in the IB framework, the complexity of these clusterings is controlled by requiring
that the mutual information between X and Sx is minimized (and similarly for Y ).
This creates the bottleneck in the name of the method, forcing X to be compressed
into Sx. Despite the formulation as two separate IB tasks, the actual method can
be interpreted also as maximizing the mutual information between Sx and Sy. The
final task is then simply to maximize the mutual information between the cluster
indices, while minimizing the mutual information between the cluster indices and
the original variables, separately for each space.

The symmetric IB can be solved by an iterative algorithm closely resembling
the algorithms for the traditional IB. The solution is controlled by a Lagrange
parameter λ. Varying its value creates a path of solutions, so that increasing the
value gives solutions of increasing complexity.

Another relevant extension of the IB principle is the Gaussian IB, presented in
(Chechik et al., 2005). Instead of discrete variables, the method works on variables
assumed to be normally distributed and resembles closely the canonical correlation
analysis. The method finds the same subspace as CCA, but the tradeoff parameter
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can be used to control the dimensionality of the subspace, while also determining
the scale of the projection vectors. It is, however, worth noting that the Gaussian
IB is not inherently symmetric, but instead it finds the projection only for X.
It still finds for X the same projection vectors as CCA does, even though the
projection for Y is restricted to be a unit matrix.

3.3 Sidenote: Minimization of dependency

In this thesis, only methods maximizing dependencies are considered. That is,
the task is always to find mappings that capture dependencies as well as possible.
It is, however, worth mentioning also the extensive literature and methodology
devoted to doing the opposite, i.e. looking for representations that minimize the
dependencies.

Minimization of dependencies is used particularly in the task of blind source
separation, where the aim is to detect true source signals from an observed mixture
in a setting where both the sources and the mixing are unknown. Methods such as
the independent component analysis (ICA) (Hyvärinen et al., 2001) solve this by
assuming that the true underlying signals are statistically independent, hence try-
ing to find an inverse mixing that would result to maximally independent sources.
Often the statistical dependency is measured by some indirect manner, such as
measuring the non-Gaussianity of the signals by higher moments. However, also
methods working directly on approximations of mutual information have been
presented (Van Hulle, 2008), as well as methods that aim to minimize the HSIC
criterion (Shen et al., 2007). Some of the kernel-based variants of ICA solve the
problem through kernel-CCA (Fyfe and Lai, 2000; Bach and Jordan, 2002).
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Chapter 4

Dependencies and data
fusion

In the previous chapter, methods for finding maximally dependent representations
for two data sets with co-occurring samples were presented. In this chapter, po-
tential uses for such methods are discussed. The focus is on novel application
scenarios in the field of data analysis and machine learning. In particular, we
present how statistical dependencies between data sets can be used for data fusion
in exploratory data analysis.

4.1 Data fusion by searching for dependencies

Data fusion is a subfield of data analysis that aims at combining several data
sources in order to improve the accuracy of analysis. Data fusion, also known
as sensor fusion, has been widely applied especially in classification tasks and
in supervised learning in general (Hall and Llinas, 1997), where measuring the
accuracy is straightforward and the task is clearly defined. Solving the data fusion
task is then, in principle, easy; simply use all sources to the extent that they can
improve the classification accuracy. Practical difficulties naturally remain. Data
fusion in supervised learning will not be discussed further in this thesis.

In this thesis, we focus on data fusion in unsupervised learning. This means
that our goal still remains at finding systematic regularities from a collection of
measurements, using as an input a collection of data sets with co-occurring sam-
ples. The simplest approach would be to ignore the fact that the features are
divided into separate data sets, and instead consider the concatenation of all ob-
servations. Any unsupervised learning method can be applied on such a data set.
However, the information on the sources being of separate origin is not explicitly
used in such an approach, which means that a potential source of information is
ignored.

Recently, a wide range of unsupervised methods utilizing the natural split into
several data sources have been presented. A term multi-view learning is collectively
used to describe methods searching for consensus between the views, using various
criteria to define the consensus. The underlying assumption is that if models
learned based on different views agree with each other, they are likely to generalize
better. Various multi-view approaches, including also supervised methods, are
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described in proceedings of the ICML 2005 Workshop on ’Learning with Multiple
Views’ (Rüping and Scheffer, 2005). Here we consider a related approach, where
the consensus is defined through statistical dependencies between the data sources.
This approach uses the information on source identities to focus the analysis on
properties only revealed in a data fusion setting.

Perhaps the most intuitive reason for looking for dependencies between two
data sets is noise reduction. Practically all observations contain noise, i.e. some
stochastic variation for which we cannot know the instantaneous value. Such
noise can be caused for example by the measurement process itself, and it is often
assumed to be independent between the samples. If we have two sets of measure-
ments of the same samples, then we can assume that the noise is independent also
between the data sets. In such a setting, looking for dependencies between the data
sets should be a principled way of removing noise. This can be seen as a gener-
alization of averaging over several measurements; in a dependency-maximization
framework, the averaging is simply replaced by a more general mapping of the
features.

Another, somewhat more philosophical, reason for looking for dependencies
between data sets is to use dependencies as a definition for what is interesting
in the data. Completely unsupervised models describe everything in the data
collection, within the limits of the selected model family, but the dependency
modeling framework can be used for more directed analysis. If we define the task
as searching for information that is present in all of the data sets, then looking for
dependencies is a good solution. In particular, it changes the task so that we will
find information that could only accidentally be revealed by looking at any of the
sources alone; the primary variation in those may or may not be related to the
commonalities. Notice that here the approach differs slightly from the traditional
multi-view learning setting. In multi-view learning it is typically assumed that
each source alone is sufficient for learning a good model, whereas here a model
learned based on any one source alone could be considerably different or even
misleading.

While all the methods presented in Chapter 3 find dependencies between the
data sets, it is not necessarily straightforward to use all of them in this kind of a
data fusion. The methods provide separate mappings for X and Y, whereas for
data fusion it would often be better to have a single representation. The separate
representations can, however, in many cases be combined. Next we present a
justified way of combining the outputs of CCA, and in Chapter 5 novel methods
that are directly formulated though a single shared representation are introduced.

4.1.1 CCA-based preprocessing for data fusion

In Publication 2, we show how the separate representations that CCA gives for X
and Y can be combined to obtain a data fusion solution. This turns CCA into
a practical data fusion tool that is fast and easily applicable, and also acts as a
demonstration of how also more complex data fusion methods can be built on the
idea of dependency maximization.

The method relies on the alternative interpretation of CCA as a two-step pro-
cedure. First, each data set is preprocessed separately to remove all within-data
variation, and then the main variation remaining in the collection of all data sets
is extracted. This process is illustrated in Figure 4.1. The fundamental goal in
the first step is to remove all variation that could be extracted by the model used
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Figure 4.1: An illustration of the data fusion process that aims at finding linear dependencies in
the data collection. In this example, three data sources with different dimensionalities are given,
and the task is to find what these sources have in common. First, each source is whitened to
remove within-data variation, then the whitened sources are concatenated, and finally principal
component analysis (PCA) is used to create a lower-dimensional representation that only captures
the shared effects. The rectangles represent data matrices with columns as samples and rows as
features. The jth sample has been marked to demonstrate the co-occurrence of the samples in
the data sets.

in the second step, so that if the data collection has no dependencies between the
data sets, then the second step cannot extract anything. Any structure found by
the second step must then be dependencies.

In Publication 2, the second step is performed simply by the principal compo-
nent analysis (PCA) (Hotelling, 1933) of the columnwise concatenation of prepro-
cessed data sets. PCA is a classical method that searches for linear projections of
maximal variance. The preprocessing step matching this is a traditional procedure
called whitening, which is a linear transformation that leads to the preprocessed
data having a unit covariance matrix. In practice, the whitening can be performed
as

X̃ = Σ−1/2
x X,

where Σx denotes the covariance of X. PCA cannot find any structure in X̃, but
instead finds that any projection direction has unit variance.

From a concatenation of non-independent whitened data sources, the PCA step
is able to extract directions that have higher variance, which must be a result of
dependencies between the different preprocessed data sets. Independent linear
preprocessing steps cannot create such dependencies, and thus they must already
exist in the original data sets. The remaining task is then to simply pick a suitable
dimensionality for the PCA projection, so that only dimensions with structure
are kept. In Publication 2, a test based on randomization is proposed. A set of
random data collections satisfying the independency assumption are sampled from
the normal distribution, and the variances of the projections of the real data are
compared to the ones obtained when applying the algorithm to the randomized
data sets.
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Despite the two-step procedure, the method is actually a re-description of clas-
sical CCA. Details of the connection can be found in Publication 2. The final data
fusion solution Z can be written as

Z = UxX + UyY,

where Ux and Uy are the CCA projection matrices of the chosen dimensionality.
The result extends to more than two data sets by using the generalized CCA. In
other words, the fused data set is simply the sum of the canonical scores (the
projected values). That shows how generalized CCA can be used to combine co-
occurring data sets into a single representation. The result can then be used as a
source for any unsupervised or supervised method needed for further analysis.

4.1.2 The residual variation

In typical modeling tasks, the residual of the model is considered pure noise. In
the data fusion approach based on detecting dependencies, it may, however, make
sense to also analyze the variation remaining in the data collection after extracting
the dependencies. Natural data sets may have very complex information present
in some of the data sources, and in some applications, analyzing also such residual
variation could be of use.

In fact, we could even take the analysis of the residual variation in one of the
sources as the main modeling task. Instead of studying the dependencies we could
use the dependency modeling approach to remove variation deemed uninteresting,
due to it being visible in another source that can be analyzed more accurately by
other methods.

For the methods presented in Chapter 3, the residual variation can typically be
extracted as a post-processing step. For example, the variation extracted by CCA
can be removed from a certain data set by a linear transformation that subtracts
the variation explained by the the projections. In Chapter 5, methods that have
explicit representation for both the dependencies and the data set–specific variation
are presented, allowing at least in principle selecting directly which of the latent
information sources are deemed relevant.

4.2 Applications

Since the introduction of the canonical correlation analysis (Hotelling, 1936), meth-
ods aiming at capturing dependencies between two (or more) variables have been
extensively used in statistics. Typically, the tasks have been confirmatory in na-
ture; the outcome of the analysis has been, for example, whether two variables
correlate or not, or how strong a correlation can be found between two sets of
variables. In this work, however, we focus on dependency maximization tasks in
exploratory data analysis, and briefly review recent applications A common fea-
ture to many of these applications is that we are also interested in the actual
latent variables between which the dependency is sought, not just in the degree of
dependency or in the parameters of the mappings.

4.2.1 Bioinformatics

Bioinformatics has been an active application field for EDA methods during the
recent years. Since the late 1990s, efficient measurement techniques, such as DNA
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microarrays, have made it possible to make vast numbers of simultaneous mea-
surements. Today, it is already commonplace to be able to measure the level of
expression (i.e. the abundance of messenger RNA) jointly for all human genes.
As biological systems are also very complex and typically not fully understood,
the relatively inexpensive measurement techniques have made bioinformatics a
field where EDA is seriously needed. Data fusion is also particularly important
in bioinformatics, since we can get several kinds of measurements from the same
system, yet none of them necessarily measures exactly the interesting process di-
rectly. Looking for dependencies between several sources might help in focusing
the analysis, since it allows ignoring potentially very significant variations caused
by complex processes not related to the property under examination.

Kaski et al. (2005) use associative clustering to study orthologous genes (i.e.
genes that have common evolutionary origin) of human and mouse. The clustering
solution finds regularities and irregularities in the function of the genes, revealing
information on conservation of the gene functions in the evolutionary process.
The results show, for example, that the dependency structure between the two
organisms comes mainly from cell maintenance tasks which are critical for survival.
Also genes that differ considerably in their function between the two species are
found.

Nikkilä et al. (2005) study environmental stress response in yeast by searching
for shared response based on a collection of stressful treatments. Environmental
stress response refers to response to perturbations from the normal growth condi-
tions, such as changing the temperature or the concentration of oxides in the en-
vironment. Most changes also cause effects specific to that particular change, and
thus looking for dependencies between data sets measured under different stressful
conditions should reveal the stress response as the variation shared between the
conditions. Nikkilä et al. (2005) use both CCA and associative clustering to detect
the dependencies. First, dependencies between expression measurements of stress-
ful conditions are sought with CCA, and then AC is applied to find dependency
structure between the results of the CCA step and a transcription factor binding
data set. The latter step finds explanations for the phenomena detected by the
first one. The same example, without the latter step, is used in Publication 2.

Microarrays can be used to measure not only the expression of genes but also
changes in the genome itself. Comparative genomic hybridization (CGH) refers
to methods measuring the relative amount of DNA sequences, and reveals am-
plifications and deletions of parts of the chromosome. Chromosomal changes are
frequent, for example, in cancers. Combining both expression and amplification
measures is thus helpful in analysis of cancer responses (Berger et al., 2006). If we
assume that commonalities between amplification and expression measurements in
cancer patients are caused by the cancer, then dependencies between these mea-
surements should help in detecting the fingerprint of cancer.

Other examples of the application of CCA or its extensions to microarray data
include Nymark et al. (2007) considering time series of expression in asbestos-
exposed cell lines, and Parkhomenko et al. (2007) discussing use of sparse CCA
to correlate expression with genotypes. In metabolomics, the study of chemical
compounds in cells, partial least squares (PLS), which seeks directed dependencies
between two multivariate data sets, is widely used (Steinfath et al., 2008). While
methods searching for symmetric relations are not so commonly applied, there are
also recent metabolomics studies involving the use of CCA (Meyer et al., 2007).
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Another active field of study in bioinformatics is proteomics, where the objects
of interest are proteins, not genes. Of particular interest are the interactions be-
tween proteins, such as the formation of protein complexes that function together,
and proteins taking part in signal transduction. Yamanishi et al. (2004) use kernel
CCA in predicting protein-protein interactions based on a collection of different
data sources. The KCCA is here used as a kind of preprocessing method: It gives
a representation where a classification task (whether two proteins interact or not)
is easier to solve. Yamanishi et al. (2003) present another application of kernel
CCA to bioinformatics. The KCCA is used to simply find the dependencies be-
tween more than two sources that do not have vectorial representations, extending
classical CCA analysis to novel types of data.

4.2.2 Multimodal content analysis

Another natural application field for dependency-seeking methods is the analysis
of digital content that comes in multiple domains. For example, a video sequence
not only contains the video stream but in most cases also sound, and occasionally
also attached textual content, such as subtitles. There is a natural pairing (time)
between all of these signals, and finding dependencies between them can be used
to find parts of one domain that correspond to parts in another.

Fisher and Darrell (2004) and Sigg et al. (2007) study the task of detecting
speakers from a video. By searching for dependencies between the audio and video
tracks, they are able to detect which parts of the video signal correspond to the
speech on the audio track. This enables localizing the mouth of the speaker, since
the movement around that area must correlate with the audio, thus improving
detection of which one of the potentially many humans in the video is talking,
even in cases with many simultaneous speakers. Fisher and Darrell (2004) use
a method based on non-parametric estimation of mutual information, while Sigg
et al. (2007) apply a version of classical CCA that is restricted to find sparse
non-negative projections, providing better interpretability of the components.

Another classical example of multimodal content is images and their captions.
Often the caption explains something that is visible in the image, and thus search-
ing for dependent representations of both the captions and the images should find
text and image features focused on describing the actual content of the images,
instead of variation that is irrelevant in the context of the captions. For example,
in a collection of pictures of animals, we would like to have features that separate
the different animals from each other but are invariant to the lighting conditions of
the images, or even to whether the image is a photograph or a cartoon illustration.
Searching for dependencies with the captions, which typically do not describe the
lighting conditions, should help in that task. In (Farquhar et al., 2006; Hardoon
et al., 2004), this kind of approach is used for the annotation of images, using
kernel CCA for finding the dependencies.

It is also possible to search for dependencies between texts written in two lan-
guages. Li and Shawe-Taylor (2006) study a cross-language information retrieval
(IR) and a document classification task by using kernel CCA as a preprocessing
before the IR or classification algorithm. The dependencies between the two lan-
guages give features that are more informative about the content compared to
typical features based on the frequencies of words, resulting in increased accuracy
in the tasks.
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4.2.3 Other applications

Recently, there has been some work on applying dependency-seeking methods on
the analysis of functional brain imaging. Functional magnetic resonance imaging
(fMRI) can be used to measure the activity of different brain regions at sufficiently
high frequency, making it hence in principle possible to infer which parts of the
brain are active at different tasks. Traditionally, this is studied by designing ex-
periments where a test subject is performing a certain isolated task at given times.
The activity pattern at that time should then correspond to the task at hand.

For more natural stimuli it is, however, difficult to create good experimental
designs. For example, a person watching a movie is simultaneously using his
visual and auditory cortices, as well as having brain activity not related to the
movie. It is no longer possible to simply examine the activities, but instead it
is necessary to try to infer which of the activities is caused by which aspect of
the stimuli. Ylipaavalniemi et al. (2007) apply DeCA, described in Publication
1, to such a task in order to find the dependencies between the stimuli and the
brain activities preprocessed by independent component analysis (ICA). Also, for
example, Hardoon et al. (2007) and Friman et al. (2001) consider applications of
CCA to fMRI data.

Dependency maximization methods have also been used in climatology. In
addition to the numerous applications of classical CCA, also some more advanced
methods have been used. Fern et al. (2005) build a mixture of CCAs to study
correlations between precipitation and vegetation index on global scale, and Hsieh
(2001) uses a non-linear variant of CCA.
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Chapter 5

Generative approach to
dependency modeling

In this chapter, theoretical concepts related to using Bayesian generative models
to find statistical dependencies are introduced, and practical methods stemming
from the theory are presented. The theory is largely a novel contribution of the
thesis.

5.1 Why generative approach?

As explained in Chapter 2, the problem of overfitting can often be solved with
the Bayesian approach. The Bayesian modeling theory explains how the modeling
should be done in principle, and the remaining problems are mainly computational
and application-related; what the model family should be, and how the posterior
distribution of the parameters can be effectively approximated. Of particular in-
terest are generative models that describe the distribution of the observations.

However, for dependency modeling tasks, there are no existing established
Bayesian generative models. This is fundamentally caused by the fact that the
cost function of dependency modeling is not formulated as a likelihood, but in-
stead as the correlation, mutual information, or some other measure of statistical
dependency. There are naturally several approaches to tackling the overfitting is-
sue with other methods, mainly different kinds of regularization methods (Vinod,
1976) and sampling-based model complexity estimation (Yin (2004), Publication
2), but a generative approach has been lacking. Considering the widely recognized
status of generative models in other modeling tasks, it would be interesting to be
able to apply them for detecting dependencies as well.

To further motivate the approach, the practical advantages of generative Bayesian
modeling can be summarized as:

1. Measurable characterization of relative quality: While any cost function
can be optimized to find the best solution, most cost functions, including
mutual information in the dependency maximization setting, do not provide a
natural way of characterizing how much worse another solution with a different
cost function value is. Likelihood, instead, has the advantage that a difference

30



5.1. WHY GENERATIVE APPROACH?

in the log (posterior) density directly tells how much more likely a certain
solution is, given the observed data.

2. Justified treatment of uncertainties: From the first point it follows di-
rectly that uncertainties can be modeled in a justified way. As we can quantify
the differences in probability, we can define a full distribution over possible so-
lutions. This allows marginalizing predictions over the whole distribution,
instead of needing to select a single model.

3. More explicit modeling assumptions: In Chapter 3, the fundamental task
in dependency modeling was defined as finding mappings that have maximal
mutual information, and specifying a particular approach involves choosing an
approximation for the mutual information. The choice of the approximation is
a rather implicit assumption, which sometimes makes it difficult to understand
what a certain algorithm is doing and what kind of conditions it requires in
order to work appropriately. The generative approach makes the modeling
assumptions more explicit, making it easier to check how well the assumptions
hold for a certain data or task. Explicit modeling assumptions also make it
easier to change the assumptions if needed, resulting in novel methods for
situations where the existing ones do not work well.

4. Possibility to include as parts of bigger models: The probabilistic mod-
eling framework allows building hierarchical models or networks consisting of
smaller probabilistic models, while still being able to estimate the whole model
jointly in a justified way. In a non-probabilistic setting, we would typically
need to optimize each part separately and then combine the parts using a pos-
sibly heuristic method, or alternatively derive complex optimization algorithms
along the lines of the back-propagation idea used in neural network optimiza-
tion (Rumelhart et al., 1986). While this may work in some situations, it is an
advantage to be able to optimize the full model using the same basic princi-
ple in optimization and inference throughout the model. Note, however, that
computational issues may still make learning of hierarchical Bayesian models
difficult in practice.

We can also motivate the need for a generative approach to dependency model-
ing through the success of generative modeling in other related tasks. Generative
and non-generative approaches have earlier been compared for conditional mod-
els and supervised learning. A classification task can be solved either by directly
maximizing a classification criterion based on p(y|x), or by constructing a gen-
erative model p(y,x) and deriving p(y|x) via Bayes’ rule (2.1). Rubinstein and
Hastie (1997) compare these approaches, called discriminative and informative
learning, empirically, leading to a conclusion that if the generative model matches
the underlying distribution, then the latter approach is generally better. Another
comparison is given in (Ng and Jordan, 2002), where the generative approach is
shown to give better results on small data sets, while the discriminative approach
outperforms it on large data sets.

For symmetric dependency maximization tasks, no such comparisons have been
possible, since the generative alternatives of the methods have been lacking. Given
the theory and models presented in this thesis, it is possible to study whether
similar observations generalize to the symmetric case. In Publication 5, this is
briefly studied for one particular model, and the result is that the findings of Ng
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z z z

x y
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Figure 5.1: A graphical model representation of a general latent variable model structure for de-
tecting statistical dependencies with generative models. Here, z denotes a latent source common
to both observed variables, x and y, whereas zx and zy denote latent sources specific to the
observed variables. Gray shading indicates observed variables.

and Jordan (2002) do seem to generalize; the generative approach leads to more
accurate results on small data sets.

5.2 Detecting dependencies with generative mod-
els

For building generative dependency maximization models we use latent variable
models (Bishop, 1999a). Latent variable models are a super-family of models that
include unobserved variables paired with individual data samples. For example,
a clustering model can be formulated as a latent variable model where we have
a latent variable zi for each sample xi, and zi indicates which cluster the sample
belongs to.

If the task is to learn what the data sets have in common, it makes sense to
assume that there is an unknown, latent, source that is shared by all of them. In
addition, we need to allow all data sets to have variation that is not shared with
the other data sets. This can be conveniently modeled with other latent sources,
separate for each of the data sets.

Figure 5.1 shows a generative model structure following the assumptions above.
It is a conventional probabilistic model, so all tools of standard Bayesian machinery
are directly applicable. However, the link to the dependency maximization task is
at this stage merely intuitive, since there is no particular reason to assume that
the posterior distribution of the shared latent source would necessarily correspond
to the solution which we would find by explicitly maximizing the dependency. It
can, however, be shown that under certain assumptions this is the case.

If the task is to find the shared signal z, we can consider the data set–specific
latent signals, zx and zy, as nuisance parameters; we are not interested in them as
such, and thus marginalize them out. This is not, however, enough to guarantee
that the shared signal would capture (only) the dependencies. Instead, we need to
make one important assumption: The part of the model that is specific to each data
set needs to be an appropriate one. That is, it needs to be flexible enough to model
all the data set–specific variation. This is a common assumption made in Bayesian
modeling. In many modeling tasks, deviations from the assumption are often not
that problematic, since we still get as a result the best possible approximation of
the true distribution that is within the selected model family. However, in the
case of dependency modeling, the choice is more critical; while we still may get a
good approximative model, incorrect distributional assumptions for the data set–
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specific parts will cause the shared latent signal to also model variation specific to
the data sets. This is empirically demonstrated in Publications 3 and 4.

It is worth noting that the formulation used here is particularly suitable for
the data fusion idea presented in Chapter 4. Most traditional dependency-seeking
methods are formulated through separate representations for x and y, but here the
model assumes a single shared latent source z. The latent source can be directly
used as a new fused representation for the data in applications where we want to
extract the dependencies as a preprocessing step for further analysis. The explicit
representations zx and zy for the data set–specific latent sources may also be useful
in practical analysis.

5.2.1 General approach

In this section, a general approach to building generative latent variable models for
detecting dependencies is presented, following Publication 4. It is assumed that
the variation in a data set can be decomposed into a part described by the shared
latent source and to another that is specific to that particular data set, and that
the actual observation is generated by adding up these two effects. This can be
formulated as

x = f(z|Wx) + g(zx|Bx) + εx,

y = f(z|Wy) + g(zy|By) + εy,

where f(·|Wx) and g(·|Bx) denote arbitrary functions parameterized by Wx and
Bx (and analogously for y), and εx and εy denote noise that is independent between
samples and unstructured (i.e. follows some simple distribution).

In a dependency exploration task, we want to find the posterior distribution of
z, given the observed data. It can be either p(z|x), p(z|y), or p(z|x,y), depending
on the specific inference task. In all cases, we need to marginalize over zx and zy.
In the simplest case, we can consider the maximum likelihood estimation of the
actual parameters, leading to the marginalization task

p(z,x,y|Ŵ, B̂) =
∫ ∫

p(z, zx, zy,x,y|Ŵ, B̂)dzxdzy,

where Ŵ and B̂ denote estimates of W and B. The Bayes’ rule can then be
used to find p(z|x,y,Ŵ, B̂) or any of the other posteriors of interest. Performing
such integration would be difficult in general, but here we have two simplifications
that make it computationally feasible. We assumed that x and y are condition-
ally independent given z, and that p(x|z, zx) is an additive composition of terms
depending only on z and zx separately. These lead to the simplified expression

p(z,x,y|Ŵ, B̂) = p(z)
(∫

p(zx)p(x|z, zx)dzx

)(∫
p(zy)p(y|z, zy)dzy

)
, (5.1)

where conditioning on Ŵ and B̂ has been left out for brevity on the right hand
side. The expression involves separate integrals over zx and zy, and as z is fixed
inside the integrals, the difficulty of the marginalization task only depends on
g(zx|Bx) and εx (and analogously for y).
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5.2.2 On marginalization

The basic approach presented above relies on the ability to perform the marginal-
ization task in (5.1). In all of the models presented in this chapter, this marginal-
ization is done analytically, leading to an exact marginal distribution. This is
possible due to two rather restricting assumptions, namely that zx and zy follow
normal distribution, and that g(zx|Bx) is a linear transformation of the latent
variable. For most other choices, it would not be possible to marginalize zx and
zy out in a closed form.

There should be no theoretical problems in extending the approach to cases
where the marginalization can be approximated with sufficient accuracy, using
for example variational approximation or Markov chain sampling methods (see,
e.g. Gelman et al. (2003)). The issue of sufficiency is in this thesis left as an
open question. Further work would be needed to answer questions like “How will
approximative marginalization change the ability to capture only the dependencies
in z?” and “Is it possible to somehow correct the possible deviations caused by
approximative marginalization?”

Also worth noting is that the marginalization of zx and zy is here regarded as
a necessary step to guarantee detecting the dependencies. However, as explained
in Section 4.1.2, we might in some applications be interested also in the data set–
specific latent signals. Hence, modeling also those explicitly would be preferable.
Again, the possibility of this is left as an open question. As a practical solution
we consider solving the data set–specific signals with a post-processing step after
finding the dependencies. In general, first z is inferred by marginalizing zx and
zy out, and then the data set–specific structure is found by modeling x and y
separately given a fixed (distribution for) z.

5.3 Probabilistic canonical correlation analysis

Bach and Jordan (2005) interpret canonical correlation analysis as a probabilistic
generative latent variable model. In their work, a model structure and a set of
distributional assumptions are proposed, and the connection to CCA is proven
for the maximum likelihood solution of the model. Earlier also Bie and Moor
(2003) considered a similar interpretation. Here, however, an explanation following
Publications 3 and 4, is given.

The model structure of Figure 5.1 is abstract, and in essence only specifies cer-
tain independencies. To specify an actual model, we also need to give (conditional)
probability distributions for the variables. We start with the latent variables, which
are a priori assumed to be uninformative. Here we choose

z, zx, zy ∼ N(0, I).

That is, we assume all three latent variables to follow the multivariate normal
distribution with zero mean and unit covariance. The dimensionalities of these
three variables may differ, and throughout the description the dimensionalities are
not explicitly mentioned. As CCA is a linear projection method, we should have
the observed data depend on a linear transformation of the latent variables. With
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additive Gaussian noise, we get

x|z, zx ∼ N(µx + Wxz + Bxzx, σ
2
xI),

y|z, zy ∼ N(µy + Wyz + Byzy, σ
2
yI),

where Wx, Wy, Bx, and By are matrices of suitable dimensionality, and σ2
x and

σ2
y are scalar variance parameters. The mean parameters µx and µy are considered

as parts of the linear mappings f(zx|Wx) and f(zy|Wy).
Following the guidelines of Section 5.2.1, we need to make sure that the data

set–specific parts can model all variation inside a single data set. Given the as-
sumption of multivariate normality, this corresponds to requiring the dimension-
ality of zx and zy to match the dimensionality of x and y, respectively. This also
allows us to fix both variance parameters σ2

x and σ2
y to zero, since the data can be

completely modeled with the latent sources. Marginalization over zx and zy can
then be performed analytically, resulting in

z ∼ N(0, I),

x|z ∼ N(µx + Wxz,BxBT
x ),

y|z ∼ N(µy + Wyz,ByBT
y ).

Here BxBT
x can equivalently be parameterized as Ψx, and analogously for y, since

a sum of Dx outer products of linearly independent vectors spans the space of
Dx ×Dx positive definite matrices. The dimensionality of z is a free parameter,
controlling the dimensionality of the shared latent source.

The above model is exactly the probabilistic model for CCA as given by Bach
and Jordan (2005). Theorem 2 in that publication states that for the maximum
likelihood solution of the model, we have

Ŵx = ΣxxUxMx,

Ŵy = ΣyyUyMy,

Ψ̂x = Σxx − ŴxŴT
x ,

Ψ̂y = Σyy − ŴyŴT
y ,

where Ux and Uy denote the CCA projection matrices. Mx and My are arbitrary
matrices with spectral norms smaller than one, such that MxMT

y = P, a diagonal
matrix having the canonical correlations on its diagonal. The proof can be found
in the original publication. A more intuitive interpretation is that regardless of Mx

and My, the expectations E[z|x] and E[z|y] lie in the subspace that corresponds
to the space spanned by the first CCA projections, up to the dimensionality of z.

The probabilistic interpretation of CCA has been used or studied further in
a number of publications. Archambeau et al. (2006) present an extension that
replaces Gaussian noise with t-distributed noise to make the model more robust to
outliers, whereas Leen and Fyfe (2006) and Fyfe and Leen (2006) consider formula-
tions involving Gaussian processes (Rasmussen and Williams, 2006). Archambeau
et al. (2006) also present a method for solving the rotational ambiguity caused
by Mx and My. This makes it possible to find also the actual CCA projections,
instead of just the subspace.
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5.4 Bayesian canonical correlation analysis

The probabilistic interpretation of CCA is theoretically interesting, but there is
often little need to find the solution by maximizing the likelihood of the model. In
practice, directly solving the eigenproblem described in Chapter 3 is usually faster
and guaranteed to converge to the global optimum. However, the probabilistic
interpretation opens up interesting possibilities, such as extensions by making
different probabilistic assumptions or constructing mixture models, and a fully
Bayesian treatment of the model. Here, we first consider the Bayesian treatment
introduced in Publication 5, and in Section 5.5.1 we provide one extension, a
clustering model for searching dependencies (Publication 4). Both of these are
novel contributions.

As described in Chapter 2, the Bayesian treatment involves finding the pos-
terior distribution of model parameters given the observed data. This provides
an inherent “regularization”, so that predictions can be made averaging over the
whole posterior instead of using a single, most likely overfitted, model. In the
following, we present suitable prior distributions to complement the probabilistic
CCA into a fully generative model, and discuss how the posterior distribution,
which is analytically intractable, can be approximated.

For computational convenience, conditionally conjugate priors (see e.g. Gelman
et al. (2003)) are used for all parameters. In practice, we specify the prior for the
covariance matrices Ψx and Ψy to be inverse Wishart, and the prior for the mean
µ = [µx; µy] to be normal. For the projection matrices W = [Wx;Wy], there are
a few possibilities, depending on the independence assumptions made in the prior.
We adopted the automatic relevance determination (ARD) prior, which has been
previously used in for example the Bayesian principal component analysis (Bishop,
1999b). In ARD prior the elements of W are drawn from zero-mean normal
distribution, with a hierarchical inverse Gamma prior for the variances of the
columns. The advantage of the ARD prior is that it can, in a sense, automatically
select the number of components by pushing variances of unnecessary columns
towards zero. In practice, we can hence use z of full dimensionality (minimum of
the data dimensionalities), and afterwards count the number of non-zero columns.
However, it is worth noticing that in a Gibbs sampling approach the columns will
not be driven exactly to zero, and therefore slight post-processing is needed for
identifying the actual dimensionality.

The independence assumptions are summarized as a graphical model in Fig-
ure 5.2. The probabilistic description of the model is then given as

βi ∼ IG(α0, β0), wi ∼ N(0, βiI),
Ψx ∼ IW(Sx

0 , ν
x
0 ), Ψy ∼ IW(Sy

0, ν
y
0 ), (5.2)

µ ∼ N(0, σ2
0I), z ∼ N(0, I),

x ∼ N(µx + Wxz,Ψx), y ∼ N(µy + Wyz,Ψy),

where IW denotes the inverse Wishart distribution and IG is the inverse Gamma
distribution. W is the row-wise concatenation of Wx and Wy, µ is the concate-
nation of µx and µy, and the variables with subscript 0 are prior parameters. The
parameters βi control the variances of the columns wi of the projection matrix.
For brevity, conditioning on the variables on the right hand side is not explicitly
written.
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Figure 5.2: A graphical model representation of the generative model for Bayesian CCA. Observed
nodes are shown with gray background, and the plate indicates repetition over N samples.

For approximating p(θ|X,Y), where θ includes all the parameters and latent
variables of the model, we use Gibbs sampling (Geman and Geman, 1984; Gelfand
and Smith, 1990). In (Wang, 2007), a variational Bayes (VB) approach (Jordan
et al., 1999) was independently derived for almost exactly the same model, the only
difference being different βi parameters for Wx and Wy instead of a shared param-
eter like in the model (5.2). The variational approximation has the advantage of
giving an easily interpretable parametric approximation of the posterior, whereas
the sampling approach only provides samples from the posterior. However, Gibbs
sampling gives, at least in principle, samples from the true posterior, whereas the
variational approximation makes additional independence assumptions and hence
does not represent the true posterior. Typically the choice between these two
options would depend on the application and practical limitations. For maximal
accuracy, the Gibbs sampling approach is often better, but the variational approx-
imation is typically computationally less intensive.

Applying Gibbs sampling to the model (5.2) is relatively straightforward. The
Gibbs sampling proceeds by updating each of the parameters at a time, drawing
a new value for it from the conditional posterior given the data and the current
values of all other parameters. At the limit of infinite number of iterations, this
is guaranteed to converge to a process that produces random samples from the
true posterior distribution (see e.g. Gelman et al. (2003)). All distributions in the
model have conditionally conjugate priors (the prior is conjugate given fixed values
for other parameters), and thus the conditional posteriors are relatively easy to
derive; they always follow the same type of distribution as the prior, and hence
the task is merely to find the equations for the parameters. The actual sampling
formulas are given in Publication 5, including the formulas needed to infer zx and
zy given z.
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5.4.1 Local dependent components

One severe restriction of CCA in practical applications is that it assumes a global
linear dependency over all samples in the data sets. This rarely holds for real data
sets. Making the same assumption locally, so that it holds only for a subset of
samples, would be feasible in a wider set of applications. Such locality assumption
can be easily made in the generative modeling framework: We can construct a
hierarchical model that has canonical correlation analyzers as submodels. In this
section, a novel model presented in Publication 5 is explained.

A traditional way of changing a global modeling assumption into a set of local
assumptions is to build a mixture model (see McLachlan and Peel (2000) for an
extensive text-book account). A mixture model is an additive model where com-
ponent densities are summed together to form the full model. An intuitive way
to interpret the generative process is that first a latent variable indicating which
component to use is drawn from a discrete distribution, and then the actual obser-
vation is drawn from the component density. This is fundamentally a description
of a clustering process, with potentially complex structure within each cluster.
Hence, for the remainder of this section the term ’cluster’ is used to denote the
component densities, to avoid confusion with the use of the term ’component’ to
indicate linear projection.

We could relatively easily derive formulas for optimizing a mixture of CCAs
by maximizing the likelihood with an expectation maximization (EM) algorithm
(Dempster et al., 1977). However, here we continue with the Bayesian approach
and thus extend the Gibbs sampling to the mixture case. Furthermore, to avoid
determining the number of clusters used in the mixture, a non-parametric Bayesian
approach of infinite mixture models (Rasmussen, 2000) is adopted. The infinite
mixture approach makes the model more truly local, in the sense that increasing
the number of samples allows using more clusters if needed, each becoming more
and more local in the data space.

In a finite mixture, the cluster indicator is drawn from a multinomial distribu-
tion with a Dirichlet prior, both having K possible values. At the intuitive level,
the infinite case simply means allowing K to approach infinity. Since we only have
N samples, there can in practice never be more than N clusters that would have
observations. This makes the approach computationally possible, despite having
an infinite number of parameters. More concretely, the infinite case is obtained
via a Dirichlet process.

A Dirichlet process (DP) is a stochastic process for which the following property
holds: For all probability distributions G ∼ DP(G0, α), any partition {Si}n

i=1 of
the event space satisfies

(G(S1), ..., G(Sn)) ∼ Dir (αG0(S1), ..., αG0(Sn)) .

Here G0 is the base distribution, α > 0 is a concentration parameter, and Dir(·)
denotes the Dirichlet distribution. The DP was introduced in (Ferguson, 1973),
and a more recent and machine-learning oriented presentation can be found for
example in (Blei and Jordan, 2006). In the modern machine learning literature, DP
is often interpreted through either the so-called Chinese Restaurant process (CRP)
or the stick-breaking process. These are explicit presentations for processes that
provide samples from the distribution G sampled from a DP, making the process
more intuitively understandable. Here, the CRP interpretation is used to briefly
describe the idea of DP in infinite mixture modeling.
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Consider a case where samples θi are drawn from the distributions G following
the DP,

G ∼ DP(G0, α),
θi ∼ G.

By integrating G out we reach the CRP description giving sampling formulas
directly for θi as

θ1 ∼ G0,

θi|θ1, ...,θi−1 ∼ α

i− 1 + α
G0 +

1
i− 1 + α

i−1∑

j=1

δθj
,

where δθj
is a delta-distribution centered on θj . These formulas illustrate that

samples from CRP (and hence DP) are discrete, even if the base distribution was
defined over an uncountable set (real space in the context of this thesis); a value
sampled previously from the distribution has always finite probability of being
sampled again. It also follows that the more often a sample has been chosen
previously, the more likely it is to be sampled again. This is referred to as the
clustering property. Note that despite the sampling scheme above being formulated
as a sequential process, the order of sampling does not matter since samples from
DP are infinitely exchangeable.

DP can be used to create infinite mixture models by a slight modification of
the finite mixture model structure. In a finite mixture model, we have a single
parameter vector θ for each cluster in the model. However, in an infinite mixture
model we directly draw a parameter vector for each data sample separately, using
the CRP formulation. From the clustering property of DP, it follows that obser-
vations will still share their parameters in practice, and we can re-interpret each
unique parameter value as one cluster in a mixture. This allows us to sidestep se-
lecting the number of clusters, and moves the choice to the selection of G0 and α.
In practice, G0 is simply the prior distribution for the cluster parameters, whereas
α controls the clustering effect.

Implementing a Gibbs sampler for a finite mixture of CCAs is straightforward,
though it is worth mentioning that the convergence of the naive implementation is
often bad. One only needs to sample the cluster assignments for the data points,
and then condition the sampling of the other parameters to the data points that are
assigned to the particular cluster. Each cluster can here be treated independently,
and hence having a mixture does not make this phase any more complex. The
infinite mixture case is more difficult due to the constantly changing number of
clusters, but still a relatively straightforward sampler is possible; we still have
only a finite set of clusters at any given stage, and the only difference is that when
changing the cluster assignments, we occasionally need to create or delete clusters.
The exact details can be found for example in (Neal, 1998).

In practice, the naive sampler is inefficient both in the finite and infinite case,
since sampling the cluster memberships one sample at a time makes it very diffi-
cult to, for example, move several samples together from one cluster to another.
Practical sampling methods have been proposed to overcome this difficulty, but
most of them only apply to models that have a complete conjugate prior (Jain
and Neal, 2004). Here, however, the prior is conjugate only conditionally (i.e. the
conditional distribution of a single parameter is conjugate, if all other parameters
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are held fixed), which restricts the number of existing solutions. In Publication 5,
a solution by Jain and Neal (2007) was chosen. The sampler alternates between
normal Gibbs updates and updates where either splitting a cluster into two clus-
ters or merging two existing clusters into a single one are proposed. A split/merge
proposal is initiated by picking two samples, i and j. If they belong to the same
cluster then a split is proposed, and otherwise merging of the two clusters is pro-
posed. The idea in both operations is to use a restricted Gibbs sampling to obtain
a good proposal; here the case of splitting is briefly explained. Two new clusters
are sampled from the prior, and all of the samples in the cluster being splitted are
assigned to either of these. Then an ordinary Gibbs sampler for finite mixtures is
run only for the set of samples in the two clusters in question, in order to reach a
good proposal that is more likely to be accepted. Finally, the proposal is either ac-
cepted or rejected based on the Metropolis-Hastings ratio (see, e.g., Gelman et al.
(2003)). The actual sampling formulas can again be found in Publication 5.

It is worth mentioning that the ARD prior chosen for the Bayesian CCA (5.2)
is particularly useful in the case of a mixture model. When optimizing a sin-
gle Bayesian CCA, it would be possible to test the model with several different
complexities (i.e. dimensionalities of the shared latent space), choosing the correct
complexity based on the estimated marginal likelihood. For such a setup also other
priors would be applicable. In the case of a mixture model, varying the complexity
externally is not feasible, since even for a finite mixture of K clusters the number
of potential latent space dimensionalities would be DK , where D is the minimum
of the data dimensionalities. The ARD prior allows using the full dimensionality
for all clusters, while still getting results that only use a lower-dimensional sub-
space of the latent source when it is sufficient. It may be difficult to identify the
exact number of components used for each cluster based on the posterior samples,
but the model complexity will still be limited as if we had used lower-dimensional
subspaces.

5.5 Generative dependency-seeking clustering mod-
els

5.5.1 Mixture of Gaussians with a shared latent source

Both projection and clustering methods maximizing the dependency were pre-
sented in Chapter 3. The probabilistic interpretation of CCA is an example of
how to convert a projection method into a probabilistic alternative, and naturally
the same can also be done for clustering models. In this section, a prototype clus-
tering model stemming from the same idea is presented, originally proposed in
Publication 3 and extended to a fully Bayesian case in Publication 4. It demon-
strates how the probabilistic interpretation can be used to create new methods by
a relatively simple change of distributional assumptions.

The probabilistic CCA was formulated as a model generating Gaussian noise
on top of a linear transformation of a shared continuous latent variable. The
model can be changed into a clustering model by changing the assumption for the
latent shared space. In clustering models, each data point is assigned to one of K
clusters, and thus the latent space z should consist of K possible discrete values.
For maximal consistency, we could here have equal probabilities for the clusters,
but in practice it makes more sense to allow clusters to have varying size. Hence,
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the parameters of the distribution for z are free parameters.
The rest of the distributional assumptions should be chosen to match the as-

sumptions on the data in question. We retain the assumption of the noise being
Gaussian, largely for computational reasons, and also in order to have a connec-
tion to the widely used mixture of Gaussians (MoG) model (see McLachlan and
Peel (2000)). The generative process is thus formulated as generating Gaussian
noise around a cluster centroid specified by z. A convenient notational choice is
to transform z into a K-dimensional binary vector z̃ that has 1 as the zth element
and zero as other elements. This allows directly sampling z̃ from the multinomial
distribution, as well as writing the centroid as Wz̃. The discrete z can be regarded
as picking a single column from the matrix W.

The resulting model, after the marginalization of zx and zy, is

z̃ ∼ Mult(1,α),
x|z̃ ∼ N(Wxz̃,Ψx), (5.3)
y|z̃ ∼ N(Wyz̃,Ψy).

Alternatively, we can coerce the x and y into a single vector v by concatenation,
leading to the model

z̃ ∼ Mult(1,α),
v|z̃ ∼ N(Wz̃,Ψ),

where

Ψ =
(
Ψx 0
0 Ψy

)
.

This is a classical MoG, with a special restriction on the covariance matrix of the
clusters. It is assumed that the between-data covariance is zero within each cluster,
whereas the within-data covariances are fully parameterized. Here, the covariance
matrix Ψ is assumed to be the same for each cluster. By allowing zx and zy, as
well as Bx and By, to depend on z (or equivalently z̃) we can, however, extend the
model to one with separate covariance matrices for the clusters. For a clustering
model, this does not make the marginalization task (5.1) more difficult.

In Publication 3, the model (5.3) is optimized by maximizing the likelihood with
an EM algorithm, and in Publication 4 the same model is extended to a Bayesian
variant by introducing a variational Bayes approximation. The reader is referred to
these publications regarding the details of the algorithms; the close connection to
MoG allows re-using many of the formulas for the corresponding algorithms used
for learning an ordinary MoG. Instead of VB, we could have used Gibbs sampling
as in the case of the local dependent components, and in fact the sampling formulas
of local dependent components can also be used to solve the clustering case with
minor modifications (fix the projection matrix W of each cluster to zero, since no
dependencies are allowed within the clusters). The formulation for the clustering
case is here for a finite mixture, but the infinite case would be possible also in the
variational approximation (Blei and Jordan, 2006; Kurihara et al., 2007).

The VB approximation is formulated as finding a factorized approximation
q(θ) =

∏
i qi(θ) for the true posterior p(θ|X,Y). Here, θ includes both the model

parameters and the latent variables, and qi(θ) are terms that each depend only
on a part of the parameters; see Publication 4 for their form in this particular
case. The approximation is fitted by minimizing the Kullback-Leibler divergence

41



CHAPTER 5. GENERATIVE APPROACH TO DEPENDENCY MODELING

x

y

1 2 3 4 5 6 7

−
28

00
−

27
00

−
26

00
−

25
00

clusters

m
ar

gi
na

l l
ik

el
ih

oo
d

Dep. clustering
MoG

2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

clusters

m
ut

ua
l i

nf
or

m
at

io
n

Dep. clustering
MoG

(a) (b) (c)

Figure 5.3: An illustration of how even data coming from a single Gaussian distribution needs
to be modeled with a mixture of several Gaussians if attempting to detect dependencies with
the cluster structure. (a): A scatterplot of two one-dimensional data sets, X and Y, with clear
dependency. The line depicts the CCA solution, and the ellipses are equiprobable contours of
the Gaussians used as component densities. Note how the centroids of the clusters are perfectly
aligned according to the linear dependency. (b): Comparison of lower bounds for the marginal
likelihood given by an ordinary MoG (dashed line) and the method searching for dependencies
(solid line); the ordinary MoG is clearly superior in representing the data for all numbers of
clusters, the solution with a single cluster being the best. For the dependency-seeking model
having more clusters is preferable, with 4 giving the optimal solution illustrated in (a). (c):
Comparison of the two methods in capturing the dependency with the cluster structure, showing
that the proposed method (solid line) captures dependencies better than ordinary MoG (dashed
line). The dependency is here measured with a contingency table-based estimate of mutual
information between the cluster index and a discretized version of the mean of the canonical
scores of x and y. More of the dependency can be captured with a higher number of clusters.
Notice that K = 1 is omitted, since the dependency measure is constant when all data is in a
single cluster.

dKL(q, p), made computationally feasible by the factorization assumption. An
alternative viewpoint is that VB maximizes a lower bound for the true marginal
likelihood p(X,Y). The bound can be used to characterize how well the model
describes the observed data.

The bound for the marginal likelihood is useful in demonstrating the compro-
mise between finding the dependencies in the latent structure and describing the
data as well as possible. In the following, a toy experiment is used to show how a
traditional MoG can provide a better description for data, while still capturing the
dependencies worse than the clustering model of (5.3). Consider two-dimensional
multivariate normal data having high correlation between the two dimensions, and
treat the dimensions as data sets X and Y. Applying an unrestricted MoG to such
data yields the natural result that a single cluster mixture model is the optimal
solution. The dependency-seeking clustering model, however, finds more clusters
since it needs to capture the correlation with z instead of the covariance matrix. As
shown in Figure 5.3, the lower bound for the marginal likelihood is better for the
ordinary MoG, even with cluster numbers differing from the optimal, and hence
it is a better generative description for the data. However, only the model (5.3)
captures the dependencies with the cluster indicator, as expected.

5.5.2 Structured dependencies

A fundamental restriction in the model structure of Figure 5.1 is that the de-
pendencies are correctly captured in z only if the marginal models p(x, zx|z) and
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ss
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Figure 5.4: A graphical representation of the latent variable structure used in the clustering
model that allows multimodal structure within the dependent clusters. Here, z is a latent variable
determining the clusters, whereas sx and sy are used to model the multimodal structure within
the clusters.

p(y, zy|z) are accurate, and if they are marginalized over zx and zy. Satisfying this
requirement is difficult when modeling data sets with complex within-data struc-
ture. A general-purpose model, such as a mixture of Gaussians, could in principle
be used in place of the data set–specific models, but approximative marginaliza-
tion techniques would be needed. As explained in Section 5.2.2, approximative
marginalization of the data set–specific latent variables is left for future research.

In this section, a proof-of-concept implementation of an alternative solution
to the same problem is presented. Instead of trying to build correct marginal
models for complex data, the idea is to have more structure in the dependent
part (Figure 5.4). In practice, the marginal models are assumed to be Gaussian
to enable analytical marginalization, while a hierarchy of latent variables is built
in place of z. The same model structure is presented also in (Bach and Jordan,
2005) as an alternative formulation for probabilistic CCA, but for Gaussian latent
sources it does not make the model more flexible; instead, it is merely an equivalent
formulation. In a clustering model, however, the hierarchy increases the capability
of the model.

A two-level hierarchy of clustering-type latent variables is achieved by specify-
ing the model as

z̃ ∼ Mult(1,αz),
s̃x|z̃ ∼ Mult(1,Θsx z̃),
s̃y|z̃ ∼ Mult(1,Θsy z̃),
x|s̃x ∼ N(Wxs̃x,Ψx),
y|s̃y ∼ N(Wy s̃y,Ψy),

where s̃x again denotes the binary encoding of sx as a one-out-of-K vector. The
variable to be interpreted as the final clustering solution is z, since it is the shared
source. The other latent variables, sx and sy, merely act as nuisance parameters
allowing the clusters to have multimodal structure in either or both spaces.

There is a relatively close connection between this model and the associative
clustering method explained in Chapter 3. AC aims at maximizing the dependency
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Figure 5.5: An illustration of dependency-seeking clustering of data with multimodal variation
inside the clusters. Both x and y are two-dimensional, one dimension being dependent with the
other data (“signal”) and the other independent (“noise”). A three-cluster solution was sought,
and the samples in all subfigures are marked with different symbols according to the cluster
membership. (a): A scatterplot of the signal dimensions, showing how one of the clusters has
multimodal structure even in the signal space. It is not divided into two, since the two data
sets are independent within it. (b) and (c): Both x and y have multimodal structure in the
noise direction, which is ignored by the method. (d): Looking at the scatterplot of the noise
dimensions would suggest a high number of clusters, yet the actual relevant cluster structure is
here not visible at all.

between the counts of samples in a contingency table, which could be interpreted
probabilistically as maximizing the dependency between sx and sy in the model
above. Here, the dependency is not explicitly maximized, but the common prior
z restricts the form of p(sx, sy). If searching for a small number of clusters, while
allowing large number of values for sx and sy, we will necessarily get highly de-
pendent sx and sy. Empirical comparison of these two methods is left for future
research.

The model is illustrated in Publication 3, with simple two-dimensional data.
The data has clear cluster structure, but the clusters have multimodal data set–
specific structure. The illustration is reproduced in Figure 5.5, in a slightly ex-
tended form with more scatterplots. The method works well on this kind of toy
data, but further development would be needed to make it a practical tool for data
analysis. In particular, the EM algorithm used for optimization is very prone to
local optima in this case. However, the model still works as a proof-of-concept
that a probabilistic generative model can find the relevant cluster structure also
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in the presence of complex marginal distributions.

5.5.3 Multi-view clustering

Multi-view clustering (Bickel and Scheffer, 2004, 2005) is a related clustering ap-
proach. Based on two co-occurring data sets, the goal is to cluster the samples so
that the agreement between the sources is high. Using our notation, the proposed
model assumes that x and y are independent given the cluster index z, just like
(5.3). The proposed modeling approach is a kind of a hybrid between the ap-
proaches presented in Chapter 3 and here: The assumed model is generative and
has a shared latent source, yet the learning is not based on optimization of the
joint likelihood.

Denote by θx and θy the parameters of the generative models for x and y,
respectively. The model is optimized by using the multi-view EM algorithm (also
called Co-EM), which closely resembles the traditional EM algorithm. Formally,
the algorithm maximizes a cost function that is a sum of standard likelihood terms
for the separate views minus an additional penalty term that measures the dis-
agreement. More intuitively, it can be thought of as the following alternating
algorithm. The expectation step is done independently for the two spaces, com-
puting E[z|x] and E[z|y] as separate steps. In the maximization step, however,
the parameters θx are optimized by maximizing the likelihood given the expected
values E[z|y], and the parameters θy given the expected values E[z|x]. That is,
the parameters are optimized using the expectation of the latent variables based
on the other view. As a final result, a hard clustering is obtained by finding the
most probable clustering based on both views.

Even though the model is formulated as a generative one, the optimization
algorithm is somewhat heuristic. The algorithm is intuitively appealing, but not
guaranteed to converge even to a local optimum like the traditional EM (though
a converging variant can be constructed by annealing the disagreement term in
the cost towards zero). In practical applications the algorithm seems to work well,
even in situations where a single source is split randomly into x and y, but for
example an agglomerative clustering variant based on a similar idea does not have
satisfactory performance (Bickel and Scheffer, 2004).

5.5.4 Dependency-seeking clustering of discrete data

The above clustering models work for continuous data, where data set–specific
variation within each cluster follows the normal distribution. Dhillon et al. (2003)
present a similar method for searching dependent clusters of discrete data by like-
lihood maximization. They consider the task of co-clustering, i.e., clustering both
the rows and the columns of a joint probability distribution defined over two vari-
ables. In practice, a normalized contingency table is used as an estimate of the
probability. Formulating the dependency clustering task through the co-clustering
of the joint distribution is only possible in discrete domains, where enumerating
all possible co-occurrence relations is possible. Nevertheless, the task is fundamen-
tally the same as with the continuous clustering models: Cluster samples together
so that the dependency between the cluster indices of the x- and y-spaces is max-
imized.

Since clustering can only decrease the mutual information, the task of finding
maximally dependent clusters can alternatively be formulated through minimizing
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the difference
I(X,Y )− I(Sx, Sy),

where Sx and Sy denote the random variables indicating the cluster memberships.
Dhillon et al. (2003) show that in the case of hard clustering this is equivalent to
assuming a probabilistic model of the form p(x, y) = p(sx, sy)p(x|sx)p(y|sy) and
finding the maximum likelihood solution of that, given that p(x|sx) and p(y|sy)
are assumed to be correct. This follows the idea presented in Section 5.2; the
density is factorized so that x and y only interact through the latent variables,
and the noise process from the latent variables to the observations is assumed to
be correctly modeled.
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Chapter 6

Supervising unsupervised
data analysis

6.1 Focusing analysis through dependencies

An interesting special case of the dependency maximization approach described
in Chapter 3 is obtained by restricting the mapping for one of the data sets, here
consistently Y, to be fixed. This changes the task from a symmetric problem into
a directed one, where the goal is finding a description for X. The task is then
comparable to traditional unsupervised learning, where we aim at understanding
the structure in X, but the learning is performed in such a manner that the
dependencies between X and Y are emphasized. In other words, we only learn
such structures of X that are informative of Y. This focuses the analysis, and, in
a sense, provides supervision in an unsupervised learning task.

The idea has a close connection to conditional modeling. When the mapping
for the y-space is fixed, the mutual information

I(Sx, Sy) =
∫ ∫

p(sx, sy) log
p(sx, sy)
p(sx)p(sy)

dsxdsy

between the outputs Sx and Sy of the mappings reduces to the conditional entropy
as

I(Sx, Sy) =
∫
p(sx, sy) log p(sy|sx)dsxdsy −

∫
p(sy) log p(sy)dsy.

Here, the latter term is simply the entropy of Sy = Y , which is a constant and
hence does not affect modeling. For finite data, the first term reduces to the
conditional log-likelihood

logL(θ|X,Y) =
N∑

i=1

log p(yi|si
x,θ),

where si
x denotes a latent variable for xi, and θ are the model parameters. Con-

sequently, moving from the symmetric case to the directed case readily gives us
a traditional probabilistic interpretation; instead of formulating the task as the
maximization of mutual information between the latent variables, we can use the
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conditional likelihood as the cost function. This simplifies the problem, and allows,
for example, a direct application of Bayesian analysis.

A close connection to traditional supervised learning tasks, such as regression
and classification (where y is a single categorical variable), is also worth not-
ing. Despite sharing the same setting (paired x and y, modeling based on the
conditional distribution p(y|x)), in dependency modeling the actual task is funda-
mentally different. In supervised analysis, the task is to predict y, whereas here
the task is to describe x. In a sense, we are solving the unsupervised learning task
in a setting borrowed from supervised analysis. In principle, it is also possible to
borrow methods from the supervised learning, since some classification and regres-
sion models give a description of x as a side-product of the predictor. However, the
accuracy of the description is usually not explicitly optimized, and hence methods
directly targeted for analyzing x are preferred.

6.2 The learning metrics principle

The learning metrics (LM) principle (Kaski et al., 2001; Kaski and Sinkkonen,
2004; Sinkkonen and Kaski, 2002) explains how the dependencies between two
data sets can be used to focus analysis of one of them, called the primary data and
here denoted consistently by x. The other data set, y, is called the auxiliary data,
and the task is to model the primary data in such a manner that it is informative of
the auxiliary data. In the basic formulation, y is assumed to be a one-dimensional
categorical variable (and is hence denoted by y from now on), but in principle this
is not a necessary assumption.

In this setting, the formulation used in the rest of the thesis would thus be
to find the latent variables sx, defined as mappings of x, so that they have high
dependency with y. The learning metrics principle provides an alternative formu-
lation: Instead of constructing an explicit representation sx, we can change the
metric of the data space so that conventional unsupervised learning methods will
extract such mappings. In unsupervised learning, the choice of the metric is cru-
cial but arbitrary; the results of many standard unsupervised learning methods
are almost completely determined by the choice of the metric. By choosing the
metric suitably, as shown by the LM principle, we can convert any unsupervised
learning method into a one searching for dependencies.

Traditionally, different kinds of feature selection and weighting schemes are
used to preprocess the data into such a form that using a simple metric, such as the
Euclidean distance between the feature vectors, gives relevant results. For example,
features known to be uninteresting are ignored, and the values of relevant features
might be scaled up to emphasize them. The LM principle proposes an alternative
to such manual preprocessing, defining the distance function directly in terms of
the original features and using the auxiliary data to define the relevance. The
metric gives small distances for differences in x on regions where the distribution
of y remains constant, and large distances to variations on regions where the
distribution of y changes considerably. That is, it reflects the changes in y.

Technically, the distance measure is based on the Kullback-Leibler divergence
(3.1.2) between conditional distributions. Kullback-Leibler divergence as such is
not a distance measure, since it is not symmetric and even the symmetrified variant
does not satisfy the triangle inequality. It is, however, possible to define a real
distance measure based on local divergences. Locally, for a small change dx, the
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squared distance is given as

d2
LM (x,x + dx) = dKL(p(y|x), p(y|x + dx)),

where the Kullback-Leibler divergence is over two discrete distributions. The
KL-divergence is zero if the two conditional distributions are identical, and if
p(y|x + dx) differs greatly from p(y|x) then the divergence is large. The metric
can equivalently be formalized as defining the local metric matrix J(x), which
allows expressing the local distance in the form

d2
LM (x,x + dx) = dxT J(x)dx. (6.1)

The metric matrix stemming from the Kullback-Leibler divergence is the Fisher
information matrix, given as

J(x) = Ep(y|x)

[(
∂

∂x
log p(y|x)

)(
∂

∂x
log p(y|x)

)T
]
.

Defining the metric locally is a crucial step. A global metric would correspond
to just a linear preprocessing of features, since

d2(Wx1,Wx2) = (Wx1 −Wx2)T (Wx1 −Wx2) = (x1 − x2)T WT W(x1 − x2),

where WT W is the metric matrix. The locally defined metric, however, allows
changing the structure of the data space by varying the importance of different
features depending on x. Most data analysis methods still require global distances,
which are obtained by integrating the local distances from x1 to x2, traveling
through the path that gives the smallest distance. In practice, this naturally
requires approximations, such as the ones presented in Publication 6.

The learning metrics principle as such only characterizes the modeling task and
defines the distance measure. The idea can actually still be implemented in various
ways. In this thesis, two fundamentally different approaches are described. First,
a kind of a plug-in method based on explicitly constructing an approximation of
the global distances is presented, which allows using the new metric with most
existing distance-based unsupervised learning methods. In the section thereafter,
an approach that instead tailors a cost function to match the task of learning
metrics is described, leading to a more computationally efficient method at the
expense of generality.

6.2.1 Explicit metric estimation

The basic theory explained in the previous section, in principle, provides a metric
that can be used as a distance measure in any learning algorithm that is based on
distances between vectors in the x-space. In other words, it provides an approach
that can be used to change any unsupervised learning method into one that finds
dependencies with y. However, the approach has two difficult phases that require
a considerable amount of approximations and estimation.

First, the metric is defined through the Fisher information matrix that depends
on the conditional distribution p(y|x), which is naturally unknown. Yet we need
to be able to evaluate it for any possible x considered by the algorithm. If we want
to use the metric as a plug-in method for the distance calculation, then we need a
method for estimating the conditional probabilities.
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The second practical difficulty lies in computing the non-local distances. The
global distance between vectors x1 and x2 is given by the path integral of the local
distance (6.1), over a path that gives the smallest distance. As we are working in
an arbitrary real space with non-constant metric matrices, this is generally a very
difficult problem.

In the remainder of this section, we first introduce a practical approximation
developed for the explicit estimation of learning metrics distances, and then convert
two standard unsupervised learning methods into dependency-seeking variants by
using the learning metrics distance. Both the approximations and the resulting
methods are introduced in Publication 6. Illustrations of the metric itself can be
found for example in (Peltonen, 2004; Jensen, 2006). Jensen (2006) also compares
the learning metrics principle to other approaches using adaptive local metrics,
without using supervision from y. In a practical application of music retrieval, the
learning metrics outperformed the unsupervised variants.

Approximations

To compute the metric matrix J(x) we need to have an estimate of p(y|x) that
can be evaluated for any x. Furthermore, the estimate needs to be differentiable,
since the expression of J(x) includes the gradient of the log-probability. The
differentiability requirement rules out for example the density estimation methods
based on binning.

A simple and intuitive choice is to construct a joint density estimate for p(y,x),
and to use the Bayes’ rule (2.1) to derive p(y|x). In Publication 6, estimates of
the form

p̂(yi,x) =
K∑

k=1

πkψkie
− ‖x−µk‖2

2σ2

are used, where p(yi,x) indicates the probability of y paired with a particular x
having value i,

∑
i ψki = 1 parameterizes the distribution of y given component k,

and
∑

k πk = 1 are weights of the components. Furthermore, µk are the cluster
centroids for x, and σ2 is a shared variance parameter. In other words, we consider
a generative model where the primary data comes from a mixture of (spherical)
Gaussians, and each mixture component samples the auxiliary variables from a
discrete distribution.

Such an estimate can be optimized either by maximizing the joint likelihood∏
p(y,x), or by directly maximizing the conditional likelihood

∏
p(y|x). In the

case of the joint likelihood, the model is called mixture discriminant analysis
(MDA), and Hastie et al. (1995) present an EM algorithm for optimizing it. For
directly optimizing the conditional likelihood, a gradient-based scheme optimiza-
tion strategy is given in (Peltonen et al., 2002a). In Publication 6, it is shown that
in practice using the conditional likelihood as the fitting criterion usually outper-
forms joint modeling, despite using a somewhat simplified model (πk = 1/K ∀k).
In earlier work (Kaski et al., 2001; Peltonen et al., 2002a), also a Parzen-based es-
timate and an estimate formulated as a product of experts (Hinton, 1999) were
used, but they are not considered here due to their computational complexity and
poor performance.

Given a suitable density estimate, we can compute J(x) and thus define a local
distance in a vicinity of any given x. Unfortunately, this does not directly give
global distances, and computing the actual path integrals is typically infeasible. It
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6.2. THE LEARNING METRICS PRINCIPLE

is, however, relatively easy to devise approximations of varying complexity. Here,
the examples considered in Publication 6 are summarized.

The simplest approach, introduced by Kaski et al. (2001), is to assume that
when computing distances from a certain point x1, the metric matrix J(x) is con-
stant and equals J(x1) everywhere. From this it follows directly that the shortest
path is the straight line between the points, and the squared distance is given as
the Mahalanobis distnance

d2
1(x1,x2) = (x2 − x1)T J(x1)(x2 − x1).

This approximation is only accurate for reasonably short distances or simple met-
rics.

A more accurate, but still computationally reasonably simple approximation
is obtained by assuming that the shortest path equals the shortest path in the
Euclidean metric (i.e. the straight line), but allowing J(x) to change along the
path. This changes the integration into a one-dimensional integral, for which
numerical integration is straightforward. In principle, any numerical integration
method could be used; the simplest one is to split the line into T pieces and make
the constant-value assumption within each piece. This gives

dT (x1,x2) =
T∑

t=1

d1(x1 + (t− 1)/Tv12,x1 + t/Tv12),

where v12 = x2−x1, as the final distance. This is called the T -point approximation,
noting that the local approximation is a special case of this with T = 1.

Finally, a yet more accurate approximation is obtained by also relaxing the as-
sumption of a straight path. Given a set of points in the x-space, we can compute
all possible pairwise distances between the points (using the T -point approxima-
tion), and create a directed graph based on these. The points are nodes of the
graph, and the distances define weights for the edges. The Floyd’s algorithm, for
example, can then be used to find the shortest path through such a graph. In prin-
ciple, the set of nodes could be freely chosen, but in practice it is a good idea to
use the actual data samples. This makes distance approximations more accurate
in regions where the data is dense, and does not waste computational resources on
areas with little data (where a density estimate would necessarily be inaccurate as
well).

Self-organizing maps in learning metrics

Self-organizing map (SOM) (Kohonen, 2001) is an unsupervised neural network
algorithm for visualizing and clustering vectorial data. The SOM consists of an
ordered lattice, usually a two-dimensional grid, of units, also called model vectors.
The data is represented by mapping each sample into the model vector that is
closest to the sample, and the map is learned so that the model vectors close
to each other on the lattice are similar. Even though the data representation is
comparable to a simple clustering model, such as K-means, the SOM is a stronger
data analysis tool as it aims to retain the topology of the data through the ordering
on the lattice.

The simplest way to learn a SOM is to use an iterative learning procedure,
where a single data point is presented to the map at a time. First, the closest
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model vector, the best matching unit (BMU), is selected by

w(x) = arg min
i
d(x,mi),

where mi denotes the ith model vector, and d(·, ·) is some distance measure, typ-
ically the Euclidean distance. After selecting the BMU, the model vectors in the
lattice are updated towards the data sample, so that the BMU is moved most. Also
nodes that are close to the BMU on the lattice are moved, and their updates are
governed through a neighborhood function h(i, j). The update rule can be written
as

mj(t+ 1) = mj(t) + α(t)h(w(x), j)(x−mj(t)),

where α is a learning parameter which is slowly decreased during learning. The
neighborhood function is a decreasing function of the distance in the lattice, for
example a Gaussian. In practice, a more efficient algorithm, called the batch
algorithm, is obtained by updating the model vectors only after mapping all of the
data samples, but the basic idea remains the same.

Learning a SOM in the learning metrics is intuitively straightforward. As the
algorithm is based on simply finding the closest model vector and then updating
the model vectors, all we need to do is to replace the distance function in the BMU
selection by the learning metrics distance. In addition, the update rule needs to
be replaced by the natural gradient (Amari, 1998), but it turns out (Kaski et al.,
2001) that the actual update rule is still identical for the approximations assuming
a straight line for the shortest path.

A remaining step is to choose which approximations to use. In the iterative
SOM algorithm, each iteration involves M distance computations, where M is the
number of map units. Each of these is computed starting from the same point, x.
Hence, computing the one-point distance where the metric matrix is assumed to
be constant is very efficient, as the metric matrix needs to be evaluated only once.
This distance approximation was used in (Kaski et al., 2001), together with a den-
sity estimate based on maximizing the joint density. In Publication 6, it is shown
that, in practice, better results are obtained by optimizing the density estimate
using the conditional likelihood, and that using the more complex T -point distance
approximation also provides more accurate results. The computational burden can
be reduced, if necessary, with a speed-up where more accurate distances are only
computed to the best W candidates chosen based on the simpler approximation.

The SOM in learning metrics can be applied to most scenarios where the clas-
sical SOM is applicable. Considering the huge literature of SOM applications (see
Kaski et al. (1998); Oja et al. (2003); Pöllä et al. (2006)), it is not worthwhile to
list those here, but it is good to make a remark about the practical restrictions.
First, in order to be able to use the learning metrics principle, one needs to be able
to give the additional information in the form of a categorical variable, typically
as some kind of a class variable. The second restriction comes from computational
cost; it is not feasible to estimate the T -point distances for large data collections
or maps. In practice, SOM in learning metrics has been applied for the analysis of
financial data (Kaski et al., 2001) and in bioinformatics applications (Kaski et al.,
2003).
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Multidimensional scaling in learning metrics

Metric multidimensional scaling (see Borg and Groenen (1997)) methods are used
to visualize high-dimensional data sets in a low-dimensional space, usually on a
two-dimensional plane. The idea is to find new representations for the samples
so that pairwise distances are preserved as accurately as possible. Typically, the
approach is non-parametric in the sense that no assumptions on the mapping are
made. Instead, the locations of all representations are optimized independently.

Sammon’s mapping (Sammon, Jr., 1969) is a typical MDS method, defined
with the cost function

ES =
N∑

i=1

N∑

j=i+1

(dij − oij)2

dij

where dij denotes the distance between samples i and j in the original data, and
oij is the distance between the samples in the output space. As the distances
are scaled with the original distances, the method focuses on getting the shortest
distances modeled accurately. Given a matrix of pairwise distances in the original
data space, the mapping can be computed by minimizing the cost ES by, for
example, the steepest-descent method or other gradient-based methods.

Moving from a standard, Euclidean, Sammon’s mapping to Sammon’s mapping
in learning metrics is again conceptually easy. All we need to do is to replace the
distances dij by those that are computed in learning metrics. As each distance
needs to be computed only once, it is feasible to use more accurate approximations
compared to the SOM case. In particular, using the graph-based approximation
allowing piecewise linear shortest paths is now computationally possible. In Publi-
cation 6, Sammon’s mapping in learning metrics is studied both with the T -point
approximation and the graph-based approximation, using different values of T .
The graph approximation provides consistently, though not by a very wide mar-
gin, better results in keeping the samples of the same class close to each other.
Both approximations clearly outperform the Sammon’s mapping in Euclidean met-
ric, which is understandable as the standard mapping ignores the class information
completely.

The Sammon’s mapping is here illustrated from a point of view that aims at
representing general properties of the learning metrics idea. In Figure 6.1, the
learning metrics and Euclidean metric are compared in the task of finding a one-
dimensional mapping of two-dimensional data. In addition, a comparison metric
that uses the auxiliary information to define global distances directly based on the
Kullback-Leibler divergence is presented in order to demonstrate the importance of
defining the metric locally. For details of the comparison method, see Publication 6.

6.2.2 Dependencies through conditional density

Discriminative clustering

An alternative approach to learning metrics is to start from the same setting and to
construct a method that achieves similar properties without explicitly approximat-
ing distances in the learning metrics. One such approach is taken in discriminative
clustering (DC) (Sinkkonen and Kaski, 2002), which seeks to cluster the primary
data so that the cluster indices are informative about the auxiliary variable. This
approach resembles more closely the approach of Chapter 3, since the dependency
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Figure 6.1: An illustration of learning metrics and of the importance of defining the metric locally.
The subfigure (a) presents two-dimensional data set with two possible auxiliary variables marked
with different symbols. The dots represent a background class, whereas the circles mark the other,
here called foreground, class. The task is to visualize the data with a one-dimensional mapping so
that the areas of homogeneous auxiliary variables are displayed together, which is satisfied with
the learning metrics result in subfigure (c); the two clusters of the foreground class are separated
to opposite ends of the visualization, whereas the background class is grouped together in the
middle. A comparison method using the class information but ignoring the topology, shown in
(b), groups the two separate regions of the foreground to one end and the background to the other
end. It has thus lost the topological knowledge of the class being separated into two parts. The
Sammon’s mapping in Euclidean metric, shown in (d), is not able to make any clear separation
between the classes, as expected. The subfigures (b-d) present normalized histograms of the two
classes along the one-dimensional Sammon’s mapping. Black bars correspond to the background
samples, whereas white bars are for the foreground samples. c© 2004 Elsevier. Reprinted with
permission.

between y and a mapping of x is explicitly measured and maximized. However, it
is still possible to prove a connection to the learning metrics.

The clustering model is defined as the classical K-means clustering: Each sam-
ple is assigned to the cluster whose prototype vector mi is the closest. Hence, each
cluster prototype defines a Voronoi region Vi, i.e. a region in the data space where
that prototype is closer than any other prototype. Each cluster also has an asso-
ciated distributional prototype ψi, which is a discrete distribution for the auxiliary
variable within that cluster. The model is thus a piecewise-constant generative
model for y conditioned on x.

The original formulation of the algorithm (Sinkkonen and Kaski, 2002) consid-
ers the task of minimizing the Kullback-Leibler divergence between the prototypes
and the true conditional distribution, averaged over the Voronoi regions, that is

ESDC =
K∑

i=1

∫

Vi

dKL (p(y|x), ψi) p(x)dx. (6.2)

The cost is optimized with a stochastic gradient method, and SDC in the cost
stands for stochastic DC. This is equivalent to maximizing the mutual information
between the cluster indices and the auxiliary variable. It has also been shown
(Kaski and Sinkkonen, 2004) that the task is asymptotically equivalent (for large
data) to performing vector quantization in the learning metrics, with the restric-
tion that the Voronoi regions are still defined in the Euclidean metric. It is possible
to relax that restriction, but it leads to a rather computationally heavy algorithm
(Salojärvi et al., 2003). Extending the model outside real spaces is also possible;
Peltonen et al. (2002b) present a discriminative clustering model for text docu-
ments represented in the bag-of-words form.

In practice, we need not consider the formulation involving Kullback-Leibler
divergence, but we can instead use traditional probabilistic learning. Maximiz-
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ing the conditional likelihood of the implied generative model is asymptotically
equivalent to (6.2), but the likelihood is more justified and easier to handle for
finite data. Using the conditional likelihood as the optimization criterion, as is
done in Publication 7, also makes the connection to the rest of the thesis more
explicit, since the optimization criterion is directly the dependency between the
cluster index and the auxiliary variable.

The final outcome of the model is the clustering of the primary data space,
and thus the distributional prototypes ψi are not actually needed. Following the
standard Bayesian approach, we integrate such nuisance parameters out, which
can be done analytically by assuming a Dirichlet prior. The integration leads to
the marginalized conditional log-likelihood

EDC =
∑

i,j

log Γ(n0
j + nij)−

∑

j

log Γ(N0 +Ni) + constant, (6.3)

which can also be interpreted as the posterior distribution of the cluster centroids
if an improper prior p(m) ∝ 1 is used. Here, nij denotes the number of samples
in cluster i having the jth auxiliary value, and Ni =

∑
j nij . N0 =

∑
j n

0
j are the

parameters of the Dirichlet prior. As shown in (Sinkkonen et al., 2002), this formu-
lation is equivalent to maximizing a Bayes factor (3.3) measuring the dependency
between the cluster indices and the auxiliary data.

The cost function only depends on the counts of samples within the clusters,
which makes it non-differentiable and, consequently, difficult to optimize. This is
overcome by introducing smoothed membership functions

yi(x) ∝ exp
(
−‖x−mi‖2

2σ2

)

that result in the final cost function being expressed in terms of smoothed counts
ñij , computed by summing yi(x), instead of the counts of the discrete occurrences.
This allows computing the gradient with respect to the model vectors, and hence
the optimization with any gradient-based optimization method. In Publication
7, it is shown that gradient-based optimization of the smoothed version gives
comparable or better results than what is obtained by directly maximizing the non-
differentiable cost with an approach based on simulated annealing (Kirkpatrick
et al., 1983), but it is computationally much more efficient. Both algorithms
operating on the marginalized cost (6.3) also outperformed the original stochastic
algorithm of Sinkkonen and Kaski (2002) in most scenarios.

In Publication 7, we also present two regularization approaches to control the
overfitting of the DC model. The first stems from a practical observation made
during the development and use of the model; the algorithm occasionally leads
to local optima where some prototype vectors are pushed away from the actual
data, eventually resulting in them containing few or no data samples. This is an
undesirable property if the target is to obtain a certain number of clusters, and thus
a straightforward regularization can be implemented by penalizing such solutions.
In practice, the penalization is done by adding a term measuring the entropy of
the number of samples in clusters, weighted by a free parameter controlling the
amount of regularization.

A theoretically more interesting regularization method is obtained by changing
the modeling task so that is also takes the primary data into account. The basic
DC cost (6.3) only involves the conditional distribution p(y|x), ignoring the density
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of x within the clusters. Changing from a conditional model to a generative model
for both x and y,

p(y,x|{m}, {ψ}) = p(y|x, {m}, {ψ})p(x|{m}),
allows taking also the structure of x into account. In Publication 7, a mixture of
Gaussians (MoG) is used as p(x|{m}). Gaussians with a shared covariance matrix
of the form λI are used, both to simplify the computation and to yield a model
with only one tuning parameter, λ. A larger λ means that less weight is given for
the regularizer, with λ = ∞ corresponding to the unregularized version.

Interestingly, the shift from the conditional model to the joint model in the
directed case can be paralleled to changing from the explicit dependency maxi-
mization techniques (Chapter 3) to searching for symmetric dependencies using
generative models (Chapter 5). In both cases, the former approach ignores a part
of the variation in the data collection, the distribution of the data given the latent
variable, while the latter models all observed data.

In Chapter 5, we explained that a joint model only finds dependencies correctly
when the distributions of x and y given the latent variables are correct. In the
case of DC, the equivalent of that requirement would be that the generative model
p(x|{m}) needs to be correct, and otherwise moving from the pure DC cost to the
joint model will eventually result in an incorrect solution if the amount of regu-
larization is increased. With the MoG regularization, the assumption is that the
data follows the normal distribution within each cluster, which is a too restricted
assumption, especially when the covariance is assumed spherical and identical for
all clusters. Furthermore, to move from a regularization interpretation to a model
equivalent to the joint approach in the symmetric case, we would also need to learn
the covariances of the mixture model to fit the data.

In fact, it turns out that the variational Bayes clustering model presented in
Chapter 5 can be used to solve a task relatively similar to DC. If the auxiliary
variable y is continuous instead of discrete, the clustering model is readily appli-
cable. It clusters x and y jointly so that the covariance between x and y is forced
to be zero, resulting in a clustering result that closely corresponds to the DC so-
lution. It is still assumed that the data within each cluster comes from a normal
distribution, but now the covariance matrix is fully parameterized. Modifying the
method to allow discrete y would be relatively straightforward, essentially leading
to a Bayesian version of the mixture discriminant analysis by Hastie et al. (1995).
Interestingly, MDA (with restricted covariances) is used as a comparison method
for DC in Publication 7, where it was shown to be inferior compared to DC in cap-
turing the dependency between x and y with the cluster structure. Relaxing the
restrictions on the covariances while also having a fully Bayesian method could,
however, provide a practically applicable method.

Informative components

Also linear components aiming at capturing dependencies with an auxiliary vari-
able have been presented. Some methods for the task are discussed here, due to
the close connection to the CCA approach in the symmetric case.

The classical unsupervised linear projection method is principal component
analysis (PCA) (Hotelling, 1933), which searches for projection directions with
maximal variance. For supervised analysis the corresponding method is linear dis-
criminant analysis (LDA) (Fisher, 1936), which finds linear projections maximally
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separating classes assumed to follow the normal distribution. Between these two
extremes lies the supervised unsupervised variant, here called informative compo-
nents (Peltonen and Kaski, 2005). It searches for linear projections of x such that
the dependency between the projections and the categorical y is maximized.

The dependency is here measured with the conditional likelihood, like in the
case of DC. As y is fixed, it corresponds to maximizing the mutual information.
In (Peltonen and Kaski, 2005) and (Goldberger et al., 2005), approaches based on
non-parametric estimation were presented, using Parzen kernel estimates for pre-
dicting the class densities. Peltonen and Kaski (2005) also show how the method
is connectd to the learning metrics principle. These methods are direct counter-
parts for the symmetric DeCA presented in Chapter 3 and Publication 1. Peltonen
et al. (2007) introduce a version using a MoG for the density estimation, instead
of Parzen kernels, to improve computation time for large data sets. Another re-
lated method, also based on Parzen kernels but using a different approximation
for mutual information, is given in (Torkkola, 2003).

6.3 Other approaches

6.3.1 Information bottleneck

In Chapter 3, the information bottleneck (IB) framework was mentioned when
discussing approaches to the symmetric case. IB was originally proposed for the
directed case, and is hence treated here in slightly more detail.

The basic IB (Pereira et al., 1993; Tishby et al., 1999) considers the task of
clustering a single variable X so that the cluster indices Sx are informative of Y .
The fundamental task is thus the same as in DC. The main difference is that IB is
defined for discrete variables, and can thus use a somewhat different formulation
for the actual clustering criterion. In DC, it was assumed that samples falling into
a single Voronoi region are clustered together, thus defining an explicit structure
in the input space, whereas IB considers the task of clustering as the minimization
of the mutual information between the cluster indices and the original variable.

In general, a clustering task formulated as minimizing I(X,Sx) needs to be
constrained in order to avoid the solution of having all data grouped into a single
cluster. This can be done by adding a term that measures the distortion between
X and Sx. The distortion measure can be chosen in several ways, and in IB the
distortion is extracted from the auxiliary variable. The task is then to minimize
the cost

EIB = I(X,Sx)− βI(Sx, Y ),

which is essentially a tunable compromise between compressing X and being in-
formative of Y . A value of β = 0 reduces this to pure clustering task with no
restrictions on the quality (and no connection to Y ), whereas β = ∞ corresponds
to maximizing the mutual information between the clusters and the auxiliary data.
That is, with β = ∞ the task is the same as in DC. In DC the solution is con-
strained by the topology of the continuous x-space, whereas IB requires finite β
to constrain the solution through the first term in the cost EIB .

The IB clustering can be solved with several methods, for example by using an
agglomerative algorithm by Slonim and Tishby (2000), or a sequential algorithm
by Slonim et al. (2002). Peltonen et al. (2004) extend the latter to the small sample
case, by replacing the mutual information with the Bayes factor.
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6.3.2 Clustering with pairwise constraints

The fundamental task discussed in this chapter is focusing unsupervised learning
on more relevant ascpects of the data. In the learning metrics principle, the rele-
vance is determined through dependencies between x and y, but it is also possible
to use other forms of prior information. One alternative approach is based on
explicitly constraining the solutions of the learning methods based on pairwise re-
lations between the data samples, which has been extensively studied in the case
of clustering models (Basu et al., 2002; Lu and Leen, 2007a,b). If we know that a
certain relation between two samples holds, then a result that retains the relation
is likely to be more informative.

Many clustering methods using pairwise relations use the same basic approach.
The clustering of x is constrained by additional information indicating that certain
samples need to be in the same cluster (must-link) or that they are not allowed to
be in the same cluster (cannot-link). These constraints may be either hard (Basu
et al., 2002) or soft (Lu and Leen, 2007b). Typically, the models are formulated
as extensions of the K-means of MoG, but also methods based on discriminative
learning and more complex latent variable structures have been proposed (Lu and
Leen, 2007a).

Intuitively, these methods are relatively close to DC, both seeking to cluster x
given some additional information, and the main difference lies in the form of the
additional information. Fundamentally, the feasibility of the approaches depends
on the nature of the application and on the available prior information. From a full
classification, it would be possible to derive a set of soft constraints, allowing the
use of constrained clustering algorithms to mimic DC, but it is unlikely that such
a solution would be better in practice. DC, on the other hand, is not applicable
to situations where only a potentially small number of pairwise constraints is
available.

58



Chapter 7

Summary and conclusions

In this thesis, we consider the task of focusing exploratory data analysis methods
to properties deemed relevant by the person doing the analysis. The relevance
is here determined through statistical dependencies between data sources, based
on the assumption that the information shared by two or more sources chosen
by the analyst is more relevant. We cover two different data analysis settings in
which this idea can be applied, discussing the theory behind these approaches and
introducing several practical methods that stem from the underlying theory.

The more straightforward setting is: Analyze a single multivariate data source
so that the dependencies between the samples and a categorical auxiliary variable
are emphasized. That is, we assume that structure in the data being analyzed
is more relevant if there is corresponding structure also in the auxiliary source.
In this thesis, three different methods based on the learning metrics principle are
introduced and empirically compared to alternative approaches. The learning met-
rics principle uses the dependencies to define a new distance measure, which can be
used with most unsupervised learning methods. Two of the methods, discrimina-
tive clustering and self-organizing map in learning metrics, are not novel, but both
are improved considerably in this work by providing better approximations and op-
timization schemes, yielding more accurate results. The third method, Sammon’s
mapping in learning metrics, is novel.

In the other setting, the task is to symmetrically analyze two or more data
sources with co-occurring samples. The relevance is defined as the variation shared
by the sources, and the dependencies are used to formulate a data fusion approach
for exploratory data analysis: Combine the data sources so that variation in com-
mon between them is enhanced. An alternative view is that the data sets supervise
each other. Two different learning strategies for this task are considered. First,
the task is formulated as finding representations that maximize a dependency cri-
terion. A novel method of dependent component analysis is proposed, and a way
of using canonical correlation analysis as a preprocessing method in a data fusion
setting is discussed. Second, Bayesian generative models that capture the depen-
dencies are introduced. We first present a general model structure and discuss the
conditions under which the models will find the dependencies, and then introduce
three novel models for different settings. Bayesian generative models for detecting
statistical dependencies in this sense have not been considered before.

As explained above, a number of novel and practically applicable methods and
models are introduced. These methods are summarized in Table 7.1, listing for
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Method Setting Criterion Chap. Publ.
Dependent component
analysis

symmetric non-parametric es-
timate of mutual
information

3 1

CCA for data fusion symmetric generalized corre-
lation

4 2

Probabilistic/Bayesian
CCA

symmetric likelihood/posterior 5 3, 4, 5

Dependency clustering symmetric likelihood/posterior 5 3 and 4
Local dependent com-
ponents

symmetric posterior 5 5

SOM in learning met-
rics

directed local metric 6 6

Sammon’s mapping in
learning metrics

directed local metric 6 6

Discriminative cluster-
ing

directed conditional likeli-
hood

6 7

Table 7.1: A summary of the novel computational methods and models presented in the thesis.
For each method the setting (symmetric or directed) and the optimization criterion are listed, as
well as the chapter and publication discussing the method. Strictly speaking, “local metric” is
not an optimization criterion, but it refers here to the fact that the novel contribution in those
methods is an application of a locally defined metric. The cost function remains the same as it
is for the traditional versions of the corresponding methods. “Posterior” refers to the method
being based on approximating the posterior distribution of the whole solution space. At a more
detailed level, the Bayesian CCA and the local dependent components use Gibbs sampling for
inference, while the clustering model uses variational approximation.

each method the setting and the optimization criterion, together with instructions
on where to find the description of the method. The methods are listed in the
order they are discussed in this introductory part of the thesis.

7.1 Future research directions

The work done in the thesis has two obvious main future directions. First, the
theoretical work could be continued, and secondly, the methods could be applied
into practical real-life data analysis cases. Some potential application fields were
listed in Chapter 3, and all of the methods developed in the thesis would fit to
many of those applications. Here, we concentrate on the potential advances on the
theory side.

An obvious extension would be to continue the work on the Bayesian theory
of dependency modeling. In this thesis, the data set–specific variation is always
assumed simple enough, so that we can marginalize the data set–specific latent
variables out in closed form. The possibility of using approximate marginalization,
utilizing any of the available Bayesian inference techniques, would need to be
studied. With approximative marginalization, considerably more complex model
families could be considered.

At the level of practical methods, the thesis calls for further development in
at least the following scenarios. First, the dependent component analysis method
described in Section 3.2.2 could be improved by considering parametric estimates
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instead of non-parametric ones, like was done in (Peltonen et al., 2007) for the non-
symmetric variant of the method, allowing faster optimization and hence wider
applicability. Work on this is currently in progress. Second, a fully Bayesian gen-
erative treatment of the discriminative clustering (Section 6.2.2) would provide
a novel version of the mixture discriminant analysis. Finally, novel dependency-
seeking generative models could be derived by changing the distributional assump-
tions, made possible by the approximative marginalization of data set–specific
latent variables.
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