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Abstract
A novel error limit determination method for x-ray reflectivity (XRR) analysis is developed
and applied to data measured from atomic-layer-deposited aluminium oxide on silicon. The
analysis here is based on Parratt’s formalism and on a fitness defined as a mean-squared error
between a measurement and a fit in logarithmic scales. The mathematically derived upper
bound for an error uses a trick which divides the fitness into two parts. The divided original
fitness equals the fitness between a measurement and a numerically optimal but unknown fit
(the first part) plus the fitness between the unknown optimal fit and the known original fit
(the second part). In practical error determination, the fitness in the first part is the fitness of
noise and it is approximated using a separate simulation and in the second part, the unknown
optimal fit is considered as a variable to be optimized. An efficient implementation is
presented for the error determination and the determined parameters were 42.4 ± 0.12 nm
(0.3%), 3.15 ± 0.11 g cm−3 (3.5%) and 0.80 ± 0.06 nm (7.5%) for the thickness, the mass
density and the surface roughness, respectively. Although the formalized error may need some
fine tuning as future work since it gives an asymptotic estimate, it still gave reasonable results
in the case of systematic error caused by nonideal fit.

1. Introduction

x-ray reflectivity (XRR) is a powerful noncontact technique
for the nanoscale metrology of thin films. XRR is similar to
one-wavelength optical reflectometry but the measurements
are typically carried out using the wavelength of Cu Kα which
provides very high sensitivity to the structural properties of
a layer structure. These properties can be determined by
fitting a theoretical curve based on Parratt’s formalism [1] with
Nevot–Croce roughness [2] to a measurement. Several studies
concentrating on this challenging inversion topic have been
published within the last decade [3–8] but a formally correct
and objective method providing an error in the determined
parameters after a fitting procedure is still missing.

Luokkala et al [9] studied this problem with surfactant
monolayers and observed that a single fit can yield misleading
structural parameters and multiple statistically equivalent fits
are required to produce a more clear picture of the parameters.
Although the method is simple to implement and therefore

interesting, it may be computationally too expensive to find
an adequate number of statistically equivalent fits to be used
in error determination. Instead of a statistical brute force
approach, we have previously studied a deterministic approach
to explain the crosserror between the surface roughness and
mass density of a single layer system [11]. In that work, the
sensitivity of XRR parameters to data were analysed using
deposition process modelling as a tool and the applied approach
allowed one to construct the first approximation for the error
made between the mass density and the surface roughness.
However, the approach always requires the modelling of
the deposition process. The need for a more generalized,
computationally inexpensive, objective and reliable error limit
estimation was the driving force for the second paper on this
topic [12]. In that work we introduced a method in which the
rejection of a null hypothesis arguing that any other than the
exact solution gives the best fitness (goodness-of-fit) is studied
using a statistical p-value test. It was found that the Poisson
noise is an important factor which can cause a numerical
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Figure 1. Layer model used in the calculation of XRR curves using Parratt’s formalism. All the parameters except the mass density of
silicon substrate are fitted.

optimum being elsewhere than at the exact solution. Although
the presented method gives an objective way to understand and
define confidence boundaries for the determined parameters,
a major limitation comes from the assumption that a fit with
included synthetic Poisson noise is approximately equal to the
measurement. Strictly speaking this is not true. Therefore, a
more accurate method taking into account the consequences of
a nonideal fit and giving a reasonable error in XRR parameters
is still required.

In this work, a novel objective method using a formally
derived error in XRR analysis is implemented. The derivation
of the error uses a simple trick which divides an applied fitness
measure into two parts, where the first part measures the
error between a measurement and a numerically optimal but
unknown fit and the second part measures the error between
the unknown optimal fit and a fit given by a fitting algorithm.
With this approach, the error determination reduces to a
simple optimization problem where the first error term can
be estimated from a separate simulation while the second
term is optimized so that the artificially separated fitness
measure equals the fitness between the measurement and the
fit. In section 2, the methodology including the applied layer
model, the generation of the synthetic Poisson noise and the
used fitness function are presented. In section 3, the old
fashioned method with its disadvantages is discussed, the
theory behind the novel method is introduced and one of its
possible implementations is presented. Finally, the error limits
determined for a measurement and the applied layer structure
are shown in section 4.

2. Methodology

2.1. Layer structure used in the modelling of XRR curves

In atomic layer deposition (ALD) the source gases are
introduced sequentially which causes the growth to be
chemically self-limited. The self-limiting growth allows the
digital thickness control down to a subnanometre range with
extreme conformality and therefore ALD grown materials
are very ideal to be measured with XRR. One of the most
idealistic ALD materials is amorphous aluminium oxide (AlO)
grown in the trimethylaluminium/water process [13] which
has a reasonable electron density contrast with the silicon
substrate and roughness typically well below 1 nm in a large
horizontal range. Due to these benefits of ALD AlO, it
was used as a case study in this work. The layer structure

and material system properties are shown in figure 1. The
parameters are determined by fitting a theoretical curve xfit to a
measurement xmeas. Note that the roughness of the substrate is
negligible after a Levenberg–Marquadt based fitting although
the typical roughness is a couple of ångströms. This can
be a consequence of the nominally thick AlO layer which
hinders the determination accuracy of the intentionally small
roughness value.

2.2. Poisson noise

In XRR measurements, the number of detected photon counts
follows the Poisson distribution:

Prob(C) = C
C

C!
exp(−C), (1)

where Prob(C) is the probability distribution of the detected
counts C and C is the expected number of photons. When
mimicking synthetic Poisson noise in XRR, the expected
number C = Cmaxxi , where the ith point xi ∈]0, 1] represents
the squared modulus of the reflectivity coefficient for the
electric field based on Parratt’s formalism and Cmax is the
maximum number of detected photon counts below the critical
angle for total reflection. Using these notations, the function
generating random numbers from the Poisson distribution is
x = C−1

maxPoisson(Cmaxx) where x = (x1, x2, . . . , xi, . . . xN).

2.3. Fitness function

Before the calculation of the fitness (goodness-of-fit) between
two curves, preprocessing of data must be carried out. Here
the preprocessing involves the following:

(i) The curves are normalized according to the maximum
intensity so that Max(x) = 1 for both curves.

(ii) Points having values less than C−1
max are discarded from

both curves if the logarithmic functions are applied.
(iii) The total external reflection region is cut off from

both curves since the region below does not agree
with the reflectivity coefficients computed using Parratt’s
formalism without geometrical modelling. Some
researchers cut the curves from the critical angle region,
i.e. where x > 0.5Max(x), but preliminary analysis
showed that this approach gives practically equal results
with the prementioned approach.
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Figure 2. Measured (grey solid line) and fitted (black dashed line)
XRR curves of an ALD AlO sample. The black curve is fitted using
the χ 2 measure.

For the preprocessed curves, the selection of fitness measure
is important. One can use a measure denoted here as

χ2(xmeas, xfit) =
N∑

i=1

(xi,meas − xi,fit)
2

xi,fit
, (2)

where xi,meas is the ith point of the measured curve xmeas and
xi,fit is the ith point of a noiseless theoretical XRR curve xfit is
calculated using the function x = calcXRRcurve(p) where p

is a parameter set used for the XRR curve calculation. For the
further analysis, we emphasize here that x denotes a theoretical
curve without noise and x refers to a curve containing noise.
Another fitness measure is here defined as

F(xmeas, xfit) = N−1
N∑

i=1

(log xi,meas − log xi,fit)
2 (3)

= N−1 ‖ log xmeas − log xfit ‖2
2 . (4)

Figures 2 and 3 show the difference between XRR curves fitted
by different measures. The same initial trial curve was fitted
by the Levenberg–Marquadt method to the measurement using
χ2 and F measures. The curve fitted by χ2 has almost perfect
fit in the angle range below 1.25◦ whereas the curve fitted
by F has sufficient fit below 0.9◦ but almost perfect after.
Thus, one can conclude that χ2 has better sensitivity into the
beginning of the curve and therefore the mass density can be
determined more accurately with χ2 than with F . However,
the curve fitted by χ2 suffers from clear inaccuracy problem
in the tail of the curve. Such a problem is not seen with the
curve fitted using the F measure and it has better agreement
visually although it has slight but not as serious inaccuracy
as χ2. Recall that the visual agreement is typically used
in scientific papers to justify the correctness of results and
therefore F has practical significance. Based on the better
visual correspondence obtained using F , the further study
is concentrated on this logarithmic expression. The analysis
based on χ2 is done in comparison purposes although the focus
is on the determination of error limits using F .

Figure 3. Measured (grey solid line) and fitted (black dashed line)
XRR curves of an ALD AlO sample. The black curve is fitted using
the F measure.

3. Methods for error limit determination

3.1. Classical approach for the error limit determination

Commonly utilized technique for the error limit determination,
here denoted as ε technique is defined as

F [xmeas, x(pfit + �p)] < Fmin + ε, (5)

where F > 0 is the fitness function calculating the fitness
value between a measurement xmeas and a theoretical XRR
curve x(p) as a function of the parameter set p, Fmin is the
minimum fitness and ε is a confidence limit. If Fmin and ε are
defined, the easiest approach is to variate one parameter from
p at a time. However, this so-called monovariate approach
estimates incorrectly the error if correlation exists between
the parameters [12]. A multivariate technique can circumvent
this problem. For instance, one can use the eigenvectors of a
Hessian matrix to find such directions which do not have these
interparameter correlations in the determination of proper error
limits. In practice, some problems still exist with this approach.
In this ε technique

• one assumes that [9]

Fmin = Ffit = F [xmeas, x(pfit)], (6)

which is not guaranteed. Recall that the convergence
criteria of fitting algorithms are rather heuristical, i.e. the
algorithms do not know the exact value for the minimum
of the fitness.

• ε can be determined based on degrees of freedom [9] or
on the basis of the p-test [10]. One should note that these
approaches are not taking into account systematic errors
caused by a nonideal fit.

Thus, it can be concluded that the ε technique has some
significant limitations and new approaches for the error limit
determination are thus welcome. A novel approach having
none of the above mentioned problems is introduced in the
following section.
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3.2. Novel method

3.2.1. Theory of the method. Consider the case when the
fit is perfectly optimized, i.e. a theoretical curve is fitted to a
measurement in such a way that the fitness value cannot be
minimized more. In that case, the minimum possible fitness
caused by noise

Fnoise = F(xmeas, xopt),

= N−1 ‖ log xmeas − log xopt ‖2
2, (7)

where xopt is a numerically optimal XRR curve to minimize
F with xmeas. Note that this is an important special case. In
the fitting procedure one minimizes the fitness measure as a
function of the parameter set p. If the target curve is noiseless,
one knows the minimum fitness value which is zero. Therefore,
one can run the fitting algorithm until zero fitness is obtained
or the fitness value is below an initially set constant. This is not
possible when the target curve contains noise. The fitness is
greater than zero but its exact value is unknown. However,
it will be shown later that the distribution of Fnoise can be
simulated in order to get an estimate for the minimum of Fnoise.
Before that, the error term log xmeas − log xopt in equation (7)
can be utilized in an analytic fashion: let us denote fitness

F(xmeas, xfit) = N−1 ‖ log xmeas − log xfit ‖2
2

= N−1 ‖ (log xmeas − log xopt)

+ (log xopt − log xfit) ‖2
2 . (8)

By shortening the error term of Fnoise as emin = log xmeas −
log xopt and writing the residual term eres = log xopt − log xfit

between the noiseless curves, one obtains for sufficiently large
N with good signal-to-noise ratio (see the appendix)

F(xmeas, xfit) = N−1 ‖ emin + eres ‖2
2

� N−1 ‖ emin ‖2
2 +N−1 ‖ eres ‖2

2 . (9)

Since F(xmeas, xopt) = N−1 ‖ emin ‖2
2 and F(xopt, xfit) =

N−1 ‖ eres ‖2
2, the upper bound for the error

F(xopt, xfit) � F(xmeas, xfit)

− F(xmeas, xopt), (10)

where the values of xopt are to be searched. Note that
F(xmeas, xfit) is known after the fitting procedure and
F(xmeas, xopt) ≈ F(xopt, xopt) can be approximated by
simulations. Typically after the fitting process xfit ≈ xopt.
Therefore F(xopt, xopt) ≈ F(xfit, xfit) and

F(xopt, xfit) � F(xmeas, xfit)

− F(xfit, xfit). (11)

The values of F(xfit, xfit) can be obtained by simulations
with the following steps:

(i) Set i = 1.
(ii) Set a new seed number for the random number generator.

(iii) Add synthetic Poisson noise to the noiseless XRR curve
according to the equation

xfit = C−1
maxPoisson(Cmaxxfit) (12)

with the given seed.
(iv) Compute g(i) = F(xfit, xfit).

Figure 4. Histogram of 1000 fitness values in 100 bins (black solid
curve) when the fitness is calculated between a noiseless and noisy
XRR curves. The gaussian function approximating the histogram is
presented in a black dashed line. The black vertical line shows the
determined position of Fnoise,min in the fitness axis.

(v) Increase the index i by one.
(vi) If i < n where n � 100, then go to step (ii).

To maximize the right side of inequality (11), one can define
that Min[F(xfit, xfit)] = Fnoise,min = Min(g). This definition,
however, produces volatile values since Min(g) may vary
between simulations. A statistically more robust estimate for
Fnoise,min can be obtained using the equation

Fnoise,min = µg + σg�
−1
g (α), (13)

where �−1
g (α) is an inverse Gaussian cumulative distribution

function and µg and σg are the mean and the standard deviation
of g, respectively. In this paper α = 0.01 was used in
equation (13) since it produced values nearly equal to Min(g).
Figure 4 illustrates the histogram of g, the Gaussian function
approximating g and Fnoise,min determined from equation (13).

Note that the right side of inequality (11) is positive but the
left side equals zero with the first guess xopt = xfit = x(p). In
order to obtain the maximum of right side, x(p) is optimized
as a function of the XRR parameter set p using the equation:

F(x, xfit) = F(xmeas, xfit) − Fnoise,min, (14)

where the function x = calcXRRcurve(p). To find a p, the
following procedure must be carried out find an upper limit for
the error:

(i) Set a search direction d.
(ii) Set p = pfit.

(iii) Compute Fnoise,min at p.
(iv) Optimize p in the direction of d until equation (14) is

satisfied.

One can note that Fnoise,min is a function of p, strictly speaking.
However, preliminary studies showed that p has no observable
effect on Fnoise,min and therefore the dependence was not taken
into account.
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3.2.2. Implementation of the method. The error limit
determination method was implemented here in circular
coordinates in two dimensions due to computational reasons.
The parameter set p = [t, ρ, σ ] where t is the layer thickness,
ρ is the mass density and σ is the surface roughness of the layer
to be optimized. The implementation was realized as follows:

(i) Select the plane, (ρ,σ ) for instance, where to define error
limits.

(ii) Compute vector g with the parameters pfit and determine
Fnoise,min = Fnoise,min(pfit, α).

(iii) Define a search direction d(θ), where θ ∈ [0◦, 360◦]. In
(ρ,σ ) plane

d(θ) = p




0 0 0

0 cos(θ) 0

0 0 sin(θ)


 . (15)

(iv) For the given θ ,
(a) perform rmax = Minimizer [F(xmeas, xfit) − Fnoise,min

−F(x, xfit)] with p = pfit + rd ,
(b) save pcontour(θ) = pfit + rmaxd .

(v) Draw a closed contour pcontour in the selected plane.

4. Results and discussion

4.1. Validity of the results

In order to test the validity of the results given by the
implementation, the error was determined for the layer
structure shown in figure 1. In the task, the simulations
were carried out using 1000 fitness value computations for
the vector g and 512 search directions between 0◦ and 360◦.
The ‘measured’ fitness was set to F(xmeas, xfit) = Fnoise,max

where Fnoise,max = µg +σg�
−1
g (α = 0.99). This selection was

due to the observation that it is difficult to get better fitness
than Fnoise,max to a real world measurement.

It is known by the skilled experimentalists that the error
in the determined parameters follow approximately C

−1/2
max

dependence if the averaging time was kept constant for every
point. The linear dependence holds for the χ2 measure as
shown in figure 5. After switching χ2 to F , the results exhibits
more nonlinear behaviour as shown in figure 6 but increases as
a function of C

−1/2
max which is required. Thus, one can conclude

that the implementation used in the error limit determination
gives expected results thus indicating valid realization of the
method.

4.2. Results

The errors were computed for XRR parameters determined
from the real-world atomic-layer-deposited AlO layer. The
maximum numbers of photon counts was Cmax = 4.4 × 107.
Figure 7 shows the determined error in the (ρ, σ ) plane. The
errors are �ρ = 0.105 37 g cm−3 and �σ = 0.063 634 nm.
Note that the area of the contour is nonparaxial which
means that monovariate techniques may fail in the error limit
determination.

Figure 8 shows a contour restricting the error region in
the (t, σ ) plane which is paraxial. The errors in this case are

Figure 5. Error determined by using the χ2 measure as a function of
Cmax for the mass density ρ and the surface roughness σ .

Figure 6. Error determined by using the F measure as a function of
Cmax for the mass density ρ and the surface roughness σ .

Figure 7. Error limits for the mass density ρ and surface roughness
σ . The black line encloses the area where other possible solutions
can lie.

�t = 0.122 87 nm and �σ = 0.061 591 nm. Figure 9 shows
the error limits in the (t, ρ) plane and here �t = 0.125 66 nm
and �ρ = 0.1051 g cm−3. Note that the principal axes of
the ellipse are not paraxial. This clearly indicates that the
mass density and the thickness are slightly correlating, i.e. the
thickness is not a fully independent variable in the analysis as
thought in general.

5



J. Phys. D: Appl. Phys. 41 (2008) 115302 J Tiilikainen et al

Figure 8. Error limits for the thickness t and surface roughness σ .
The black line encloses the area where other possible solutions
can lie.

Figure 9. Error limits for the thickness t and the mass density ρ.
The black line encloses the area where other possible solutions
can lie.

XRR curve fitting was performed using the χ2 measure. χ2

is very sensitive to the mass density and it can be considered
to be more accurate than the mass density determined using
F . Table 1 shows the determined XRR parameters for both
measures, the differences in the parameters and the computed
errors for both measures. As seen from figure 2, χ2 cannot
match the right tail of the curve and therefore the difference
in the thicknesses is considerably higher than the calculated
error using F . On the other hand, the error determined using
χ2 is considerably large which indicates the failure of the
fit in the thickness determination. The error in the mass
density value determined using χ2 is pretty small indicating
the aforementioned accuracy of the measure with the mass
density. It is interesting to note that the errors together agree
with the difference in the determined mass density parameters.
In the case of the surface roughness, the error determined using
χ2 is clearly higher than in the case of F indicating again the
failure of the fit done using χ2. It is worth recalling here that
the determined errors using χ2 is done here for comparison
purposes but strictly speaking, the results are valid only for F .
This is due to the lack of error derivation for χ2 and therefore
inequality (11) does not necessarily hold for χ2. However,
some inaccuracy may exist in the results obtained by using F .

Table 1. Determined XRR parameters with F (denoted as †) and χ2

(denoted as ‡). The XRR curves based on these parameters are
presented in figures 2 and 3 for χ 2 and F , respectively. Differences
are the parameter deviations in the principal Al2O3 layers. Here ∗

denotes a parameter which was fixed during the fitting procedure.
Error† is calculated using the F measure. The parameters are here
presented with three decimal accuracy for the thickness t , the AlO
mass density ρ and the surface roughness σ .

Layer t (nm) ρ (g cm−3) σ (nm)

Al2O3
† 42.393 3.152 0.804

Subtrate† ∞ 2.33∗ 0.000
Al2O3

‡ 42.152 3.044 0.850
Subtrate‡ ∞ 2.330∗ 0.000

�t �ρ �σ

(nm) (g cm−3) (nm)

Difference 0.242 0.108 0.046
Error† 0.123 0.105 0.064
Error‡ 0.653 0.033 0.215

Recall here that the error analysis is based on inequality (11)
where a sufficiently large number of datapoints and signal-to-
noise ratio were assumed. Therefore, the inaccuracy of results
given by the novel method increases if these conditions are not
met.

4.3. Discussion

Here the presented novel technique is discussed in the light of
the classical Hessian based sensitivity method. The Hessian
method is based on the examination of the Hessian matrix
which shows the local sensitivity of the fitted parameters.
Hessian is here defined as

H(F) = ∂2F [xmeas, x(pi, pj )]

∂pi∂pj

∣∣∣∣
pfit

, (16)

where ∂pi and ∂pj are the partial derivatives with respect to
the parameters i and j and pfit is the parameter set of the fitted
curve. In the examined case the numerical Hessian

H(F) =




1515.3 −23.2 6.0

−23.2 9.0 −1.2

6.0 −1.2 2.4


 , (17)

where the partial derivatives are taken with respect to the layer
thickness t , the mass density ρ and the surface roughness σ .
The eigenvectors of Hessian are

V (F) = 10−3




1.3 −15.9 999.9

−172.9 −984.8 −15.4

−984.9 172.9 4.0


 , (18)

where the vectors [t, ρ, σ ]T are in columns. The eigenvalues
are 2.2, 8.8 and 1515.7 for the column vectors, respectively.
The direction of an eigenvector with a small eigenvalue
means little change in F and hence larger uncertainty or
error for this linear combination of parameters. Therefore
the directions [t, ρ, σ ]T = [1.3, −172.9, −984.9]T and
[−15.9, −984.8, 172.9]T give the largest uncertainty which

6
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means that the error is greatest due to the crosscorrelation
between the mass density and the surface roughness. The
direction of the principal axes of the ellipse in figure 7
indicates crosscorrelation between the mass density and the
surface roughness, respectively. Thus the results of these two
methods agree qualitatively in this case. If the uncertainty
is studied using the Hessian method in the direction of
[999.9, −15.4, 4.0]T, the mass density interacts with the
thickness more strongly than the surface roughness with the
thickness, as also indicated by the novel results shown in
figures 8 and 9. Thus one can conclude that the results of
the novel method agree qualitatively with the results of the
Hessian approach.

The quantitative comparison of the Hessian based error
analysis and the novel method is difficult due to the differences
between the techniques. The differences are:

• The Hessian method uses the measurement and the fit
in the analysis whereas the novel method studies the
difference between the fit and an unknown optimal fit.

• The Hessian method studies the sensitivity of the fitted
parameters whereas the novel method studies noise
affecting fitness values.

• The Hessian method preserves the information of the
measurement during the analysis but the novel method
loses this information.

• If the Hessian method is used for the error limit
determination,

– it assumes that the fitted solution gives the minimum
fitness. This is in fact an incorrect assumption since
the fitness of the fitted solution does not even fall into
the distribution shown in figure 4. The novel method
does not make such an assumption.

– the suitable value for ε is difficult to define in the
case of the nonideal fit. The novel method takes
into account a nonideal fit and does not require
difficult/complex definitions for any parameter.

Summarizing the differences between the methods, the
Hessian method answers the question ‘How an error in one
parameter affects the rest of parameters?’ but the novel
method answers the question ‘If the search algorithm has not
minimized the fitness value, where or how far the optimal
solution can be ultimately?’. Since these methods have
different perspectives, the methods are competing each other
thus providing valuable information on the uncertainties of the
problem.

5. Conclusions

The novel method taking into account the influence of
noise and nonideal fit in the error limit determination in
XRR analysis was presented. The method applies Parratt’s
formalism and the fitting based on least squares of logarithms.
This logarithmic approach was selected since it gave good
visual correspondence between the measurement and the
fit. The fitness measuring the correspondence between the
measurement and the fit was formally divided into two parts
where the first part represents the fitness between the fit and

an unknown optimal fit and the second part is the fitness of
noise. The fitness of noise was approximated to be as minimal
as possible with a simple separate simulation thus increasing
the fitness of a nonideal fit. In this minimization task, the
statistical significance level α = 0.01 was used as the limit
which separates 99% of the simulations to have a greater
fitness value than the reference value, i.e. the fitness of noise.
The error limit determination was performed by increasing the
distance between the fit and an unknown optimal fit in the
parameter space until the fitness between these corresponding
curves met the original fitness minus the fitness of noise.

One simple and computationally efficient implementation
for the practical error limit determination was presented in this
work but other approaches can be used as well. Using the
presented implementation, initial simulations were made to
test the validity of results. The error limits were halved with
quadrupled intensity which indicated the correct behaviour of
the implementation. Finally, the error limits were determined
for a real-world atomic-layer-deposited aluminium oxide layer
on silicon as an application. The determined parameters
were 42.4 ± 0.12 nm (0.3%), 3.15 ± 0.11 g cm−3 (3.5%) and
0.80 ± 0.06 nm (7.5%) for the thickness, the mass density and
the surface roughness, respectively.

The error limits given by the novel method are upper
limits in the case of a sufficient number of sampling points
and photon counts. In practice, the determined error is an
asymptotic estimate and requires fine tuning as future work.
However, the significance of the approach is related to its
capability to take into account a systematic error caused by
a nonideal fit which may be difficult with classical methods.
The novel method requires the definition of two parameters, the
statistical significance level α and the number of simulations
for the distribution of the fitness of noise. The number of
simulations affects the accuracy of the results and should, in
principle, be as large as possible. The significance level is
a user-defined parameter and it can be selected to meet the
required confidence level. Since the presented novel method
does not contain arbitrary parameters, it gives objectively an
estimate for the upper limit of the error when the convergence
of a search algorithm to the optimal fit is not guaranteed.
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Appendix

The fitness between the measurement and the fit can be
written as

F(xmeas, xfit) = N−1 ‖ emin + eres ‖2
2

= N−1 ‖ emin ‖2
2 +N−1 ‖ eres ‖2

2

+ 2N−1emin · eres

� N−1 ‖ emin ‖2
2 +N−1 ‖ eres ‖2

2

− 2|N−1emin · eres| (A.1)
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where emin = log xmeas − log xopt and eres = log xopt − log xfit.
Hence

N−1 ‖ eres ‖2
2 �N−1(‖ emin + eres ‖2

2 − ‖ emin ‖2
2)

+ 2|N−1emin · eres|. (A.2)

Now

ei,min = log xi,meas − log xi,opt

= log
xi,meas

xi,opt

≈ log
C−1

maxPoisson(Cmaxxi,opt)

xi,opt
. (A.3)

Note here that C−1
max � xi,opt � 1 and C−1

max � xi,opt � 1 for all
i and therefore the variance of ei,min is bounded. Let us denote

emin · eres =
N∑

i=1

ei,minei,res =
N∑

i=1

Ei (A.4)

and σ 2
i = E[E2

i ] > 0 where E is an expectation operator.
Since the XRR data is preprocessed, then for all i

σ 2
i /σ 2 < ε (A.5)

is satisfied for small ε > 0, where

σ 2 =
N∑

k=1

σ 2
k . (A.6)

Now the Lindeberg condition is satisfied for the central limit
theorem which states that the sum distribution is approximately
Gaussian, i.e.

Prob

(∑N
i=1(Ei − E[Ei])

σ
� a

)

→ 1√
2π

∫ a

−∞
exp

(−u2

2

)
u. , N → ∞, (A.7)

where the left side denotes the probability of normalized sum
distribution less than a and the right side is the standard
cumulative Gaussian distribution. Thus

N−1
N∑

i=1

Ei → N−1
N∑

i=1

E[Ei] + N−1σX, (A.8)

where X is a random number from standard Gaussian
distribution with zero mean and unit variance. Here N−1σX =
c1/2N−1/2X → 0 for large N where c is a bounded mean
variance. Therefore

N−1
N∑

i=1

Ei = N−1
N∑

i=1

E[Ei]. (A.9)

No nice analytical formula exists for E[Ei]. However, for
sufficiently large Cmaxxi,opt

ei,min ≈ log
C−1

maxPoisson(Cmaxxi,opt)

xi,opt
(A.10)

≈ log
C−1

max[Cmaxxi,opt +
√

Cmaxxi,optX]

xi,opt
(A.11)

= log

[
1 +

1√
Cmaxxi,opt

X

]
, (A.12)

where Poisson’s distribution is approximated using the normal
distribution. If one considers the case when Cmaxxi,opt � 100
and X ∈ [−1, 1] with 68% probability, then ln(1 − t) ≈ −t

for small |t |, i.e.

E[Ei] ≈ E

[
ei,res

1

ln(10)
√

Cmaxxi,opt
X

]
(A.13)

= ei,res
1

ln(10)
√

Cmaxxi,opt
E[X] = 0, (A.14)

where ei,res ≈ 0 is the slowly varying parameter as a function
of i, i.e. constant and

N−1 ‖ eres ‖2
2 � N−1(‖ emin + eres ‖2

2 − ‖ emin ‖2
2)

+ 2|N−1emin · eres|,
→ N−1(‖ emin + eres ‖2

2 − ‖ emin ‖2
2),

(A.15)

for sufficiently large N and Cmaxxi,opt. Note that these
conditions are met when the number of sampling points and an
averaging time in a measurement are simultaneously increased.
If the conditions are not met, then the upper bound for the
error can be fine tuned by taking into account the mean of
expectation values. However, we leave this case to be studied
in future work.
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