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Abstract
Nonunique solutions of the x-ray reflectivity (XRR) curve fitting problem
were studied by modelling layer structures with neural networks and
designing a fitness function to handle the nonidealities of measurements.
Modelled atomic-layer-deposited aluminium oxide film structures were used
in the simulations to calculate XRR curves based on Parratt’s formalism.
This approach reduced the dimensionality of the parameter space and
allowed the use of fitness landscapes in the study of nonunique solutions.
Fitness landscapes, where the height in a map represents the fitness value as
a function of the process parameters, revealed tracks where the local fitness
optima lie. The tracks were projected on the physical parameter space thus
allowing the construction of the crosserror equation between weakly
determined parameters, i.e. between the mass density and the surface
roughness of a layer. The equation gives the minimum error for the other
parameters which is a consequence of the nonuniqueness of the solution if
noise is present. Furthermore, the existence of a possible unique solution in
a certain parameter range was found to be dependent on the layer thickness
and the signal-to-noise ratio.

1. Introduction

X-ray reflectivity (XRR) is a fast and inexpensive tool for
non-contact thin film metrology. Properties such as film
thickness, mass density, and interface/surface roughnesses
are obtained by fitting the theoretical curve calculated from
Parratt’s formalism [1] and by utilizing the Nevot–Croce
approximation for roughness [2]. In general, fitting algorithms
use a fitness function to obtain the difference between the
measured and the calculated curves and the solution is found
by minimizing the fitness function [3]. It is known that XRR
curve fitting problems have nonunique solutions [4, 5] but the
nature and behaviour of nonunique solutions have not been
discussed. There is no clear understanding as to how the fitness
function should be designed to be resistant against errors in

XRR curves. One way to analyse the selected fitness function
on the fitting properties is to use so-called fitness landscapes.
The very basic concepts related to fitness landscapes can be
found from the written but briefly expressed reference [6];
a fitness landscape is a map where the height represents the
fitness as a function of the parameter deviations from the
optimal parameters. Therefore, a properly visualized fitness
landscape can be used as a direct method to study the robustness
of the fitness function and to find parameters which have equal
fitness to the known optimal fitness, i.e. nonunique solutions.
Unfortunately, this approach has not been actively utilized in
XRR curve fitting problems.

In this work a fitness function is designed to be resistant
against some typical errors in XRR curves, such as noise,
misalignment and improper scaling. This function is used
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to study the nonunique solutions with fitness landscapes
in a noiseless case. Since the use of fitness landscapes
requires the use of known parameters, a realistic atomic-
layer-deposited (ALD) aluminium oxide (AlO) layer model
is used as a test case. The deviation of parameters from
known values is performed in a physical parameter and
an ALD process parameter space. The physical parameter
space is the input space with dimensions of thickness, mass
density and roughness for each layer. The process parameter
space is the input space where the most important growth
parameters in ALD, the number of growth cycles and the
deposition temperature, are used as input values. The deviated
process parameters are mapped by neural networks to the
physical parameters, wherefrom an XRR curve can be directly
computed. Using this approach, we show that the XRR curve
fitting problem has tracks in fitness landscapes where the local
optima are situated. The tracks are utilized in the construction
of the crosserror equation between the mass density and the
surface roughness of the realistic layer structure. This equation
gives a lower bound for the error in these weakly determined
parameters. In section 2, general nonidealities existing in
typical XRR data are discussed and a robust fitness function is
designed to minimize the effect of nonidealities. In section 3,
fitness landscapes as a function of the process parameters
are visualized and tracks in these landscapes containing local
optima are mapped to the physical parameter space by neural
networks.

2. Fitness function

2.1. Preprocessing of data

XRR measurements have several sources of systematic errors,
e.g. a sample holder is misaligned, a detector is saturated
or the attenuating factor of an applied metal attenuator is
improperly determined. In the case of the invalid attenuating
factor, the measured curve is vertically shifted. Horizontal
and vertical shifts are caused by misalignment which prevents
the proper determination of mass density and roughness. In
studies of a great number of samples, misalignment due to
human error is difficult to avoid and the misalignment can also
be a consequence of the limited angular resolution used in a
measurement. Figure 1 shows a real fitting case without the
preprocessing of the data. The measured curve is not properly
normalized and noise is visible in the high angle region. In
order to decrease the effect of nonidealities, the following data
preprocessing procedure was applied in this work for the target
and the trial curve.

(i) Interpolated data calculated by cubic splines are included
in the XRR curves. It was found that the interpolation
smooths a fitness landscape which is desirable from the
gradient optimization point of view.

(ii) The intensities are averaged uniformly over five adjacent
data points to reduce the effect of noise.

(iii) Intensity values of more than 50% of the critical point
intensity are cut off to reduce the effect of the high intensity
region. The curves are shifted horizontally so that they
coincidence at the cut point. Note that this shift can
be done only for the curves having only a very slight
horizontal offset. Another way to select the cut point is

Figure 1. Example of unfinished fitting of the trial curve (black
dashed line) to a grey target curve. The trial is a theoretical curve
calculated using the layer model shown in the inset. The parameters
of the layers are optimized so that the trial and target curves are
coincident. The shown target curve is measured from a real world
AlO sample. The layer thicknesses are not in scale in the inset.

to use the threshold point used for the attenuator. The
threshold point can have a too low value, which causes
the important curve area after the critical point to be
excluded. This area is used for determining the mass
density (or electron density) of the material. Here the
selection is made as a compromise between the validity of
the data and the sensitivity to mass density although the
optimal selection is not known and is therefore somewhat
problematic.

(iv) Both XRR curves are transformed to the logarithmic scale
and subsequently scaled so that the integrated intensity is
one. This scaling shifts the curves vertically.

2.2. The selection of statistical measure

The selected statistical measure should fulfil the following
criteria: (i) it should be fast to compute, (ii) it should attract
the trial towards a global optimum as robustly as possible
and (iii) it should be as robust as possible against noise. To
study the second and the third requirements, fitness landscapes
were used as a tool and the following structure for XRR curve
calculations was constructed: an aluminium oxide (Al : O, 2 : 3)
layer having a thickness of 40 and 0.55 nm RMS surface
roughness with mass density of 3.0 g cm−3 was assumed to
be on the silicon surface with an interfacial roughness of
0.3 nm. A theoretical XRR target curve based on the model
was computed and trial curves were calculated around the given
values. The deviating parameters were selected to be the mass
density and the surface roughness of the AlO layer.

The properties of several measures such as measures based
on entropy, the symmetrized Kullback–Leibler divergence [7]
and the Jensen–Rényi divergence [8], were investigated with
the model. These measures were tested in their original
form and with some modifications with no success. These
divergence measures had poor convergence properties in the
vicinity of optimal solutions indicating a contradiction to
requirement (ii). Several norms having different orders were
tested as a fitness measure as well. It was noted that
higher order measures are increasingly sensitive to noise
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Figure 2. The fitness landscape of a noisy case computed using
the measure from [9]. 600 datapoints with four times interpolated
data were used in the simulation. R means surface roughness and
ρ the mass density. The thickness of the layer and other parameters
were fixed in the calculations.

with increasing order but conventional second order moment-
based measures satisfied all requirements (i)–(iii). Several
modifications of the second order moment based measures
were tested and the best two are presented here.

The second best measure was taken from [9]:

Fitness = 1 − [1 + e]−1, (1)

where
e = RMSE(xc, xm)[1 + r(xc, xm)]−α. (2)

The constant α = 3, xc is the calculated curve, xm is the
target curve, RMSE means the root mean square error and
r is the correlation coefficient of the two arguments. Figure 2
shows the fitness landscape computed using this measure when
a uniformly distributed artificial noise with an amplitude of
5 × 10−7 of the maximum intensity was included in the target
curve. The landscape exhibited a clear shift of the global
minimum when the noise was applied and the case illustrates
how clear the shift was even when the second best measure
was applied.

A similar test was performed for the (χ2)1/2 measure. The
measure is defined here by

(χ2)1/2 =
( n∑

i=1

e2
i

)1/2
(3)

and the error component

ei = |(xi,m − xi,c) · x−1
i,c |, (4)

where xi,m is the component of the target curve and xi,c is the
component of the trial curve. Note that the relative error in
equation (4) is defined with respect to calculated data which
is done to prevent the noise in the measurement to distort the
shape of the fitness landscape. Also note the use of square
root which was selected to slightly linearize a paraboloidal
shaped landscape. A paraboloidal landscape has an almost
flat fitness region near an optimum, which is not desirable
when good selectivity between a good and a better solution
is needed. Figure 3 shows the fitness landscape calculated
using the (χ2)1/2 measure with noise. Simulations showed
that this measure preserves the minimum fitness valley near the

Figure 3. The fitness landscape of a noisy case computed using
the (χ2)1/2 measure. 600 datapoints with four times interpolated
data used in the simulation. R means surface roughness and ρ the
mass density. The thickness of the layer and other parameters were
fixed in the calculations.

optimal value (ρoptimum, Roptimum) although a slight shift of the
minimum point can be observed. The (χ2)1/2 measure was
found to be the most robust against errors. All other measures
based on the second order moment had no clear minimum in
the given range. Similarly, algebraic modifications to obtain a
binding limit for the value range of fitness functions failed;
robustness was lost since no valley with minimum fitness
existed for these modifications.

3. Nonunique solutions

The robustness of a fitness function is important when
studying nonunique solutions since it is difficult to estimate
the consequences of noise due to several factors affecting it.
Here, the (χ2)1/2-based fitness function was used to study
the behaviour of nonunique solutions with a case study
of a realistic model of ALD-grown AlO. Note that the
previous model used to study fitness function properties was
oversimplified and the thickness in the fitness landscape
calculations was fixed. In real world structures simultaneous
variations in three physical parameters for each material
must be considered. In such a case, the computational
time needed to explore the physical parameter space grows
exponentially with increasing dimensionality and therefore
dimensionality reduction is mandatory. This can be done with
feedforward neural networks (NN) as illustrated in figure 4.
NNs allowed the simultaneous change in several variables
without fixed parameters since the properties of ALD thin
films are mainly controlled by two process parameters, by the
deposition temperature and the number of cycles [10]. Table 1
summarizes the physical parameters and the neural networks
used in the model based on the empirical XRR properties
collected from 32 ALD grown AlO samples where these
32 datasets were used to construct the dependence between
the process parameters and the physical parameters. The
majority of the roughness parameters were set to be constant
with realistic values since empirical data provided no trends
with these parameters. The details of the construction and the
training of the NNs will be reported elsewhere.

The layer model was used for XRR curve calculations
in the study of nonunique solutions, and figure 5 shows the
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Figure 4. Dimensionality reduction of the problem by neural
networks. The two ALD process parameters work as input
parameters, which are used to compute six output variables to the
physical parameter space. Abbreviation i-AlO and i-SiO2 means
interfacial AlO and interfacial SiO2, respectively.

Table 1. Parameters used to construct a realistic AlO layer model
for XRR curve calculations. NN means a neural network which is
used to calculate a certain physical parameter from ALD process
parameters, i.e. the number of cycles and the deposition
temperature. Abbreviation i-Al2O3 and i-SiO2 means interfacial
AlO and interfacial SiO2, respectively.

Material Thickness Mass density Roughness
(nm) (g cm−3) (nm)

Al2O3 NN NN NN
i-Al2O3 NN NN 0.4
i-SiO2 NN 2.6 0.3
Si ∞ 2.33 0

flowchart of the applied algorithm used in the study. The
fitness landscapes were computed around a given optimal
solution as a function of cycles and temperature. Limits
used in the calculations were ±25 cycles and ±10 ◦C which
were considered to be realistic upper limits to simulate the
nonuniformity of thickness within the substrate area and the
inaccurate control of the deposition temperature. Note that
film uniformity is slightly ALD machinery design-dependent
which causes XRR thin film properties to be also dependent on
the location of a wafer inside a reactor and on the nonuniform
heat profile. Figure 6 shows a fitness landscape as a function
of the process parameters. One can note that the landscape
has a track where local optima are located. When noise
was included in a target curve, a sharp minimum vanished in
earlier fitness landscapes which indicates that noise generally
smooths minima. Smoothing of the global optimum region in
NN modelling based fitness landscapes was also observed in
most cases when the layer thickness was reduced. Thus, it
can be concluded that the XRR fitting problem can have a
unique solution within some range but in a real world case
the existence of a global optimum also depends on the layer
thickness and the signal-to-noise ratio. It is worth noting that
parameter ranges need to be set carefully to limit the search
space to decrease the possible existence of local optima having
equal fitness with the global optimum.

Figure 5. Flowchart of the algorithm used in the study of nonunique
solution for the each target process parameter pair. Black solid lines
represents the successive steps including dataflow done in the
algorithm. Dotted line means dataflow. The physical parameters
were calculated using neural networks and missing parameters were
set to be constant.

Figure 6. The fitness landscape as a function of the ALD process
parameters in the vicinity of the origin. The origin is at temperature
300 ◦C and 500 cycles in the process parameter space. The black
line in the (�Cycles, �Temperature)-plane is a projection of a track
where the local optima lie.

Tracks following local optima were collected from the
matrix of fitness landscapes, where global optima were ranging
from 100 to 300 ◦C with steps of 25 ◦C and from 50 to
500 cycles with steps of 50 cycles. The existence of these
tracks in the process parameter space is due to the simultaneous
nonlinear change in the physical properties. Figure 7 shows
the equivalent physical parameters of the AlO layer which
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Figure 7. Tracks where local optima lie projected to the (mass
density, roughness)-plane. The number of cycles and the deposition
temperatures show the optimal solutions in the process parameter
space where fitness landscapes were computed.

were calculated from the tracks using previously mentioned
neural networks. Between 2.85 and 3.05 g cm−3 projections
of the tracks are linearly independent of the ALD process
parameters. By taking the line marked with 300 cycles and
150 ◦C and approximating it as a linear line, the crosserror
between roughness and mass density can be approximated
from the slope of the line by the equation

�Roughness ≈ 0.11 × �Mass Density, (5)

where roughness is expressed in nanometres and mass density
is in g cm−3. The equation gives a lower limit for the error
of surface roughness if the error of mass density is known or
estimated. Typically the error of mass density is approximated
to be about ±0.1 kg m−3 and thus the minimum error of
surface roughness caused by the nonuniqueness of the solution
is ∼0.011 nm which translates to ±2.2% error for 0.5 nm
roughness. However, a definite error limit for the mass density
cannot be set in the light of simulations without a priori
knowledge. Note that simulation suggests that the mass density
can be precisely determined independently of roughness when
the layers are simulated with the temperature of 300 ◦C. The
result is due to the saturation of mass density above 235 ◦C.
Thus, this region is not of interest when considering the
crosserror. It is worth mentioning that the shape of lines in
figure 7 was preserved even when the artificially generated
noise was included in the simulations, thus suggesting the
validity of the noiseless simulations with the applied fitness
function. The shape of lines was also preserved in all cases
when the critical angle region was included to the data and
no horizontal shift was applied. A more detailed investigation
showed that the global optimum is more distinguishable in
some fitness landscapes, but if noise is applied, the location of
global optimum can change in the given track. Furthermore,
the length of the lines increased when the variations in process
parameters were increased. Thus, the beginning and the end
of an ambiguous region in mass density and roughness is not
clearly defined.

4. Conclusions

Nonunique solutions of an XRR fitting problem were studied
and a crosserror equation between roughness and mass density
was constructed based on the fitness landscape simulations.
Simulations were performed with a fitness function designed
and tested to be resistant to several nonidealities present in
XRR measurements thus improving the robustness and validity
of the obtained results. Simulations were based on neural
networks modelling the empirical XRR properties of ALD
aluminium oxide layers. The use of the models allowed
the reduction of the dimensionality problem and made it
possible to visualize the fitness landscape with two ALD
process parameters. The computed fitness landscapes revealed
tracks where these are local optima. By projecting these
tracks onto the physical parameter space, a crosserror equation
was constructed for the weakly determined parameters. This
equation gives the crosserror between mass density and
roughness which sets the minimum error for the second
parameter. It was also found that a unique solution can exist
within carefully aligned physical limits but it requires a thick
layer and a good signal-to-noise ratio in the measurement. The
drawback of the present approach is related to the modelling
of the XRR properties of AlO which limits the generalization
of the simulations to one case. However, the obtained
results work as a first approximation in the determination of
crosserrors in practical problems when analysing real world
ALD layers by the XRR curve fitting. We recommend that
the data preprocessing step is thoroughly studied from the
point of view of convergence properties and fitting accuracy
for further work. Nonunique solutions with other materials
are also encouraged to be studied to generalize the results
found in this paper. We expect that this work together with
subsequent investigations opens the possibility of defining
confidence limits for XRR determined properties in the near
future.
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