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Abstract
The influence of Poisson noise on the accuracy of x-ray reflectivity analysis
is studied with an aluminium oxide (AlO) layer on silicon. A null
hypothesis which argues that other than the exact solution gives the best
fitness is examined with a statistical p-value test using a significance level of
α = 0.01. Simulations are performed for a fit instead of a measurement
since the exact error caused by noise cannot be determined from the
measurement. The p-value is studied by comparing trial curves to 1000
‘measurements’, each of them including synthetic Poisson noise.
Confidence limits for the parameters of Parratt’s formalism and the
Nevot–Croce approximation are determined in (mass density, surface
roughness), (thickness, surface roughness) and (thickness, mass density)
planes. The most significant result is that the thickness determination
accuracy of AlO is approximately ±0.09 nm but the accuracy is better for
materials having higher mass density. It is also shown that the accuracy of
mass density determination can be significantly improved using a suitably
designed fitness measure. Although the power of the presented method is
demonstrated only in one case, it can be used in any parameter region for a
plethora of single layer systems to find the lower limit of the error made in
x-ray reflectivity analysis.

1. Introduction

X-ray reflectivity (XRR) is an efficient tool for noncontact
thin film metrology. Information such as film thickness,
mass density and interfacial roughnesses can be obtained by
fitting a theoretical curve based on Parratt’s formalism [1] with
the Nevot–Croce interface roughness approximation [2] to a
measurement. The fitting is carried out by minimizing a fitness
function which measures the difference between the target
curve and a trial. There are several techniques for doing this
procedure efficiently [3–8] but there is no certainty that a found
fit is exact if the target curve contains noise. The first attempts
to understand the limitations in XRR analysis were studied
in [9,10] but the results were more qualitative than quantitative.

Noise causes an unknown addition to the fitness thus
hindering the detection of the exact parameters. In such a
case, it is possible that the numerical optimum is not at the
same location where the real parameters are. The exact error
in analysis due to noise is, however, not possible to determine.
Noise causes slight differences between measurements and

therefore the effect of noise can be limited with a plethora of
measurements but this approach is very impractical. One way
to circumvent the problem is to approximate that the fit is the
measurement and to use statistical tests to analyse the error of
this ‘measurement’ including synthetic Poisson noise. In this
paper, a p-value is used in the validity test of a null hypothesis
which says that a solution other than the exact is giving better
fitness, i.e. the numerical optimum of the fitness function is
elsewhere than at the exactly known location. The confidence
limit determination of XRR parameters using the p-value
test is realized for a single layer system in two-parameter
planes. The background of the work is presented in section 2,
the methodology used in confidence limit determination is
introduced in section 3 and results in section 4.

2. Background of the work: ε-technique

The easiest approach to obtain the error (or confidence) limits
for a given solution is to examine the fitness value as a function
of parameters. Here it is called an ε-technique. The formalized
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Figure 1. Schematic layer structure used in the modelling of XRR
curves. The roughness refer to the surfaces of the layers, i.e. the
roughness of the aluminium oxide layer is the surface roughness and
the roughness of the silicon substrate is the interfacial roughness.

form of the technique is

|F(pfit) − F(pfit + �p)| < ε, (1)

where F > 0 is the function calculating the scalar fitness value
between a measurement and a theoretical XRR curve, pfit is the
vector containing XRR parameters of a theoretical fit, a scalar
ε > 0 is an allowed maximum growth in fitness due to an
error �p in the XRR parameters. There are a few strategies
to select a suitable ε: (1) Set ε = cF (pfit), where constant
c > 0 sets the error to be determined as a function of F(pfit).
(2) Set ε = c > 0, i.e. constant. There are several serious
problems with this approach: firstly, it is not known which ε

selection strategy is better. Secondly, the selection of a suitable
c depends on factors such as the noise level, the applied fitness
measure and on the problem itself. The determination of a
suitable c may require using another algorithm. Thirdly, if the
variation is done for a single parameter at a time but the error
region is nonparaxial, the error is determined inadequately. In
fact, this is the case with the problem studied in this work.
All in all, the ε-technique has serious limitations and therefore
a better approach is needed to circumvent the aforementioned
problems. In the following section, the methodology for a new
approach based on statistical hypothesis testing is introduced,
and the approach is applied to a single layer system.

3. Methodology

3.1. Layer structure used in the modelling of XRR curves

X-ray reflectivity is a powerful tool in the characterization
of atomic-layer deposited (ALD) materials. ALD is a
growth method for thin films where the source gases are
introduced separately [11]. One of the most ideal ALD
materials is amorphous aluminium oxide (AlO) grown in the
trimethylaluminium/water process and this material is easy to
characterize with XRR. Therefore XRR properties of ALD
AlO were utilized in the simulations of the case study and the
simulations were performed using the layer structure shown in
figure 1.

3.2. Poisson noise

Synthetic Poisson noise was used in this study to mimic the
distribution of discrete photons calculated in continuous time.
The number of detected photons obeys the Poisson distribution:

P(C) = C
C

C!
exp(−C), (2)

Figure 2. Preprocessing steps in fitness function. The black solid
line represents the noisy measurement and the grey dashed line a
theoretical curve. (1) The curves after normalization, (2) the curves
when the sampling points below one photon count level are
discarded and (3) the curves when the angle regions below the
critical angle are cut off. The curves have vertical offset for clarity.

where P(C) is the probability distribution of the detected
counts C and C is the mean number of photon counts. C

is obtained from the theoretical counts while the number of
detected photons C is generated by an algorithm generating
random numbers following the Poisson distribution. The
number of photon counts C = IT , where I is the intensity
(photon counts per second) and T is the averaging time.
Intensity I can be calculated using Parratt’s formalism, where
I = RImax, R = |r|2 is the squared modulus of the reflectivity
coefficient based on Parratt’s equations for the electric field and
Imax is the measured mean of the intensity with total reflection.
In our Philips X’Pert Pro XRR setup, Imax was measured to be
2.33 × 106 counts per second and this number was used in the
simulations.

3.3. Fitness functions

The purpose of the fitness function is to handle nonidealities of
the data and to measure the fitness (goodness-of-fit) between
two XRR curves. Recall that the fitness is traditionally
calculated between two curves in logarithmic scale but Parratt’s
formalism and XRR measurement give curves in a linear scale.
Therefore, proper design of the fitness function is mandatory to
decrease the effect of noise and to select a reasonable balance
between the improved sensitivity properties of the measure and
decreasing convergence efficiency in fitting algorithms. Here
the preprocessing in the fitness functions is done as follows:

(i) The curves are normalized according to the maximum
intensity so that Cmax = 1. Note that the theoretical
curve is slightly smoothed with a Gaussian filter to mimic
instrumental convolution.

(ii) Sampling points below one photon count level in the
original measurement are discarded from both curves.

(iii) The angle region below the critical angle, i.e. sampling
points with C > 0.5Cmax are cut off.

Figure 2 illustrates how the aforementioned preprocessing
steps affect the XRR curve. After the preprocessing steps,
the common logarithm of XRR curves is taken. Note that
the intensity at the critical angle value is now log10(0.5Cmax).
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Subsequently, the fitness measure is used to calculate the
difference between these curves. The fitness measure, root
mean squared relative error (RMSRE), is defined here as

RMSRE =
(

N−1
N∑

i=1

e2
i

)1/2

, (3)

where its error component

ei = ∣∣(xi,m − xi,c)(xi,c + xb)
−1

∣∣. (4)

Here xi,m is a data point of the target curve, xi,c is a data point
of the trial curve. Bias xb > 0 is a scalar value which tunes
the sensitivity of RMSRE to the critical angle region. For root
mean squared error (RMSE) the error component is defined as

ei = ∣∣(xi,m − xi,c)
∣∣. (5)

In our recently published paper [10], a very similar (χ2)1/2

measure with RMSRE was found to be most robust against
noise. The convergence properties of fitting algorithms with
this measure were not studied at that time but it came out later
in our experiments that the improved accuracy in mass density
determination is obtained at the expense of the robustness in
convergence properties. In other words, if the mass density
of an initial trial differs too much from the optimum, the
fitting problem corresponds to a ‘needle in a haystack’ problem
since the invalid value at the critical angle dominates via
the denominator in the RMSRE measure. Thus, a poor
initial guess in the mass density torpedoes the convergence
of solutions having otherwise well-defined parameters. To
circumvent this problem, the bias term xb was included in
the RMSRE measure. In the following section, it is shown
how the tuning of the bias term affects the confidence limits in
(mass density, roughness)-plane.

3.4. Determination of confidence limits

There are four parameters to be optimized in a single layer case:
layer thickness, mass density of the layer, surface roughness
and interfacial roughness between the layer and the substrate.
Typically the mass density of the substrate is known and
therefore it was set to be constant.

A preliminary test was conducted to determine which
parameters have a major contribution to the fitness of a solution.
Fitness values were computed between noiseless trials and the
noiseless target curve. The target curve was based on the
previously introduced model presented in figure 1. Trials were
generated at every point of a four dimensional grid around the
target curve with the grid dimensions of layer thickness, layer
mass density, surface roughness and interfacial roughness.

It was found that the interfacial roughness between the
AlO layer and the substrate affects very weakly the fitness
compared with the other parameters. Therefore, the most
interesting region depended on the three remaining parameters
and formed a three-dimensional object. The determination
of its surface is a computationally intensive operation but if
the edge of the object is originally computed as a projection
onto a two-dimensional plane, the computational load reduces
remarkably.

After the preliminary study, a statistical approach was
used to determine confidence limits for the case study. Since
it is impossible to find out the exact properties of the layer
structure from the measurement, a fit was used to approximate
the measurement. The exact parameter set taken from the fit
was denoted as p = [t, ρ, R], where t is the layer thickness, ρ is
the mass density and R is the surface roughness of the layer. A
noiseless XRR curve was generated and fitness was calculated
between the curve without and with synthetic Poisson noise.
This step was repeated N = 1000 times, the noisy curves were
saved and fitness values were saved in a vector component
F exact

i , where i = 1, 2, 3 . . . N . These values were used to
determine whether the null hypothesis

H0: Other than the exact solution gives the best fitness

is true or not. Here the fitness is calculated between a trial
curve and some noisy XRR curve calculated from the exact
parameters. Note here that the hypothesis argues that an
arbitrarily selected XRR parameter set has better fitness than
the exact solution. If this hypothesis is rejected, the exact
solution gives better fitness than a trial, otherwise there is not
enough evidence against the hypothesis. Strictly speaking,
accepting the hypothesis does not mean that the hypothesis is
true. The validity determination of the hypothesis is based on
a significance level α; if the p-value giving the probability of
the null hypothesis with some XRR parameters is less than the
given α, the hypothesis is invalid at that location. In that sense,
this approach requires testing the validity of the hypothesis
at every point of a two–dimensional search space but is
impractical due to the huge number of computations required.
To reduce computation time, the monotonic behaviour of
p-value as a function of distance between trial parameters and
the exact solution was assumed. Thus one can use a search
algorithm to find such a trial solution in a direction where
the condition p = α is fulfilled. The determination of this
confidence limit for XRR parameters was done here as follows:

(i) Select the plane, for instance (mass density, surface
roughness) plane, where to determine confidence limits.

(ii) Define a search direction d(θ), where θ ∈ [0◦, 360◦], for
instance:

d(θ) = p


 0 0 0

0 cos(θ) 0
0 0 sin(θ)


 (6)

(a) For each θ , search p(r) ≈ α:
1. Calculate an XRR curve with the parameters

p + rd(θ).
2. Calculate its fitness with aforementioned N exact

noisy curves. Save the fitness values to a vector
component Fi , where i = 1, 2, 3 . . . N .

3. Calculate

p = 1

N

N∑
i=1

(Fi < F exact
i ). (7)

The condition (Fi < F exact
i ) gives one if satisfied,

otherwise zero.
4. If p ≈ α, save pcontour(θ) = p + rd(θ).

(iii) Draw closed contour pcontour in the selected plane.
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Figure 3. Confidence limits of the RMSE measure with α = 0.01
when the measurement time is constant but the averaging time is
varied.

Using the assumption of the monotonous p-value, one can
separate rejection (outside) and acceptance (inside) regions,
and the sizes and dimensions of these regions indicate rapidly
the lower limit for the error of the exact solution. Note that
this lower limit is the fundamental limitation of XRR analysis
due to Poisson noise and cannot be circumvented. Naturally
the real error, which can be a consequence of several factors
including nonoptimal fit, can be greater.

4. Results and discussion

The analysis of confidence limits with the case study may
depend on the averaging time used in the measurements, i.e.
averaging time increases photon count level thus affecting
Poisson noise distribution. The trade-off between the number
of sampling points versus the averaging time was studied by
keeping the total ‘measurement’ time constant. Simulation
mimicking a measurement was performed using 300, 600, 900
and 1200 sampling points with 12 s, 6 s, 4 s and 3 s averaging
times, respectively. Figure 3 shows confidence limits as a
function of the number of sampling points in XRR curves. One
can note that the region with 300 points seems to be the largest
while the others are slightly smaller. The regions with 900 and
1200 points seem to be the smallest thus suggesting that it is
beneficial to increase the number of points in a measurement
to a certain extent rather than to increase the averaging time.
However, since the differences in the sizes of the regions were
small, 300 points and 12 s averaging time were used in the
subsequent simulations due to shorter computation time.

Figure 4 shows the confidence limits as a function of
significance level α. One can note that the region inside the
limits is not significantly reduced when α is increased from
0.05 to 0.1. Since the confidence limits vary slightly between
simulations, these simulations suggest that the position of
limits are not changing sufficiently at high significance levels
and thus the use of α = 0.01 is preferred.

The accuracy of analysis is fitness measure dependent as
mentioned earlier. Figure 5 shows that the confidence region
in the mass density dimension decreases with decreasing xb

in RMSRE. In other words, the smaller the region size, the
better the accuracy that can be obtained from the analysis

Figure 4. Confidence limits of the RMSE measure with α = 0.01,
0.05 and 0.1.

Figure 5. Confidence limits of the RMSE and RMSRE measures
with α = 0.01.

which proves the earlier claim describing the qualitative
difference between RMSRE and RMSE measures. Note that
the principal axes of the confidence regions are not paraxial
and the directions of the axes are dependent on xb. This
result suggests that the error limit determination based on the
one-parameter ε-technique does not provide correct results.
Despite the significantly improved sensitivity of RMSRE to
mass density, the bias term xb has unknown consequences on
the convergence properties and therefore RMSE was selected
for the major part of simulations due to its simplicity.

One of the most interesting questions in XRR analysis
is the accuracy of the thickness determination. Figure 6
shows that increasing layer mass density improves the accuracy
of layer thickness and surface roughness determination. It
can be observed that the thickness determination accuracy of
AlO is approximately ±0.09 nm with the confidence level of
α = 0.01. Although the mass density of the ALD AlO layer is
rather close to 3.00 g cm−3, the results show that the analysis
accuracy can be improved if the mass density, i.e. electron
contrast between the layer and the substrate, can be tailored.

Whereas mass density clearly affects the thickness
accuracy, surface roughness has no clear impact on it as
seen from figure 7. Surface roughness, however, affects
the mass density accuracy but the relationship between
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Figure 6. Confidence limits of the RMSE measure with α = 0.01 as
a function of mass density.

Figure 7. Confidence limits of the RMSE measure with α = 0.01 as
the function of surface roughness.

the accuracy of mass density and surface roughness seems
not to be straightforward.

5. Conclusions

The influence of Poisson noise on the accuracy of XRR
analysis was studied with a single layer system case. A
hypothesis which argued that other than the exact solution
gives the best fitness was examined with the p-value test.
Confidence limits for XRR parameters at a certain significance
level α were determined in (mass density, surface roughness),
(thickness, surface roughness) and (thickness, mass density)
planes. The confidence limits were separating rejection
(outside) and acceptance (inside) regions of the hypothesis.
Note that the applied statistical test says that the hypothesis is
incorrect in the rejection region with the given significance
level but in the acceptance region there was no enough
evidence to reject the hypothesis. In other words, in the
rejection region the exact solution has better fitness than the

trial solution while in the acceptance region this is not
sure. Recall here that the fitness plays an important role
in fitting; fitting algorithms try to optimize the fitness and
the quality of the solution is determined solely from the
fitness value. Therefore an ambiguity in a solution is
possible in the acceptance region and this is a consequence
of Poisson noise at a certain time which sets the fundamental
limit for the accuracy in XRR. Therefore the only way to
improve the accuracy in conventional XRR is to increase the
number of detected photons by using longer measurement
time or higher intensities. As an application of the presented
method, the thickness determination accuracy was found to
be approximately ±0.09 nm for a 20 nm thick layer with a
significance level of α = 0.01 but the accuracy is better with
materials having greater mass density. On the other hand,
the mass density accuracy was found to be dependent on the
applied fitness measure and it was shown that the accuracy
can be significantly improved with the suitable selection of
fitness measure. Difficulties with the convergence properties
when using the sensitive fitness measure, however, limit its
applicability. Therefore we recommend that the sensitivity and
convergence properties of the fitness measure are thoroughly
studied in the future to fully exploit the potential of XRR
analysis of thin layers.
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