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Abstract
Two novel genetic algorithms implementing principal component analysis
and an adaptive nonlinear fitness–space–structure technique are presented
and compared with conventional algorithms in x-ray reflectivity analysis.
Principal component analysis based on Hessian or interparameter covariance
matrices is used to rotate a coordinate frame. The nonlinear adaptation
applies nonlinear estimates to reshape the probability distribution of the trial
parameters. The simulated x-ray reflectivity of a realistic model of a periodic
nanolaminate structure was used as a test case for the fitting algorithms.
The novel methods had significantly faster convergence and less stagnation
than conventional non-adaptive genetic algorithms. The covariance
approach needs no additional curve calculations compared with conventional
methods, and it had better convergence properties than the computationally
expensive Hessian approach. These new algorithms can also be applied to
other fitting problems where tight interparameter dependence is present.

1. Introduction

X-ray reflectivity (XRR) is an efficient metrological tool
for thin film characterization. Film thicknesses, surface
roughnesses and mass densities are obtained by fitting a
theoretical curve, based on Parratt’s formalism [1] and
the Nevot–Croce surface roughness approximation [2], to
a measurement. Due to the nature of the formalism,
a slight misprediction of one parameter is balanced by other
parameters in nonlinear fashion. This nonlinear interparameter
dependence hinders the convergence properties in simple
gradient-based optimization methods where a local optimum is
typically found instead of the global optimum. Several studies
have shown that genetic algorithms (GAs), such as the classical
GA (CGA), provide methods to solve these nonlinear inverse
XRR problems [3–5]. Recently Ulyanenkov and Sobolewski

introduced an algorithm called eXtended GA (XGA), which
proved to be an efficient fitting method for x-ray analysis [6].

The XRR fitting capabilities of CGA and XGA are typ-
ically limited to models of a few layers since interparame-
ter dependence, called genetic linkage, grows very fast with
an increasing number of layers. To reduce genetic linkage
efficiently, Wyatt and Lipson introduced a Hessian matrix-
based linear transformation technique for real-valued prob-
lems, which adapts dynamically to the linear eigenstructure
of the fitness space [7]. A major disadvantage of this principal
component analysis (PCA) approach relates to the assumption
of linearity and to the quadratically increasing number of fits
needed for the Hessian matrix computation. Therefore, novel
approaches are needed to overcome these issues.

In this paper we introduce two new GAs based on
PCA and a nonlinear fitness–space–structure adaptation called

0022-3727/07/010215+04$30.00 © 2007 IOP Publishing Ltd Printed in the UK 215

http://dx.doi.org/10.1088/0022-3727/40/1/017
mailto: jouni.tiilikainen@tkk.fi
http://stacks.iop.org/JPhysD/40/215


J Tiilikainen et al

NL–FSSA. The first algorithm, called HGA, utilizes
PCA based on a numerically computed Hessian matrix
while the second algorithm, CovGA, utilizes PCA based on
interparameter covariances. The convergence and stagnation
properties of these novel algorithms are studied and compared
with CGA and XGA. We show that PCA, NL–FSSA and
other modifications together enhance significantly the speed
of convergence and reduce stagnation. Finally, PCA can
be realized with the computationally efficient covariance
method, which has better convergence properties than HGA.
In section 2 we describe the implementation of the algorithms
studied in this paper. The employed layer model for XRR
curve fitting tests and the respective results are shown in
section 3.

2. The implementation of the algorithms

Figure 1 shows the flowchart of the algorithms with the
exception that CGA and XGA omit NL–FSSA and coordinate
rotation. In these methods, the global optimum is approached
by minimizing the fitness representing the difference between
trial and target XRR curves. The applied fitness function is the
scaled sum of the squared difference
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where F is the fitness and xj and yj are the j th logarithmic
values of the respective datapoints. This scaling ensures the
upper limit for the fitness. The fitness of each individual is
used in parent selection where the conventional elitist strategy
is applied.

A nonlinear fitness space estimate model was chosen to
be utilized in the movement of parents in parameter space.
The model is constructed from separate polynomial fits where
each fit describes the individuals’ fitnesses as a function of
one parameter. A possible divergence of the fits outside
the parameter range is removed using cubic splines with
reasonable boundary values. The eventual fitness estimate is
a linear combination of separate fits, where the mean absolute
deviations of the parameters are used to evaluate weighting
coefficients. This estimate is used to find the nearest local
fitness optimum in a negative gradient direction for each
individual. It was found that the eventual step length towards
this direction is optimal when the movement is proportional
to the difference of the initial fitness and the local optimum
estimates divided by the initial fitness estimate. Parents are
temporarily moved to the estimated points until the mating
is done. This novel movement scheme acts as an adaptive
technique which reshapes the probability distribution of the
parameters by increasing trials of the next generations in
estimated optimal regions.

To reduce linear genetic linkage, new offspring are
composed in rotated coordinates. Every even cycle on the new
basis is selected to be the set of eigenvectors of the Hessian
matrix in the vicinity of the best individual in HGA. The time
needed for the Hessian matrix computation is reduced to a
reasonable level by taking into account every tenth point of
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Figure 1. Flowchart of the genetic algorithms.

the XRR curves in the fitness evaluation. Respectively, in
CovGA, the eigenvectors calculated from the interparameter
covariance matrix of population values are used for the basis
selection but computational simplification is not needed as in
HGA. The parents are transferred to the new coordinates and
the offspring are composed using a fitness weighted crossover
operator. The weight is used to move randomly selected genes
to the next generation in proportion to the fitness of the parents.
If NL–FSSA is applied, a randomly selected child is replaced
by the optimal parameter set from the nonlinear fitness space
estimate. This was found to give an additional convergence
boost by reducing short-term stagnation.

Simulated annealing was selected to be used as a mutation
operator in all algorithms to enhance the quality of trials and
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Figure 2. Schematic structure of the modelled nanolaminate and the
theoretical x-ray reflectivity curve.

to reduce premature diversity loss of forthcoming populations.
HGA and CovGA apply annealing in the new coordinates,
and the eigenvalues of respective directions are used to
scale space directions to similar resolutions. Finally, a new
population is created using the principle of XGA in novel
algorithms.

All implementations of the algorithms presented in this
paper were based on the code of CGA. The specific features
of XGA, HGA and CovGA were to utilize the same code
whenever it was possible. This method of implementation
preserved the internal parameters between the GAs thus
enhancing the reliability of comparison of the algorithms.

3. Results and discussion

Properties of nanolaminates can be analysed from an XRR
curve by fitting but the performance of the fitting algorithm can
be the bottleneck in the analysis. Therefore, the performance
of the algorithms was tested by fitting randomly selected
trials to the XRR curve of a realistic model of a three-period
ZnO/Al2O3 nanolaminate. This type of nanolaminate can be
deposited with atomic-layer-deposition (ALD) [8] and typical
values of ALD materials were utilized to the model structure
shown in figure 2. The 0.3 nm thick native oxide on a HF
cleaned silicon substrate typically grows during the deposition
of aluminium oxide. The mass density of Al2O3 was set to
3.0 g cm−3, which is 77% of the sapphire packing density.
The amorphous ZnO layer was assumed to have the same
proportional packing density as ALD-aluminium oxide and
the layer thickness was set at 1.05 nm (7 deposition cycles
in ALD, 0.15 nm/cycle). Polycrystalline zinc oxide had a
mass density of 5.61 g cm−3 (approximately 100% packing
density) and the thickness was set to 8.17 nm (43 cycles,
0.19 nm/cycle). Substrate and native oxide roughnesses were
set at 0.05 nm and 0.1 nm, respectively. The roughness in the
structure was assumed to increase cumulatively by 0.025 nm
per amorphous layer and by 0.05 nm per polycrystalline
layer.

The robustness of the algorithms was tested with
50 different initial populations, which were used for all
the algorithms. The initial parameters were selected to
be in the vicinity of the optimal parameters with ±20%
deviation using a uniform random distribution. The
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Figure 3. Fitness of the best individual of each population as a
function of cycles. Each population has its own line in greyscale.
All graphs are shown in the same scale.

populations had 50 individuals and the GA procedures were
iterated 100 cycles. XRR curves were fitted without fixed
interparameter dependences from 0◦ to 2.5◦ using evenly
spaced angle points. Figure 3 shows the fitness results of
the fitting trials. The convergence lines show that novel
algorithms had less stagnated populations than conventional
methods. Surprisingly, CovGA has more robust convergence
behaviour than HGA. HGA is based on the numerically
computed Hessian matrix and it should predict the genetic
linkage more precisely than the covariance approach, which
is based on semi-arbitrary parameter sets.

Figure 4 shows zoomed plots of the fitted curves based
on the parameters of the median fits after the last cycle of the
fitting procedures. It can be seen that the fits of the CovGA
and HGA follow the theoretical curve very closely but XGA
and especially CGA curves exhibit non-matching behaviour.

Figure 5 shows the fraction of solutions (%) below a
certain fitness. The fitness representing the median fraction of
CovGA is less than 6×10−5, for HGA it is 1.2×10−4, for XGA
it is 3×10−4 and for CGA it is 5×10−4. Results show that the
robustness of convergence is quantitatively better for XGA than
for CGA and that the adaptive algorithms exhibit qualitatively
better convergence behaviour than non-adaptive methods. The
effect of nonlinear adaptation on convergence was studied
by switching NL–FSSA off. HGA without NL–FSSA was
seen to have clearly better convergence than XGA while
HGA with NL–FSSA had a similar convergence fraction as
CovGA without NL–FSSA. Thus it can be concluded that the
CovGA having nonlinear and linear adaptation mechanisms
had the best fitting properties.
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Figure 4. Fitted curves based on the parameters of the median fits.
The XRR curves based on the model are plotted with dark grey lines
and the median fits with solid black lines. The curves have a vertical
offset for clarity.
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Figure 5. Fraction of solutions (%) below the given fitness. The
results of the exclusion of NL–FSSA in CovGA and HGA are also
shown.

The applicability of the algorithms with non-ideal data
was tested by using the theoretical curve including artificially
generated noise. The new algorithms were used for the fitting
with and without NL–FSSA. The applied noise was mimicking
the typical noise of the x-ray detector of Philip’s X’Pert Pro

instrument in a three-minute measurement in the present
angle range. As a result, fitnesses were increased similarly
between algorithms due to deviations of intensity values in
the theoretical curve. Qualitatively the convergence and
stagnation properties were unchanged.

4. Conclusion

Genetic algorithms utilizing adaptation techniques have been
shown to be more effective and robust fitting algorithms than
conventional non-adaptive methods for XRR analysis of a
periodic multilayer structure. It was also found that CovGA
had better fitting properties than HGA. The interparameter
covariance method seemed to predict the genetic linkage better
than HGA in the global scale by enhancing convergence
properties, although Hessian eigenvectors represent the genetic
linkage precisely in the vicinity of the fittest individual. The
worse performance of HGA might be due to the inadequate
assumption that the local fitness–space–structure can be
generalized to a non-periodic fitness landscape. It is also
worth mentioning that the sequential use of PCA and identity
transformation in both the new algorithms gave the best
result by enhancing the robustness of convergence in the
first cycles and it was seen to reduce the loss of population
diversity in the last steps. This suggests that the genetic
linkage in the nonlinear fitness landscape cannot be robustly
separated to nearly linearly independent factors. To overcome
this issue, a novel NL–FSSA method was introduced. This
technique significantly enhanced the speed of convergence
and reduced the number of stagnated populations in all of
the applied new algorithms. Although only one test case for
the periodic nanolaminate structure was shown in this paper,
similar differences between conventional and new methods
were obtained for a non-periodic multilayer structure. This
suggests that the novel algorithms presented in this paper have
the potential to be utilized in a wide range of real-valued fitting
problems.
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