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Abstract

Tackling the major Internet security, scalability and mo-
bility problems without essentially changing the existingIn-
ternet architecture has turned out to be a very challenging
task. The overlay routing approaches fortunately seem to
offer a sound way to mitigate most of these issues. Ba-
sically, they decouple the end-point identifiers from loca-
tors by defining a new namespace. Overlay routing is based
on the dynamic binding, at middle-boxes, between the two
namespaces. The approach is very close to Network Ad-
dress Translation (NAT) principles. Therefore, the IPsec
NAT traversal related problems apply also to overlay archi-
tectures. In this paper, we integrate IPsec into the overlay
routing using Security Parameter Index (SPI) multiplexed
NAT (SPINAT). Our approach reduces tunneling overhead
and supports asymmetric communication paths. We believe
that the SPINAT will be a key component in securing over-
lay routing infrastructures, like in the Internet Indirection
Infrastructure (i3).

1. Introduction

Overlay routing infrastructures (e.g. [34][2][26][37]
[6][9][11][12]) introduce a new logical protocol layer that
translatesend-point identifiersinto IP addresses. It must
be noted that it is not universally agreed that a new layer
is needed, nor that overlay routing infrastructures can or
should be understood as a new layer. Thus, perhaps the
idea of using a new namespace for end-point identifiers is
much more important than the proposed logical layer. The
new layer is just one particular way of implementing the
new architectures. The end-point which holds a particular
identifier is typically a host, but can basically be a smaller
entity, like an application, or a larger entity, like a computer
cluster[6][9].

In some overlay routing infrastructures[26], transport
layer sockets are no longer bound to IP addresses, but
to separate end-point identifiers[31]. This is also called
identifier-locator splitting[19]. This dynamic one-to-many

binding between end-point identifiers and locators results
in mobility[44] andmulti-homing[19]. Once the end-point
identifier has cryptographical properties[24] [28], it is fairly
easy to secure the mobility management messages needed
to update this binding[4].

Overlay routing is based on the resulting end-point iden-
tifier namespace. Although, using a flat end-point identifier
namespace for routing compels the overlay routers to estab-
lish a state for each listening end-point. This is the trade-
off compared to stateless legacy routers[5] and structuralIP
addresses. However, the required state for IP address trans-
lation makes overlay routing and rendezvous servers even
more similar to Network Address Translation(NAT)[32].
This easily involves problems with IPsec traversal through
overlay routers. Instead of using UDP-tunneling[1], we
have taken a fresh start and present Security Parameter In-
dex (SPI) multiplexed NAT (SPINAT). SPINAT is an at-
tempt to integrate IPsec into overlay routing infrastructures.

The tendency towards large scale Distributed Denial-of-
Service (DDoS) attacks in the Internet has moved the focus
on research from end-to-end control plane design to overall
architectural design. This concerns also the IPsec design.
Some IPsec control plane protocols are aimed to protect the
responding parties from different kind of DoS attacks (e.g.
[3][28]). However, protecting hosts from CPU and memory
exhaustion attacks do not prevent malicious nodes to im-
plement flooding attacks. In other words, an attacker can
try to implement a DoS situation by causing payload traf-
fic to flood the victim’s local network. A variety of over-
lay routing architectures offer location privacy to end-points
(e.g. [33]), which partially protects end-points from DDoS
attacks. The end-points can control their incoming traffic
flows (e.g. [37]) and mitigate the flooding effects. Thus, in-
tegrating IPsec into overlay routing indirectly increasesthe
DDoS resistance of IPsec.

We present SPINAT as a building block for different
overlay architectures, without binding it to any specific ap-
proach. Although, a reader who is, e.g., familiar with Inter-
net Indirection Infrastructure (i3)[34] can safely think that a
SPINAT device corresponds to an i3 node. Our SPINAT
experiment results are based on a Host Identity Protocol



(HIP)[28] implementation.
The rest of this paper is organized as follows. In Sec-

tion 2, we present related overlay routing work. Section 3
contains analysis about the security problems related to the
current NAT practice. In Section 4, we present our SPINAT
approach. The security implications of SPINAT are dis-
cussed in Section 5. Section 6 contains SPINAT experiment
results. Finally, Section 7 concludes the paper.

2 Related Work

In a way, legacy IP routing and overlay routing are func-
tionally similar, but at different layers in the stack. A legacy
router[5] translates link layer addresses while an overlay
router translates network layer addresses. A legacy router
uses the IP addresses as routing table identifiers, used to
guide link layer address translation. Using the same logic,
the overlay router uses the end-point identifiers for network
layer address translation (e.g. IPNL[13], DataRouter[36]).
The situation is illustrated in Figure 1 a) and b).

Furthermore, port multiplexed NAT (NAPT)[32] devices
use the transport layer identifiers as static identifiers in the
network layer address translation. However, the situation
is made a little bit untidy by the fact that current transport
layer identifiers consist of both IP addresses and ports. In
practice, the namespaces are not separated of each other, but
they partially smear together (see Figure 1 c). The analogy
between the overlay routing and NAT is evident. Both of
them translate IP addresses, but use different namespace for
mapping.

The common thing with IP routing, overlay routing and
NAT is that they all use an upper layer namespace to guide
lower layer address translation. To generalize this observa-
tion, we can say that the layer-n+1 namespace is used to
guide layer-n identifier translation. Table 1 contains some
commonly used definitions for identifier translation at dif-
ferent layers.

From the overlay routing infrastructure point of view one
interesting remark is related to the layer-4 identifier trans-
lation. The layer-4 identifiers are used for end-point iden-
tifiers. Dynamically changing end-point identifiers results
in authorization and delegation of signaling rights between

Ln identifier translation definition
L1 switching
L2 routing
L3 NAT / overlay routing
L4 ALG / delegation

Table 1. Definition of identifier translation at
different layers.

end-points (see [37][25]). However, layer-4 identifier trans-
lation is out of this paper’s scope, but binds the overlay rout-
ing smoothly to delegation based architectures.

One frequently cited overlay routing architecture is the
Internet Indirection Infrastructure (i3)[34][44]. i3 defines
an overlay routing mechanism for multicast, anycast, and
mobile communication. Packets are always routed from
the sender to the receiver via rendezvous servers, calledi3

nodes. Overlay routing is based on a new end-point identi-
fier namespace. The end-point identifiers can be any fixed
length hash values having two kinds of semantics. They are
used as global end-point identifiers and for table indices in
overlay routing. However, thei3 architecture uses the ex-
isting Internet routing infrastructure to deliver packetsbe-
tween thei3 nodes.

The i3 nodes act as overlay routers for the end-point
identifiers, delivering packets to the listening receivers. In a
typical case, a receiver registersa trigger, to an i3 node, to
listen to traffic. The trigger contains an end-point identifier
and an IP address of the receiver. The identifier may belong
to a single receiver or it may represent a group of receivers.
The i3 layer is a self-organizing network that applies Dis-
tributed Hash Tables (DHTs) for implementing a distributed
directory service (see e.g.[35][43][15]). In addition, several
DHT security issues are analyzed by Castro et. al. in [8].

i3 suffers from the basic security vulnerabilities that are
related to location updates and confidentiality protectionof
the traffic. However, Stoica et.al. [34] propose that the host
identifiers can be generated from public keys, and public
key cryptography can be used to secure thei3 architecture.
That is very similar to what the Host Identity Protocol (HIP)
offers [28].

Adkins et.al. solve several security vulnerabilities re-
lated to i3 in their security enhanced approach, called
Secure-i3[2]. The Secure-i3 defines a way to mitigate the
most essential security issues in the overlay routing. How-
ever, Secure-i3 is a framework that does not go into protocol
level details. Nikander et.al. have continued the work by de-
signing Host Identity Indirection Infrastructure (Hi3)[26].

Hi3 is an instantiation of Secure-i3 architecture that im-
plements the required security properties at the protocol
level design. Hi3 combines ideas from Secure-i3[2] and
HIP[28], producing an architecture that is more secure and
efficient than either of the two approaches alone. Hi3 is
based on the observation that a DHT extended HIP ren-
dezvous server and the basic Secure-i3 infrastructure are
fairly close to each other. In Hi3, the rendezvous server
forwards IPsec traffic between the end-points. In this pa-
per, we have continued the work and we present an effi-
cient way to integrate IPsec into Hi3 kind of approaches.
Basically, our approach can also be applied with other over-
lay routing infrastructures like DOA[37], a Layered Naming
Architecture[6], FARA[9], PeerNet[11], and UIP[12].
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Figure 1. Analogy between IP routing, overlay routing and NA T.

3 Perils of Legacy NAT

To motivate our SPINAT work, we have to consider the
problems related to the existing NAT devices. In the current
Internet, IP addresses are used both for identifying hosts and
naming their topological locations. This semantic overload-
ing is deeply related to most of the well-known Network
Address Translation (NAT) problems [16][23]. Since NAT
changes the IP addresses, and the IP addresses are used as
end-point identifiers, the end-host’s identity appears to be
changed at NAT traversal. In other words, the current NAT
practice does not only translate locators, but it also changes
the apparent identity of the communicating parties.

When a hostidentifier is only weakly bound to theiden-
tity [38], the host is vulnerable to anidentity theft. The
most prominent example of such IP level identity theft is
the ease of IP address spoofing. In a way, NAT takes ad-
vantage of the weak binding between an end-point identi-
fier and its locator. A NAT device transparently replaces the
end-point identifiers with new ones during connection ini-
tialization, and becomes a Man-in-the-Middle (MitM). As a
consequence, IP addresses cannot be used to identify hosts
behind a NAT device. This turns out to be a problem when
referrals are used at other layers in the protocol stack, for
example with the SIP protocol.

There are also other problems related to identifiers. Typ-
ically, a NAT device maps several private addresses to a sin-
gle public address using port information. This type of NAT
is usually known as port-level multiplexed NAT, or some-
times as Network Address Port Translation (NAPT)[32].
One reason for including port numbers in the translation
is the current shortage of public IP addresses. The IP ad-
dress overloading in NAPT may cause misidentification. A
peer node cannot find out whether it communicates with
the single host or a number of different hosts behind a sin-
gle NAPT device. Moreover, if a NAT device dynamically
changes its address mapping policy, the end-point identi-
fiers in the packets are changed, and all active connec-
tions will break. This situation is also known as site re-
numbering. The same problem appears if the NAT device is
mobile or needs to change its IP address.

Dynamic NAT binding allocation and packet filtering
make it impossible to contact end hosts behind NAT and

NAPT devices, if no other third party entities (such as
application servers or rendezvous servers) are used. For-
tunately, a couple of approaches have been presented to
solve the legacy NAT traversal problem using UDP tunnel-
ing, like STUN[30], TURN[29] and TEREDO[18]. STUN
is an IETF standard, while TEREDO is implemented
in the latest Windows XP operating systems to support
NAT traversal for IPv4/IPv6 networks. NUTSS[14] and
NATBLASTER[7] are proposals for establishing TCP con-
nections through NAT devices1.

The described approaches do not require modifications
to the existing and largely deployed NAT devices. However,
without incorporating additional logic into the middleboxes
and support of third party entities, certain protocol solutions
become tricky (e.g. hole punching) when both end hosts
are behind a NAT device. From the protocol design point
of view the UDP tunneling violates the TCP/IP layering,
wastes bandwidth, and makes the protocol implementation
gradually more complex.

Thus, the IETF MIDCOM working group has been
working on protocols that allow the end host to directly in-
teract with middleboxes in a path-decoupled fashion. More
recently work on path-coupled NAT/Firewall signaling pro-
tocols has been started in the IETF NSIS working group.
Path-coupled signaling aims to find middleboxes that are lo-
cated along a particular data path. It is obvious that existing
middleboxes need to be updated to support this functional-
ity.

Furthermore, if a host wants to publish its identifier in
the DNS, it must be the public IP address of the NAT de-
vice. This kind of separation between the actual end hosts
and their public identifiers easily introduces security vul-
nerabilities. From a security and reliability point of view,
an identity and the corresponding identifier should be al-
ways bound to the same end-point. IPsec is an example
of a protocol that suffers from the related NAT traversal
problems[1]. The current proposal is to use an UDP tun-
neling to pass NAT devices[20]. Although, the approach
unnecessarily increases packet size, and may cause config-
uration difficulties, e.g., in firewalls.

1Please note that many of these proposals reuse techniques developed
in the p2p filesharing and gaming community.
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4 SPI multiplexed NAT (SPINAT)

The new namespace used in overlay routing solves the
previously mentioned problems in a sound way. From the
logical point of view, the address translation in overlay rout-
ing is based on the global end-point identifiers. An end-
point identifier enabled NAT device translates IP addresses;
acting as an overlay router for the end-point identifiers.
However, to avoid enhancing the IP and IPsec packet head-
ers (e.g. by defining new IP options), the full end-point
identifiers (or hashes of them) are not meant to be carried in
the IP header. Instead, when IPsec is used the Security Pa-
rameter Index (SPI) value together with the destination IP
address can work asan index for end-point identifiers(e.g.
HIP[28]).

The address translation at a SPI multiplexed NAT
(SPINAT) device is based on the SPI value and the desti-
nation IP address carried in the IPsec payload packets. This
is illustrated in Figure 2. The SPINAT device establishes
a state for translation during IPsec control plane signal-
ing. In this paper, we extract the SPI exchange from the
key-exchange context. The SPI exchange, like the Diffie-
Hellman exchange, can be considered as a building block
to be applied in different kinds of key-exchange protocols.
Therefore, we do not focus on any specific protocol, like
IKE, IKEv2 nor on HIP exchange. Instead, our purpose is
to propose some design choices for the SPI exchange that
can be implemented as part of IPsec control plane signal-
ing.

4.1 State Establishment and Update

We propose that the IPsec control plane signaling is used
to registertriggers [34] and to establishcommunication
contextsat SPINAT devices. A trigger consists of an iden-
tifier and an IP address of an end-point. The communica-
tion context stores the required information to implement
the translation, like SPI values. Each receiver registers a
trigger to receive IPsec control plane messages containing
the end-point identifiers in the headers. An end-point can
register a trigger in two ways:

key exchange

Bob

Private network

m
ov

e

Alice

trigger reg.
2) transparent 

Transparent
SPINAT

Internet registration
1) explicit trigger

Public

3) end−to−end

SPINAT

4) Traffic filter reg.

Figure 3. Trigger registration at public and
transparent SPINAT devices.

1. it canexplicitly register a trigger at a public SPINAT
device using Security Association (SA) establishment
signaling, i.e. the key exchange (Figure 3-1)

2. it can transparently register a trigger at an on-path
SPINAT device during end-to-end SA update signal-
ing, i.e. the mobility exchange (Figure 3-2).

We will discuss in Section 4.1.3 how the SA update and
location update are strongly related to each other from the
SPINAT’s point of view. Once the receiver replies to the
initial trigger message, the SPINAT devices on the path
typically establish contexts for the communication session.
However, the receiver may also explicitly establish a com-
munication context at the SPINAT device where it has reg-
istered its trigger to. In other words, also the context can be
established in two ways:

1. An on-path SPINAT device can transparently establish
a contextduring end-to-end SA establishment signal-
ing (Figure 3-3).

2. The receiver mayuse an explicit protocol to register
IPsec traffic filterat a SPINAT device (Figure 3-4).

Figure 3 describes a situation where Bob wants to con-
tact Alice who moves from the public network to a private
network.

4.1.1 Explicit and Transparent Trigger Registration

Initially, (Figure 3-1) Alice establishes a security associa-
tion with her trusted rendezvous server, i.e. SPINATPublic,
located in the public network. SPINATPublic learns the
mapping between Alice’s identifier and IP address dur-
ing the exchange. Later (Figure 3-2), Alice wants also to
be reachable at the private network. However, Alice and



SPINATTransparent do not belong to the same adminis-
trative domain. The transparent SPINATTransparent de-
vice is located between the private and public networks.
In this case, the authentication is based on an assumption
that SPINATTransparent does not need to care about Al-
ice’s actual identity as long as the identity is the same dur-
ing the communication context lifetime. To avoid identity
theft and DoS attacks, Alice’s identifier should be derived
from a public-key, a hash chain, or a one-time random string
(Sections 5.1 and 5.3).

The semantics in the transparent trigger registration is
similar to STUN[30] and TEREDO[18]. Alice negotiates
an SA update exchange with her trusted SPINATPublic

through the SPINATTransparent. The SPINATPublic

learns the public address of the SPINATTransparent de-
vice, and updates the registered trigger. Further, the
SPINATTransparent transparently learns Alice’s identifier
and the private address. The mapping between the end-point
identifier and the IP address, at SPINAT devices, makes it
possible toinitialize connectionsin both directions. This
requires that public SPINAT devices implement DHT func-
tionality (e.g. Chord[35] or Tapestry[43]).

When a public key pair is used as a host identifier
(e.g.[28]), the host keeps the actual private key to itself,
but is reachable via the IP address of the SPINAT device.
From the security point of view, the situation is very dif-
ferent between a host inside a traditional NAT region and a
host inside a SPINAT region. In the former case, the host
implicitly trusts the legacy NAT device to represent the host
through the public identifier, i.e., the public IP address. In
the secure overlay routing case (e.g. Hi3[26]), the identity is
securely stored at the end-point; not at the SPINAT device.
Therefore, the SPINAT device cannot misuse the identity of
the host.

4.1.2 Communication Context Establishment

After Alice has registered her triggers to SPINAT devices
she is able to receive traffic. Once Bob starts a key exchange
with Alice, the SPINAT devices may either dynamically es-
tablish a communication context or require that Alice ex-
plicitly registers an IPsec traffic filter for the session (see
Figure 3-4). In the former case the initiator and in the latter
the responder establishes the context. The dynamic con-
text establishment does not require extra round-trips, but
does not either support traffic filtering. Therefore, if the
responder explicitly establishes a context for a session it
may protect itself from flooding. A more sophisticated ap-
proach is to move the decision point from the responder to
the SPINAT device using authorization (see DOA[37]).

The overlay routing topology may change dynamically
after the initial end-to-end SA establishment and packets
may start flowing via different SPINAT devices during the

same communication session. A change in the overlay rout-
ing topology and security association update must trigger
an end-to-end SA update signaling to assure that the new
transparent SPINAT devices on the path can establish states
and avoid SPI collisions. It is obvious that the SPINAT
based overlay routing comes closer to re-active ad-hoc rout-
ing [17].

4.1.3 Communication Context Update

The SPINAT device can map traffic between different ad-
dress realms and even between address families [40]. De-
coupling end-point identifiers from locators makes it possi-
ble to update SPI and IP address bindings dynamically with-
out breaking the transport layer connections at end hosts.
On the other hand, the address translation at SPINAT de-
vices is based on the destination IP address and the SPI
value. Therefore, there-keyingand re-addressingproce-
dures are similar from the SPINAT point of view.

It is a logical design choice to integrate the SA update ex-
change with mobility management signaling. The SPI value
is changed when a mobile node creates a new SA. On the
other hand, the IP address is changed when a mobile node
changes its topological location. It is good to notice that
the two events, re-keying and re-addressing, do not typi-
cally happen simultaneously. The only static information
related to a communication context at the SPINAT device is
the end-point identifier-pair. The SPINAT device must au-
thenticate each IP address and SPI binding updates to avoid
re-direction and DoS related attacks (see Section 5.3).

4.2 SPI Translation

In large networks, SPI collisions at SPINAT devices are
quite probable, compared to collision in large end-point
identifier namespaces. Therefore, SPINAT may work in two
different ways when an SPI collision happens. The device
can eithera) drop the key-exchange message carrying the
SPI valueor b) translate the SPI value on the fly. Both of
the approaches are based on an assumption that SPI val-
ues, included in the IPsec control plane signalingcannot be
encrypted2. In addition, in the latter case, the SPI values
cannot be signedin the IPsec control plane messagesnor
integrity protectedin IPsec payload packets. The security
implications of these requirements are discussed in Section
5.

2Currently defined key-exchange protocols, IKE and IKEv2, encrypt
the SPI values during the key exchange negotiation, and thereby make it
impossible for the SPINAT devices to learn the correct association between
SPI values and IP addresses.



Figure 4. SPI collision probabilities.

4.2.1 Avoiding Changes to IPsec ESP

If the SPINAT device drops a key-exchange message due
to an SPI collision, the initiator has to resend the message
including another randomly selected SPI value after a re-
submission timer goes off. In highly populated networks,
the SPINAT device may need to drop SPI exchange pack-
ets a couple of times before the initiator manages to gen-
erate an SPI value that does not collide. Basically, the
SPINAT device may send an ICMP packet to the initiator to
inform about the collision and about available SPI values.
However, the initiator should not directly trust an unsigned
ICMP message as it may be generated by a malicious node.
Instead, the initiator should first let the resubmission timer
go off and then send the proposed SPI value in the new mes-
sage. However, if the initiator receives several ICMP pack-
ets carrying different SPI values, it should generate a new
random SPI value by itself.

The number of SPINAT devices on the path and number
of existing contexts at the devices define the probability of
finding an SPI value that is available at each device (see
Figure 4 a)3. It is interesting to notice that the probability of
finding a free SPI value at a single SPINAT device in Figure
4 b) increases controversaly in the same ratio as in Figure 4
a), but in function of retries. A SPINAT architecture without
SPI translation support does not scale well, as illustratedin
Figure 4 c).

4.2.2 Changing IPsec ESP Integrity Protection Com-
putation

Scalable overlay routing should support SPI translation to
avoid several extra round-trips caused by SPI collisions. In
practice, SPINAT may work in the same way as NAPT[32].

3The probabilities are based on assumptions that the end-host selects
randomly its SPI values and the contexts do not depend on eachother at
the different SPINAT devices.

This requires changes to the current IPsec ESP practice[21];
unlike the previous approach. If a specific SPI is already
in use, the SPINAT device replaces the value with a new
one carried in the IPsec control plane message and in the
subsequent IPsec ESP headers. The most important differ-
ence between SPI and port based multiplexing is that an SPI
value identifies a Security Association (SA) in the network
layer, while the port number is used to identify a socket at
the transport layer. The implications of changing SPI values
are different than changing port values. If an attacker man-
ages to traverse a NAT/firewall by spoofing a port number,
the packet finishes up to a listening application. However,
changing an SPI value does not bypass the IPsec handling.

For the purpose of SPINAT we present a variant of IPsec
ESP transport mode, denoted as Stripped End-to-End Tun-
nel (SEET) mode. It is based on the initial Bound End-to-
End Tunnel (BEET) mode proposal by Nikander et.al.[27].
The BEET mode is a combination of IPsec tunnel and trans-
port modes, using the transport mode packet format but pro-
viding limited tunnel mode semantics. In particular, the
mode takes care of the translation between IP addresses,
used on the wire, and the end-point identifiers, used at the
transport layer. The SEET mode does not change the IPsec
ESP header structure, but the integrity computation and the
details of the packet handling within the end-nodes. The
SEET mode does not include the SPI value in the ESP
header integrity protection computation (see Figure 5).

4.3 Decoupling IPsec Control Plane from Overlay
Namespace

The main reason for introducing the IPsec SEET mode is
to allow SPI translation at SPINAT devices. Alongside with
the SEET mode we also propose another IPsec mode for
overlay routing, calledControl Plane Header (CPH). Ac-
cording to its name, the IPsec control plane messages, car-
ried typically in UDP datagrams, are additionally tunneled
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over the IPsec CPH. The CPH contains only the end-point
identifiers and optionally the related SPIs. The motivation
to have CPH is to avoid the tight dependency between the
IPsec control plane namespace and the related overlay rout-
ing namespace. The other reason is to support simple fire-
wall configuration policies where the SPINAT firewalls pass
only the IPsec protocol numbers.

It is good to notice that the semantics of the CPH and
SEET modes are different. Although, it seems to be an
attractive alternative to always replace the SEET header,
used in IPsec payload packets, with the CPH header. In
that case, the obtained header size optimization by tagging
end point identifiers with SPIs would vanish. Also, if the
IPsec ESP payload structure were to change, probably also
the SPI namespace would be increased4. Furthermore, this
would essentially change the semantics of SPI selection and
require changes to Type-Length-Value (TLV) fields in the
existing key-exchange protocols. Furthermore, SEET mode
requires only small changes to integrity protection computa-
tion, while replacing the current ESP header structure with
CPH would require more changes both to standards and ex-
isting implementations. Therefore, we propose that CPH
is initially used only for tunneling the IPsec control plane
signaling.

The semantics of the CPH is simple. Each IPsec daemon
registers5 itself to the IPsec module, e.g., using an extended
(currently not standardized) PFKEY[22] interface. Once
a host receives an IPsec CPH message, the IPsec module
verifies that the end-point identifier and the UDP destination
port are registered to the IPsec module by the daemon. If the
registration is missing IPsec drops the packet.

The CPH implements a combination of the tunnel and
transport mode, like SEET and BEET[27] mode do (Sec-

4Enlarging the size of the SPI value to something like 128, 196or 256
bits would make collisions at middleboxes quite unlikely, if the values are
selected randomly. This would allow state identification only based on the
SPI without the need for using an IP address in combination with the SPI.
A similar effect could be accomplished when combining the SPI with the
end-point identifier that were to be carried inside the header.

5Only an administrator, or a corresponding user with equal rights, is
able to register a daemon. If an attacker manages to act as an administrator,
it can modify the Security Policy and Security Association Database (SPD
and SAD) in an arbitrary way. Thus, our approach does not change the
current IPsec security level at the end host.

tion 4.2.2). It replaces the locators in the IP header with the
end-point identifiers before passing the packet to upper lay-
ers. In this way, also the transport layer connections used
by the key-exchange protocols can be bound to end-point
identifiers. Thus, new identifier-locator splitting protocols
can be implemented on UDP, instead of requiring IANA to
appoint unique protocol numbers for them, e.g., for HIP[28]
or for other IETF [19] protocols.

4.4 Overlay Routing Topology

The overlay routing topology can be divided intosym-
metric and asymmetriccommunication path cases. The
symmetric communication paths support transparent trigger
registration (Section 4.1.1). The asymmetric communica-
tion paths require explicit trigger registration.

4.4.1 Symmetric Communication Path

Figure 6 illustrates a partial key-exchange through a
SPINAT device located on the symmetric communication
path 6. The figure contains only the SPI exchange part.
Each message includes Alice’s and Bob’s end-point iden-
tifiers (EIDs).

1. Alice selects an SPIAlice value for Bob which is sub-
sequently used by Bob for creating the IPsec protected
packets towards Alice[21]. Alice establishes an SA for
incoming traffic using this SPI value. The SPINAT de-
vice establishes a state for the traffic flow between Al-
ice and Bob to allow the SPINAT to perform proper
packet forwarding:

< EIDAlice, SPIAlice, IPAlice >

2. Once Bob receives the message, he establishes SAs
for both incoming and outgoing traffic. He uses the
received SPIAlice for outgoing traffic and selects an
SPIBob for the incoming traffic. Bob sends a reply con-
taining the SPIBob value to the SPINAT device.

3. The SPINAT device finalizes its association and for-
wards the message to Alice.

4. Finally, Alice names her outgoing SA with the SPIBob.

5. Shortly, Jill initializes another key-exchange with Bob.
Unfortunately, Jill selects the same SPI value for Bob
as Alice did (SPIAlice = SPIJill). The SPINAT device
has to replace the value with SPIJill#2 value and es-
tablishes the following three-tuple:

6Please note that the symmetric communication path refers tothe for-
warding path related to the SPINAT devices.
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Figure 6. SPI translation walk through in the symmetriccommunication path case.

< EIDJill, SPIJill#2, IPJill >

Now, Jill’s incoming SA contains different SPIJill

value than the corresponding outgoing SA at Bob’s
host.

6. Bob names the outgoing SA with SPIJill#2 and selects
an unique SPIBob#2 value for Jill.

7. Now, the SPINAT device is able to multiplex traffic by
replacing the incoming SPIJill#2 with SPIJill before
forwarding the IPsec packets to Jill.

8. Finally, Jill and Alice use the same SPI value to name
their incoming SAs. However, Bob has different SPI
values for the outgoing SAs.

4.4.2 Asymmetric Communication Path

The asymmetric communication paths involve changes to
the previous symmetric SPI exchange design. The SPINAT
devices are not able to learn the incoming SPI values during
one round-trip, because each host selects an SPI value for
its peer. Basically, there are three different design choices
to solve the problem from the SPINAT point of view.

The first alternative is to enlarge the size of the SPI
namespace to avoid collisions at SPINAT devices. The
drawback is that the approach essentially changes the se-
mantics of the current IPsec and enlarges the packet size
(Section 4.3). The second way to solve the problem is to
design a protocol for exchanging end-point identifier and
SPI information between SPINAT devices inside an admin-
istrative domain. Once a SPINAT device receives an outgo-
ing key exchange message, it propagates the host identifier
and SPI information to other SPINAT devices at the edge
of the same domain. However, this kind of approach does
not scale well in an overlay routing infrastructure where
SPINAT devices belong to different administrative domains.

The third alternative is to include a two-round trip SPI
exchange in the IPsec control plane signaling. Figure 7
illustrates a case, when Alice and Bob communicates via
asymmetric paths. Before the communication happens, Al-
ice and Bob have registered their triggers to SPINATAlice

and SPINATBob to receive traffic. Additionally, Alice and
Bob may be in private networks behind transparent SPINAT
devices. However, to keep the Figure 7 clean we haven’t in-
cluded the transparent SPINAT devices in the picture.

1. Once Bob receives an SPIA1 value from Alice, he se-
lects SPIB1 value for Alice. Bob includes both of the
SPI values to the reply message.

2. The SPINATAlice device establishes a state and option-
ally translates the incoming SPIA1 to SPIA2.

3. Alice includes the translated SPIA2 and the received
SPIB1 to the third message.

4. SPINATBob optionally translates SPIB1 to SPIB2 and
establishes a state for the translation.

5. Bob establishes Security Associations using the SPIB1

and SPIA2 values. He also forwards the translated
SPIB2 value to Alice.

6. Finally, Alice names her incoming SA with SPIA1 and
outgoing SA with SPIB2. Section 5.2 contains security
considerations concerning the protocol design issues.

5 Security Considerations of SPINAT

If we do not protect the SPI values with signatures (sec-
tion 4.2.2), a MitM attacker may change the SPIs on the fly.
However, the SPI is only an index to a specific Security As-
sociation at the receiving party. The actual security is based
on the shared session keys. All that is needed is that the
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peers are able to map an SPI value to the correct IPsec SA.
Hence, an SPI changing attack does not affect the confiden-
tiality or integrity properties of the protocol.

It must be noted that changing SPI values is only possible
for an on-path attacker that is able to modify packets on the
fly. Such an attacker is not only able to change the SPI
values, but he can block all communications between the
parties. Hence, having unsigned and changeable SPIs does
not really introduce any new security vulnerabilities. A host
trusts a SPINAT device to change the SPI values in the same
way it trusts the NAT device to change the IP addresses.

5.1 Transparent Trigger Registration

A potential attack that we have to consider is a so called
running ahead attack. To launch this attack, an attacker has
to first listen to traffic and find out the end-point identifier a
mobile host is using for some of its connections. Once the
attacker has acquired the end-point identifiers, it anticipates
the movements of the mobile host, and moves ahead of it.
Using the known end-point identifiers, the attacker can try
to register a trigger at a SPINAT using the the sniffed infor-
mation.

To protect from this kind of attack the on-path SPINAT
device may release the created soft state if the responder
does not reply to the attacker’s trigger message. Typically,
the responder silently drops incorrect IPsec control mes-
sages. Another way to solve the identity theft problem is
to use public key based end point identifiers. The transpar-
ent SPINAT device verifies the ownership of the identifiers
with signatures.

However, when the key exchange protocol supports iden-
tity protection it is impossible for a MitM, like for a SPINAT
device, to learn public keys and verify signatures. In such a
case, the mobile host should use one-time random end-point
identifiers (see BLIND[41])7. This prevents the eavesdrop-

7BLIND is an example of a protocol that offers mutual identityprotec-
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per to implement the running ahead attack, because the mo-
bile host changes its end-point identifier every time it ne-
gotiates a new SA with some of its peers. However, ran-
dom end-point identifiers cannot be used to update a state
without binding them to a cryptographical namespace, e.g.
to hash chains [42] or to anonymous (temporary) public
keys[41].

5.2 Communication Context establishment

Another problem related to the communication context
establishment is to bind SPI values to correct end-point
identifiers. Depending on the SPI exchange design, the
end-point SPI values may be revealed to outsiders before
the final context establishment. This opens a possibility
for MitM attackers to reserve SPI values allocated to other
hosts if subsequent SPI exchange messages are not cryp-
tographically bound together. Fundamentally, the security
issues related to the communication context establishment
are similar to the ones in micro-mobility architectures[10].

To protect the responder from DoS attacks and avoid
eavesdroppers to reserve SPI values at SPINAT devices, we
have to consider the actual protocol design (Figure 8). The
SPI exchange for asymmetric communication paths was
presented in Section 4.4.2. Bob’s SPINATBob device should
not establish a context during the first round-trip, before
Bob has accepted to receive traffic from Alice. Because of
Alice initializes the communication, she is obviously will-
ing to receive packets from Bob. Thus, she may directly re-
veal her private trigger [34], i.e. registered to SPINATAlice,
to Bob. In the initiator’s case, the SPINATAlice device

tion for end-points, and allows them still to authenticate each other using
their public identities.



should establish a context during the first round-trip to pre-
vent an attacker to learn and establish a context using the
translated SPIA2 value (see Section 4.4.2). Otherwise, the
attacker may cause a DoS situation as illustrated in Figure
8.

5.3 Communication Context Update

The SPINAT device takes care of SPI collisions and pre-
vents allocating the same SPI value to two hosts. SPI val-
ues, like port values are local identifiers at end-host. If
an attacker manages to update other host’s SPI binding at
a SPINAT device, only the target host suffers from the
DoS situation. However, unverified address binding updates
open several security vulnerabilities. A malicious node can
cause packets to be delivered to a wrong address. This can
cause DoS both at the communicating parties and at the
address that receives the unwanted packets [4]. Thus, the
SPINAT device must verify that the binding updates come
from the authentic mobile host. However, the SPINAT de-
vice cannot verify the validity of the updates without a se-
cure binding between the IP addresses and the host. In other
words, the SPINAT device and the peer nodes need evidence
that the IP address belongs to the specific mobile node. On
the other hand, mobile hosts have to verify messages sent by
SPINAT devices to protect from MitM attackers. Moreover,
the peers cannot trust SA update messages without making
an end-to-end reachability test whenever a mobile host ar-
rives to a new SPINAT region.

Mobile hosts may use existing security associations with
their trusted SPINAT devices to update bindings. However,
if an end-host does not have an explicitly established SA
with a transparent SPINAT device, the device must verify
the bindings updates with signatures or using weak authen-
tication techniques.

The identity protection is not the only reason to replace
the public key authentication with weak authentication tech-
niques. Since, signature verification is a time consum-
ing operation, it is a security problem in heavily loaded
SPINAT devices. An attacker may send a storm of ad-
dress and SPI binding update packets and cause a DoS at-
tack by increasing the CPU load at a SPINAT device. This
favours lightweight Lamport one-way hash chains and se-
cret splitting authentication techniques to update the bind-
ings at SPINATs.

For example, Ylitalo et.al. present an appropriate trust
model in [39]. In their approach, the trust between a middle-
box and an end-host inherits from the existing trust rela-
tionship between the end host and its trusted rendezvous
server. The presented protocol allows dynamic binding up-
dates at transparent middle-boxes using relatively weak, but
adequate authentication techniques.

6 Experiment Results

We have implemented the transparent SPINAT device on
the FreeBSD 5.2 operating system. Host Identity Protocol
(HIP)[28] was selected for the IPsec control plane signal-
ing protocol for two reasons. First, HIP is an identifier-
locator splitting architecture consisting of SA establishment
and update signaling. Second, the SA establishment signal-
ing, also known as HIP base exchange, contains end-point
identifiers and plain SPI values.

The actual SPINAT functionality was implemented as a
user space daemon. The daemon dynamically establishes a
communication context for end-point identifiers during the
base exchange. When an IPsec protected payload packet ar-
rives to the SPINAT device, a firewall rule diverts the packet
to the SPINAT daemon. The daemon makes the required
translation and forwards the packet to the destination. Al-
though, the current version of our implementation does not
support SPI translation. The performance results of our
SPINAT implementation, compared to legacy Freebsd IPv6
router, are presented in Figure 98.

We measured the HIP key exchange delay, end-to-
end throughput and Round-Trip Time (RTT) through the
FreeBSD IPv6 router and our SPINAT device9. The
SPINAT context establishment delay was really small and
therefore it is not visible in Figure 9 c). Negotiating the
HIP key exchange through IPv6 router and SPINAT device
took in average 0.2878 seconds in both cases.

Figure 9 a) presents average end-to-end RTTs mea-
sured with plain ICMP packets through a router and with
IPsec ESP protected ICMP packets through a router and a
SPINAT device. The IPsec handling at end-hosts caused
a 0.24 ms (52%) increase in RTT compared to RTT of the
plain traffic. Furthermore, the SPINAT device caused a 0.07
ms (10%) increase in RTT compared to the legacy routed
IPsec ESP protected traffic.

Figure 9 b) illustrates average end-to-end throughput via
the router and the SPINAT device. The IPSec handling at
end-hosts decreases the throughput 32.86 Mbits/sec (52%),
i.e., roughly half of the plain traffic throughput. However,in
the SPINAT device case the IPsec ESP traffic throughput is
only 0.01 Mbits/sec (0.03%) slower than in the router case.
Based on the presented experiment results we can argue that
SPINAT devices are not bottle-necks in the architecture.

8The initiator was running the HIP protocol on a laptop equipped with
Intel Pentium M 1.6GHz processor, while the responder was running HIP
on AMD Athlon XP 2200+ (1.8GHz) processor. Each middle-box was
equipped with a Mobile P4 2.26 Ghz processor. All computers contained
512 MB RAM and the 100Mbits/sec ethernet interfaces were directly con-
nected to each other with cross switched Cat-5 cables.

9As the efficiency of a context state search algorithm has a strong effect
on results, we decided to use a simple O(1) hash table search algorithm.
The rehashing events are not included into results.



Figure 9. End-to-end round-trip time, throughput and HIP ke y-exchange delays through a IPv6 router
and a SPINAT device.

7 Conclusions

In this paper, we have presented an approach that in-
tegrates IPsec into overlay routing. The solution requires
small changes to key exchange protocols and optionally also
to IPsec ESP integrity protection computation. The new
functionalities are not currently supported in the IETF stan-
dards. On the other hand, the presented overlay architec-
tures are neither yet standardized. Therefore, the required
changes in IPsec can be gradually applied in the new over-
lay network infrastuctures.

The presented changes do not alter the existing security
level of IPsec, but they make it possible to implement si-
multaneously scalable and secure overlay routing architec-
tures. Our solution is based on the observation that middle-
boxes in the overlay routing implement Network Address
Translation (NAT) functionality. Therefore, to mitigate the
problems related to the existing NAT practice we have pre-
sented SPI multiplexed NAT (SPINAT). The SPINAT de-
vice supports address and SPI translation for IPsec pro-
tected payload traffic even in the asymmetric communica-
tion path case. The SPINAT functionality can be integrated
into middle-boxes in any overlay routing architecture, in-
cluding thei3 nodes in the Internet Indirection Infrastruc-
ture.
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