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Abstract

A novel genetic algorithm (GA) utilizing independent component analysis
(ICA) was developed for x-ray reflectivity (XRR) curve fitting. EFICA was
used to reduce mutual information, or interparameter dependences, during
the combinatorial phase. The performance of the new algorithm was studied
by fitting trial XRR curves to target curves which were computed using
realistic multilayer models. The median convergence properties of

conventional GA, GA using principal component analysis and the novel GA
were compared. GA using ICA was found to outperform the other methods
with problems having 41 parameters or more to be fitted without additional
XRR curve calculations. The computational complexity of the conventional

methods was linear but the novel method had a quadratic computational
complexity due to the applied ICA method which sets a practical limit for
the dimensionality of the problem to be solved. However, the novel
algorithm had the best capability to extend the fitting analysis based on

Parratt’s formalism to multiperiodic layer structures.

1. Introduction

X-ray reflectivity (XRR) is a fast tool for noncontact thin
film metrology, which provides information on properties
such as film thickness, mass density and interface/surface
roughnesses. The measurement produces an oscillating curve
which can be directly analysed by Fourier transform [1]
or wavelet analysis [2, 3]. These methods are based on
kinematical approximation and are not as accurate as analyses
based on Parratt’s formalism [4] combined with Nevot—
Croce interface roughness approximation [5].  Parratt’s
formalism, however, requires curve fitting. The fitting
cannot be done efficiently only with gradient, simplex or
simulated annealing methods due to multiple local optima
in the search space or huge problem dimensionality. This
fitting can be efficiently performed by genetic algorithms
(GAs) [6-10] but due to the computationally divergent nature
of the applied formalism, some additional techniques are
needed to obtain robust convergence. We showed in our
previous paper that interparameter dependences, called genetic
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linkage, decrease the fitting performance of a simple algorithm
in XRR curve fitting and these can be reduced by the rotation
of coordinates [10] in the mating phase. The earlier success of
the covariance based statistical approach in this phase suggests
that more sophisticated statistical techniques, such as an
independent component analysis (ICA) can enhance converge
properties further. In [11, 12] the success of evolutionary
algorithms using ICA in linkage reduction was addressed with
afew synthetic problems but this approach has not gained more
attention.

In this paper we study which linear transformation
technique used in the mating phase offers the best improvement
in the median convergence of a GA. The median convergence
of the novel independent component analysis GA (ICAGA) is
compared with principal component analysis GA (PCAGA)
and to conventional GA (CGA). The algorithms are tested by
fitting trials to a theoretical XRR curve based on the realistic
model of a periodic multilayer structure. It is shown that
CGA is the best algorithm in the simplest fitting cases while
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PCAGA and ICAGA have nearly equal performance with
moderately sized problems. ICAGA is shown to have the
best median convergence properties with the most difficult
XRR fitting problems. In section 2, the importance of the
genetic linkage reduction is discussed and the principles of
PCA and ICA techniques are presented. In section 3, the
test problem is introduced. The implementations of GAs are
presented in section 4. Finally, the fitting performance of CGA,
PCAGA and ICAGA are tested as the function of problem
dimensionality in section 5.

2. The reduction of interparameter dependences

Interparameter dependences, called genetic linkage in
combinatorial optimization, means that the parameters have
no clearly independent contribution to the fitness to be
minimized but the contribution of one parameter depends on
the others. Dependences are problematic in a conventional
GA since parameters are optimized separately resulting in
inefficient optimization. This can be circumvented somewhat
if linear transformation is used to modify coordinates so that
interparameter dependences are reduced. This procedure is
also called the separation or the demixing of sources and it is
applied here for XRR fitting parameters.

The demixing (or separation) matrix M~ used in the linear
transformation is calculated from a sampling set which consists
of selected trials computed earlier. Let us denote the ith trial
describing the information of n > i layers by

x; =[t;,m;,r;], (D

where ¢; is a 1 x n row vector representing the thicknesses of
layers, r; is a 1 x n row vector representing the roughnesses
of layers and m; is a 1 x n row vector representing the mass
densities of layers. Then m x 3n sampling set matrix is defined
as T
X= [xfxg...xz] , ()
where m is the number of samples. The demixing matrix
can be computed inexpensively by PCA which removes the
correlation between the columns, i.e. parameters. Then mixing
matrix
M = Eig[Cov(X)]. 3)

where Cov (X) means the computation of covariances between
the columns and Eig calculates normalized eigenvectors, which
are the columns of M. Using the transformation

y; =M 'xHT, 4

each component of y; belongs to a distribution which is
not correlating with other distributions. This and other
transformed trials are used in combination process in GA.
One of the main limitations of PCA is related to the
orthogonality of the basis which is not necessarily required
in ICA. Whereas the separation matrix in PCA is determined
by the eigenvalue decomposition of a covariance matrix, the
demixing matrix in ICA is determined by minimizing mutual
information between variables using an appropriate linear
transformation. Intuitively speaking, the minimization of
mutual information corresponds to the separation of original

Polycrystalline zinc oxide, 1.7688 nm

Amorphous zinc oxide, 0.6432 nm X015

Aluminium oxide, 0.081 nm

Aluminium oxide, 20 nm

Silicon substrate

Figure 1. Schematic structure of the modelled nanolaminate with
varying number of thin ZnO/AlO-periods.

distributions to parameters distributed in as nongaussian a way
as possible [14]. The justification of this approach relies on
the central limit theorem, which says that the sum of any
set of distributions is more Gaussian than the originals. The
computation of a demixing matrix using this scheme is not,
however, straightforward. There are several definitions of the
measure of mutual information and several iterative techniques
to determine the separation matrix which naturally means
different computational efficiency and robustness between
different ICA methods.

In this study we use the efficient FastICA (EFICA) method
developed by Koldovsky ef al which was shown to be fast and
robust [16]. EFICA is applied to determine the separation
matrix iteratively using a previously determined demixing
matrix as the starting point. In the first cycle of ICAGA, there
is no previously determined separation matrix available so the
initialization is based on random numbers. After an iteration
step, the separation and mixing matrices obtained from EFICA
are modified so that the length of the projecting vectors
are normalized to preserve the space resolution between the
original and the transformed spaces. The sampling set for
PCA and ICA is selected to be all the previously calculated
individuals to reduce finite sampling problems.

3. The problem setting

The performance of three GAs was tested with XRR curve
fitting tests. Target XRR curves were computed based
on models corresponding to realistic atomic-layer-deposited
(ALD, [13]) structures. Figure 1 shows the case considered
in this paper. This theoretical structure, based on the results
shown in [15], was utilized to examine the performance of
the algorithms with an increasing number of periods. Table 1
summarizes the parameters used in the layer structure.

The presented layer structure was utilized to calculate
XRR curves based on Parratt’s formalism and Nevot—Croce
roughness approximation. The XRR curve angle range was
0°-2.5° and 200 evenly spaced points were calculated for
the target curve. The same number of data points were also
calculated for trial curves but these curves were based on the
physical parameters which were randomly deviated £20%
from the target parameters. Fixed interparameter dependences
were not used. The parameters were afterwards normalized
between [0, 1] so that 0.5 corresponds to the target value. The
dimensionality of the problem was 2+3+n x (3 x3) =5+
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Table 1. The parameters of the layer structure used in simulation.
The plus sign with roughness means that interfacial roughness is
cumulatively increased with every layer on silicon substrate.
Negative sign means that interfacial roughness is decreased due to
an etching effect.

Mass density  Roughness
Material (g cm™?) (nm)
Polycrystalline ZnO  5.52 +0.07
Amorphous ZnO 4.32 +0.01
Thin Al,O4 3.0 -5 x 107
Al O3 3.0 +0.5
Silicon 2.33 0.3

(the mass density and roughness of the substrate and all the
parameters of Al,O3 and n periods of the repeating structure).

4. The implementation of the algorithms

4.1. Implementation of the genetic algorithms

The implementation of the novel ICAGA for XRR curve fitting
was based on CGA and PCAGA. All the features of ICAGA
and PCAGA utilized the same code and the same internal
parameters except the determination of a new mixing matrix
and the formation of the subsequent population. The structure
and details of the implementation is also presented in our
previous paper [10], where PCAGA is denoted are CovGA
without nonlinear-fitness-space-structure adaptation and some
other functionalities.

Figure 2 shows the implementation used in the GAs. The
initial population was generated using the uniform random
distribution. The fitness function F defined as

N

o { Z [(xi’t - xﬁg)zxiigz]}l/z 5)

i=i,

was applied, where x;; and x; ; denote logarithms of one of
the N datapoints of the trial and the target curves, respectively.
Index i, corresponds to the critical angle of the target curve.
Each cycle in GA includes the following steps:

(i) The best individual in the population is selected to mate
with k other randomly selected individuals.

(ii)) PCA or ICA is performed to compute mixing and
demixing matrices. The parents are mapped using the
separation matrix

—1yT T

yparems = (M Xparents) . (6)

(iii)) A crossover operator is used in the creation of new
individuals

ychild,i = Cyparent‘elitist + NOt(C)yparent,i’ (7)

where the uniform crossover operator C selects random
genes from the elitist parent and Not(C) the rest from
Yparen,; 10 proportion to the parents’ fitnesses. The
offspring are

yoffspring = D’lT}’g .. ykT]T (8)
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Figure 2. Flowchart of CGA, PCAGA and ICAGA. CGA uses
identity transformation in steps (II) and (IV).

(iv) The back transformation of the offspring is obtained by
Xoffspring = (Mygffgprjng)T~ (9)

(v) The fast local random search, which is a simplified
simulated annealing algorithm, is used instead of mutation
for the children.

(vi) The new trial population is composed from the
best individuals of the current population and the
offspring.

5. Comparison of genetic algorithms

The scalability of the fitting algorithms was tested with the
previously presented nanolaminate model. Each fit was done
using a population size of 30 and 25 cycles per fit. The problem
was scaled by increasing the number of periods in the layer
structure. The results presented in this paper were computed
by UltraSPARC IV processors on a Sun Fire 25K server system
using Matlab software. The time used for the simulations
was 116 h.

Figure 3 shows that CGA has a slightly better performance
than PCAGA and ICAGA when the period number is zero.
This suggests that linear dependences are not existing between
the parameters representing the properties of the same layer
but rather between the properties of similar layers. PCAGA
and ICAGA have nearly equal performance with the number of
periods from 1 to 3. With a higher number of periods, [CAGA
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Figure 3. Median fitnesses of CGA, PCAGA and ICAGA when a

different number of periods is applied. The median fitnesses are
based on 25 fits done for each datapoint.
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Figure 4. Trial curves of the median of 25 fits in 15 periodic case
(black solid line). The target curves are drawn with grey dotted
lines. The curves have a vertical offset for clarity.

is outperforming the others. Figure 4 shows the trial curves of
the median of 25 fits in 15 periodic case for CGA, PCAGA
and ICAGA. The curve fitted by ICAGA is following the
target curve clearly better than the curves fitted by other
methods.

The median time consumption of one fit used by CGA,
PCAGA and ICAGA is shown in figure 5. CGA and PCAGA
are linearly scaling but the time consumption of ICAGA
increases quadratically. This difference between the novel
method and others is a consequence of quadratically grow-
ing size of the separation matrix which is iteratively solved by
a fixed-point algorithm in EFICA. This sets a practical limit
for the problem dimensionality due to the increasing compu-
tational requirement but on the other hand, the increasing time
consumption is independent of XRR computations. Thus the
relative difference in time consumption between the new and
other algorithms decreases when the population size or the
number of datapoints used in one XRR curve calculation is
increased. The additional computational load of EFICA thus
decreases relatively when the number of points in XRR curve
calculations are multiplied by a factor between three and six
which is closer to the number of datapoints in typical real-world
XRR measurements.

2000

Median time consumption (s)

No. periods

Figure 5. Median time consumption of CGA, PCAGA and ICAGA
when a different numbers of periods is applied. The median times
are based on 25 fits done for each datapoint.

6. Conclusions

The novel genetic algorithm utilizing ICA, ICAGA, for
XRR curve fitting was developed. Genetic linkage between
parameters was reduced by the EFICA method during
the combination step, which reduces mutual information
between parameter distributions by linear transformation. The
performance of the new algorithm was studied by fitting trial
XRR curves to target curves, which were based on a realistic
multilayer model. The capability of GAs to solve XRR fitting
problems with an increasing number of parameters was studied
with a problem where the number of parameters to be fitted was
running from 5 to 140 with a step of 9. CGA performed best
when the number of parameters was 5 and with moderately
sized problems PCAGA and ICAGA performed equally. With
very large problems ICAGA had the best median convergence.

The disadvantage of ICAGA was remarkably greater time
consumption in simulations compared with other methods
which was due to the need of separation matrix calculation
in EFICA. Fortunately this phase is independent of XRR
calculations. Note that the time consumption in PCAGA
and CGA is mainly determined by the time used in the XRR
curve calculations. Time consumption was reduced by a factor
between 3 and 6 compared with real-world analysis to decrease
several hundred hours of simulation time. Thus the proportion
of additional computation time used in ICAGA is decreased
significantly in a real-world analysis. Therefore, the major
difference between the algorithms was convergence behaviour.
The convergence analysis showed that ICAGA has the best
capability to extend the analysis based on Parratt’s formalism
to multiperiodic layer structures.
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