
P8

Publication P8

Jukka Ylitalo, and Pekka Nikander, “A new Name Space for End-Points: Imple-
menting secure Mobility and Multi-homing across the two versions of IP”, in Proc.
of the Fifth European Wireless Conference, Mobile and Wireless Systems beyond
3G, pp. 435-441, Barcelona, Spain, February 24-27, 2004, ISBN 84-7653-846-4,
Publisher: SCI UPC (Eds: Olga Casals, Jorge Carcia-Vidal, Jose M Barcelo, and
Llorenc Cerda).

c© 2004 The author.



A new Name Space for End-Points: Implementing secure Mobility and
Multi-homing across the two versions of IP

Jukka Ylitalo, Pekka Nikander
Ericsson Research Nomadiclab

e-mail: {jukka.ylitalo, pekka.nikander }@ericsson.com

Abstract: The current practice of naming Internet nodes
with their IP address has turned out to be insufficient. We
propose adding a new name space to the IP stack, and using
cryptographic public keys as end-point names. It turns out
that this allows us to provide end-node mobility and multi-
homing, even between IPv4 and IPv6, in a fairly simple,
secure, and elegant way.

1. Introduction

In the early days of TCP/IP, computers had only one
network interface and it was impossible to move them
around without first turning the power off. Hence, any
computer could be easily identified with its one and only
Internet address (if it had any). In other words, thelo-
cation identified the nodein the Internet. As a conse-
quence, it was a relatively easy design choice to identify
transport layer connections with IP addresses.

Since then, the environment has changed, but the ba-
sic Internet architecture has not. Computers are being
moved around without first turning them off, and more
and more computers have more than one network in-
terface, i.e., computers have become mobile and multi-
homed. In contrast to this, the structure of the Inter-
net is still very much the same as if a person’s name
would be defined by his or her current location. Let’s
say that a businessman moves from Oxford Street to Elm
Street. Since identification is bound to locations, his
identifierchanges due to movements, but his actualiden-
tity stays the same. His old acquintances, who were used
to knowing him as Mr. Ten Oxford Street, do not recog-
nize him anymore. Now being identified as Mr. Twelve
Elm Street, he must convince people, in one way or an-
other, about his actual identity, that he still is the same
person as he was before. Since there is no equivalent of
the human face in the current Internet, convincing other
people is not a particularly easy task.

Basically, a similar kind of historical load bothers also
the existing Internet protocols. In Mobile IP [14][6],
the problem has been solved by using so calledhome
addresses1. Each node is assigned a static address, its
home address, which is used to identify the node inde-
pendent of its location. This solves the basic naming
problem; our businessman is still known to his friends
as Mr. Ten Oxford Street. However, even in the real
world, the actual location is needed for reachability. It
would be really hard for our businessman, usually living
in Oxford Street and currently walking at 12 Elm Street,
to prove to foreigners that his name is Mr. Ten Oxford
Street c/o Twelve Elm Street, without credentials. Thus,

1In a way, the Mobile IP naming convention resembles human nam-
ing conventions in the medieval times, when people were named after
their home town, e.g., William of Ockham.

using a static identifier, as such, does not solve the prob-
lem of convincing other people about the necessary name
change caused by mobility. Firstly, most of the people in
the world do not know the people living at Oxford Street.
Secondly, people who are not at that specific moment at
Elm Street cannot trust Mr. Ten Oxford Street’s word
that he really is walking at Elm Street without evidence.

The first problem (knowing who “lives” where) is
called the IP address ownership problem [10]. Basically,
it is very hard to prove, in any sense, that you “own”
a particular IP address. For as far as your peer node
knows, you might be an impostor that sends packets with
a spoofed source address. The second problem (need-
ing c/o addresses), in turn, is created by the Mobile IP
requirement of being able to re-direct any node’s traf-
fic flow to anywhere. That is, since Mobile IP is imple-
mented by re-directing traffic destined to a home address
to another address (care-of-address), universal deploy-
ment of Mobile IP requires that any address can be dy-
namically re-directed to any other address. This creates
a group of potential masquarade and denial-of-service
attacks [12]. If there were no countermeasures, any ma-
licious node would be able to spoof Mobile IP manage-
ment messages, claiming to “own” another node’s home
address, and redirecting all traffic destined to that ad-
dress to somewhere else. [12]

Instead of relying on the Mobile IP ideas [2], we have
taken a fresh start and experimented with the Host Iden-
tity Protocol (HIP) [8][13], a proposal to enhance the
current Internet architecture by introducing a new name
space,Host Identityname space, between the internet-
working and transport layers. Continuing our analogy,
the approach would bring our businessman a genuine
name, one cryptographically bound to his real identity.
In a way, our Mr. Ten Oxford Street would no longer be
named after his location, but by a self-signed photograph
of his face.

Before considering why, in our opinion, such a new
name space is essential for the future of the Internet,
and how it solves the security problems related to node
mobility and multi-homing in an elegant and almost ef-
fortless way, we have to consider a little bit more back-
ground.

2. Binding the Name to the Identity

The mobility security problems, described above,
arise when a name is not directly bound to the identity
of the communicating node. In the digital world, such a
binding could be created with a little help of cryptogra-
phy and/or by relying on an external, trusted infrastruc-
ture. However, in the current Internet neither of these
are used particularly often. Instead, most of the Internet



protocols are still relying on a simpler assumption, the
integrity of the routing system.

The Internet is based on stateless routers, collectively
maintaining a topological map of the network. That
is, given an IP address, the routers know how to pass
packets to the given address. In practice, if you send
a packet with a given destination IP address, you can be
fairly confident that the packet either reaches the location
named by that address (and the node at the location, if
there is one), or the packet is dropped on the way. Thus,
the current situation where the nodes are named by their
addresses creates a weak (but sufficient) form of secu-
rity: by sending a packet to a given address and waiting
for a response, one can check if there is a node named
with the given address. In the Mobile IPv6 terminology,
this is called Return Routability (RR) [12].

As we saw above, mobility breaks this security prop-
erty. In Mobile IP, with the mapping between home ad-
dresses and care-of-addresses, it is not sufficient to sim-
ply rely on the routing system. The same applies to
multi-homing. A multi-homednode is a computer that
has more than one IP address. Our real world analogy
of this is that our poor businessman is known simultane-
ously by multiple names; he is not just Mr. Ten Oxford
Street but also Mr. Two Cedar Street. (Perhaps he has
a large house that has doors on both streets.) Naturally,
he wants to take advantage of this position, and make
sure that his deliveries can be directed to the (perhaps
less used) Cedar Street door whenever there is conges-
tion at Oxford Street. Thus, he has to have a reliable
way of conveying this information to other people, lest
a thief could re-direct our businessman’s deliveries to
the thief’s newly rented apartment at Mossland Street.
Again, since all we have is location names and the abil-
ity to send packets to them, securely conveying multi-
homing information is not particularly easy.

2.1. Names and name spaces

Getting back to the Internet, we end up with a
dilemma: what is the relationship between an end-
point’s identity, its static identifier, and location names?

The previous examples described an existing name
space problem in the Internet. The IP addresses are cur-
rently used both as end-point identifiers and as topologi-
cal location names. That is, the logical end-point of com-
munication, typically an application hosted by a network
node, is named by tagging the node’s location, the IP ad-
dress, with a port number. As a side effect, the IP address
becomes the name of the node, and a part of the name of
all end-points residing in that particular node.

This semantic overloading of IP addresses is causing
a number of problems related to mobility, multi-homing,
and security (see e.g. [7][12]). The main problems are
related to maintaining the communication context active
during topological movements of the nodes [2], and to
protect the integrity of the management packets that are
used to create the mappings between end-point identi-
fiers and location names.

In the current Internet, there is another important
name space, the Domain Name System (DNS). The DNS
suffers from a different but related set of problems. How-

ever, it is not particularly relevant to our discussion,
since Domain Names are used at the application layer,
and they are always resolved to IP addresses before the
actual communications can take place.

In the present approach, we try to use each name
space separately, for semantically different cases. Ba-
sically, non-cryptographic names, like IP addresses or
DNS names, are not suitable as secure identifiers in an
open environment, like in the Internet. The only way to
“own” something in the Internet is to keep it secret. The
same principle concerns identities. An end-point must
be able to prove to a peer that it has a specific identity
without losing it, i.e., suffering an identity theft.

2.2. A new name space

There are two ways of proving the possession of
a secret without actually revealing the secret: zero-
knowledge protocols and public key cryptography. Ei-
ther of these could be used to solve our identification
problem. In practice, however, public-key cryptography
is particularly suitable for identifying end-points in open
environments [1][8][16].

The sole holder of the private key “owns” a specific
identity. The corresponding public key, or any cryp-
tographical derivative of it, works as anidentifier for
the identity. This construction defines a naming trust
relationship between an identity and an identifier with-
out name certificates or other external infrastructure.An
identifier is bound in a cryptographically strong way to
an identity, while the trust in annoncryptographic name
is more or less a matter of faith.

If we consider, once more, our Mr. Ten Oxford Street,
he now gets a face. In a way, the private key is like a per-
son’s face in the real world. The public key, in turn, is
like a photograph of that face. In the ideal case, a photo-
graph identifies the person uniquely, and allows anyone
holding a copy of the photo to recognize the person.

Using public keys asprimary identifiers is similar to
using photographs as the primary means of recognizing
people. If you have a photo of a person, you don’t nec-
essarily know his or her name. You can still easily deal
with him or her, and you can rely on the stability of the
identity. Unfortunately, at this point we must gradually
depart from our analogy, since the differences between
the real world and the IP networks starts to grow larger
than the similarities. For example, in an IP network, a
node can easily have several private-public key pairs, and
even create new ones on demand, while it is relatively
hard to create a new face for yourself on demand. How-
ever, what is important here is how the new name space
makes it possible to identify nodes based on some ab-
stract identity of them instead of relying on topological
locations for identification purposes.

Now, once we make the semantic separation of lo-
cation names and end-point identifiers, and introduce a
name space for end-point identifiers, the role of the IP
address becomes clear. IP addresses are used purely for
naming topological locations in the Internet. An end-
point may change its attachment to the network with-
out losing its name, or identity. The interrelationship
between location names and end-points identifiers be-



Link layer

Internetworking layer

Transport layer

Process

Link layer

Internetworking layer

Transport layer

Process

Host identity layer

The current internetworking architecture The proposed new architecture

<IP addr, port> pairs <end-point identifier, port> pairs

IP addresses IP addresses

Link layer addresses, e.g.,
Ethernet MAC addresses

Link layer addresses, e.g.,
Ethernet MAC addresses

Translation (ARP or ND) Translation (ARP or ND)

End-point identifiers

Translation (new)

Figure 1: The current Internetworking and the proposed new architectures

comes dynamic. The new binding between IP addresses
and end-point identifiers requires a new logical layer. [4]

3. A New Logical Layer

The Host Identity Protocol architecture [8] introduces
a new protocol layer between the transport and internet-
working (IP) layers2. Figure 1 describes the difference
between the current and the new architectures. The left
hand side of the figure describes the current architec-
ture. There, processes are bound to transport layer sock-
ets, and the sockets are identified with IP addresses and
ports. As a result, this structure binds the processes to
a specific topological location, thereby making process
migration, end-host mobility, and multi-homing difficult.

The new structure is described on right hand side. In
the new architecture, the transport layer sockets are no
longer named with IP addresses but with separate end-
point identifiers, i.e., public keys. The end-point which
holds a particular private key is typically a host, but can
basically be a smaller entity, like an application, or a
larger entity, like a computer cluster.

The new identity layer translates the end-point iden-
tifiers into IP addresses. This is achieved by dynami-
cally binding an end-point identifier to one or more IP
addresses. This binding is a dynamic relationship, result-
ing in easy mobility, and simultaneously a one-to-many
relationship, providing support for multi-homing. Due to
the cryptographic nature of the end-point identifiers, it is
fairly easy to secure the management messages needed
to update this binding.

Thus, by breaking the tight connection between the
transport and internetworking layers, we are able to ease
the current technical problems hampering Internet mo-
bility and multi-homing. By using public keys as pri-

2It must be noted that not all people agree that a new layer is
needed, nor that HIP can or should be understood as a new layer. For
example, the Secure Shell protocol (ssh) already provides a similar
kind of public key based identifiers, and it is being used to provide
for limited mobility, like running cvs and rsync from mobile hosts.
Thus, perhaps the idea of using public keys as host names is much
more important than the proposed new layer. The new layer is just one
particular way of implementing the new architecture.

mary identifiers we are able to easily solve the related
security problems, at the same time slightly raising the
general level of security in the Internet. Furthermore,
the approach allows us to make applications and nodes
to communicate with each other even across the chasm
between the current version of IP, IP version 4, and the
new IP, IP version 6.

4. Bridging the two versions of IP

The Internet is facing a painful growth process. The
current version of the Internet Protocol, IPv4, is being
replaced with IPv6. This transition has already taken
several years, and is likely to take a few decades. Dur-
ing this time, there are network nodes that are able to
communicate only with IPv4, only with IPv6, or both,
and there are applications that know only about IPv4 ad-
dress, only about IPv6 addresses, or about both. During
the long transition period, getting all these to communi-
cate with each other is a demanding task.

Since the new Host Identity name space separates
the internetworking layer from the transport layer (and
hence from the applications), we can solve the problems
of node interoperability and application interoperability
separately. We first focus on application level backward
compatibility.

4.1. Application level backward compatibility

One of the design principles in the HIP based IPv4
to IPv6 interoperability has been backwards compatibil-
ity. Its implementation does not require changes to most
existing IPv4 or IPv6 protocol specifications or existing
applications. It supports both IPv4 and IPv6 sockets,
which means we are able to run IPv4 applications over
IPv6 protocol, and vice versa. The principle is the same
in both cases, only thehandlethat is used to denote the
actual end-point identifier is different.

A single end-point identifier, i.e., a public key, may
have several handles denoting it. In the IPv4 socket API
the handle is a 32 bit long datum, called Local Scope
Identifier (LSI), and with the IPv6 socket API it is a 128
bit long globally scoped name, called Host Identity Tag



(HIT). Handles replace the IP address(es) in the socket
API; when making DNS queries, the DNS library returns
handles instead of actual IP addresses, whenever appro-
priate.

In practice, when an application starts to communi-
cate, it resolves a DNS name into an IP address. If pub-
lic key end-point identifiers are used, the DNS contains
the public key in addition to the usual IP address(es) for
the peer host. The DNS library fetches the public key,
and creates a corresponding handle. Before the resolver
library returns the handle to the application, the oper-
ating system in the initiating node stores the received
IPv4/IPv6 address(es) and the handle. This allows the
operating system to map the handle to the IP address(es).

4.2. Cross-version Mobility and Multi-Homing

In the Internet,end-node mobilitymeans that a mobile
node changes the topological location of its interfaces in
the network. Ahand-offoccurs whenever a host moves
and its address is changed.Mobility managementin-
cludes any mechanism where the mobile end-node keeps
its communication contexts, i.e., connections, active dur-
ing movement. Fundamentally, Internet communication
is based on stateless packet exchange, relying on the
network’s ability to pass packets to their destination ad-
dresses. Therefore, in order to continue to communicate,
a mobile node must be able to signal the changes in its
addresses to its peer nodes. Furthermore, this signaling
must be secure lest unsecured signaling can lead to unau-
thorized traffic diversion and denial-of-service [12].

Packets are normally sent serially, one after the other,
via one topological path between the end-points. This
nature of the packet data flow defines the nature of the
hand-off procedure. The hand-off happens serially, be-
tween two different IP addresses, which each may be-
long to either IPv4 or IPv6 address families. From this
point of view, the typical mobility hand-off within a sin-
gle address family is just a special case of the more
generic cross family hand-off. Replacing an IPv6 ad-
dress with an IPv4 address, or vice versa, is just as sim-
ple. Furthermore, it does not matter whether the ad-
dresses are bound to one or different interfaces.

The magic behind the address family hand-off is that
the static end-point identifier, the public key, is not used
for routing. Unlike in Mobile IP or Mobile IPv6, we do
not bind the end-point identifiers to address families.

The hand-off between IPv4 and IPv6 networks is
based on separating the transport layer from the inter-
networking layer. Consider a legacy IPv4 application in
a host that is initially connected to an IPv4 network, but
later moves to a network that provides only IPv6 connec-
tivity (see Figure 2). The application socket is initially
bound to an IPv4 address, according to the new bindings
architecture, as depicted in Figure 3. During the hand-
off, the IPv4 address binding is replaced with an IPv6
address.

When the application sends a packet, the packet is
passed through the new host identity layer. Since the
host identity is currently bound to an IPv6 address, the
host identity layer strips off the IPv4 header and replaces
it with an IPv6 header. The packet is passed through the

Transport layer

IPv4 IPv6

Host identity layer

IPsec layer

Link layer

Figure 2: The actual packet data flow in IPv4 to IPv6
hand-off

IPsec stack, where the IP payload is encrypted and an
Encapsulated Security Payload (ESP) header added to
the packet. Finally, the packet is sent out via the IPv6
stack.

When the IP packet arrives at the peer node, the ESP
payload is verified, decrypted, and the ESP header is
stripped off. The new semantics take place after this.
Since the application is a legacy IPv4 application, the
received IPv6 header is replaced, conceptually, by a
freshly created IPv4 header, containing the LSIs in the
place of IPv4 source and destination addresses, and the
packet is sent into the IPv4 stack for further input pro-
cessing. The IP layer finds the right TCP or UDP socket
for the packet on account of the LSI handles, and passes
the packet to the transport layer. For the IPv6 socket API
the scenario is a mirror-image of the previous one.

4.3. Communicating across IP versions

As we saw above, the transport layer sockets are no
more bound to IP addresses but to end-point identifiers.
This makes it possible to make legacy IPv4 applications
talk directly to IPv6 applications, and vice versa. The
identifiers passed in legacy IPv4 and IPv6 APIs are han-
dles to end-point identifiers. The only difference is that
we use 32-bit LSIs in the IPv4 API and 128-bit HITs in
the IPv6 API. However, at the logical level both of these
identifiers are handles to the single identifiers in the host
identity name space.

To facilitate communication across the APIs be-

Process Socket

End-point

IP addressLocation

Process Socket

End-point

IP addressLocation

Public key

Bindings in the current architecture Bindings in the new architecture

Figure 3: Bindings



tween different IP versions, it is necessary to make the
TCP/UDP pseudo header checksums compatible. Since
the sockets are bound to the host identifiers, it is natu-
ral to use the end-point identifiers in the pseudo header
checksums. In practice, the 128-bit HITs are used un-
derneath both the IPv4 and IPv6 APIs, and always use
the IPv6 pseudo header format to compute the check-
sum. In our implementation, this is accomplished by
“stealing” IPv4 sockets from the IPv4 stack to the IPv6
stack, at the system call level, and by making the conver-
sion between HITs and LSIs at the appropriate system
calls. Thus, in our implementation all packets are al-
ways passed through the IPv6 versions of TCP and UDP,
and the IPv6 system call interface is enhanced to support
IPv4 legacy applications.

There are two classes of applications that are affected,
though. Applications that either inspect IP addresses di-
rectly or pass IP addresses explicitly in application layer
payloads may need modifications. However, the first
class of applications are typically diagnostic in nature,
and most probably need to continue working with IP ad-
dresses. In the latter class, there are no difficulties if both
of the peers use the same version of IP. If a legacy IPv4
application passes an IP address to its legacy IPv4 peer,
an LSI will be passed. Since the LSIs are negotiated dur-
ing the HIP protocol setup (see below), it designates the
same end-point identifier at both ends. The same applies
to IPv6 applications, the only difference being that a HIT
is passed instead of an LSI. However, if an IPv6 applica-
tion passes an IP address to a legacy IPv4 application, a
128 bits long HIT, in IPv6 address format, will be passed.
Since most IPv4 applications cannot cope with IPv6 ad-
dresses, communication will fail. The reverse case, an
IPv4 application passing an LSI to an IPv6 application,
is likely to work, since most IPv6 applications are capa-
ble of handling IPv4 addresses.

As we have seen, the introduction of the new host
identity layer neatly separates the transport and inter-
networking layers from each other, making mobility and
multi-homing easy, even across the two versions of IP.
Since HIP integrates security with mobility and multi-
homing, HIP establishes a security context before any
communication takes place between the nodes3. This is
the task of the actual Host Identity Protocol.

5. Host Identity Protocol (HIP)

The Host Identity Protocol (HIP) is the end-point to
end-point signalling protocol [9]. Most importantly, it
implements a key exchange protocol, using the pub-
lic key end-point identifiers to authenticate a Diffie-
Hellman exchange. After exchanging the initial mes-
sages, both communicating nodes know that at the other
end-point there indeed is an entity that possesses the
private key that corresponds to the claimed public key,
i.e., its end-point identifier. Additionally, the exchange
creates a pair of IPsec Encapsulated Security Payload
(ESP) security associations, one in each direction. The

3The security context is needed for HIP enabled communications.
Before the context is established, the nodes can communicate using
either IPv4 or IPv6, just like today.

nodes then use the ESP security associations to protect
the integrity and confidentiality of the packets flowing
between them.

In addition to protecting the network layer integrity
of the payload traffic with ESP, HIP is used to secure
the management messages exchanged between the end-
points. The end-points inform their peers about the inter-
faces they have and the current IP addresses assigned to
the interfaces. In effect, this shares information about the
currentmulti-homing situationof the end-points. Each
end-point has complete freedom to select which inter-
faces and which IP addresses to announce to each peer
node.

To the peer node, it is immaterial whether the an-
nounced interfaces are real or virtual[13]. All it needs
to know is to make sure that the announcing end-point
is indeed reachable through the claimed IP addresses.
The reachability needs to be checked, or otherwise the
mechanism may be used to launch denial-of-service
attacks.[8]

Once the security associations and the multi-homing
situation are established and verified, the end-points may
communicate in an secure and resilient way. As the con-
nectivity status of the end-points change, they may sig-
nal the changes in the situation as needed. That is, if an
end-node looses connectivity on an interface, acquires
a new interface, or moves an interface from one loca-
tion to another, it typically wants to signal the change to
its peers. The HIP protocol includes the Readdressing
Packet (REA) for this purpose. Naturally, all the REA
packets must be secured; this is accomplished by sign-
ing them by the node’s private key corresponding to its
end-point identifier.

5.1. A new IPsec mode

In IPsec,transport modeis used to establish a secure
communications directly between any two communica-
tion end-points. In thetunnel mode, in turn, the end-
points of a tunnel are typically not the same as the final
communication end-points. In other words, the tunnel
mode security associations are bound to different IP ad-
dresses than the sockets.

For the purposes of HIP, we have proposed a new
IPsec mode, denoted as Bound End-to-End Tunnel
(BEET) mode[11]. This new mode is a combination of
the tunnel and transport mode, using the transport mode
packet format but providing limited tunnel mode seman-
tics. In particular, the new mode takes care of the trans-
lation between IP addresses, used on the wire, and the
end-point identifiers, used at the transport layer.[1]

It is important to notice that in practice we do not
change the IP or IPsec header (ESP and AH) structures,
but just the details of the packet handling within the end-
nodes. However, at the logical level, the new name space
architecture imposes changes to the logical packet struc-
ture. That is, each packet must logically include the end-
point identifiers of the sender and recipient. However, as
IPsec is used, the IPsec Security Parameter Index (SPI)
in ESP packet can be used as tags for end-point identi-
fiers, resulting in packets that are syntactically similar to
those used today. This is illustrated in Figure 4.



IP HIP ESP Upper layers

Logical new packet structure

IP ESP Upper layers

Actual packet structure once 
the HIP negotiation is completed

Figure 4: The packet structure

As the packets are integrity protected with ESP, the
recipient is always able to verify that a received packet
was sent by the alleged peer no matter what the source
and destination addresses are. Thus, by binding the IPsec
Security Associations to end-point identifiers instead of
IP addresses, the destination address becomes pure rout-
ing information, and the source address becomes almost
obsolete [3]. Only during connection setup, when the
nodes have not authenticated each other, does the source
address play any substantial role. Once the peer nodes
have secure bindings between the end-point identifiers
and addresses, the source address is not needed any more
by the nodes, and its only function becomes to carry in-
formation about the topological path the packet has taken
[3].

6. Standardization and implementation
status

At the 58th IETF meeting, which was held at Min-
neapolis Hilton in November 2003, there was a HIP BOF
meeting. In the meeting, we gave a public demonstration
of HIP based IPv4 and IPv6 application interoperability
and mobility, using our BSD Unix based prototype im-
plementation. The decision at the meeting was to form a
HIP working group. At the time this paper is being writ-
ten (December 2003), the HIP community is waiting for
the final desicion from the Internet Engineering Steering
Group (IESG) to form a a new IETF working group for
HIP.

At the time of this writing, the first release of
our prototype implementation is publicly available in
source code format. The implementation is dis-
tributed as a set of patches against a current ver-
sion of the FreeBSD operating system. More in-
formation and download instructions are available at
http://www.hip4inter.net

7. Related Work

7.1. i3: Internet Indirection Infrastructure
The Internet Indirection Infrastructure (i3)[15] defines

a new overlay routing mechanism for multicast, anycast
and mobile communication. The architecture decouples
the sender and receiver of each other using rendevouz
servers, calledi3 nodes. Packets are routed from the
sender to the receiver always via thesei3 nodes. There-
fore, the architecture uses triangle routing and does not
offer optimal packet delivery.

In the i3 architecture, routing is based on a new end-
point identifier name space. An end-point identifier can

be any fixed length hash value, like a hash of a DNS
name, a hash of a web address, or a hash of a public key.
Basically, the new identifiers have two kinds of seman-
tics. Firstly, they are used as end-point identifiers. Sec-
ondly, they are used fori3 level packet routing. That is,
thei3 layer is a self-organizing network and does not use
DNS for address resolution. Therefore, thei3 architec-
ture does not separate the location names from end-point
identifiers in a clean enough way; the end-point identi-
fiers are still used for routing.

The architecture uses the existing Internet routing in-
frastructure to deliver packets between thei3 nodes. Fur-
thermore, thei3 nodes work like routers for the end-point
identifiers, delivering packets to the listening receivers.

i3 suffers from the basic security vulnerabilities that
are related to location updates. Unverified address
binding updates cause easily several difficult Man-in-
the-Middle, masquerade, or Denial-of-Service attacks.
However, Stoica et.al.[15] propose that the end-point
identifiers can be generated from public keys and pub-
lic key cryptography can be used to secure thei3 archi-
tecture. That is very similar to what the Host Identity
Protocol offers.

7.2. FARA

FARA[5] (Forwarding directive, Association, and
Rendevouz Architecture) defines an abstract network ar-
chitecture model. The model decouples of identity from
entity’s location in a clean way. Anentitycan be a sin-
gle process, a group of processes or even a computer
cluster. The communication connections between enti-
ties are identified withassociations.

The architecture avoids the introduction of a new
global name space for the identity. In FARA, the identity
of an entity is an abstraction without a real world corre-
spondence. An association is not used to name an entity.
Basically, the definition of the identity is left open. How-
ever, the paper mentions that an entity can be discovered
by using some global mechanism. They define a ren-
dezvous mechanism and a FARA Directory System to
discover an entity. The rendezvous mechanism discov-
ers the location of an entity and initiates an association.
The directory system is basically used to contact a ren-
dezvous point.

FARA leaves open the end-to-end authentication
model. To be globally scalable, any authentication proto-
col must define an identifier name space. In other words,
the FARA architecture hides, more or less indirectly, the
global identity name space behind the security proper-
ties.

To facilitate mobility, the associations are dynamically
bound to a set of locations. An entity may have several
associations, each of them having their own local index.
However, the security aspects requires an explicit map-
ping between the associations and the entity. Therefore,
the architecture requires a scalable entity name space,
which was bypassed in the paper. However, the paper
mentions that HIP could be used to authenticate the en-
tities to each other. Basically, HIP is an instantiation of
FARA, when the identifiers in HIP are used to identify
smaller entities than hosts. The main difference is that



HIP requires global identifier name space.

8. Conclusions

In this paper, we have briefly described the Host
Identity Protocol (HIP), and discussed how it can be
used to securely implement end-host mobility and multi-
homing, even across IPv4 and IPv6. In HIP, the key idea
is to introduce a new name space, based on cryptographi-
cal key pairs, into the IP stack. With the new name space,
communication end-points are no longer named with IP
addresses but with public keys. At the implementation
level, transport layer sockets are no more bound to IP
addresses but to these new end-point identifiers. Being
public keys, the new identifiers can be securely mapped
to IP addresses. The mapping is dynamic and one-to-
many, providing for mobility and multi-homing.

We believe that an architectural change of this nature
is essential for the future of the Internet. It is no longer
sufficient to name end-points based on their location, i.e.,
their IP address. Either a new name space is needed,
or some other existing name space (such as the DNS)
must be converted to fulfil the need. HIP is an attrac-
tive attempt to provide such a new name space, char-
acterized by its tight integration with IPsec, reliance on
public key cryptography, backward compatibility with
almost all existing protocols and applications, and rel-
atively lightweight implementation[13]. To our knowl-
edge, HIP is the only proposal that is able to securely
provide for mobility and multi-homing across the two
versions of the Internet Protocol.

Acknowledgments

Developing HIP has largely been a community effort.
The basic ideas were put together by Robert Moskowitz,
and he acted as the primus motor for a long time, before
the baton was mostly transferred to the present authors.
The team of early implementors, including but not lim-
ited to Tom Hendersson, Andrew McGregor, and Tim
Shepard, was invaluable during the development of the
ideas into their present stage. For a more complete list of
the people involved, see the acknowledgements sections
in the relevant Internet Drafts[8][9].

The authors would like to thank Tom Henderson, Mi-
ika Komu, Martti Mantyla, Kenneth Oksanen, Matti
Rantanen, Goran Schultz and Timo Ylitalo for their valu-
able comments on various versions of this paper. Our
special thanks go to Tim Shepard who gave us numerous
very valuable comments.

REFERENCES

[1] S. Bellovin. EIDs, IPsec and HostNAT. A presen-
tation give at 41st IETF in Los Angeles, California,
March 1999.

[2] P. Bhagwat, C. Perkins, and S. Tripathi. Network
Layer Mobility: an Architecture and Survey.IEEE
Personal Communications Magazine, June 1996.

[3] C. Candolin and P. Nikander. IPv6 Source Ad-
dresses Considered Harmful. InProc. NordSec

2001, November 2001. Sixth Nordoc Workshop
on Secure IT Systems, Lyngby, Denmark.

[4] I. Castineyra, N. Chiappa, and M. Steenstrup. The
Nimrod Routing Architecture. RFC 1992, August
1996.

[5] D. Clark, R. Braden, A. Falk, and V. Pingali.
FARA: Reorganizing the Addressing Architecture.
In Proc. ACM SIGCOMM’03, August 2003. ACM
SIGCOMM 2003 Workshops, August 25-27, Karl-
sruhe, Germany.

[6] D. Johnson, C. Perkins, and J. Arkko. Mobility
Support in IPv6. Internet Draft, work in progress,
June 2003.

[7] A. Mankin and et.al. Threat Models introduced by
Mobile IPv6 and Requirements for Security in Mo-
bile IPv6. Internet Draft (expired), in Proc. 35th
IETF meeting, Minneapolis, March 2002.

[8] R. Moskowitz and P. Nikander. Host Identity Proto-
col Architecture. Internet Draft, work in progress,
September 2003.

[9] R. Moskowitz, P. Nikander, P. Jokela, and T. Hen-
derson. Host Identity Protocol. Internet Draft, work
in progress, October 2003.

[10] P. Nikander. Denial-of-service, address ownership,
and early authentication in the ipv6 world. InSecu-
rity Protocols, number 2467 in LNCS, pages 12–
21, 2002. Cambridge Security Protocols Work-
shop, April 2001.

[11] P. Nikander. A Bound End-to-End Tunnel (BEET)
mode for ESP. Internet Draft, work in progress,
October 2003.

[12] P. Nikander, T. Aura, J. Arkko, G. Montenegro, and
E. Nordmark. Mobile IP version 6 Route Optimiza-
tion Security Design Background. Internet Draft,
work in progress, April 2003.

[13] P. Nikander, J. Ylitalo, and J. Wall. Integrating Se-
curity, Mobility, and Multi-Homing in a HIP Way.
In Proc. Network and Distributed Systems Security
Symposium, February 2003. NDSS’03, San Diego,
CA, USA.

[14] C. Perkins. IP Mobility Support. RFC 2002, 1996.

[15] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and
S. Surana. Internet Indirection Infrastructure. In
Proc. ACM SIGCOMM 2002, August 2002. Pitts-
burgh, PA, USA.

[16] J. Ylitalo, P. Jokela, J. Wall, and P. Nikander. End-
point Identifiers in Secure Multi-homed Mobility.
In Proc. OPODIS’02, December 2002. 6th Inter-
national Conference On Principles Of DIstributed
Systems OPODIS’02, Reims, France.


