
TKK Dissertations 134
Espoo 2008

AVALANCHE DYNAMICS IN DRIVEN SYSTEMS: 
FROM PLASTIC DEFORMATION TO FLUID INVASION
Doctoral Dissertation

Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Engineering Physics

Lasse Laurson



TKK Dissertations 134
Espoo 2008

AVALANCHE DYNAMICS IN DRIVEN SYSTEMS: 
FROM PLASTIC DEFORMATION TO FLUID INVASION
Doctoral Dissertation

Lasse Laurson

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission 
of the Faculty of Information and Natural Sciences for public examination and debate in Auditorium 
N at Helsinki University of Technology (Espoo, Finland) on the 30th of September, 2008, at 13 
o’clock.

Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Engineering Physics

Teknillinen korkeakoulu
Informaatio- ja luonnontieteiden tiedekunta
Teknillisen fysiikan laitos



Distribution:
Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Engineering Physics
P.O. Box 1100
FI - 02015 TKK
FINLAND
URL: http://tfy.tkk.fi/
Tel.  +358-9-451 3231
Fax  +358-9-451 3116
E-mail: lasse.laurson@tkk.fi

© 2008 Lasse Laurson

ISBN 978-951-22-9536-4
ISBN 978-951-22-9537-1 (PDF)
ISSN 1795-2239
ISSN 1795-4584 (PDF) 
URL: http://lib.tkk.fi/Diss/2008/isbn9789512295371/

TKK-DISS-2500

Picaset Oy
Helsinki 2008



AB
ABSTRACT OF DOCTORAL DISSERTATION HELSINKI UNIVERSITY OF TECHNOLOGY

P. O. BOX 1000, FI-02015 TKK
http://www.tkk.fi

Author Lasse Laurson

Name of the dissertation

Manuscript submitted 09.06.2008 Manuscript revised 12.08.2008

Date of the defence 30.09.2008 at 13 o’clock, TKK main building, Otakaari 1, lecture hall N

Article dissertation (summary + original articles)Monograph
Faculty
Department

Field of research
Opponent(s)
Supervisor
Instructor

Abstract

Keywords avalanches, noise, self-organized criticality, plastic deformation, imbibition

ISBN (printed) 978-951-22-9536-4

ISBN (pdf) 978-951-22-9537-1

Language English

ISSN (printed) 1795-2239

ISSN (pdf) 1795-4584

Number of pages 49 p. + app. 48 p.

Publisher Department of Engineering Physics, Helsinki University of Technology

Print distribution Department of Engineering Physics, Helsinki University of Technology

The dissertation can be read at http://lib.tkk.fi/Diss/2008/isbn9789512295371/

Avalanche dynamics in driven systems: From plastic deformation to fluid invasion

X

Faculty of Information and Natural Sciences
Department of Engineering Physics
Statistical physics
Prof. Michael Zaiser, University of Edinburgh
Acad. Prof. Risto Nieminen
Doc. Mikko Alava

X

A large class of interacting systems in Nature respond to externally applied driving in an intermittent and
heterogeneous manner. Typically, the statistics of sizes of the observed bursts of activity, or avalanches, can be
described by scale free power law distributions. Also the temporal correlations associated to such an activity time
series are of interest, and can be studied by computing the power spectrum of the time series. This power spectrum
typically scales as a power law of the frequency, 1/fα, thus constituting an example of 1/f noise, a phenomenon
ubiquitous in Nature.

In this thesis a number of simplified model systems exhibiting such phenomenology are studied, both analytically and
by computer simulations. In particular, a relation between the avalanche and noise descriptions of the intermittent
activity, originally proposed in the context of Barkhausen noise, is shown to apply more generally to systems with
avalanche dynamics. This has important implications especially in the context of sandpile models of self-organized
criticality, as it allows to demonstrate how such models can exhibit non-trivial scaling of the power spectra, contrary to
earlier claims. The general nature of this relation is further emphasized by showing that it applies also in the apparently
very different context of a propagating fluid front when a fluid invades porous media as a sequence of avalanches, as
well as for avalanches of plastic deformation activity in a simple two dimensional discrete dislocation dynamics model.

For the dislocation model, also other issues such as correlations between different avalanches and history dependent
response to externally applied stresses are studied. An effort is made to understand the role of grain boundaries to the
propagation of dislocation avalanches in plastically deforming polycrystals, by studying the screening effect arising
from the deformation of a simplified grain boundary in the stress field of a single edge dislocation. Finally, a simple
random walk-based model mimicking a dislocation interacting with a cloud of diffusing solute atoms in metallic alloys
is studied. Such a system is shown to exhibit fluctuations characterized by power-law distributions with a cut-off.
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Vuorovaikuttavien systeemien vaste ulkoiseen ajavaan voimaan on tyypillisesti epäsäännöllinen ja heterogeeninen.
Tällöin havaittavien aktiviteettipurskeiden, tai -vyöryjen, kokojakaumaa kuvaa usein skaalavapaa potenssilakijakauma.
Vaihtoehtoinen tapa karakterisoida tällaista purskeista aktiviteettiaikasarjaa on tutkia sen aikakorrelaatioita laskemalla
aikasarjan tehospektri, joka tyypillisesti on potenssilakimuotoa 1/fα, missä f on taajuus. Kyseessä on siis esimerkki
1/f -kohinasta, joka on luonnossa hyvin yleinen mutta usein huonosti ymmärretty ilmiö.

Tässä väitöskirjassa tutkitaan useita yksinkertaisia mallisysteemejä joissa esiintyy edellä kuvatun kaltaisia ilmiöitä.
Tutkimus koostuu sekä analyyttisistä laskuista että tietokonesimulaatioista. Erityisesti tutkimuksessa osoitetaan että
tietty yhteys vyöry- ja kohinakuvauksien välillä, joka on alunperin esitetty Barkhausenin ilmiön yhteydessä, on
voimassa varsin yleiseti vyörydynamiikkasysteemeissä. Tällä on merkittäviä seurauksia mm. itseorganisoituvasti
kriittisten n.s. hiekkakasamallien osalta, sillä kyseinen relaatio osoittaa näissä malleissa esiintyvän monimutkaisia
aikakorrelaatioita, vastoin aikaisempaa käsitystä. Tämä purskeisten signaalien vyöry- ja kohinakuvausten välinen
yhteys on luonteeltaan varsin yleinen: Se on voimassa myös näennäisesti hyvin erilaisessa systeemissä, nimittäin
nesterajapinnan vyörymäisessä etenemisessä nesteen tunkeutuessa huokoiseen aineeseen kapillaarivoimien
vaikutuksesta. Sama relaatio pätee myös plastisen deformaation vyöryille yksinkertaisessa kaksiulotteisessa
diskreetissä dislokaatiodynamiikkamallissa.

Dislokaatiomallissa tutkitaan myös muita ilmiöitä, kuten eri vyöryjen välisiä korrelaatioita sekä historiasta riippuvaa
vastetta ulkoiseen voimaan. Myös monikiteisissä aineissa esiintyvien raerajojen merkitystä plastisen deformaation
vyöryjen etenemiselle tarkastellaan tutkimalla yksinkertaisen raerajamallin yksittäisen dislokaation jännityskentässä
tapahtuvasta deformaatiosta seuravaa varjostusefektiä. Lopuksi tutkitaan yksittäisen hiukkasen dynamiikkaa sen
vuorovaikuttaessa diffundoituvien epäpuhtausatomien kanssa, ja osoitetaan että systeemissä esiintyviä fluktuaatioita
voidaan karakterisoida potenssilakijakaumilla.
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1 On avalanches and noise in non-equilibrium

systems

1.1 Introduction

Quite often, things in Nature do not happen smoothly. Instead, a typical response

of a wide class of physical systems to slowly changing external conditions takes the

form of a series of discrete events or avalanches spanning a broad range of sizes. Such

“crackling noise” [1] is observed in several apparently very different systems, ranging

from the sound emitted from a crumpling [2] or tearing [3] of a piece of paper to

earthquakes occurring when slowly moving tectonic plates rub each other [4]. Other

examples include Barkhausen noise (magnetic pulses emitted from a ferromagnet in a

changing external field) [5, 6, 7] and motion of a fluid front when fluid invades porous

media in an imbibition experiment [8, 9, 10]. Recent experimental evidence shows

that also plastic deformation of crystalline solids is characterized by intermittent

avalanches of plastic activity, contrary to the traditional picture of a smooth laminar

flow process [11, 12, 13].

A common feature of these systems is that statistics of various measures associated

to them - such as avalanche sizes and durations - appear to lack a characteristic

scale. This scale invariance is reminiscent of what one observes at a critical point

of a second order phase transition. Thus, such behaviour is often assumed to follow

from the proximity of a non-equilibrium phase transition [14], or from mechanisms

such as self-organized criticality (SOC) where the critical point is an attractor of

the dynamics - the system self-organizes into a critical point without any apparent

tuning of parameters [15].

To get more insight into this intriguing behaviour, numerical studies of such phe-
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nomena using appropriately simplified model systems are of great importance. As

systems exhibiting crackling noise are typically composed of a large number of in-

teracting parts, a full model with all the microscopic details of a real system in-

cluded would often be impossible to simulate with even the most powerful com-

puters. Therefore a crucial feature of useful model systems is that they should be

somehow simplified, but still preserve the essential properties of the original physical

system. Such simplification (sometimes referred to as coarse-graining) of the system

can be justified by the observation that systems with scale free or critical-like fea-

tures typically also exhibit certain degree of universality: all the microscopic details

are not important for the large scale behaviour of the system.

This thesis consists of studies of various simplified model systems exhibiting avalanche-

like fluctuations and noise. The background and some central concepts related to

crackling noise and avalanches are introduced in this Section. Sandpile models of

self-organized criticality are studied in Section 2 to demonstrate that such simple

models exhibit non-trivial temporal correlations, contrary to earlier claims. Similar

findings are reported also for a phase field model of fluid invasion into disordered

media (Section 3) as well as in the context of a simple dislocation dynamics model

in Section 4. For the dislocation model, also other properties such as correlations

between different avalanches, the history dependence of the dynamics, and the effect

of grain boundaries on interaction between dislocations are considered. Finally, a

study of a single particle interacting with mobile impurities is presented in Section

5.

1.2 Properties of crackling noise

A schematic example of a typical crackling noise signal V (t) is shown in the upper

panel of Fig. 1.1. Here it is assumed that V (t) is a stationary signal (i.e. its

statistical properties do not vary in time) characterizing the global behaviour of the
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system, e.g. the total activity of some kind of a given system as a function of time

t. There are two different methods that have been commonly used to characterize

such a signal. One can either consider the signal as a collection of discrete bursts

or avalanches and study the statistical properties of various measures associated to

them, or view it as a noisy time series and study its spectral properties.

1.2.1 Avalanches

An avalanche is defined as a correlated and uninterrupted sequence of activity in

a system composed of a large number of interacting constituents. Typically an

avalanche is localized in space, but for systems in which the constituents inter-

act through long range interactions this is not necessarily the case. To trigger an

avalanche, some sort of perturbation needs to be applied to the system. This is

achieved by driving the system from outside at a slow rate. In thermal systems, also

thermal fluctuations can trigger avalanches. Such a perturbation can cause a small

burst of activity somewhere in the system, which then may trigger further activity

in its vicinity. In a critical system the characteristic size of such a chain reaction is

limited only by the finite system size.

If the drive rate is sufficiently slow such that different avalanches do not overlap in

time, one can study the avalanches simply by considering the global activity time

series V (t): a single burst in V (t) corresponds to a single avalanche. However, iden-

tifying an avalanche from a time series such as that in Fig. 1.1 is often complicated

by the fact that due to various reasons (e.g. experimental noise) one typically has a

nonzero background in the signal V (t) on top of which the bursts corresponding to

avalanches can be observed. This background needs to be thresholded away in order

to be able to define individual avalanches. As it is not a priori clear what would

be the “correct” threshold value Vth to use, one needs to consider also the effect of

varying the threshold.
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Figure 1.1: Top: A schematic example of a time series V (t) consisting of distinct
bursts, or avalanches. Bottom: A more detailed view from the beginning of the
signal, showing definitions of the various quantities associated to the avalanches.
The avalanche size s is the area under the part of the signal V (t) corresponding to
a single avalanche of duration T . The waiting time τ is here taken to be the quiet
time interval between two successive avalanches, but other definitions such as the
time interval between two consecutive avalanche triggerings are also possible.

Statistical properties of avalanches are usually studied by considering the probability

distributions of various measures associated to them. These include the avalanche

duration T and size s, defined by s =
∫ T
0 [V (t)−Vth]dt, see the lower panel of Fig. 1.1.

Due to the lack of characteristic scale, the distributions can typically be described

by power laws of the form

P (x) = x−τxfc

(
x

x0

)
, (1.1)

where τx is the exponent characterizing the statistics of the quantity x = s, T, ...,

fc(z) is a scaling function satisfying fc(z) → const. for z � 1 and fc(z) → 0 for

z � 1. x0 is a cut-off scale due to e.g. the finite system size.

In addition to the statistics of individual avalanches, correlations between different
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Figure 1.2: Examples of artificially generated noise signals. Top: Gaussian white
noise, characterized by a flat power spectrum with α = 0. Middle: 1/f noise with
α = 1. Bottom: Brownian noise (integrated white noise) with α = 2.

avalanches are also of interest. If the triggerings of avalanches are uncorrelated, the

waiting times τ (not to be confused with the exponent τx which in this thesis always

appears with a subscript) between consecutive avalanches are expected to obey an

exponential distribution. Quite often, however, a power law distribution for the

waiting times is observed instead, indicating the presence of temporal correlations

between triggerings of different avalanches [3, 16]. The tendency of avalanches to

form clusters in time can in many cases be quantified by the Omori law, originally

proposed in the context of earthquakes, stating that the event rate after the “main

event” decays as a power law in time [17]. Similar conclusions have been made

also for spatial correlations: avalanche locations within the system are not typically

uniformly distributed: consecutive avalanches tend to be clustered in space [18].

1.2.2 Noise

Another possibility to characterize a stationary signal V (t) is to regard is as “noise”,

and study its spectral properties by means of computing the power spectrum of
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V (t),

S(f) ∼
∣∣∣∣∫ ei2πftV (t)dt

∣∣∣∣2 . (1.2)

An alternative definition of S(f) is given by the Fourier transform of the correlation

function C(θ) =
∫

V (t)V (t+θ)dt of the stationary signal V (t), S(f) =
∫

C(t)ei2πftdt.

Typically also S(f) assumes a power law form, scaling with frequency f as

S(f) ∼ f−α, (1.3)

where the value of the exponent α determines the type of noise. A crude classification

is presented in Fig. 1.2. White or uncorrelated noise is characterized by a flat power

spectrum with α = 0, whereas a Lorentzian spectrum with α = 2 corresponds to

stationary Brownian noise, an example being the position of a random walker in

a harmonic potential (i.e. the Ornstein-Uhlenbeck process) as a function of time.

In between these two “trivial” cases, one has the interesting regime often referred

to as 1/f noise, with 0 < α < 2. As this kind of noise is ubiquitous in Nature

and also in some man-made systems, and has interesting properties such as long

temporal correlations, a significant amount of activity has been devoted to trying

to understand the origin of 1/f noise. One mechanism producing non-trivial 1/f -

like noise in a number of systems with avalanche dynamics over limited range of

frequencies is presented below.

1.3 Scaling of the power spectrum

In the case of an avalanche-like time series V (t), there exists a relation between

the two approaches described above to characterize such a signal. It was originally

proposed in the context of Barkhausen noise [23], and more recently it has been

found to apply quite generally for systems exhibiting critical avalanche dynamics.
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0 0.5 1
t/T

V
(t

)

Figure 1.3: A schematic example of a part of the signal V (t) corresponding to
an individual avalanche (thin line with a rough shape) and the average avalanche
shape, obtained by averaging over a large number of avalanches of given duration T
(thick smooth line).

1.3.1 The average avalanche shape

Besides computing the distributions of simple avalanche properties such as their size

and duration, also the more detailed structure of individual avalanches is of interest.

Studies of e.g. the average avalanche shape provide another method to compare real

physical systems with various simplified models [24], see Fig. 1.3

In a critical system one expects the avalanche shape to be independent of its dura-

tion, such that average avalanche shapes 〈V (t, T )〉 of avalanches of different dura-

tions T obey

〈V (t, T )〉 = T γst−1fshape(t/T ), (1.4)

where fshape(x) is a scaling function corresponding to the duration-independent av-

erage avalanche shape [23]. Notice that Eq. (1.4) contains also the scaling of the

average avalanche size with the avalanche duration, 〈s(T )〉 ∼ T γst . The exponent

γst is related to the other avalanche exponents through γst = (τT − 1)/(τs − 1) [14],

a relation that can be easily derived by assuming a power law scaling of the form of
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〈s(T )〉 ∼ T γst and using P (s)ds = P (T )dT .

In simple model systems, avalanche shape is typically symmetrical, whereas in cer-

tain experimental systems, the observed avalanche shape displays some asymmetry.

For Barkhausen noise, this has been demonstrated to be due to a negative effective

mass of the moving domain walls arising from eddy current damping [25]. Also cer-

tain other experimental systems appear to exhibit some asymmetry in the avalanche

shape [19], but it is not clear if the explanation proposed in [25] is applicable more

generally.

1.3.2 Power spectra

Starting from Eq. (1.4), one may derive a relation between the power spectrum

and avalanche scaling [23]. Consider first the probability P (V |s) to get a certain

value V in the V (t)-signal during an avalanche of size s. By assuming scaling and

requiring normalization, one obtains P (V |s) = V −1fV (V s1/γst−1), where fV (x) is a

scaling function. Consequently, the avalanche energy E(s) scales like

E(s) = 〈V 2〉s1/γst = s1/γst

∫ ∞

0
V 2P (V |s) ∼ s2−1/γst . (1.5)

The stationary time-time correlation function C(θ) is defined by

C(θ) =
∫

V (t)V (t + θ)dt. (1.6)

By considering only the V (t)-signals corresponding to avalanches of size s in Eq.

(1.6), one obtains the correlation function C(θ|s) for avalanches of a given size s.

The θ = 0 component of C(θ|s) is proportional to the avalanche energy E(s). Thus,

due to the scaling of E(s) in Eq. (1.5), C(θ|s) scales like

C(θ|s) = s2−1/γstfC(θs−1/γst), (1.7)
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where fC(x) is a scaling function. The energy spectrum E(f |s) of avalanches of a

given size is then obtained as a cosine transform of C(θ|s),

E(f |s) =
∫ ∞

0
C(θ|s) cos(fθ)dθ = s2gE(fγsts), (1.8)

where gE(x) is a scaling function. To obtain the power spectrum S(f) of the total

signal, E(f |s) is averaged over the avalanche size probability distribution, assumed

to be a power law P (s) ∼ s−τs with a cut-off scale s∗. Thus,

S(f) =
∫

P (s)E(f |s)ds = f−γst(3−τs)
∫ s∗fγst

dxx2−τsgE(x). (1.9)

By making the assumption that the avalanche dynamics is such that the elementary

events forming an avalanche contribute to E(f |s) only through local correlations,

and that the local growth of an avalanche does not reflect the overall avalanche size,

one has E(f |s) ∼ s [23]. This implies gE(x) ∼ 1/x, and one obtains from Eq. (1.9)

for τs < 2 the scaling

S(f) ∼ f−γst , (1.10)

i.e. α = γst for frequencies f > 1/T0, with T0 the cut-off scale of the avalanche

duration distribution. In the rare case with τs > 2, the integral in Eq. (1.9) would

converge and a scaling α = γst(3−τs) ensues. The α = γst scaling has been found to

be valid in a number of systems, including some of the ones discussed in this thesis

[20, 21, 22]. As it is well known that the avalanche exponents (including γst) can

assume non-trivial values, the above scaling relation gives a natural explanation to

similar observations regarding power spectra of intermittent avalanche-like signals.
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2 Sandpile models of self-organized criticality

In this Section power spectra of signals V (t) consisting of avalanches in sandpile

models of self-organized criticality are studied. In particular, it is shown that certain

“classical” sandpile models exhibit activity time series V (t) with non-trivial scaling

of the power spectrum of V (t). This contradicts earlier claims that such models

should lead to to trivial Lorentzian power spectra. The results are published in

article I.

2.1 Self-organized criticality

In 1987, Bak, Tang and Wiesenfeld (BTW) introduced a simple cellular automaton

model to elucidate the concept of self-organized criticality (SOC), or as the authors

put it in the title, “an explanation of 1/f noise” [15]. SOC is a mechanism through

which a large class of slowly driven dissipative systems display scale free behaviour

characteristic to a second order phase transition or a critical point, but without

any apparent tuning of parameters. The general nature of the concept has lead to

applications also outside the traditional realm of physics, and it has been proposed

to be one of the mechanisms through which complexity arises in Nature [26].

2.2 Definition of the models

Sandpile models are model systems in which such ideas can be explored within a

conveniently simple framework. After the introduction of the original model by

BTW more than two decades ago, also a number of variants have been proposed.

Here, we focus on two specific sandpile models, namely the original BTW-model
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[15] and the stochastic Manna model [27].

These models are defined on a d-dimensional hypercubic lattice, with an integer

variable zi assigned on each lattice site i representing the number of “grains”present

on that site. If for a given site the local variable reaches or exceeds a critical value

zc, the site topples, implying that some of the grains on that site are distributed

among its nearest neighbours: zi → zi − zc and zj → zj + 1, where j denotes the

nearest neighbour sites of the site i. The details of this toppling process determine

the different models. In the deterministic BTW model, zc = 2d and each nearest

neighbour of the toppling site will receive exactly one grain. The stochastic Manna

model is defined by zc = 2 and by a toppling process in which two randomly chosen

nearest neighbours receive a grain.

The dynamics is typically chosen to be parallel, meaning that during a single time

step all the sites are checked and those with zi ≥ zc will be toppled. A toppling

can induce one of the neighbours of the toppling site to topple during the next time

step, and so on. Such a chain reaction of topplings is an avalanche, with the size s

defined as the total number of topplings and duration T as the number of parallel

updates of the lattice during an avalanche.

Such systems are driven by adding new grains to the system at a slow rate to

randomly chosen locations, zi → zi + 1. Typically one implements the slow driving

limit, in which new grains are added only when there is no activity. This driving is

balanced by dissipation, which is usually implemented by choosing open boundary

conditions such that if a boundary site topples, grains can leave the system through

open boundaries.

By considering the above systems with periodic boundary conditions without any

dissipation or drive (the so called fixed energy sandpile [28]), one finds a transition

between active and inactive (often referred to as the absorbing state) phases when
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Figure 2.1: Main figure: The rescaled energy spectra of avalanches of size s, show-
ing that the scaling function gE(x) decays as 1/x. Inset: A data collapse showing
the average avalanche shape for different T -values. Data from the 2d Manna model.

a control parameter, the grain density ζ is varied. The transition takes place at

a specific critical value ζ = ζc of the control parameter, and is characterized by

scaling features typical for critical phenomena occurring at a second order phase

transition. For instance the order parameter of the transition, the density of active

sites ρa, behaves close to but above the critical point as ρ ∼ (ζ − ζc)
β, where β

is the associated critical exponent. Such models can also be mapped to models of

interfaces moving in random media, consequently the absorbing phase transition can

also be referred to as a depinning transition [29, 30].

The combination of the slow driving and dissipation present in the SOC version of

the model drives the system towards the critical point of the absorbing/depinning

transition. In the steady state, the grain density ζ of the SOC models fluctuates

around the critical value ζc, and the model shows scale invariance with scaling

exponents characteristic to the underlying absorbing/depinning transition [29, 30,
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line). Left: Manna d = 1. Right: Manna d = 2.

31]. E.g. the avalanche size distributions can be characterized by power laws of the

form

P (f) = s−τsfc(s/s0), (2.1)

with the cut-off scale s0 scaling with the linear system size L as s0 ∼ LD
s .

2.3 Power spectra

An important issue in the context of the sandpile models of SOC is the possible

existence of complex temporal correlation in the activity time series extracted from

such simple models. Most often this is studied by computing the power spectrum of a

time series V (t), which could be for instance the number of topplings as a function

of time, with one parallel update of the lattice defining the unit of time. The

system is driven slowly with an uncorrelated driving such that different avalanches

do not overlap in time. The history of such studies has been confusing: First, BTW

claimed that the sandpile model gives rise to a 1/f -type power spectrum of V (t),
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with the exponent α close to 1 [15]. Soon after that, two groups published results

indicating that sandpile models should instead lead to Lorentzian power spectra,

with α = 2 [33, 34]. After that, a number of different versions of the original

sandpile model have been proposed, some of them apparently displaying non-trivial

temporal correlations or 1/f -like power spectra [35, 36, 37, 38]. But, in article I, it

is shown that the original BTW model and the stochastic Manna model, without

any modification, follow the apparently generic scaling of the power spectrum, Eq.

(1.10), with α = γst, thus giving rise to non-trivial scaling of the (high frequency)

power spectrum. These results are not sensitive to the drive rate (i.e. the quiet times

between avalanches), as long as it is slow enough such that different avalanches do

not overlap in time.

To demonstrate how this result arises from the generic derivation presented in Sec-

tion 1, the energy spectrum of avalanches as well as the average avalanche shapes

are computed. For the 2d Manna model, the scaling of the energy spectrum E(f |s)

is observed to be consistent with gE(x) ∼ 1/x, and the average avalanche shape is

found to be symmetrical and obey Eq. (1.4), see Fig. 2.1. For the BTW model, com-
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plications arise as the avalanches appear to develop an asymmetry varying slowly

with the avalanche duration T . Such observations could be related to the multiscal-

ing that the BTW model has been found to exhibit [32]. Nevertheless, the Manna

model in d = 1,2 and 3 as well as the d = 2 BTW model all appear to obey the

scaling α = γst, with α = γst ≈ 1.44, 1.77 and 1.9 for the Manna model in d = 1, 2

and 3, respectively, and α = γst ≈ 1.59 for the BTW model with d = 2. For d ≥ 4,

with d = dc = 4 the upper critical dimension of the models at hand, mean field

exponents are expected, implying α = γst = 2.

This finding contradicts earlier claims that such models should lead to Lorentzian

power spectra independent of the model details and spatial dimension d [33, 34].

Instead, in the physically interesting dimensions d < dc = 4, non-trivial scaling of

the high frequency power spectrum is observed, with the value of the exponent α

reflecting the universality class of the underlying avalanche dynamics. One should

note, however, that the above applies only for frequencies higher than that corre-

sponding to the inverse duration 1/T0 of the longest avalanche in the system. 1/f

noise arising from correlations between different avalanches, as apparently observed

in a number of systems, remains to be explained.
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3 Fluctuations in fluid invasion into disordered

media

Another example system involving avalanche dynamics, the dynamics of a fluid

front invading disordered porous media is considered in this Section. By studying

the phase field model of the problem, it is shown that the avalanche-like propagation

of the front gives rise to a fluctuating spatially averaged interface velocity, obeying

the generic scaling of the power spectrum, Eq. (1.10). Furthermore, the scaling of

the velocity fluctuations of the advancing fluid front with the mean velocity is inves-

tigated and compared to interfaces moving in random media without a conservation

law. The results are reported in more detail in article II.

3.1 Fluid invasion into disordered media

The process of a viscous fluid displacing air or a less viscous fluid in disordered

porous media constitutes an important problem, with many applications in various

fields of engineering and technology, ranging from oil industry applications [39] to

ink penetration in paper in printing processes [40]. A more familiar example from

everyday life of such an imbibition experiment could be a napkin that is accidentally

put in contact with a cup of coffee. Due to capillary forces arising from the porous

structure of the medium (napkin), the fluid (coffee) is sucked from the reservoir

(cup), and an interface separating the invaded (wet) and noninvaded (dry) regions

propagates. Due to the disordered structure of the medium, such an interface is

typically observed to be rough.

In more controlled experiments, such phenomena have been demonstrated to ex-

hibit robust scaling features. In spontaneous imbibition, such as the above example
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involving napkin and coffee, the average interface height h̄ grows in time according

to the Washburn’s law h̄ ∼ t1/2 [41]. Forced flow imbibition arises if the pressure

at the liquid reservoir is increased as the interface advances, by keeping the mean

pressure gradient |∇P | = (PR−PI)/h̄ constant, where PR and PI are the pressures

at the reservoir and interface, respectively. In general, the fluid interface advances

as fluid is transported from the reservoir through the medium. Such a fluid flow

obeys Darcy’s law,

~i = −κ

η
∇P, (3.1)

where the flux ~i arises due to a pressure gradient ∇P , with η the viscosity of the

liquid and κ the permeability of the medium [42]. The pressure PI at the interface

is a superposition PI = γ∗K+Pc +P0 of the effect of coarse-grained curvature K by

an effective interface tension γ∗, the capillary (Pc) and atmospheric (P0) pressures.

The porous structure of the medium gives rise to two different kinds of quenched

disorder: The capillary disorder pc(~r) = Pc + δpc(~r) acting only at the interface, and

permeability disorder κ(~r) = κ+ δκ(~r) affecting the flux of liquid from the reservoir

towards the interface. Consequently, one can identify two different length scales.

Due to the tendency of the effective (capillary) interface tension and the average

pressure gradient to smoothen the interface, correlated roughness can be observed

only up to a lateral length scale

ξc ∼
√

κγ∗

ηv̄
=

√
κ

Ca
, (3.2)

where Ca = ηv̄/γ∗ is the capillary number [43]. Another length scale due to the

ratio of the disorder strengths [44] is given by

ξκ ∼
κ2

v̄η

δpc

δκ
=

√
κ

Ca
. (3.3)

Thus, for the case of a slowly advancing front (or low Ca), one has ξκ > ξc and

capillary-induced fluctuations prevail.
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3.2 Phase field model

To model the imbibition process, a phase field model of the problem is considered

[43]. An energy functional

F [φ] =
∫

dd+1r

[
(∇φ)2

2
− φ2

2
+

φ4

4
− α~rφ

]
(3.4)

couples a scalar phase field φ(~r, t) to quenched randomness α(~r) characterized by

the mean value ᾱ > 0 and standard deviation ∆α, modelling capillary disorder. The

invaded and non-invaded regions correspond to φ = 1 and φ = −1, respectively. The

model is defined in the d + 1 -dimensional half-space, ~r = (~x, y), with y > 0. As

the system is coupled to a liquid reservoir at the bottom, the appropriate boundary

condition is φ = 1 at y = 0. The initial condition for the simulations is chosen to

be a dry system with φ(~r, t = 0) = −1.

The dynamics in such a system is due to the chemical potential, or pressure, µ =

δF/δφ, which drives the current ~j = −κ̃∇µ. As liquid is conserved in the flow

process, the appropriate dynamical equation for φ assumes the form of the continuity
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equation,

∂tφ = −∇ · κ̃(~r)∇
[
∇2φ + φ− φ3 + α(~r)

]
. (3.5)

Numerical simulations of the model mimicking forced flow imbibition are performed

by continuously shifting the space-dependent fields φ(~r, t), κ̃(~r) and α(~r) downward

with velocity v̄. In the steady state this keeps the average interface height h̄ constant

at h̄ = ᾱ/(2v̄) [43].

3.3 Fluctuations of the fluid front

To study the fluctuations of the interface velocity, the case of a slowly propagating

interface is considered, such that ξκ > ξc. In this limit the capillary disorder domi-

nates and permeability noise can be ignored. Thus, in the simulations only capillary

disorder is considered, by setting κ(~r) = κ in Eq. (3.5).
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The propagation of the rough interface is observed to take place in a sequence of

avalanches or localized bursts of fast interface motion. Such fast moving parts of the

interface are surrounded by non-propagating or pinned regions arising from liquid

conservation: liquid is being dragged from a surrounding region of lateral size h̄d to

allow the interface to propagate in the fast moving part of the interface. These fast

moving parts can be identified with regions of maximal capillary forces experienced

by the interface. At some point this moving part will encounter lower capillary

forces and get pinned. Then, another part of the interface will start moving.

Such dynamics gives rise to a spatially averaged velocity v(t) of the interface, which

in the limit of slow imposed v̄ (or high h̄) becomes increasingly intermittent, see

Fig. 3.1. For h̄ ≥ L, there is typically only one avalanche going on in the system

at any given time, so that bursts in v(t) can be related to individual localized

avalanches. In the left panel of Fig. 3.2, distributions P (v) of the spatially averaged

interface velocity are shown. These resemble Gumbel distributions of extreme value

statistics, reflecting the fact that avalanches are occurring in regions of maximal

capillary pressure. The size or volume of such avalanches is expected to scale with the

duration as s(T ) ∼ T γst . If an avalanche has a lateral size l, then its vertical extent

is given by w ∼ lχloc , where χloc is the local roughness exponent. The avalanche size

is then given by s ∼ ld+χloc . The scaling of avalanche durations with l is obtained

by noticing that an avalanche takes place in a region of higher capillary forces than

in other parts of the interface. Due to the independence of the local values of pc,

the excess velocity is related to l like v ∼ ld/2, implying T = w/v ∼ lχloc+d/2. Thus,

a relation s(T ) ∼ T γst with

γst =
χloc + d

χloc + d/2
(3.6)

is obtained. For the case at hand, with d = 1, one has χloc = 1 and consequently

γst = 4/3. Due to the relation (1.10), one thus expects that also the high frequency

part of the power spectrum S(f) = 〈|v̂(f)|2〉 of v(t) for the interface with d = 1

scales like S(f) ∼ f−4/3. Numerical results consistent with this are presented in the

right panel of Fig. 3.2.
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Let us next consider the relation between the mean interface velocity v̄ and the

fluctuation ∆v. The overall average velocity of the interface is related to the average

avalanche velocity v̄ava trough v̄ ≈ (ξ/h̄)dv̄ava, where ξ = ξc or ξκ, giving the cut-off

length scale of the moving avalanches. Within a region of lateral size h̄, the overall

velocity fluctuation is given by (ξ/h̄)d∆vava. As there are (L/h̄)d such independent

regions,

∆v ∼
(

h̄

L

)d/2 (
ξ

h̄

)d

∆vava. (3.7)

By further assuming that the avalanche velocity fluctuations obey ∆vava ∼ v̄ava, one

gets

∆v ∼
(

h̄

L

)d/2

v̄. (3.8)

Due to v̄ ∼ 1/h̄, this gives rise to

∆v ∼ v̄1−d/2L−d/2. (3.9)

The left panel of Fig. 3.3 shows the relation ∆v vs. v̄ for two different geometries,

and a reasonable agreement with predictions of Eqs. (3.8) and (3.3) is found.
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This can be compared with the velocity fluctuations of an interface without any

conservation law, driven by a force F through a random medium. In such a situa-

tion, there typically exists a zero temperature critical value Fc for the driving force,

separating pinned and propagating states. In the vicinity of such a depinning tran-

sition, a diverging correlation length ξ ∼ (F − Fc)
−ν and order parameter scaling

of the form v̄ ∼ (F − Fc)
θ ensues. In the critical region where ξ ≈ L, θ assumes a

non-trivial value less than 1, while for slightly larger driving forces one has L > ξ

and a cross-over to v̄ ∼ (F − Fc) takes place.

In a system of lateral size L, one has N = (L/ξ)d independent subvolumes. The

local spatially averaged velocities within these subvolumes are then independent

random variables with mean v̄ and standard deviation assumed to obey δv ∼ v̄.

The fluctuations of the overall instantaneous velocity are then given by

∆v ∼ δv/
√

N ∼ v̄1−dν/(2θ)L−d/2. (3.10)

Numerical simulations with the cellular automaton version of the d = 1 quenched

Edwards-Wilkinson equation ∂h/∂t = Γ∇2h + F + η(x, h(x, t)) (with η an uncorre-

lated quenched noise) in the regime with L/ξ = O(10) are in reasonable agreement

with Eq. (3.10), yielding 1 − dν/(2θ) = 1/3 by using an effective θeff = 1 and

ν = 4/3, the known critical value for the d = 1 depinning transition, see the right

panel of Fig. 3.3. Thus, the character of the velocity fluctuations of a driven inter-

face depend on the presence or absence of a conservation law.
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4 Discrete dislocation dynamics

Let us next consider the rich phenomenology arising from dynamics of interacting

dislocations, line-like defects present in crystalline solids. The results regarding the

relation (1.10) between avalanches of dislocation activity and noise in such systems

have been published in article III. Article IV deals with apparent temporal corre-

lations between distinct avalanches and the dependence of such correlations on the

thresholding procedure applied to identify avalanches. Also the history dependence

of the dynamics is studied. The results on a low angle grain boundary interacting

with a single edge dislocation are published in article V.

4.1 Plastic deformation of solids

Plastic deformation of crystalline solids has been an active field of study already

for a long time due to its enormous practical importance for various engineering

applications. It is well established that the dominating contribution of irreversible

deformation arises from the nucleation and motion of dislocations, linear defects

of the ordered crystal lattice. The traditional picture of the deformation process

has been that of a smooth laminar flow -like process in which fluctuations average

out when large enough scales are considered. However, recent experimental obser-

vations have challenged this paradigm: Instead, plastic deformation of crystalline

[11, 12, 13, 45, 46, 47, 48] as well as amorphous [49, 50, 51] solids is characterized by

intermittent avalanches of plastic activity spanning several orders of magnitude in

size. Similar results have been obtained also by modelling the plastic deformation

of crystalline solids by means of discrete dislocation dynamics models of varying

degree of complexity, ranging from simple two dimensional models involving point-

like dislocations [52] to more realistic three dimensional simulations with flexible

dislocation lines [53].
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4.2 Morphology of crystalline solids

Crystalline solids are ordered structures formed by the constituent atoms of the

material. These can have different structures (such as BCC, FCC) depending on

the material at hand. However, real crystals are usually not perfect. Instead, a

typical piece of solid material with crystalline structure contains a finite concen-

tration of various defects, including point defects such as vacancies, interstitial and

substitutional atoms, as well as line defects such as dislocations. On larger scales,

crystalline materials are often composed of distinct grains with a specific crystallo-

graphic orientation in each grain, separated from each other by planar defects called

grain boundaries.

Dislocations are the defects the motion of which is typically responsible for the

majority of the plastic deformation of crystalline solids. Two specific kinds of dis-

locations are the edge dislocation and the screw dislocation, see Fig. 4.1 for a

schematic illustration of the former. Also mixed dislocations combining aspects of

both types are common. Dislocations can be characterized by a“topological charge”,

the Burgers vector ~b, indicating the magnitude and direction of the induced lattice

distortion.

Under an applied external (shear) stress, dislocations tend to move, or glide, in

some specific slip planes containing both the dislocation and its Burgers vector,

defined by the underlying crystal structure. Slip motion of a screw dislocation is

possible in any plane containing the dislocation, as the dislocation and its Burgers

vector are parallel. The Burgers vector of an edge dislocation is perpendicular to the

dislocation line, implying that for a given edge dislocation there is only one plane in

which it can move by glide. Another mechanism contributing to dislocation motion

is called climb, through which an edge dislocation can move perpendicular to its

slip plane. As dislocation climb is due to diffusion of vacancies, it is a strongly

temperature dependent phenomenon. For low temperatures, dislocation glide is the
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Figure 4.1: A schematic diagram of an edge dislocation. The dislocation line is
located where the extra plane of atoms inside the crystal ends.

dominating mechanism for motion of edge dislocations.

4.3 Discrete dislocation dynamics model

A common feature of a class of models referred to as discrete dislocation dynamics

(DDD) models is that there the dislocations are taken as the fundamental entities

of the model, instead of the atoms of the underlying lattice [52, 53, 54, 55]. Such an

approach is convenient as unlike in atomistic simulations [56] it makes it possible to

study systems with reasonably large number of dislocations, but at the same time

allows a more detailed description of individual dislocation processes than various

continuum models where dislocation densities are considered to be the basic variables

[57, 58, 59].

Here, a simple two-dimensional discrete dislocation dynamics (DDD) model similar

to the one presented in Ref. [52] is considered. The point-like dislocations are

assumed to be of edge type, and they can also be thought to represent cross-sections
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of straight dislocations in a three dimensional system. For simplicity only dislocation

glide along a single slip direction parallel to their Burgers vectors ~b = ±bux is

considered. The equations of motion are assumed to be overdamped, with the

velocity of the n’th dislocation vn given by

χ−1
d vn

b
= bsn

∑
m6=n

smσs(~rnm) + σ

 , (4.1)

where vn is the velocity of the nth dislocation, χd is the dislocation mobility, sn

refers to the sign of the Burgers vector of the nth dislocation, and σ is the external

shear stress acting on the dislocations. The dislocations interact with each other

through their long range elastic stress fields of the form

σs(~r) =
µb

2π(1− ν)

x(x2 − y2)

(x2 + y2)2
, (4.2)

with µ the shear modulus and ν the Poisson ratio of the material. Dimensionless

versions of the equations of motion (4.1) are studied by measuring lengths in units of

b, times in units of 1/(χdDb) and stresses in units of µ/[2π(1− ν)]. Phenomenolog-

ical annihilation and multiplication reaction are also implemented: If the distance

between two dislocations with Burgers vectors of opposite signs is less than 2b, they

are removed from the system. This is balanced by monitoring the local stress in the
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Figure 4.3: Left: The average avalanche shape for different threshold values Vth.
The inset shows the average creation and annihilation rates (rc and ra, respectively)
during an avalanche. Right: Power spectra of the signal V (t) =

∑
i |vi| (dashed lines

) and the avalanche size (solid lines) as a function of the inverse duration, for various
values of the external stress σ. The inset shows an example of the power spectrum
of the strain rate signal.

system and adding a new dislocation pair to the system with a probability propor-

tional to the local stress magnitude if it exceeds some threshold value. This is done

in such a way that the local stress magnitude will decrease due to the stress field of

the new dislocation pair, mimicking the effect of dislocation multiplication through

Frank-Read sources in real plastically deforming crystals [60].

4.4 Noise and avalanches

Such a system has been demonstrated to undergo a transition between a jammed and

moving steady states, as the control parameter, the external stress σ is increased.

Close to the transition point, σ = σc, the strain rate

γ̇ =
b

L2

∑
i

bivi (4.3)
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exhibits power law time dependence γ̇ ∼ t−θ for the early times, with θ ≈ 2/3,

reminiscent of the Andrade creep law observed in a number of systems ranging from

metals [61] to paper [62]. For σ < σc, the system will eventually get stuck, due

to the self-induced constraints on dislocation motion arising from the combination

of long range elastic interactions and kinematical constraints due to the single slip

geometry considered. For σ > σc, however, a moving steady state is observed after

the initial transient. This state is characterized by large fluctuations of dislocation

activity, visible as burst in the collective velocity signal

V (t) =
∑

i

|vi|. (4.4)

The sizes s =
∫ T
0 [V (t) − Vth] of such avalanches have been found to exhibit power

law scaling, with an exponent τs close to τs = 1.6 [52].

More detailed studies reveal that the shape of these avalanches appears to be slightly

asymmetrical in time, see the left panel of Fig. 4.3. While this is in agreement with

experimental observations regarding the pulse shape in acoustic emission studies

[19], it could also arise from the way dislocation multiplication is implemented. The

instantaneous introduction of a dislocation pair changes the stress field in the system

in a discontinuous way, thus causing a jump in the collective velocity signal V (t).

As such a multiplication event is one of the microscopic processes contributing to

an avalanche, it could explain some of the observed asymmetry.

Furthermore, avalanches are observed to follow the scaling 〈s(T )〉 ∼ T γst with γst ≈

1.5, independent of the threshold value Vth. This is in reasonable agreement with

the previous results for the model, as can be seen by the scaling relation

γst =
2τE − 2

2τE − τs − 1
, (4.5)

yielding γst ≈ 1.6 by using τs = 1.6 [52] and τE = 1.8 (with τE characterizing the

statistics of the quantity E = (
∑

i |vi|)2 [12]). Similar conclusions apply to the power

spectrum of the signal V (t), which scales as S(f) ∼ f−α, with α ≈ 1.5, see the right

panel of Fig. 4.3. Thus, the relation α = γst is satisfied also in this case.
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Figure 4.4: The effect of the threshold value Vth on the observed correlations
between avalanches. Left: Distributions of the waiting times τ , defined to be the
time interval between the starting times of two consecutive avalanches. Right: The
correlation integrals of avalanche starting times.

4.5 Correlations between different avalanches

In a number of experimental systems with avalanche dynamics, temporal corre-

lations of different avalanches are often observed [3, 16]. Typically this happens

through clustering of avalanches, the best known example being aftershocks in the

context of earthquakes, with their statistics being described by the Omori law [17].

An often used technique to check if such correlations exist is to study the waiting

time distribution between avalanches. For uncorrelated avalanche triggerings, one

expects an exponential distribution of waiting times, and consequently deviations

from this simple form are often interpreted to indicate the presence of some correla-

tions between avalanche triggerings. Another possibility is to analyze the correlation

integral of avalanche starting times [45].

In the present case one has to threshold the signal with some threshold value Vth in

order to be able to define individual avalanches. Thus, also the effect of varying the

threshold needs to be considered. The waiting times are here defined to be the time
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intervals between the starting times of two consecutive avalanches. Their distribu-

tion is observed to evolve with the threshold, such that for low Vth-values the forms

of the distributions are close to exponentials, whereas for higher threshold values

a cross over to a power law distribution with an exponent ττ ≈ 1 is observed, see

the left panel of Fig. 4.4. Similar conclusions can be made based on the correlation

integrals of the avalanche starting times, right panel of Fig. 4.4: For low thresholds,

the starting times appear to be almost random, whereas for higher threshold values

significant clustering is observed.

This can be interpreted to arise from the breaking of individual avalanches into

correlated subavalanches as the imposed threshold value is increased: An avalanche,

by definition, is a correlated sequence of activity, and thus different parts of the

same avalanche are correlated. While it is unclear to what extent such an idea

might explain the apparent avalanche clustering observed in various experiments, it

could be worth considering in more detail in the future.

4.6 History dependent dynamics

Dislocation ensembles have been proposed to belong to a family of glassy systems,

characterized by slow dynamics and ageing. Such issues have previously been studied

in the absence of externally applied stresses, by studying the relaxation of random

dislocation configurations [63]. Recent experiments have addressed also the effect

of an applied stress [64]. Here, the waiting time dependent response of the system

is discussed briefly in the case where an external stress is applied, in the form of

various cyclic loading/unloading histories subject to the dislocation ensemble.

The left panel of Fig. 4.5 shows an example of such a situation, with a stress close

to σc applied for three cycles, separated from each other by waiting times of equal

duration τ = 5× 103 time units during which no stress is applied. The first loading
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Figure 4.5: Time evolution of the average strain rate in loading/unloading cycles
with constant stress during the loading steps. Left: σ = 0.01, unloading cycles of
equal duration τ = 5 × 103. Right: Two different stress values (σ = 0.01 for the
blue curves, σ = 0.04 for the red curves) and unloading cycles of different durations
τ = 10, 102, 103.

cycle reproduces the Andrade creep scaling γ̇ ∼ t−2/3, but the last two do not: the

system appears to be“stronger”after the initial loading cycle - the strain rate decays

faster in time. The right panel of Fig 4.5 shows similar cyclic simulations for two

external stress values, but with different waiting times (τ = 10, 102, 103) between

the loading steps. Both the initial regime of slow relaxation as well as the crossover

time to the steady state are observed to depend clearly on the loading history. This

non-trivial response of the system needs to be further explored in the future.

4.7 On the effect of grain boundaries

The scale free dynamics of plastic deformation of crystalline solids described above

in the case of single crystals is nowadays a well established phenomenon. However,

less is known about the intermittent dynamics of plastic deformation of solids with

polycrystalline structure. Recent experiments on polycrystalline ice samples indicate
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Figure 4.6: A schematic figure of the grain boundary dislocation system.

that the characteristic scale due to the average grain size 〈d〉 induces a 〈d〉-dependent

cut-off to the distribution of acoustic emission amplitudes [65]. Also the power law

exponent appears to change from the single crystal case [65]. Other effects of the

polycrystalline structure include the so called Hall-Petch law, relating the yield

strength of the material to the grain size [66].

To understand such phenomena, a crucial question is the effect of grain boundaries

on the propagation of the avalanches of plastic activity from one grain to the other.

In the following, as a conveniently simple starting point for such considerations, the

interaction of a single dislocation with a deformable low-angle grain boundary is

studied.

The low angle grain boundary is schematized as a linear assembly of N + 1 edge
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dislocations distributed along the y-direction with a constant spacing D, with Burg-

ers vectors ~b parallel to x axis. The grain boundary is taken to be pinned at both

ends (y = 0, y = L), but can otherwise be deformed under an applied shear stress.

Such deformations are denoted by a vector ~η, with ηn the displacement of the nth

dislocation along the x axis, see Fig. 4.6. Then, up to quadratic terms in ηn, the

energy cost of deformation reads

E[η] =
K

2

∑
m6=n

(ηm − ηn)2

(m− n)2
, (4.6)

with K = µb2/(4πD2(1− ν)). If an external stress field τ(~r) is applied, an equation

of motion for the nth dislocation in the grain boundary ensues

γη̇n +
δE

δηn

= sbτ(~r), (4.7)

where γ is a phenomenological friction coefficient for dislocation glide. The static

displacement is then obtained as the solution of

δE

δηn

=
∑
m

Vnmηm = sbτ(~r), (4.8)

where

Vnm =

 −K 1
(n−m)2

, n 6= m

K
∑

k 6=n
1

(n−k)2
, n = m.

(4.9)

If one takes τ(~r) to be the stress field generated by a single external edge dislocation

a having a Burgers vector of modulus b and sign sa = ±1, positioned at ~ra = (xa, ya),

Eq. (4.8) becomes

∑
m

Vnmηm = ssac(ηn − xa)
(ηn − xa)

2 − (Dn− ya)
2

[(ηn − xa)2 + (Dn− ya)2]2
, (4.10)

where c = µb2/[2π(1−ν)]. By assuming small deformations ηn � xa, and expanding

to the lowest order in ηn, one obtains the solution

ηn ≈ −xa

∑
l

λ−1
l γl

n

∑
m

γl
mCm(~ra), (4.11)
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where λl = 2Kπl/N and γl
n =

√
2/N sin πln/N are the eigenvalues and eigenvectors

of the matrix Vnm, respectively, and Cn(~ra) = ssac[x
2
a−(Dn−ya)2]/[x2

a+(Dn−ya)
2]2.

Then, by considering the limit L � xa, the sum over m can be replaced by an integral

from−∞ to∞, which is then calculated by considering the residues around the poles

of the function Cm(~ra). This yields a displacement

ηn = −2ssaxa
1

N

∑
l

e−
πl
L
|xa| sin

πlya

L
sin

πln

N
. (4.12)

This deformation affects the stress field generated by the grain boundary. The shear

stress at (x,y) due to the deformed grain boundary can be written as

σ(x, y) =
∑
n

σn(x− ηn, y − yn). (4.13)

For small deformations ηn, the stress can be expressed by Taylor expanding around

ηn = 0, σn(x− ηn, y− yn) ≈ σn(x, y− yn) + σ′
n(x, y− yn)ηn +O(η2

n). Eq. (4.13) can

then be rewritten as

σ(x, y) = σ(0)(x, y) + σ(1)(x, y) + ... (4.14)
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where σ(0)(x, y) is the stress field generated by a straight grain boundary. The first

order correction reads

σ(1)(x, y) = πsaxa
µb

1− ν

1

L2

∑
l

e−
πl|xa|

L sin
πlya

L
× (4.15)

×l

(
1− πl|x|

L

)
e−

πl|x|
L sin

πly

L
.

Comparison with results from discrete dislocation dynamics simulations shows that

Eqs. (4.12) and (4.15) give a good estimate of the grain boundary deformation due

to the external dislocation and the induced stress correction to the grain boundary

stress fields, respectively, see Fig. 4.7. The net effect of the grain boundary defor-

mation is such that the deformation-induced stress correction tends to screen the

stress field of the external dislocation. Consequently, such a screening effect could

provide one mechanism through which avalanches of dislocation activity would tend

to be confined to some extent within individual grains. One should note, however,

that the deformation process is not instantaneous. Instead, it is characterized by a

relaxation time given by [67]

τ =
2LDγ(1− ν)

µb2
. (4.16)

Thus, for very fast avalanches (which may not cross grain boundaries anyway), the

relaxation time can be long compared to the avalanche duration, and the screening

effect does not play a role. For longer avalanches, however, the deformation-induced

screening might become important.

It is important to remember that real grain boundaries present in polycrystalline

materials are typically complicated structures which cannot in general be described

as an array of dislocations. However, such a simple toy model may nevertheless give

some insight on the general physics of screening of stress fields by extended defects

such as low angle grain boundaries.
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5 Mobile impurities

In this Section, a single particle interacting with a cloud of mobile impurities is stud-

ied, as a toy model of a dislocation interacting with diffusing solute atoms in solid

solutions. In systems such as metallic alloys, the dynamic interaction of dislocations

and the diffusing solute atoms is known to give rise to intriguing phenomenology,

including the Portevin-Le Chatelier effect [68]. Here, within the simple toy model

of a single “dislocation” interacting with diffusing impurities in one dimension, it is

found that the statistical properties of the dynamics of the particle (or“dislocation”)

can be described by fluctuations characterized by power law scaling with a cut-off.

The results are reported in more detail in article VI.

5.1 Introduction

The motion of driven particles, interfaces, membranes etc. in disordered media is an

important topic in both condensed matter and statistical physics. The properties

of quenched, or frozen disorder do not change within the experimentally relevant

time scales. Such disorder is typically due to various impurities in the material and

can be modelled e.g. by pinning centers that have fixed positions in space. For

elevated temperatures, however, these impurities might start diffusing around, thus

becoming mobile. A particular example of such a system is given by a dislocation

interacting with diffusing solute atoms in metallic alloys. The presence of mobile

impurities can have dramatic effects on the dynamics of the system, as evidenced e.g.

by the Portevin-Le Chatelier -effect in solid solutions [68], occurring within a certain

range of temperatures and applied strain rates. This phenomenon, widely believed

to arise due to the dynamic interaction between dislocations and diffusing solute

atoms, gives rise to localized plastic deformation visible as macroscopic deformation

bands and oscillating stress-strain curves of various kinds [69, 70, 71].
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5.2 Particle interacting with diffusing impurities

Here, a simplified model mimicking some features of a single dislocation interacting

with a cloud of diffusing solute atoms is studied. The dislocation line is reduced

to a single point particle, representing the average position of the dislocation line

within its glide plane. As thermal fluctuations acting on the different segments of

the dislocation tend to average out on the scale of the entire dislocation line, the

projection particle is taken to be at zero temperature. The diffusing impurities,

mimicking pure misfit solute atoms, have an attractive interaction with the particle

(dislocation), but do not interact with each other. For simplicity, the dynamics of the

system is constrained to one dimension, and only parameter values of the problem

with which the impurity particles have a vanishingly small probability to escape from

the neighbourhood of the particle within the relevant time scales are considered.

Thus, the particle moves around due to interaction with a cloud composed of a

fixed number N of diffusing impurity particles.

The equations of motion of the system are

µ∂tx =
∑

i

f(x− xs,i) (5.1)

∂txsi
= −f(x− xs,i) + ηi,

where x and xs,i are the positions of the particle and the ith impurity particle,

respectively. f(z) is the interaction force between the particle and an impurity

particle, µ defines the relative mobilities of the particle and the impurities, and ηi

is Gaussian white noise acting on the ith impurity particle, with mean zero and

standard deviation δη.

By differentiating the equation of motion of the particle with respect to time, and

by linearizing the particle-impurity interaction force such that ∂zf(z) ≈ −C < 0,

one can write an equation of the form of an Ornstein-Uhlenbeck process for ∂tx,

∂2
t x = −λ∂tx + ξ, (5.2)
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with λ = C(N + µ)/µ and ξ = (C/µ)
∑

i ηi. The process defined by Eq. (5.2) for

∂tx has been considered in the literature [72, 73] and its properties are known. In

particular, the first passage probability P (T |v0)dT that the process starting initially

at v0 crosses zero for the first time in [T, T + dT ] has an exact expression [73]

P (T |v0) =

√
2

πD

|v0|λ3/2e−λT

(1− e2λT )3/2
exp

[
− λv2

0

2D(e2λT − 1)

]
, (5.3)

which vanishes for v0 = 0. To circumvent this problem, a small but non-zero value

v0 ∼ ε is considered and Eq. (5.3) is expanded to leading order in ε, yielding

P (T |ε) → εT−3/2fc(T/T0), (5.4)

where T0 = 1/λ and

fc(x) =

√
2

πD

x3/2e−x

(1− e−2x)3/2
. (5.5)

For practical purposes, the first return times T to origin of ∂tx can thus be taken
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to be characterized by a probability distribution scaling as

P (T ) ∼ T−τT fc

(
T

T0

)
, (5.6)

with τT = 3/2 and the cut-off scale T0 ∼ 1/λ. The average shape of an excursion

of ∂tx, 〈∂tx(t)〉T , scales for t, T − t � 1/λ as 〈∂tx(t)〉T = T γst−1fshape(t/T ), where

γst = 3/2. Then, the distribution of lengths ∆x =
∫ T
0 ∂txdt of the monotonic

excursions of the particle scales as

P (∆x) ∼ (∆x)−τ∆xfc

(
∆x

∆x0

)
. (5.7)

The exponent value follows from the scaling relation τ∆x = 1 + (τT − 1)/γst [14],

yielding τ∆x = 4/3. The cut-off scale ∆x0 is due to the combined effect of the cut-off

T0 of the first return time distribution through ∆x0 ∼ T γst
0 and the factors contained

in the rescaled noise term, giving rise to

∆x0 =
(

1

λ

)3/2

· δξ =

√
µ

C

δη

(1 + µ)3/2
. (5.8)

These predictions are verified by numerical simulations, where an interaction force

of the form f(z) = −Az exp−(1/2)(z/l)2 is used for simplicity. The equations

of motion (5.1) are integrated with the Euler algorithm. The thermal noise was

chosen to be weak enough such that the impurity particles did not escape from

the neighbourhood of the particle during the simulation time. An example of the

ensuing trajectories for the particle and a single impurity is shown in Fig. 5.1.

Probability distributions of the monotonic excursions ∆x of the particle are shown

in the left panel of Fig. 5.2, displaying the expected scaling with τ∆x = 4/3 and the

cut-off ∆x0 obeying Eq. (5.8).

The power law forms of the distributions of the monotonic excursions ∆x and their

durations T indicate that for scales smaller than those corresponding to the cut-offs

of the distributions, the particle is performing transient anomalous diffusion. As

the early time behaviour of the mean square displacement 〈x2〉(t) is dominated by
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Figure 5.2: Left: The probability distributions of the monotonic excursions of the
particle interacting with N impurities. The inset shows a data collapse of the distri-
bution, with ∆x0 computed from Eq. (5.8). Right: The mean squared displacement
of the particle interacting with a single impurity, from various interaction strengths
A. The early time behaviour follows 〈x2〉 ∼ t5/2, with a cross-over to normal diffu-
sion for times longer than T0. µ = l = 1.0, δη = 0.1.

a single large step ∆x, one should consider the effect of such a step conditioned on

its duration,

〈x2〉(t) ∼
∫ t

0
[∆x(T )]2P (T )dT =

∫ t

0
T 2γst−τT dT ∼ t2γst−τT +1, (5.9)

corresponding to 〈x2〉(t) ∼ t5/2. For times longer than T0, a cross-over to normal

diffusion with 〈x2〉(t) ∼ t is expected. The right panel of Fig. (5.2) shows the

behaviour of 〈x2〉(t) in numerical simulations, confirming the above result.

5.3 Constant velocity drive

To study the effect of an external drive, a slow constant velocity drive is considered.

The equations of motion become

µ∂tx =
∑

i

f(x− xs,i) + F (5.10)

∂txsi
= −f(x− xs,i) + ηi,
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where F = K(V t − x), with V the driving velocity and K a spring constant char-

acterizing the response of the driving mechanism. Here, the interesting quantity is

the statistics of the external force fluctuations. An example of the behaviour of the

external force as a function of time is shown in Fig. 5.3. After an initial transient,

the system enters a steady state characterized by fluctuations of the external force.

To study such fluctuations, the stochastic process ∂tF is considered, along similar

ideas as above. One can thus write

∂2
t F = −K∂2

t x (5.11)

= −
[
K

µ
+

C

µ
(N + µ)

]
∂tF +

KC

µ

∑
i

ηi

+
KC

µ
[V (N + µ)− F ].

In the steady state the last term has a zero mean, due to the balance of the driving

velocity and the average retarding force due to a single impurity. By further assum-

ing that its fluctuations δ[V (N + µ)−F ] = δF satisfy δF �
√

Nδη, Eq. (5.11) can
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Figure 5.4: Left: The probability distributions of the monotonic changes of the
external force ∆F for various parameter values. Right: A data collapse of the same
distributions, with F0 computed from Eq. (5.13)

be approximately written as

∂2
t F = −

[
K

µ
+

C

µ
(N + µ)

]
∂tF +

KC

µ

∑
i

ηi, (5.12)

which is again of the form of the Ornstein-Uhlenbeck process for ∂tF . Thus, the

monotonic changes of the external force ∆F =
∫ T
0 ∂tFdt are expected to be dis-

tributed as a power law P (∆F ) ∼ (∆F )−τ∆F fc(∆F/∆F0), with τ∆F = 4/3 and

∆F0 =
KC

√
µNδη

[K + C(N + µ)]3/2
. (5.13)

Fig. 5.4 shows the probability distributions P (∆F ) for various values of the param-

eters satisfying the condition ∆F0 �
√

Nδη. The expected power law scaling with

τ∆F = 4/3 and ∆F0 obeying equation (5.13) is observed.

The fluctuations considered here have been neglected in classical studies of a dis-

location dragging a cloud of solute atoms [74]. Future studies of these issues in

systems with a large number of interacting dislocations interacting with diffusing

solute atoms would be interesting.



43

6 Summary

In this thesis various aspects of non-equilibrium systems with avalanche dynamics

are studied. The relation between the power spectrum and avalanche scaling orig-

inally proposed to account for observations in the context of Barkhausen noise is

shown to be applicable much more generally. In article I, for the sandpile models of

self-organized criticality this is shown to imply that such simple models can exhibit

non-trivial scaling of the high frequency power spectrum of the activity time series

V (t), contrary to earlier claims. Thus, observations of a power spectrum exponent

α < 2 in various systems, such as in the context of solar flares [75, 76], cannot be

used to exclude SOC as the underlying mechanism.

In article II, the same relation between the avalanche statistics and the power spec-

trum scaling is demonstrated to apply also for the spatially averaged velocity of an

advancing fluid front when a viscous fluid displaces air or a less viscous fluid in porous

media (imbibition) within a phase field model of the problem. Furthermore, also

the collective dislocation activity in a simple two dimensional dislocation dynamics

model obeys the same scaling relation (article III), which could be checked also in

three dimensional simulations [53] and possibly in experiments [13]. This scaling

appears thus to be quite generally applicable in systems with avalanche dynamics.

In article II it is also found that the velocity fluctuations of the fluid interface ex-

hibit scaling with the average interface velocity that is governed by the geometry

of the situation as well as by the conservation law arising from the liquid conser-

vation. This is then contrasted with the velocity fluctuations of interfaces without

any conservation law, which are found to obey different scaling. These findings can

be checked experimentally in systems such as Hele-Shaw cells.

Several aspects of the rich phenomenology arising from the interaction of large num-
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bers of dislocations in plastically deforming crystals are further considered in articles

IV and V within the two-dimensional discrete dislocation dynamics model. In ar-

ticle IV, the effects of the threshold value used to identify individual avalanches

on the observed correlations between such avalanches are studied. As thresholding

of the intermittent signal is typically used also in various experimental situations,

the evolution of the waiting time distributions with the imposed threshold could

explain some of the observed non-trivial distributions in such experiments. Also

the ageing behaviour of the system in repeated loading/unloading cycles is studied,

and clear history dependence of the response of the system to the loading stress is

observed. These issues should be studied in more detail in the future. In article V,

the interaction of a single dislocation with an array of dislocations - a toy model

of a deformable grain boundary - is studied. The relevance of the grain boundary

deformation induced screening on the propagation of avalanches of plastic activity in

polycrystalline materials is discussed. An interesting possibility would be to study

such phenomena experimentally e.g. in colloidal crystals [77].

Finally in article VI, a single particle interacting with a cloud of diffusing impu-

rities is studied, as a toy model of a dislocation interacting with a cloud of solute

atoms in solid solutions. Analytical calculations and numerical results show that

the dynamics of such a system can be described by fluctuations with statistics given

by power law distributions with a cut-off. It would be interesting to study the ef-

fect of such fluctuations on larger scales, by considering numerically the dynamics

of systems with large numbers of interacting dislocations interacting with diffusing

solute atoms.



45

References

[1] J. P. Sethna, K. A. Dahmen, and C. R. Myers, Nature 410, 242 (2001).

[2] P. A. Houle and J. P. Sethna, Phys. Rev. E 54, 278 (1996).

[3] L. I. Salminen, A. I. Tolvanen, and M. J. Alava, Phys. Rev. Lett. 89, 185593

(2002).

[4] B. Gutenberg and C. F. Richter, Seismicity of the Earth and Associated Phe-

nomena (Princeton Univ. Press, Princeton, 1954).

[5] H. Barkhausen, Z. Phys. 20, 401 (1919).

[6] P. Cizeau, S. Zapperi, G. Durin, and H. E. Stanley, Phys. Rev. Lett. 79, 4669

(1997).

[7] D.-H. Kim, S.-B. Choe, and S.-C. Shin, Phys. Rev. Lett. 90, 087203 (2003).

[8] M. J. Alava, M. Dube, and M. Rost, Adv. Phys. 53, 83 (2004).

[9] D. Geromichalos, F. Mugele, and S. Herminghaus, Phys. Rev. Lett. 89, 104503

(2002).

[10] J. Soriano, A. Mercier, R. Planet, A. Hernandez-Machado, M. A. Rodrigues,

and J. Ortin, Phys. Rev. Lett. 95, 104501 (2005).

[11] M. Zaiser, Adv. Phys. 55, 185 (2006).

[12] M.-C. Miguel, A. Vespignani, S. Zapperi, J. Weiss, and J.-R. Grasso, Nature

410, 667 (2001).

[13] D. M. Dimiduk, C. Woodward, R. LeSar, and M. D. Uchic, Science 312, 1188

(2006).

[14] S. Lubeck, Int. J. Mod. Phys. B 18, 3977 (2004).



46

[15] P. Bak. C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).

[16] J. Koivisto, J. Rosti, and M. J. Alava, Phys. Rev. Lett. 99, 145504 (2007).

[17] F. Omori, J. College Sci. Imper. Univ. Tokyo 7, 111 (1895).

[18] J. Weiss and D. Marsan, Science 229, 89 (2003).

[19] T. Richeton, J. Weiss, and F. Louchet, Acta Mater. 53, 4463 (2005).

[20] L. Laurson, M. J. Alava, and S. Zapperi, J. Stat. Mech.: Theo. Exp., L11001

(2005).

[21] L. Laurson and M. J. Alava, Phys. Rev. E 74, 066106 (2006).

[22] M. Rost, L. Laurson, M. Dube, and M. J. Alava, Phys. Rev. Lett. 98, 054502

(2007).

[23] M. C. Kuntz and J. P. Sethna, Phys. Rev. B 62, 11699 (2000).

[24] A. P. Mehta, A. C. Mills, K. A. Dahmen, and J. P. Sethna, Phys. Rev. E 65,

046139 (2002).

[25] S. Zapperi, C. Castellano, F. Colaiori, and G. Durin, Nature Physics 1, 46

(2005).

[26] H. J. Jensen, Self-Organized Criticality: Emergent Complex Behaviour in

Physical and Bilogical Sytems (Cambridge University Press, 1998).

[27] S. S. Manna, J. Phys. A: Math. Gen. 24, L363 (1991).
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