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Even though high linearity is crucial in modern mobile communications, it is not desirable to use the most linear
power amplifier types due to their poor efficiency. Predistortion is a commonly used, fairly simple and robust method for
improving linearity of power amplifiers (PA). This thesis will investigate digital RF and baseband PA predistortion methods.
A digital RF predistortion system uses an analog predistortion element prior to the power amplifier that is controlled by
digital circuitry to compensate for the PA nonlinearity. One problem with RF predistorter is its sensitivity to delays between
the control signals generated by the digital circuitry and the RF signal. This thesis presents a delay compensation method
that can be implemented with digital circuitry, thus the delay being much smaller than the previously used analog methods.
Another implementation issue that affects the performance of the RF predistorter, are analog envelope detectors that
are required for generating the control signals for the digital circuitry. Three commonly used detection methods, power,
linear diode and logarithmic detector, are compared. The linear diode detector was shown to be the most versatile. By using
a lookup table, the power and logarithmic detectors can be linearized so that their performance comes close to the linear
diode, but the biasing is easier.
Design of an RF predistorter and the measurement results are presented. The designed RF predistorter was implemented
to linearize a class AB PA with 22 dB gain and a 18 kHz 16QAM signal at 420 MHz. The digital algorithm is implemented
with an FPGA. The predistorter was able to achieve 10 dB improvement in the ACP.
The thesis also investigates the design of a baseband predistorter, that is implemented using the complex gain
predistortion method. The effects of nonlinear quadrature modulator errors on the predistortion are discussed. Simulation
and measurement results of the predistorter are presented. The designed baseband predistorter was implemented to linearize
a class AB PA with 50 dB gain and an 18 kHz 16QAM signal at 400 MHz. The digital algorithm is implemented with an
FPGA. The predistortion improves the ACP by 15 dB.
Finally, predistortion function generation methods applicable to both RF and baseband predistorter implementations are
discussed. Some improvements to these methods are suggested and simulations with and without the suggested
improvements are presented. The simulations show that the suggested improvements are able to improve the ACP and
reduce the time required for convergence.
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Nykyaikaiset langattomat tietoliikennejärjestelmät vaativat lähettimeltä korkeaa lineaarisuutta. Tarvittavilla lineaarisilla
tehovahvistimilla on kuitenkin huono hyötysuhde. Esisärötys on yleinen menetelmä tehokkaampien epälineaaristen
vahvistimien linearisoimiseksi. Tämä työ perehtyy digitaalisiin RF- ja kantataajuusesisärötysmenetelmiin.
Digitaalinen RF-esisärötysjärjestelmä käyttää tehovahvistimen linearisointiin vahvistinta edeltävää digitaalisesti ohjattua
analogista kytkentää, joka kompensoi tehovahvistimen epälineaarisuuden. Merkittävä ongelma RF-esisärötysmenetelmissä
on esisärötyskytkennän kantataajuisten ohjaussignaalien ja vahvistettavan RF-signaalin viive-ero. Tässä työssä esitetään vii-
veen kompensointiin menetelmä, joka voidaan toteuttaa kokonaan digitaalisesti. Tämä toteutus on huomattavasti
kompaktimpi kuin aiemmin käytetyt analogiset menetelmät.
Merkittävä RF-esisärötyksen tehokkuuteen vaikuttava tekijä ovat analogiset verhokäyränilmaisimet, joita tarvitaan esi-
särötyksen ohjaussignaalien luomiseen. Työssä vertaillaan kolmea yleisesti käytettyä ilmaisintyyppiä. Lineaarinen ilmaisin
osoittautui yleiskäyttöisimmäksi tyypiksi. Muidenkin ilmaisinten toiminta on parannettavissa DSP-linearisointipiirillä.
Työssä selostetaan RF-esisäröttimen suunnitelu ja esitetään toteutetun järjestelmän mittaustuloksia. Toteutettu esisärötin
suunniteltiin linearisoimaan AB-luokan tehovahvistin, jonka vahvistus oli 22 dB. Vahvistettavan signaalin kantoaaltotaajuus
oli 420 MHz ja kaistanleveys 18 kHz. Digitaalinen esisärötysalgoritmi toteutettiin FPGA-piirillä. Mittauksissa saavutettiin
10 dB parannus viereisen kaistan häiriötehossa.
Työssä tutkitaan myös digitaalisen kantataajuusesisärötysjärjestelmän suunnittelua. Esisärötys toteutettiin käyttäen komp-
leksisen vahvistuksen menetelmää. Työssä perehdytään myös kvadratuurimodulaattorin epälineaarisuuden vaikutukseen
kantataajuusesisärötykseen. Kantataajuusesisärötysjärjestelmä suunniteltiin linearisoimaan AB-luokan tehovahvistin, jonka
vahvistus oli 50 dB. Vahvistettavan signaalin kantoaaltotaajuus oli 400 MHz ja kaistanleveys 18 kHz. Digitaalinen esisärö-
tysalgoritmi toteutettiin FPGA-piirillä. Mittauksissa saavutettiin 15 dB parannus viereisen kaistan häiriötehossa.
Työn lopussa perehdytään menetelmiin esisärötysfunktion luomiseksi. Nämä menetelmät soveltuvat sekä kantataajuus-
että RF-esisärötyksessä käytettäviksi. Näihin menetelmiin esitetään parannusehdotuksia, jotka varmennetaan simulaatioin.
Simulaatiot osoittivat parannusten kohentavan saavutettavaa lineaarisuutta sekä lyhentävän adaptiivisen esisärötysalgoritmin
asettumisaikaa.
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Symbols and Abbreviations

(·) any function

(·)∗ complex conjugate

µ adaptive filter convergence coefficient

ω angular frequency

ωrf carrier angular frequency

ωenv maximum angular frequency component of the baseband envelope

an nth polynomial distortion coefficient of the power amplifier

aPAn nth polynomial distortion coefficient of the power amplifier

aPDn nth polynomial distortion coefficient of the predistorter

APA power amplifier gain function

Apd predistorter gain function

AC alternating current

ACP adjacent channel power (in dBc)

A/D analog to digital

AM-AM amplitude to amplitude distortion

AM-PM amplitude to phase distortion

BAW bulk acoustic wave

BER bit error rate

CDMA code division multiple access

D the prediction amount at a digital predistorter

iii



iv

D/A digital to analog

dBc decibels relative to carrier power

DC direct current

DQPSK differential quadrature phase shift keying

DSP digital signal processing

EDGE Enhanced Data rates for GSM Evolution

EE&R Envelope elimination and restoration

EVM Error vector magnitude

FET field effect transistor

FIR finite impulse response

fclk clock frequency

fenv maximum frequency component of the baseband envelope

frf carrier frequency

GSM Groupe Special Mobile

hd3 third order harmonic distortion

H-N Heinonen-Neuvo

ℑ(x) imaginary part of x

I in-phase

IF intermediate frequency

IIP3 third intermodulation intercept point

IIR infinite impulse response

LAN local area network

LINC linear amplification using nonlinear components

LMS least mean squares

LO local oscillator

LUT look up table

iv



v

MSE mean square error

Niter number of iterations

NLMS normalized least mean squares

NLUT Number of LUT address bits, LUT size = 2NLUT

N-M Nelder-Mead

NMT nordic mobile telephone

OFDM orthogonal frequency division multiplexing

OPAMP operational amplifier

OSR oversampling ratio

PA power amplifier

PA1 power amplifier model with nonlinearities mainly at small amplitudes

PA2 power amplifier model with nonlinearities at both high and low amplitudes

PA3 power amplifier model with nonlinearities mainly at large amplitudes

PAE power added efficiency

PAR peak to average ratio

pchip piecewise cubic Hermite polynomial

PD predistorter

PDF probability density function

ΦPD predistorter phase distortion function

ΦPA power amplifier phase distortion function

PM-AM phase to amplitude distortion

PM-PM phase to phase distortion

Q quadrature

QAM quadrature amplitude modulation

NQAM N level QAM

QDM quadrature demodulator

v
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QM quadrature modulator

QPSK quadrature phase shift keying

ℜ(x) real part of x

RAM random access memory

RF radio frequency

RLS recursive least squares

RMS root mean square

ROM read only memory

RRC root raised cosine

SB signal band

SNR signal to noise ratio

SAW surface acoustic wave

TETRA terrestrial trunked radio

THD total harmonic distortion

TV television

TWT traveling wave tube

tenv envelope period, tenv = 1
fenv

WLAN wireless local area network

vin predistorter input voltage

vout power amplifier output voltage

vpd predistorter output voltage/PA input voltage

vi
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Chapter 1

Introduction

1.1 RF transmitter
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Figure 1.1: RF transmitter

An RF transmitter is an important building block of a communications system. It converts

the baseband signals containing the data to be transferred through the transport medium to the

receiver. Figure 1.1 shows a block diagram of an RF transmitter. Nowadays the baseband signal

processing is usually performed digitally, and thus first the baseband signals have to be digital-

to-analog (D/A) converted before feeding to the transmitter. The conversion also requires re-

construction filters to remove unwanted frequency components after the conversion. After that,

also baseband amplification may be required. Often the baseband signals are in quadrature form,

which allows generation phase, frequency and amplitude modulated signals. To combine these

signals into a single analog signal for transmission, they are combined and converted into interme-

diate frequency (IF) or directly to RF using a quadrature modulator. This conversion can also be

accomplished using frequency and amplitude modulators, depending on the modulation method

used. If IF is used, the signal has still to be upconverted to RF. After this, the signal is amplified

with a power amplifier (PA) for transmission and then fed to the transport medium.

1
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1.2 The need for linear transmitters in modern communica-

tions systems

During the last few decades, the amount of data transferred between data terminals has increased

significantly due to the popularity of Internet and other computer networks. In recent years, ever-

larger amounts of this data are transferred over wireless data transfer channels, such as WLAN

or digital mobile networks. This is due to the capability of mobile data terminals to generate

high-resolution photographs and video and to send these from one terminal to another through

wireless networks. Also mobile connections to the Internet are becoming more common.

This ever-increasing wireless data traffic makes the limited wireless frequency spectrummore

and more congested. Previously it was common to use frequencymodulation in wireless commu-

nications (e.g. radio, NMT and GSM) due to the ability of the modulation method to withstand

noise, interference and nonlinearities [1]. However, due to their nonlinearity, they require wide

bandwidth [2] and the spectral efficiency (the amount of data transferred in the used bandwidth)

is poor.

Recently the variable amplitude modulation methods have again become more common in

telecommunications systems and standards due to their better spectral efficiency compared to

the frequency and phase modulation methods [3]. The variable amplitude methods usually use

both the phase and amplitude to carry the message and are often implemented using baseband

quadrature signals. This increases the data carrying ability per signal bandwidth.

However, since the information is stored in the signal amplitude, variable amplitude modu-

lation methods are very sensitive to disturbances that affect the amplitude of the signal, such as

nonlinear amplification. Nonlinearities cause errors in the data, but also spread the spectrum of

the signal, thus disturbing the adjacent channels. This is very undesirable when the frequency

spectrum is tightly packed with signals from different terminals.

Linear amplification can be achieved by proper design of the PA [4]. However, the most linear

PA types are also the most inefficient. The energy efficiency, on the other hand, is a very important

factor in mobile data terminals, which have to use a battery as a power source. Furthermore, the

PA is one of the most power-consuming parts in communications devices. Thus one has to make

a choice between linearity and power consumption.

This thesis will discuss digital predistortion, a method that can be used to reduce the non-

linearity of some more inefficient PA types, thus reducing the trade off between linearity and

efficiency.

1.3 Variable amplitude modulation methods

As discussed in the previous section, the variable amplitude modulation methods, despite their

sensitivity to nonlinearities, are common in modern communications systems. Examples of these

are N-QAM, used, for example, in digital TV broadcasting, satellite communications and mobile

2



1.3 Variable amplitude modulation methods 3

data transfer, CDMA used in cell phones and OFDM used in wireless LAN devices and digital

TV broadcasting. In addition to these modulations, also constant amplitude modulation schemes

can become variable amplitude signals when filtered to limit the bandwidth. An example of these

is a DQPSK modulated signal filtered with a root raised cosine filter. These methods do not suffer

from the data corruption due to distortion, but nevertheless suffer from spectral spreading, which

may interfere with the signals on the adjacent channels.

When upmixed to RF, all these modulations can be described with formula [2]

x(t) = A(t)sin(2πft + φ(t)), (1.1)

where A(t) is the part of the modulating function transmitted by the amplitude, φ(t) is the part

of the modulating function transmitted by the phase and f is the carrier frequency. This can be

further transformed into orthogonal signal presentation [2]

x(t) = A(t)cos(φ(t))sin(2πft) + A(t)sin(φ(t))cos(2πft)

= I(t)sin(2πft) + Q(t)cos(2πft) (1.2)

The baseband signals I(t) and Q(t) contain the modulated data to be transmitted and are multi-

plied with the carrier wave and its π/2 phase shifted version.

The modulation data points create a constellation of amplitude values and at the receiver the

received data samples are referred to this constellation to determine the most probable transmitted

data values. Figure 1.2 shows the transmitted constellation for 16QAM modulation, X’s are the

data points and the decision regions are marked with dashed lines. If the distortion causes a data

point to fall into other decision region, it is misinterpreted at the receiver [2].

Equations 1.1 and 1.2 are quite demanding for numerical calculations and simulations due to

the fact that the carrier frequency is usually much higher than the baseband frequency. This means

that the sampling frequency used in the simulations has to be very high in order to accommodate

the carrier signal without aliasing but the actual data signal changes very slowly, thus requiring

numerous iterations to get enough data to draw any conclusions [5]. It is mostly the case that one

is actually interested in the effects that affect only the vicinity of the carrier frequency and the

rest of the spectrum is actually filtered away in the transmitter and the receiver [5]. It is therefore

usually enough to inspect the baseband equivalent of the RF signal and thus (1.2) can be written

in complex form

x(t) = I(t) + jQ(t)

where I(t) and Q(t) are the baseband modulated signals and the imaginary unit j represents

the orthogonal function [5]. Using this simplification, it is possible to significantly reduce the

complexity of the numerical calculations. This complex baseband format will be used throughout

this thesis.
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Figure 1.2: 16QAM constellation

1.4 Outline of the thesis

This thesis can be divided into four parts.

The first part consists of Chapters 1-3 and 10, which respectively give an introduction to

the subject and conclude the thesis. Chapter 2 deals with the PAs and their effect on variable

amplitude signals. Common PA types will be presented and, at the end of the chapter, the effect of

memory in the PAs on distortion is discussed. Chapter 3 gives an introduction to PA linearization

methods and discusses different predistortion methods in more detail. A survey of published

predistorters is presented at the end of the chapter.

The second part consists of Chapters 4-7 that concentrate on RF-predistortion. Chapter 4 dis-

cusses the basics of RF-predistortion and presents commonly used RF-predistortion structures.

Chapter 5 presents results of studies of the effect of control signal delays on RF-predistortion

systems and presents a novel, fully digital method to reduce the effect of the delays. Chapter 6

discusses the effect of filtering and envelope detection on the RF-predistortion systems, neither of

which have been studied previously. Chapter 7 presents the RF-predistortion system implemented

for this thesis. The system is the first to use adaptive phase and amplitude predistortion function

that is updated on the basis of the time-domain measurements of the PA output signal. Simu-

lation and measurement results of the system are presented and improvements to the adaptation

algorithm is suggested according to the results.

The third part consists of Chapter 8 and deals with baseband predistortion systems. This

chapter gives a description of different baseband predistortion system implementations and de-

scribes the design of a complex gain predistorter. It also describes the linear quadrature errors and

methods to compensate them and compares adaptive methods to find the correct values for the
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compensation functions. The chapter also investigates the effect of nonlinear quadrature mod-

ulator errors on the baseband predistorter. Finally simulation and measurement results of the

implemented predistorter are presented.

The fourth and final part consists of Chapter 9, which discusses predistortion function gen-

eration methods applicable to both RF and baseband predistorter implementations. This chapter

discusses the effect of lookup-table (LUT) size quantization and indexing on digital predistorters.

Different methods to fill the LUT are investigated as well as methods to update the LUT. Finally

some improvements to these methods are suggested and simulations using genetic algorithm and

the Nelder-Mead algorithm with and without the suggested improvements are presented.

1.5 Specifications of the transmitters and predistorters inves-

tigated in the thesis

To measure the hardware implementations of the designed predistorters, two transmitter (PA)

chains had to be implemented, one for RF predistortion and one for baseband predistortion. Sep-

arate transmitter implementations for the baseband and RF predistorters were required, since the

RF predistorter requires only the PA chain and analog predistortion elements to be implemented

whereas the baseband predistorter additionally requires quadrature modulators and demodulators

and for transforming the orthogonal baseband signals to RF and back to baseband.

The carrier frequencies of the systems were decided to be on the 380 MHz to 430 MHz

frequency band that is used by the TETRA digital mobile radio [6] and also for satellite com-

munications [7]. The actual carrier frequencies used in the predistortion systems were decided

based on the optimal frequency ranges of the parts easily available for the implementation of the

predistortion systems. This led to selecting the carrier frequency of the RF predistorter to be 420

MHz and the carrier frequency of the baseband predistorter to be 400 MHz. However since the

operational frequency range of the RF predistorter components reached also 400 MHz, the carrier

frequency in the RF predistorter was later changed to this to match to the baseband predistorter.

The different transmitter paths was also the reason that the PA chains used in the RF and baseband

predistorters had different gains.

Both TETRA and the satellite communications have very limited bandwidth allowance [6]

and thus they require very linear transmitters to adhere to the strict adjacent channel interference

specifications.

The signal bandwidth mainly used in the simulations and measurements was selected accord-

ing to the TETRA specification to be 18 kHz. However, since the operation of the predistorter is

also dependent on the bandwidth of the signal, also narrower and wider bandwidths were used to

test the operation of the predistorter in these situations.

The TETRA standard uses π
4DQPSK signal modulation to transmit the data. This modulation

transfers 2 bits per data symbol. We however chose to use QAM modulations for our implemen-

tations. The QAM modulated signals have more amplitude variation and more closely spaced
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quantization levels than the DQPSK modulation, thus being more sensitive to nonlinearities and

more challenging modulation to linearized, the possibility to use QAM modulations would also

increase the spectral efficiency of the system. In the simulations, in the first measurements of

the RF-predistortion system and in the measurements 16QAM modulation was used. To make

the effect of the implemented predictor circuit more visible in the measured spectrum, π
4DQPSK

modulation was used in these measurements. Finally the modulation method used in the RF

predistortion system was changed to 32QAM to further increase the spectral efficiency.

1.6 Research goals

One of the reasons that started the study that led to this thesis was to investigate if a simple

predistorter could be used to replace the more complicated linearization methods used in TETRA

systems. The RF predistortion seemed to have the most potential to reduce the complexity of the

linearization of the transmitter so it was chosen as the main predistortion method to be studied.

The RF predistortion also offers a possibility to be used as an universal linearization module

that requires very little information on the workings of the transmitter chain to be linearized. An

universal predistortion module could enable production of efficient and linear power amplifiers

that would contain the predistorter but look just like a normal power amplifier from the hardware

designers point of view or a simple predistortion module that could very simply be added to a

design to improve the linearity and efficiency of a power amplifier. As a result one of the goals of

this thesis was chosen to be to study the RF predistortion and examine limitations and problems

that restricted the usability and efficiency of the RF predistorter and if possible to develop solu-

tions to these problems. Chapters 4 to 7 concentrate on the development of the RF predistortion

system.

The baseband predistorter was studied as an possible alternative to the RF predistortion to

be used in the linearization of the TETRA system. However as the development potential of the

baseband predistorter in memoryless predistorter implementations was evaluated to be lesser than

the RF predistorter and the results were not very promising, it was given less effort. However

during the study some new findings were done, which are discussed in Chapter 8 in addition to

the implementation of the baseband predistorter.

During the research several issues were encountered and results found that were could be

applied to both RF and baseband predistorters. These are discussed in Chapter 9.

1.7 Research contribution

This thesis concentrates on studying two common digital predistortion systems, namely the RF-

predistortion [8–10] and complex gain predistortion [11]. The both predistorters were imple-

mented in hardware. The digital predistortion algorithms, and the analog and digital baseband

circuitry of the systems used to control the the predistorters were implemented by the author. The
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RF transmitters to be linearized plus the RF interface required for connecting the predistorters to

the transmitter, including PAs, upmixers, power dividers and other RF parts, were designed by

Miika Koivisto. The studies were conducted under the supervision and guidance of Dr. Jouko

Vankka and Prof. Kari Halonen.

The implemented RF-predistortion system is reminiscent of the one presented in [10]; how-

ever, the phase modulator control in the system implemented by the author is adaptive and updated

according to the phase difference between the PA input and output, measured using an analog

phase detector. The system was designed originally designed for 420 MHz carrier frequency and

18 kHz signal bandwidth. The design is described in [12–15] and in Chapter 7.

The main research contributions for the RF-predistortion system are the study of the effect

of the delay on the control signals of the predistortion element and the effect of the envelope

detectors and the envelope filtering to the operation of the RF predistorter.

The study of the control signal delays included investigating various methods for implement-

ing a digital predictor that would be able to compensate the delays. The author conducted simu-

lations and calculations of the effect of the delays and implemented a polynomial predictive filter

[16] to the RF-predistortion system. The study of the delays and the predictors and simulation

and measurement results were published in [17, 18]; this study is extended in Chapter 5 of this

thesis.

The results of the study of the effect of the envelope detectors and filters were published in

[19]; this study is extended in Chapter 6 of this thesis. An improved LUT update algorithm for

the RF predistorter was also developed by the author and is presented in Chapter 7.

The baseband complex gain predistorter [11] was implemented to 400 MHz carrier frequency

and 18 kHz signal bandwidth. A quadrature modulator correction circuit [20] was also imple-

mented. During the design of the complex gain predistorter the author investigated the effective-

ness of different quadrature modulator correction circuit update methods and the effect of nonlin-

ear quadrature modulator errors on the complex gain predistortion. The results were published in

[21, 22] and in Chapter 8.

Finally, the author compared different LUT generation and interpolation methods for digital

predistorters and developed an improved frequency-domain LUT update method for RF predis-

torters based on the comparison. The results were published in [23] and expanded in Chapter

9.
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Chapter 2

Power amplifier

2.1 Introduction

The power amplifier is one of the most important parts of an RF transmitter and it is usually the

largest single contributor to the power consumption of an RF transmitter and thus it would be

desirable to maximize the efficiency. However, the more efficient power amplifier configuration

is used the more nonlinear it usually is. This poses a problem in modern communications systems

which usually use variable amplitude modulation methods [3].

This chapter will introduce the most commonly used PA types and discuss the figures of merit

of the PAs that are important for the linearization of PAs. Although the PAs consist of electronic

components that can be simulated using a circuit simulator such as SPICE, the distortion of the PA

can also be approximated using simplified computational higher level models. This reduces the

time required for simulations, giving still much information of the distortion. Further these mod-

els allow more general simulations and calculations without having to know the exact component

values. Commonly used computational models for PA distortion are presented in this chapter as

well as the models used in the simulations in this thesis.

Although this thesis concentrates on memoryless PA models and predistortion, the memory is

always present in real PA and may is some cases become a very significant effect. To give some

insight to the operation and effects of the memory in PAs, it is briefly discussed in the end of the

chapter.

2.2 Common power amplifier types

There are several different types of PAs that differ by their linearity and efficiency. Class A, B

and AB amplifiers are fairly linear amplifiers that have from low to moderate efficiencies. These

amplifiers conduct both current and voltage at least half of the signal cycle. Class C amplifiers

sacrifice linearity to gain efficiency; they do this by reducing the portion of the signal cycle that

9



10 Power amplifier

both the current and voltage are conducting. Finally, there are class D, E, F and S PAs that switch

the PA on and off so that the current and/or voltage have square waveform. These PAs are very

efficient and nonlinear. In this thesis, the focus is on A, B and AB PAs that are commonly used

with variable amplitude modulation methods due to their linearity and that are linear enough to

be predistortable.

A class A amplifier has only nonlinearity at high amplitudes [4], since the transistors are used

far from cutoff. Class AB and B amplifiers, on the other hand, have transistors biased in such a

way that the transistors come near cutoff at low signal amplitudes [4, 24] and there they exhibit

nonlinearities also. Finally, if a class AB or B amplifier is used with a large back-off signal the

nonlinearities are mainly at low amplitudes.

V in

V in

V in

cutoff saturation

cutoff saturation

Gain Gain

Gain

a) Class A power amplifier

cutoff saturation

c) Class AB power amplifierb) Class B power amplifier

Figure 2.1: Transfer functions of different power amplifier types
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2.3 Figures of merit for power amplifiers 11

2.3 Figures of merit for power amplifiers

A very important figure of merit for the power amplifier is its efficiency which tells us how much

power is wasted when a signal is amplified. The worse the efficiency, the more the amplifier heats

up and the less the battery life. Often the input power is subtracted from the output power when

the efficiency is calculated to avoid misleading results in some cases, this modified efficiency is

called power added efficiency (PAE) and is defined as [25]

PAE =
Pout − Pin

Psource
∗ 100%. (2.1)

PAE will be used in this thesis as the measure of power amplifier efficiency.

Other significant figure of merit of a power amplifier is its nonlinearity. There are several

methods to present the nonlinearity of a PA, such as third order input intercept point (IIP3), total

harmonic distortion (THD) and adjacent channel power (ACP). In this thesis the ACP will be used

as the measure of the nonlinearity. ACP is defined as the part of the signal power that lands on

the adjacent signal band in relation to the signal power on the signal band. Figure 2.2 shows an

example of the definition of adjacent channels of a broad band signal. The actual bandwidths and

the spacings of the channels and thus the value of ACP depends on the communications standard

that is used, which also defines the limits for the maximum ACP allowed. However, in general,

ACP can be defined as

ACP = 10 lg
Padjacent

Psignal
dBc. (2.2)

In this thesis, the signal band and adjacent channel definitions for the TETRA standard are used.

This thesis also uses the power of the third-order intermodulation results compared to the signal

power as a measure of nonlinearity in the case of a two-tone test.

Figure 2.3 shows the simulated third order distortion of a two tone signal compared to the

signal power and the PAE of a class A [4] power amplifier as a function of the input signal power.

The figure shows how the PAE of the amplifier increases as the input power increases and the

amplifier is driven closer to saturation and, at the same time the third order distortion power

increases. Previously when constant amplitude signal modulation methods were widely used

this behavior was acceptable, but with the recently more common variable amplitude modulation

methods this poses a problem.

2.4 The effect of distortion on variable amplitude signals

The use of the signal amplitude to carry the information causes problems when combined with

nonlinear power amplifiers that compress or expand the signal. This means that, if the nonlin-

earity is strong enough, the data points move out of or near the borders of the decision regions

used at the receiver to demodulate the signal back to digital data symbols. This increases the

bit error rate. Figure 2.4 show how the constellation of a 16QAM signal compresses when the
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Figure 2.2: Definition of the adjacent channels
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2.4 The effect of distortion on variable amplitude signals 13

signal is driven through a nonlinear amplifier. Especially the corner values move very near to the

borders of the decision region. When noise is added, there is a very great chance that the value

will be misinterpreted. However, the amount of compression shown in the figure requires quite

large distortion levels and, in low noise transmission paths, some amount of distortion might be

tolerable.

−2 −1 0 1 2
−2

−1

0
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2

I

Q

distorted data

original data

Figure 2.4: The effect of a nonlinear power amplifier on the constellation of a 16QAM signal

However, the distortion also has an effect on the spectrum of the signal, which reduces the

signal’s tolerance to the nonlinearity. When a broadband signal is fed to a nonlinearity, the spectral

components mix with each other and generate new spectral components out of the signal band.

This can be seen very easily by inserting a two-tone signal

f(t) = cos((ω + ∆ω)t) + cos((ω − ∆ω)t) (2.3)

into a third order nonlinearity

fout(t) = f(t) + af(t)3 (2.4)

We get as the output signal

fout(t) = (1 + 9a
4 )f(t) + a

4 cos(3wt − 3dwt) + a
4 cos(3wt + 3dwt)

+ 3a
4 (cos(3wt − dwt) + cos(3wt + dwt) + cos(wt − 3dwt) + cos(wt + 3dwt))

where we can see the generation of new spectral components to frequencies near to, but outside,

the original signal band as well as components near to the third harmonic of the carrier frequency.

This can be generalized to amplification of a broad-band signal, where we have an infinite number

of tones in a limited bandwidth. Now the intermodulations of these tones fall both on the signal

band and out of the signal band as with the two tone case. This effect is called spectral spreading

13



14 Power amplifier

or regrowth. The effect is illustrated in Figure 2.5.

f f

P

PA

P

Figure 2.5: The spectral regrowth

If there was only one transmitter using a single transmission path at a time, there would not be

a problem. However, as said above the variable amplitude modulation methods are used because

of their spectral efficiency and to enhance the most of this efficiency, several signals should be

transmitted on adjacent signal bands as close as possible to each other, thus also allowing a good

overall spectral efficiency. Now, when these closely spaced signals are driven through a nonlinear

amplifier, the spectral regrowth causes them to start interfering with each other, increasing the

in-band noise BER of the other signals. There are several solutions to this problem. We can use

a more linear and inefficient amplifier, thus increasing heating problems and power consumption,

or change the modulation scheme to a more robust, but usually spectrally less efficient one, or

increase the spacing of the signals in frequency-domain so that the interference reduces but also

so the spectral efficiency is reduced (Figure 2.6). However, usually the signal spacing and the

modulation methods are defined by the communications standard that is being used. It also de-

fines the maximum ACP and thus the only design parameter the end product designer has is the

implementation of the power amplifier.

So, to minimize the power consumption, it would be profitable if some signal processing

method could be used to reduce the nonlinearity of the more efficient power amplifiers without

significantly affecting the efficiency. This thesis concentrates on one of the main methods to

implement this kind of signal processing function. Chapter 3 gives an overview of the other

methods for linearization of nonlinear PAs also.

2.5 Power amplifier models

To be able to calculate and simulate the effect of the power amplifier on the transmitted signal,

one has to model the power amplifier somehow. The most straightforward and accurate method

would be to use the transistor level model of the power amplifier. There are, however, several

problems with this method. Often when using commercial power amplifiers, the transistor level

model is not available; the use of such a model requires the use of a transistor level simulator

which can be very slow. Another point is that theoretic calculations are difficult. Furthermore, the

transistor level model is not able to model temperature effects, which are important when studying

PAs with memory and the transistor level modeling makes it hard to generalize the results. For

14



2.5 Power amplifier models 15

increase

spacing

al
lo
w

in
te

rfe
re

nc
e

P

P

f

f

f

P

Figure 2.6: The effect of PA nonlinearity in multicarrier systems

these reasons, the power amplifiers are often modeled using higher level models with a limited

number of parameters obtained by measurements.

The power amplifier models can be divided into two main categories: memoryless models

and models with memory. The models with memory will be discussed in more detail in Section

2.8.

The memoryless (or often, actually, quasi-memoryless) models assume that the previous val-

ues of the signal to be amplified do not affect the current and future PA output signal values. The

memoryless models separate the distortion into two components: amplitude-to-amplitude (AM-

AM) distortion and amplitude-to-phase distortion (AM-PM). Also, phase-to-amplitude (PM-AM)

and phase-to-phase (PM-PM) distortion is possible, but usually these components are negligible

and ignored. However, a quadrature modulator may generate strong PM-PM and PM-AM distor-

tion and should be taken into account (Chapter 8), especially in systems using predistortion.

AM-AM distortion depicts the compression or the expansion of the signal envelope as a func-

tion of the input signal amplitude and is caused by, for example, the output signal compression

near the supply voltages and transistor cut-off region. The AM-PM distortion, on the other hand,

describes the phase shift of the signal as a function of the input signal envelope. Actually, as

the definition of the signal phase is dependent on the previous values of the signal, the AM-PM

distortion is not strictly speaking memoryless [26]. However, the memory is very short and the

AM-PM distortion can be approximated to be memoryless. For this reason, the PA models taking

into account the AM-PM distortion are sometimes called quasi-memoryless [26].

The dependence of the memoryless PAmodels on only the amplitude of the input signal can be

utilized in both modeling and linearization of the power amplifiers, by using functions dependent

only on the amplitude of the signal.

As the distortion components around the harmonics of the carrier frequency can be fairly

easily filtered away it is usually considered to be enough to model only the distortion compo-

nents close to the carrier frequency. This kind of model is called a passband model [5]. The

passband model uses real-valued signals and operates at carrier frequency. This may slow down
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16 Power amplifier

the simulations significantly if there are also low frequency signals present, which is the case in

several linearization methods. Therefore, the power amplifier is often modeled using a baseband

model, which is a complex baseband frequency approximation of the nonlinearity [5]. This makes

it possible to reduce the frequency range required for the simulation and simplifies calculations,

although some of the accuracy is of course lost due to approximation. In this thesis, the power am-

plifier will be modeled in the simulations and calculations using baseband models. The following

sections present some commonly used baseband PA models.

2.5.1 Polynomial PA model

Probably the most straightforward way to describe the distortion of a power amplifier is to use a

polynomial function [27, 28]

vout =

N
∑

n=1

anvpd |vpd|n−1
(2.5)

where vpd is the PA input voltage and also the predistorter output voltage, vout is the output volt-

age and an is the distortion coefficient; all the symbols can have complex values and the absolute

values of the baseband and vout signals are normalized to range from 0 to 1. The distortion coef-

ficients are found by, for example, least squares fit of the amplitude and phase measurements of

the PA. A low-order polynomial model is a fairly accurate model for linear (class A) amplifiers.

Often, only odd-order terms are used in modeling power amplifiers based on the assumption

that the second-order distortion caused by the power amplifier does not generate distortion around

the carrier frequency and thus has no effect on the baseband model.

However, Ding et al [29] suggest that the polynomial order can be reduced by including the

even-order terms also. If we inspect (2.5) more closely, we note that, actually, the even-order

terms are of the form

x |x|n−1
= x (xx∗)

n
2 −1 √

xx∗. (2.6)

These terms contain a square root function and thus have an infinitely wide spectrum. By using

the power series expansion [30] of the square root function, and assuming that xx∗ < 1, we can

expand (2.6) to
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2.5 Power amplifier models 17

x |x|n = x (xx∗)
n
2 −1

∞
∑

m=1

(

1
2

m

)

(xx∗ − 1)m

= x (xx∗)
n
2 −1

∞
∑

m=1

(

1
2

m

)

m
∑

k=0

(

m

k

)

(xx∗)
m−k

, (2.7)

=

∞
∑

m=1

pmx (xx∗)
m+ n

2 −1

=

∞
∑

m=1

pmx |x|2m+n−2

where pm is a constant.

Thus we can see that the “even-order” terms in (2.5) actually generate infinite number of

odd-order distortion terms. This conclusion can be used to ones advantage, as this actual means

that the odd-order terms of (2.5) can be used to cancel the low-order distortion coefficients of the

even-order terms of (2.5) and then the remaining higher order coefficients of (2.7) are utilized to

generate the higher order terms required in modeling. It should, however, be noted that calculation

of the odd order powers of the absolute value of complex number is quite complex operation

requiring the square root operation.

The simplest polynomial distortion function is the third-order polynomial

vout = vpd + a3vpd |vpd|2 = vpd + a3v
2
pdv

∗
pd, (2.8)

where a3 is the complex third-order distortion coefficient. The second form of the function is

achieved by transforming the absolute value into complex conjugate form. Due to its simplicity,

the third-order polynomial is used in several analytic calculations in this thesis to model the PA.

The distortion coefficient, as the name says, defines the nonlinearity of the amplifier model.

The simplicity of the third-order distortion function makes it feasible to use in theoretical calcu-

lations, although it does not take into account the nonlinearities at the low amplitudes near the

cutoff region.

It may be difficult to see directly the effect of the distortion coefficient on the nonlinearity of

the amplifier, as it also depends on the peak-to-average ratio of the signal and the signal amplitude.

We can estimate the level of distortion caused by third order nonlinearity by using a two-tone input

signal

vpd = B sin(ωenvt) cos(ωrf t) =
B

2
sin(ωrf t + ωenvt) −

B

2
sin(ωrf t − ωenvt) (2.9)

where B is the signal amplitude, ωenv is the baseband frequency and ωrf is the carrier angular

frequency. When it is inserted into (2.8), distortion function becomes
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18 Power amplifier

vout = (
B

2
+

9a3B
2B∗

32
) sin(ωrf t + ωenvt) − (

B

2
+

9a3B
2B∗

32
) sin(ωrf t − ωenvt)

−3a3B
2B∗

32
sin(ωrf t + 3ωenvt) +

3a3B
2B∗

32
sin(ωrf t − 3ωenvt) +

3a3B
2B∗

32
sin(3ωrf t + ωenvt)

(2.10)

−3a3B
2B∗

32
sin(3ωrf t − ωenvt) −

a3B
2B∗

32
sin(3ωrf t + 3ωenvt) +

a3B
2B∗

32
sin(3ωrf t − 3ωenvt)

fromwhich we can calculate the in-band and the out-of-band third order distortion on the adjacent

channels in dBc. The in-band distortion level is given by the difference of the multiplier of

sin(ωrf t+ωenvt) and
B
2 (the original amplitude of the corresponding signal component) and the

adjacent channel distortion is given by the multiplier of sin(ωrf t + 3ωenvt) thus

Pinband = 20 log(
B
2

9
32a3B2B∗

)dBc = 20 log(
16

9a3BB∗
)dBc (2.11)

and

Poob = 20 log(
B
2

3
32a3B2B∗

)dBc = 20 log(
16

3a3BB∗
)dBc (2.12)

It can be seen that the distortion level depends on the square of the signal amplitude as well as

on the distortion coefficient. The in-band and out-of-band distortion powers in dBc as the function

of the distortion coefficient and the amplitude are plotted in Figure 2.7. The strong dependence

on the amplitude can be clearly seen and- as was illustrated in Figure 2.3, the linearity of the

amplifier increases and the efficiency decreases as the input power decreases.
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Figure 2.7: The level of out of band and in band distortion of a two tone signal in dBc as a function

of the distortion coefficient and signal amplitude
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2.6 Advanced PA models 19

The signal type also affects the distortion level of the amplified signal. This is due to the

fact that types of different signals have a different probabilities to be at certain amplitude level

and thus they experience different level of distortion. One figure that describes this amplitude

distribution is the peak-to-average ratio (PAR) or crest factor [31],

PAR =
max (|v(t)|2)
1
t

∫

t |v(t)|2 dt
, (2.13)

which tells the value of the maximum amplitude compared to the average amplitude value. The

higher the PAR, the more time the signal spends on low amplitudes, and the higher and sparser the

peaks are. Thus if several signals with different PARs are normalized to have the same maximum

amplitude, and are driven through a third-order nonlinearity, the signals with the highest PAR are

least distorted. Although this may seem like a good quality, actually the high PAR means low

average signal power and thus lower efficiency, which is not desirable. On the other hand, if the

powers of the signals are normalized, the signals with the lower PAR have lower peak amplitude

and experience less distortion.

The reason not to use signals with a low PAR is that we would like to use signals with high

spectral efficiency to transfer as many bits as possible in as narrow a bandwidth as possible.

Unfortunately, as the spectral efficiency increases, so does the PAR [32]. Table 2.1 [32] shows

spectral efficiencies and PARs for several different modulation methods and, as can be seen, the

more efficient modulation we have, the higher the PAR gets.

Table 2.1: The spectral efficiency and PAR of several modulation methods[32]

Method (RRC, roll off=0.5) QPSK 16QAM 64QAM 256QAM

Spectral efficiency bit
s /Hz 1.3 2.7 4 5.3

PAR 3.1 5.2 5.9 6.2

Figure 2.8 shows the ACPs for two tone sine signal, DQPSK signal, and a 16QAM signal. As

can be seen, when the amplitudes are normalized to one, the 16QAM signal gives the best ACP,

but, when the powers are normalized, the 16QAM gives the worst ACP.

Thus there are conflicting requirements for high power efficiency resulting in a nonlinear

amplifier and high spectral efficiency resulting in high PAR.

2.6 Advanced PA models

The modeling ability of the polynomial PA model is quite limited unless the order of the poly-

nomial is high, which increases the computational complexity. Especially modeling the cut-off

nonlinearity increases the required order of the polynomial significantly. It is therefore often ben-

eficial to use a less general model optimized for power amplifiers that has a lower number of

coefficients. Several models have been proposed that are suitable for different types of power

amplifiers. These will be discussed in the following sections.
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Figure 2.8: Power of third-order distortion as a function of the third-order distortion coefficient

with different signals

All of the models are expressed as the amplitude-dependentgain,GPA(|vpd|), and phase shift,
ΦPA(|vpd|), functions, by which the complex PA amplification function can be expressed as

APA(|vpd|2) = GPA(|vpd|)e2πΦP A(|vpd|) (2.14)

and PA output signal as

vout = APA (|vpd|) · vpd. (2.15)

2.6.1 Saleh model

The Saleh model [33] is a commonly used power amplifier model, that is designed especially

for traveling wave tube (TWT) amplifiers. The Saleh model is recommended as the standard PA

model by the IEEE broadband wireless access group [34].

The Saleh model is

GPA(|vpd|) =
aA |vpd|

1 + bA |vpd|
2
, ΦPA(|vpd|) =

aΦ |vpd|
2

1 + bΦ |vpd|
2
, (2.16)

where aA, aΦ, bA and bΦ are the distortion coefficients that are fitted to the measured data.

Often-used values [34] for the coefficients are aA = 2.1587, bA = 1.1517, aΦ = 4.033 and

bΦ = 9.104, which were presented by Kaye et al [35]. The problem with this model is that it is

optimized to TWT amplifiers so it is not as well suited for describing solid-state amplifiers [36].
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2.7 Models used in simulations 21

2.6.2 Rapp model

The Rapp model [37] is a PA model designed for solid state power amplifiers [34]. Only the gain

function of the model,

GPA(|vpd|) =
1

(1 + (
|vpd|
aA

)2bA)
1

2bA

, (2.17)

has been presented and no general parameters have been suggested [34]. The model exhibits very

linear behavior at the low amplitude values, which is often not the desired behavior.

2.6.3 Ghorbani-model

The Ghorbani model is another PA model designed for solid-state PAs. The gain and phase

functions for this model are [38]:

G(|vpd|) =
aA |vcA

in |

1 + bA |vcA
in |

+ dA |vin| , Φ(|vpd|) =
aΦ |vcΦ

in |

1 + bΦ |vcΦ
in |

+ dΦ |vin| (2.18)

aA, bA, cA, dA, aΦ, bΦ, cΦ and dΦ are the nonlinearity parameters. The standard values [36] for

the parameters are aA = 8.1081, bA = 1.5413, cA = 6.5202, dA = −0.0718, aΦ = 4.6645,

bΦ = 2.0965, cΦ = 10.88 and dΦ = −0.003. The Ghorbani model is very suitable for modeling

FET amplifiers and can also model the low amplitude nonlinearity [36].

2.7 Models used in simulations

Three different power amplifier models were used in the simulations conducted in this thesis, one

with high nonlinearity at low amplitudes (PA1), one with moderate nonlinearity at low and high

amplitudes (PA2) and one with high nonlinearity at high amplitudes (PA3). These models were

selected to inspect different aspects of the power amplifier nonlinearity. The nonlinearities were

modeled using a modified Ghorbani model

G(|vpd|) =
aA

˛

˛

˛
vbA

in

˛

˛

˛

1 + cA |veA
in |

+ dA |vin| , Φ(|vpd|) =
aΦ

˛

˛

˛
vbΦ

in

˛

˛

˛

1 + cΦ |veΦ
in |

+ dΦ |vin| . (2.19)

The difference to the original model is that the exponent of the denominator is made different

from the exponent of the numerator, which makes the function more flexible.

2.7.1 Model parameters

The following sections present the parameters used in generating the PA models. The AM-AM

and AM-PM functions of the models are plotted in Figure 2.9.

2.7.1.1 PA1

PA1 has strong nonlinearity at low amplitudes but is linear at high amplitudes, so it represents an

amplifier that is driven near the cut-off of the transistors. For this model aA = 1.92, bA = 1.74,
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Figure 2.9: AM-AM and AM-PM curves of the amplifiers used in simulations

cA = 0.92, dA = 0, eA = 1.74, aΦ = 0.02, bΦ = 1, cΦ = 0.4, dΦ = 0 and eΦ =3.5

2.7.1.2 PA2

PA2 has nonlinearity at both low and high amplitudes, and represents a class-AB, -B or -C am-

plifier. For this model, aA = 1.62, bA = 1.24, cA = 0.82, dA = −0.009, eA = 1.24. The phase

distortion function was implemented by subtracting two phase functions of form 2.20 from each

other so thatΦ(|vpd|) = Φ1(|vpd|)−Φ2(|vpd|). This was done to make it possible to implement a
phase distortion function with rapid changes at high and low amplitudes and fairly constant value

at the middle values. The coefficients for the phase distortion function are aΦ1 = 0.33 · 10−2,

bΦ1 = 0, cΦ1 = 0.36 · 10−2, dΦ1 = 0, eΦ1 =1, aΦ2 = −0.76, bΦ2 = 0, cΦ2 = 6.7, dΦ2 = 0 and

eΦ2 = 1.

G(|vpd|) =
aA

˛

˛

˛
vbA

in

˛

˛

˛

1 + cA |veA
in |

+ dA |vin| , Φ(|vpd|) =
aΦ

˛

˛

˛
vbΦ

in

˛

˛

˛

1 + cΦ |veΦ
in |

+ dΦ |vin| . (2.20)

2.7.1.3 PA3

PA3 has nonlinearity at high amplitude and is linear at low amplitudes. This model represents a

class A amplifier. The parameters used in this model are aA = 1.92, bA = 1, cA = 0.46, dA = 0,

eA = 3, aΦ = 0.023, bΦ = 6, cΦ = 0.1, dΦ = 0 and eΦ =2
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2.8 Memory effects of power amplifiers 23

2.8 Memory effects of power amplifiers

In this thesis, the power amplifier is considered to be memoryless. However, in wideband and

high-power systems and systems requiring high linearity, the memory should be taken into ac-

count.

The memory effects are basically frequency-domain fluctuations in the transfer function of

the power amplifier or time dependence of the transfer function. The effect of memory on the

PA output can be described with a frequency-domain plot of the PA output shown in Figure 2.10

[39, 40]. IML and IMU are the intermodulation results. The height of the intermodulation results

represents the power of the components and the angles φL and φU represent the phase shift of the

intermodulation results. The power of the intermodulation results and the phases are not exactly

the same and also vary depending on the frequency separation of the two-tone signals. This

generates problems with memoryless linearization systems, since it tries to compensate upper and

lower intermodulation results similarly and thus at least one of them is inferiorly compensated.

This shows as significantly different upper and lower intermodulation distortions. The problems

and predistortion systems that are designed alleviate the problems are discussed in section 3.6.

IM L IM U
φL

φ
U

Power
Desired
signal

Frequency

Figure 2.10: The effect of memory on distortion of a two-tone signal [39, 40]

The dependence of the intermodulation distortion components on the separation of the two-

tone signals can be used to discover the memory effects in a PA [41] by testing the PA with

two-tone signals with different spacings on the wanted signal band and noting the behavior of

the intermodulation results. However, modeling a PA with memory requires more complicated

measurements, which are described in, for example, [41, 42].

2.8.1 Sources of memory in PAs

As can be expected from the fact that the memory manifests itself as the phase and amplitude

fluctuation of the intermodulation results as a function of the frequency, one of the sources for

the memory effects are the capacitances and inductances in the amplifier chain or the frequency

dependent impedances in the PA chain [39]. These are called the electrical memory effects.

One source of these variable impedances are the bias networks of the transistors that can not be
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made infinitely wideband and at some point their impedance starts to change with the frequency

[39]. By proper design of the bias networks the limit frequency at where the impedance starts to

fluctuate can be pushed at higher frequencies [39] and thus the fluctuation affects the wide band

transmitters the most [43].

Another source of the memory effects are the thermal fluctuations of the power amplifier due

to the signal level [39, 43]. The dissipated power in the power amplifier changes with the signal

level and, due to this, the temperature of the transistors and other components fluctuate, changing

their electrical characteristics, such as the generated distortion [39]. However, the heat sinks and

the packaging of the device do not heat up instantaneously; thus the past changes caused by the

increased power dissipation affect the upcoming signal values also[39]. Due to the slowness of the

heating process, the thermal feedback is of lowpass type and its effects show on the bandwidths

up to 1 MHz [39, 43].

In conclusion, the electrical memory effects affect systems using wide-band signals (band-

width >5MHz) and the thermal memory effects affect systems using narrow band signals (band-

width <1MHz), in the middle range (1MHz<bandwidth<5MHz), the memory effects are quite

small [43]. However, it should be noted that the wideband signals also include low-frequency

components that are affected by the thermal memory.

2.8.2 PA models with memory

To include the effect of memory on the PA model, it must be designed to also have a time-

dependent component. There are several methods that can be used to model the PA with memory.

2.8.2.1 Volterra series

The Volterra series is a multivariate polynomial series of the current and previous signal values

[4, 44–46]. It is expressed using a discrete time step and the previous signal values used in the

calculation deviate from the current value by integer multiples of this step. The series is [45]

vPA(t) =
K
∑

k=1

M−1
∑

m1=0

. . .
M−1
∑

mk=0

hk(m1, . . . , mk)
k
∏

l=1

vpdRF (t − mlts), (2.21)

where mk are the delays in discrete time, hk(m1, . . . , mk) are the coefficients for the terms,

vpdRF is the PA input RF signal, ts is the time step,M is the number of delays andK is the order

of the polynomial. By increasing M and K and reducing ts, the accuracy of the model can be

improved, but at the same time its complexity increases. However, with high enough order, the

Volterra series is the most versatile modeling method.

The coefficients can be found using, for example, least squares fitting or some recursive

method such as RLS. (2.21) can be written in baseband form by replacing vpdRF with its baseband

equivalent,

vpd = ℜ
{

ejω0tx̃(t)
}

, (2.22)
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where ω0 is the center frequency.

2.8.2.2 Wiener, Hammerstein and Wiener-Hammerstein models

Wiener, Hammerstein and Wiener-Hammerstein models use simplifying approximations to re-

duce the complexity of the memory model. All of these models are based on separating the

memory from the memoryless portion of the nonlinearity. This is done by dividing the model into

a filter part and a memoryless PA model (Sections 2.5 and 2.6). The Wiener model assumes a

memoryless nonlinearity preceded by a filter, the Hammerstein model assumes a filter preceded

by a memoryless nonlinearity and the Wiener-Hammerstein model assumes a memoryless non-

linearity between two filters [45]. The system block diagrams are shown in Figure 2.11 [45].

Filter
Memoryless
Nonlinearity

(a) Wiener model

Memoryless
Nonlinearity

Filter

(b) Hammerstein model

Memoryless
Nonlinearity

FilterFilter

(c) Wiener-Hammerstein model

Figure 2.11: PA models with memory based on filtering

The systems simplify the model significantly, as, instead of requiring several cross product

terms even for a mildly nonlinear amplifier with short memory, these models require only the

filter parameters and the memoryless model parameters.

However, these models have some important limitations. The Wiener model and the Wiener-

Hammerstein model cause the filter parameters seen in the output to be nonlinear, which makes

the system identification more difficult. Also, the decoupling of the memory and the nonlinearity

does not correspond closely to the real situation and does not take into account the change of the

filtering effects with different power levels [45]. However, the models have been fairly widely

used [47–51].

2.8.2.3 Memory polynomial

The memory polynomial simplifies the Volterra series by exploiting the fact that the nonlinearities

in the PA are almost completely phase independent. Thus the baseband Volterra series can be

simplified to contain only powers of |vpd| still retaining more of the accuracy of the Volterra
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series than the Wiener and Hammerstein models [45]. The model can be written as [45, 52]

vout =

K−1
∑

k=0

M−1
∑

l=0

aklvpd(t − mlts) |vpd(t − mlts)|k . (2.23)

The memory polynomial can also be seen as a number of parallel wiener filters, thus it is an

extension of these and takes into account of the memory characteristics changing with the signal

level. The memory polynomial can be described using the block diagram shown in Figure 2.12

[53].

Vin

Vpd

Delay

Delay Nonlinearity

Nonlinearity

Nonlinearity
Memoryless

Memoryless

Memoryless

Figure 2.12: Block diagram of the hardware implementation of a memory polynomial

A memory polynomial has been used to model several PA and predistortion systems with

memory [45, 53–59].

2.8.2.4 Other models

There are also other less common models for power amplifiers with memory such as memory

polynomial combined with Wiener filtering [60], generalized memory polynomial [45], memory

polynomial with memoryless nonlinearity [61] and neural networks [62]. All of these methods

are fairly recent and have not seen wide use.

2.9 Conclusions

This chapter discussed the effect of the nonlinear PA on modern communication systems using

variable amplitude signal modulation methods. It was seen how the nonlinearity distorts the data

signal and also interferes with other signals in nearby channels. These effects can be reduced

by the design of the power amplifier, which, however, results in more power hungry design, as
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well as by selection of the modulation method and signal separation in frequency-domain, which

results in spectrally less efficient designs.

This chapter also presented several commonly used simulation models for memoryless power

amplifiers including those used in the simulations presented in this thesis. The effect of memory

on the power amplifier nonlinearity as well as on some PA models designed to take into account

the memory effects were discussed.

The following chapters will discuss the reduction of the adverse effects of nonlinearity by

linearization of the power amplifier.
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Chapter 3

Linearization of a power amplifier

3.1 Introduction

It would be beneficial to use some signal processing method to compensate or reduce the dis-

tortion caused by the PA or even make it irrelevant. This would allow the use of very efficient

amplifiers without exceeding the spectral efficiency and error rates required by the application.

This chapter will give an introduction to this kind of linearization methods. First, the lin-

earization of power amplifiers in general and some of the most common linearization methods

in particular will be discussed. After this, the chapter will concentrate on the predistortion lin-

earization. First, different predistortion methods are discussed, mostly from analog point of view,

and then the implementations of the predistortion function. Following this the chapter will briefly

discuss the digital predistortion methods (on which the rest of this thesis will concentrate).

According to previous chapter, all power amplifiers have memory effects and in some appli-

cations these significantly affect their operation. In these applications the predistorters have to be

able to compensate also the memory effects. Although this thesis concentrates on memoryless

applications a brief overview of predistortion methods with memory will be given.

Finally, a survey and comparison of published predistorters (including the predistorters im-

plemented during this thesis work) will be presented.

3.2 Linearization methods

Many of the PA linearizationmethods are originally fully analogmethods invented several decades

ago. However, due to increased use of wideband variable amplitude modulation methods and

sufficiently advanced analog and digital components, the interest towards those has increased

significantly in the recent years [3].

Figure 3.1 illustrates several commonly used PA linearization methods [3]. The first methods

suggested for PA linearization were feedforward [63] and feedback [64] systems. The feedback
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30 Linearization of a power amplifier

systems employ, at simplest, a linear negative feedback of the PA output to the input [3]. A basic

feedback linearization system is shown in Figure 3.1a. This method is quite suitable for low

frequency applications, but, at higher frequencies, the method has significant stability problems

[3]. To alleviate stability problems, the method has been modified to use signals at baseband

frequencies in the linearization feedback.
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Figure 3.1: Common PA linearization methods [3]

Envelope feedback (Figure 3.1b) was presented for electron tube [65] amplifiers in [66] and

for solid state amplifiers in [67]. It uses the difference between the PA input and output envelopes

to adjust the RF signal to compensate for the nonlinearities. With the help of envelope feedback

linearization over 10 dB improvements in the carrier to interference ratios have been achieved

[68].

Another feedback linearization method based on the baseband feedback is the Cartesian feed-

back [3, 69] (Figure 3.1c), which uses the difference of the baseband quadrature signals to com-
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pensate the nonlinearity. Thus the system requires both a quadrature modulator and a demodula-

tor. The Cartesian feedback has been able to achieve over 30dB improvements in ACP [3].

Although there are also other improvements to the basic feedback linearization, the envelope

feedback and Cartesian feedback have a special importance to the digital predistortion systems

discussed in this thesis. The RF- and baseband-predistortion systems discussed in the following

chapters have the same layout of the analog paths as these two feedback systems, but the feedback

path from the PA output to the PA input replaced by the digital adaptation algorithm.

The feedforward linearization systems [63] (Figure 3.1d) calculate the difference between the

PA input and output like the feedback systems, but, instead of feeding the difference signal to the

PA input, they subtract the difference from the PA output to compensate the distortion. The feed-

forward was not used much for several decades as its matching and linearity requirements for the

feed forward path made it more complex than the feedback and offered no significant advantage

for narrow band signals [3]. However, due to the improvement in electronic components and the

increase in use of wideband signals in telecommunications, the feedforward has seen more use

due to its unconditional stability, wide bandwidth and its retaining the original amplification of the

PA [3, 70]. The disadvantages of the feedforward systems are the complexity and the matching

and linearity of the error amplifier and the fact that the system cannot adapt to changes in the PA

without additional control functions [3]. Feedforward systems have been able to achieve 15dB

improvement in ACP [71].

The Linear amplification using Nonlinear Components (LINC) (Figure 3.1e) and Envelope

Elimination and Restoration (EER) (Figure 3.1f) are PA linearization methods that use heavy

signal processing to transform the variable amplitude signal into constant amplitude signals for

the nonlinear amplification [3]. These methods often perform the transformation of the signal on

the baseband and include also the up conversion of the signals, thus being actually linearization

methods for the whole transmitter [3].

LINC splits the variable amplitude signal into two constant amplitude phase modulated sig-

nals that are amplified separately with nonlinear high efficiency amplifiers and then combined to

regenerate the variable amplitude signal [72]. Although the system is basically simple, the gen-

eration of the constant amplitude signals is quite a difficult task using analog components. This

has reduced the usability of the LINC system [3]. However, as the digital circuitry is nowadays

fast enough to be able to generate the desired signals in the digital domain, the LINC system has

become more feasible [3]. The LINC system has been able to achieve 20 dB ACP improvements

[73].

The EER systems (Figure 3.1g) avoid the nonlinearity of efficient amplifiers by separating

the amplitude and the phase of the signal into two signals [74]. The phase signal is amplified

with a nonlinear RF amplifier and the amplitude signal with linear audio amplifier. The amplitude

signal is used to modulate the power source of the RF amplifier to regenerate the amplitude

modulation [74]. As is the case with LINC, the analog signal separation generates problems, such

as nonlinear envelope detection and delay differences between the signals [3]. Generation of the

signals in digital domain can alleviate these problems. These kinds of digital implementations of
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32 Linearization of a power amplifier

EER are commonly called polar transmitters [75]. EER has been able to achieve 8-10 dB ACP

improvements [75, 76].

Finally Figure 3.1h illustrates the predistortion linearization system. This system generates an

inverse transfer function for the PA before the amplification, thus generating linear amplification

[3]. The predistorter has low hardware complexity and can be implemented to be unconditionally

stable. The predistorter can also be adaptive so that the changes in the PA nonlinearity can be

compensated. For these reasons, the predistorter was chosen as the subject of study in this thesis.

The following sections will discuss the operation of the predistorter more thoroughly.

3.3 Operation of the predistorter

PAnonlinearity
inverse

VoutVin

Figure 3.2: Basic block diagram of a predistorter

The predistorter linearizes the PA by generating a nonlinear transfer function that is inverse to

the PA in such way, that when it precedes the PA, the overall amplification of the system is nearly

linear (Figure 3.3a) [3]. By using equation 2.14, this can be written in the form of the following

equation

APD (vin) · APA (vpd) = K, (3.1)

where APD(·) and APA(·) are the predistorter and PA transfer functions respectively and vIN

is the input signal to the system. K is a complex constant. As the phase-dependent amplitude

distortion and phase-dependent phase distortion are negligible, vIN and vPD can be replaced

with |vIN | and |vPD|. The predistorter output voltage, vPD, is defined as

vpd = Apd (|vin|) · vin (3.2)

Predistortion can also be seen as an operation that shifts the PA input signal values in such a

way that the PA output signal values correspond to those expected from a linear amplifier [77].

This point of view is illustrated in Figure 3.3b.

The desired linear amplification can be chosen in many different ways. Some possibilities are

shown in Figure 3.3c [78]. The figure presents the linear system gain selection by the maximum

amplification of the PA, average gain of the PA and the gain at the saturation point of the amplifier.

In an optimal case the linear gain is chosen in such a way that the PA input signal amplitude spans

the maximum linearizable amplitude range, as this offers the best efficiency. In the optimal case,

the maximum output power should be the saturation power. However, it may not be beneficial

to try to accommodate the gain required for the saturation power into the predistortion system as
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the gain required from the predistorter increases rapidly when the PA gets closer to saturation.

In [78], it is suggested that the gain is adjusted for different input signal levels for maximum

efficiency.

Other factors that affect the selection of the constant gain are the input and output power and

gain specifications for the system. If the input signal level is already fixed to saturation before

predistortion, then the gain should be selected by the saturation gain of the amplifier. This ensures

that the whole amplitude range is used. This means that the gain with the predistorter is smaller

than the nonlinearised gain. If the gain required of the amplifier is fixed, then the linear gain

should be set to this value. Often, if there are no constraints for the amplification of input and

output power levels, the system gain is set to the maximum gain of the PA [78]. This, however,

may not be beneficial, especially in the case of digital predistorters, as the signal amplitude range

has to accommodate the predistorted signal, which reduces the amplitude range reserved for the

original signal, thus increasing quantization noise.

3.3.1 Adaptive predistortion function

Although the predistorter operates independently of the PA output, thus allowing unconditionally

stable operation, often, especially in high-linearity systems, a feedback from the PA output to

the update of the predistortion function is implemented. This is done in the light of the fact that

the transfer function of the amplifier changes with the operation temperature, and due to aging,

impacts etc. Therefore, even an accuratelymatched predistortion function becomes evidently only

approximate and the linearity deteriorates [3]. This is not acceptable in high-linearity systems.

The feedback is usually implemented in such way that there is no direct connection between

the PA output and the predistorter output, but, instead, the function is updated slowly independent

of the predistorter output. This reduces the risk of instability. Possible methods for determining

the required update are, for example, comparison of the time-domain input and output signals

[11, 79], adjacent channel power measurements [28] and temperature measurements [80]. Often

the adaptation is implemented using digital circuitry, but also analog adaptive algorithms have

been published [81]. The adaptation methods are discussed in more detail in Sections 3.5.2 and

4.4.2.

3.3.2 RF, baseband and data predistortion

The predistortion systems can be divided into three main categories, namely RF/IF, baseband

and data predistortion, according to the placement of the predistortion function. The RF/IF-

predistortion introduces the predistortion function to the up-mixed RF or IF signal. Both the

RF and IF predistortion systems operate similarly, the main difference being the placement of

the system before or after the final up-conversion stage of the transmitter [3]; the placement is

dictated by the system specifications and available components. Earlier, the RF/IF predistortion

was a more common choice due to the fact that it can be implementedwith simple analog circuitry,

although the linearity improvement is limited [8, 82–84].
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3.3 Operation of the predistorter 35

At simplest, the RF/IF predistorters can use simple RF diodes or transistors as the predis-

tortion elements [3], but more complex systems use phase and amplitude modulator circuits

[9, 10, 81, 85] or quadrature modulators [28, 86]. The control signals of the RF predistorter

can be implemented to be adaptive. These kinds of non-static controls are usually implemented

with the help of digital signal processing (DSP) [8–10, 28, 86], although analog implementations

have been presented also [81].

Advantages of the RF/IF predistortion are the simplicity of the analog circuitry, independence

of the baseband and PA implementations, which enables development of stand-alone predistortion

chips and the possibility of implementation without any up- or down-conversion operations. The

disadvantages include the restrictions to the shape of the predistortion function imposed by the

analog circuitry and delay problems caused by large frequency differences between the signals

(especially in non-static predistorters). The RF-predistortion will be discussed more thoroughly

in Chapters 4-7.

Data predistorters are simple digital predistortion systems that try to adjust the transmitted

baseband data symbols so that their distortion after the amplifier is minimized [3, 87–89]. The

correction is made before up sampling and filtering of the data; thus the data predistorter is not

able to compensate for the adjacent channel distortion. The advantage of the data predistorter

is that it requires only a low clock rate DSP and a very simple LUT for predistortion function

generation. Disadvantages are the inability to reduce ACP and the dependence of the predistortion

function on the modulation scheme [3], thus their applicability is limited. The data predistorters

are not investigated further in this thesis due to their operation in the non upsampled and filtered

original data signals, thus being very much related to the modulation and coding which are not

within the scope of this thesis.

A baseband predistorter performs the linearization of the PA by altering the signal at the

baseband before any up-mixing operations; in modern quadrature transmitters, this means that the

predistortion is done to two baseband signals [3]. The accuracy and matching of the predistortion

functions required for acceptable linearity is hard to achieve using analog components and thus

analog implementations have been rare [3].

The digital baseband predistortion [11, 79, 90, 91] is a refinement of the data predistortion

principle, but, instead of altering the data symbols, the predistortion is moved closer to the D/A

conversion in the digital signal path, after the filters. Thus, the baseband predistortion is able to

also correct distortion in the actual signal envelope, assuming that the clock rates are high enough

to accommodate the required spectral spreading. Due to being implemented fully in the digital

domain, the baseband predistortion offers great flexibility for the predistortion function and there-

fore there are several different predistortion functions commonly used in baseband predistorters.

The memory predistorters are also usually based on the baseband predistortion systems [53, 54].

The advantages of the baseband predistorters are the flexibility and accuracy of the digital

predistortion functions. However, the baseband predistorters suffer from the fact that they include

the quadrature modulators and up-conversion functions on the signal path. This means that they

have to also deal with the nonidealities of the mixers and other analog components in addition to
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36 Linearization of a power amplifier

the PA.

The baseband predistortion will be discussed more thoroughly in Chapter 8.

3.3.3 Memoryless phase and amplitude predistortion implementations

As was discussed in Chapter 2, the main distortion sources in memoryless power amplifiers are

the AM-AM and AM-PM distortions. Therefore, the predistorters are usually based on reducing

amplitude-dependent distortion. A notable exception is the digital mapping predistortion which

also is able to compensate for phase-dependent distortion.

A basic predistorter can be implemented with a very small number of components. This is

enabled by the fact that the most dominating distortion mechanism in RF power amplifiers is

the AM-AM distortion; thus the rudimentary linearity improvement can be gained by generating

a simple approximation of the inverse amplitude distortion function of the PA. In fully analog

RF predistorters a third order amplitude distortion function is often used [3]; this can be simply

implemented with a properly biased nonlinear diode or single transistor. However, this method,

although it has been quite widely used [3, 85, 92–97], is not very accurate and thus has only

a limited correction ability [3]. More complex AM-AM predistortion methods have also been

presented[3, 98].

When more linearity is required, the AM-PM distortion also has to be taken into account

and thus efficient correction methods use separate phase and amplitude distortion circuits [85,

99–101]. The phase and amplitude correction circuits can be implemented with the help of the

previously mentioned diode and transistor circuits combined with circulators, hybrids, power

combiners, capacitive elements etc. However, the restrictions of the analog components on the

available predistortion functions still limit the correction ability [3].

The problem can somewhat be alleviated by using a curve fitting approximation of the non-

linearity [3]. However, the analog implementation of a curve-fit predistorter is quite cumbersome

and requires special circuits to implement it so that the signal to be predistorted can have negative

amplitude values [3]. Another method to implement the predistortion function more flexibly is to

use an analog phase and amplitude modulator [81] or quadrature modulator as the predistortion

element.

To make the implementation of the predistorter function more flexible, the control of these

vector modulators can be implemented digitally. This requires a DSP circuit that implements a

piecewise constant or polynomial control of the analog predistortion element. This method is used

in RF-predistorters (Chapter 4). The digitalization can be accomplished even more extensively

by implementing the whole predistortion operation in digital domain, which is the method used

in the baseband predistorters (Chapter 8).

The following sections will discuss the different predistortion functions in more detail.
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3.4 Implementation of the predistortion function 37

3.4 Implementation of the predistortion function

There are several ways to implement the actual distortion functions. Usually, the inverse transfer

function can not be directly implemented, but it has to be approximated with some other function

instead.

One simple method is to use a polynomial function to approximate the nonlinearity. The

polynomial function can be implemented using analog components [85, 92–97] or digitally [102,

103].

Another commonly used method is to generate a piecewise constant approximation of the

required nonlinearity [3]. Using this method, it is possible to generate functions that would require

very high order polynomials. However, as the solution is basically discrete and only approximates

the function it increases the overall noise floor of the predistortion. Another problem with the

linear approximation is that it often requires more parameters than the polynomial one. The

digital predistortion systems are commonly based on this kind of predistortion function due to

their fairly easy implementation using look-up tables (LUT) [9, 11, 79, 86, 91, 104, 105]. Despite

their complexity, analog implementations have been presented as well [106].

The predistortion function can be applied to the PA input signal using vector modulators,

complex multipliers, diodes etc.

3.4.1 Polynomial predistortion

As is the case with PA models, a polynomial predistortion function is probably the simplest

method to approximate the function required to compensate the PA nonlinearity. It can be de-

scribed with a formula similar to the polynomial distortion function of a power amplifier

vpd =
N
∑

n=1

aPDnvin |vin|n−1 , (3.3)

where aPDn are the predistortion coefficients and N is the polynomial order. This method would

seem to be quite suitable as usually the power amplifier nonlinearity can be approximated with a

low-order polynomial. However, if this formula is substituted in (2.8) and the resulting function

is solved for vout = vin, it is found that the equation has a solution only when N = ∞ [24]. If
only a limited number of low-order coefficients are to be compensated, a lower order polynomial

can be used. The drawback of this is that finite order compensation generates new distortion

components that have a higher order than the original distortion and predistortion polynomials.

If we set as our goal to compensate the third order distortion coefficient and suppress any new

fifth order distortion coefficients, we can use a fifth order predistortion polynomial (3.3). When

this is inserted to (2.8) and solved for third and fifth order distortion equal to zero, we get the

following predistortion coefficients:

aPD3 = −aPA3 (3.4)
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and

aPD5 = aPA3(2aPA3 + aPA3), (3.5)

where aPA is the complex conjugate of the PA distortion coefficient. The predistortion generates

seventh and higher order distortion components and they limit the maximum linearity [24]. The

fifth order polynomial predistorter will be used throughout the thesis as a basic predistorter model

to simplify the mathematical calculations.

Since the PA distortion functions are usually not invertible when using a finite bandwidth, the

problem of generating new distortion components affects all predistortion systems. The higher

order the distortion components the predistorter is able to compensate, the lower the residual dis-

tortion level. If the PA is fairly linear, a low-order polynomial is often enough for good enough

linearity. The possibility of using a low-order polynomial means a lower number of parameters

and eases the calculation of the function and the update of the function and makes the adaptive up-

date converge faster. However, if the PA is nonlinear and especially if the nonlinearities are strong

at the low signal amplitudes, the required order for the polynomial as well as the computational

complexity become high.

3.4.1.1 Linearization ability of a polynomial predistorter

For one to be able to linearize the power amplifier with a predistorter, the distortion function of

the PA must be such that the output signal is able to achieve the maximum of the input signal vin

with some value of predistorter output signal, vpd.

The maximum value of third-order nonlinearity coefficient, a3, in (2.8) that fulfills this re-

quirement can be estimated by assuming the signals to be real and also the distortion coefficient

to be real. If we set vout to the maximum of the input signal, vout = 1 and vpd to be the maximum

of the input signal multiplied by a real coefficient, vpd = B, we can solve B as a function of a3

from (2.8).

1 = B − a3B
3 (3.6)

By using the general solution for the roots of a quadratic equation [30], we get three solutions for

(3.6). Now, if we find the values of a3 for which the solutions are real valued, in other words, re-

alizable, we find that the maximum distortion coefficient is 0.148. Although the calculations were

performed for real signals and coefficients, we can still use as a rule of thumb the requirement that

for the amplifier to be predistortable the absolute value of a3 has to be less than 0.15. Also, if we

plot the required values of vpd (Figure 3.4), we see that the required vpd increases rapidly and the

requirements for the predistorter get more and more demanding as the PA approaches saturation.

As the PA approaches saturation, the order of the polynomial required for accurate lineariza-

tion increases as well. Figure 3.5 shows the residuals of the different order polynomials used

to approximate the inverse transfer function of a third order polynomial with a3 = 0.098 and

a3 = 0.148. As can be seen in the former case, the third order polynomial is able to achieve

better fit than a ninth order polynomial in the latter case.
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40 Linearization of a power amplifier

The higher order distortion caused by the predistorter causes also lower order harmonic distor-

tion. This means that, even if the low-order distortion is completely compensated, the distortion

power increases with the power and, at some point, the distortion power passes the maximum

allowed distortion level. To reduce the distortion, a higher order polynomial has to be used. This

is illustrated in Figure 3.6. The figure shows the powers of third, fifth and seventh harmonic

distortion components of a sine signal amplified with an amplifier with third order polynomial

AM-AM distortion function with a3 = 0.148. The amplifier is linearized with third and fifth

order polynomial predistorters.

It can be seen that, in the absence of predistortion, only the third harmonic is present. The

addition of the predistorter generates the higher order harmonic components. It can be seen that

the third order predistorter removes the third order distortion as the slope of the remaining third

order harmonic power curve now is the same as for the fifth order harmonic power curve and

thus is caused by the fifth order distortion. The same can be seen for the fifth order predistorter

with the exception that the slopes of the third and fifth order harmonics have the same slope as

the seventh order harmonic thus signifying the compensation of the lower order distortion. As

can be seen, the third order harmonic distortion caused by the higher order distortion increases

more and more rapidly with the signal power. This means that, to reach a certain distortion level,

the required order of the polynomial increases more and more rapidly as the signal amplitude

increases. Finally, it can be seen that, at the point where the PA becomes non-predistortable, the

distortion level curves cross each other.

When the PA distortion is not polynomial, the amplitude of the signal affects the order of the

polynomial required for good approximation of nonlinearity. When the PA is far from saturation,

the distortion can be approximated with a low-order polynomial, but, when the PA approaches

saturation, the required order of the polynomial increases. Figure 3.7 illustrates this effect. The

figure shows the RMS error of polynomial approximations of the Saleh distortion model (Section

2.6.1). As can be seen, the required order of polynomial for certain approximation accuracy

increases with the amplitude. This increase in required polynomial order is in addition to the

effects described in the previous paragraph.

3.4.2 Piecewise constant predistortion function

The accuracy of the approximation of the predistortion function can be increased by using a

piecewise constant approximation of the required transfer function instead of polynomial. This

makes it easier to linearize PAs having nonlinearities at the low amplitudes or operating near to

saturation as the shape of the function can be selected more freely.

In the piecewise constant approximation, the predistortion function therefore has the form

APD = A−1
PA(⌊N |vin|m⌋ /N), (3.7)

whereA−1
PA(·) is the inverse transfer function of the PA nonlinearity,N is the number of different
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Figure 3.6: The distortion components of a sine signal amplified with a third order polynomial

PA with a=0.148
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values in the piecewise constant approximation and m is 1 or 2, depending on if the signal am-

plitude or power is used as the selection parameter for the proper part of the piecewise constant

function.

In analog domain, the piecewise constant predistortion function can be implemented with a

resistor-selected gain in an operational amplifier circuit [106] or separate amplifiers for each value

of the piecewise constant function [3].

Figure 3.8 shows an example of an inverse transfer function of a third order PA nonlinearity

and piecewise constant approximation of it with 16 levels. As can be seen, the approximation

follows the original function well, but when the derivative increases the steps become larger and

the quantization error increases. The transform into piecewise constant function corresponds to

quantization of the input parameter of the transfer function. By increasing the number of different

values in the function, the steps can be made smaller and the quantization errors reduced [107].

There have been also proposals to reorganize the middle points of the steps in such a way that

the step size of the quantized function is constant throughout the whole amplitude range or is

minimized at the most probable amplitudes [78, 108–110]. This is discussed in more detail in

Chapter 9.

However, both of these methods require complicated hardware if implemented using analog

circuits; thus the accuracy of these methods in analog domain is fairly limited. The piecewise

constant approximation, however, is very suitable for implementation using digital circuits. This

will be discussed in the next section.
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3.5 Digital predistortion

Implementing either the control of the predistorter or the whole predistorter digitally can make the

predistortionmuchmore effective. The digital implementation allows more complex predistortion

functions and arbitrarily high accuracy if the necessary computation capacity is available. Digital

predistortion also easily allows dynamic control signals for the predistortion element, whereas

analog predistorters usually use static control [3]. The main types of digital predistortion systems

are the baseband predistortion systems and RF-predistortion systems.

The baseband predistortion systems implement the predistortion operation fully digitally at

the baseband, which makes it possible to implement diverse predistortion functions. The digital

baseband predistortion systems can be further divided into three categories: mapping predis-

torters, complex gain predistorters and polar predistorters. Mapping predistorters [79] use the

complete complex baseband signal to generate the predistortion function and thus are also able

to correct phase-dependent distortion such as modulator errors but are quite hardware inefficient.

Complex gain predistorters [11] take advantage of the amplitude dependence of the distortion and

use only the absolute value of the signal to generate the complex valued predistortion function,

thus reducing the hardware requirements. Polar predistorters [91] use the amplitude of the signal

for predistortion function generation and use the polar form of the complex signal for the predis-

tortion. The different baseband predistorters are discussed more thoroughly in Chapter 8. Figure

3.9 shows the basic structure of a digital baseband predistortion system.

The digital RF predistorters usually implement the actual predistortion using analog compo-
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Figure 3.9: Block diagram of a baseband digital PA predistorter.

nents and only use DSP for the control signal generation. This is due to the fact that it usually is

not feasible to transform the RF signal to digital domain for predistortion. However, fully digital

RF predistorters have also been published [111, 112]. Usually, the predistortion element consists

of a phase and amplitudemodulators [104] or quadraturemodulators [102]. The controls for these

predistortion elements are generated according to the A/D converted detected envelope of the RF

signal; thus the RF predistorters resemble the complex gain and polar baseband predistorters. Fig-

ure 3.10 presents a basic block diagram of an RF predistorter. The RF predistorters are discussed

in more detail in Chapter 4.
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Figure 3.10: Basic block diagram of digitally controlled RF predistorter

The most common method to implement the predistortion function in digital domain is the

piecewise constant approximation. This is due to the fact that the piecewise constant function

can be easily implemented using a LUT that is indexed with the parameter of the predistortion

function (complex signal or the signal amplitude) and contains the predistortion function values at

the points defined by the index values. So, each entry corresponds to one gain value in the analog

implementation (Section 3.4.2). The digital implementation allows the number of steps in the

function to be increased with much smaller hardware consumption, thus reducing the quantization
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errors described in Section 3.4.2 [107]. Also, the redistribution of the pieces of the function to

reduce the quantization errors becomes easier with the help of digital algorithms [78, 108–110].

It is possible to implement a polynomial predistortion function directly in digital domain using

multipliers and adders and especially many digital predistorters with memory actually use mem-

ory polynomials or Volterra series for the predistortion [53, 56, 86, 105, 113, 114]. However, often

a piecewise constant approximation of the polynomial is used and the polynomial is calculated

only when the LUT is updated. This avoids the calculation of the value of the polynomial for ev-

ery sample, that may be a limiting factor for the clock rate, especially for high-order polynomials.

Instead, the value of the polynomial is calculated once when the predistortion function changes

and is stored in a LUT; thereafter, the system behaves exactly as any other predistorter based on

piecewise constant approximation. The reasons for using a polynomial function to calculate the

LUT values are discussed in Chapter 9.

3.5.1 Errors caused by digital predistortion

Although the use of DSP allows generation of more complex predistortion functions than the ana-

log predistortion, the use of digital signals and LUTs also introduces errors to the predistortion.

The most obvious error source is the quantization of the predistortion signals. In the baseband pre-

distorters, this is not a very significant error source as the signal word lengths are already decided

by the baseband circuitry. In the RF-predistorters on the other hand the predistortion is imple-

mented using analog control signals that normally have infinite quantization accuracy, but when

digital control is used they are A/D- and D/A-converted and quantization noise is introduced.

Another source of quantization error is the piecewise constant predistortion function. As

was discussed in Section 3.4.2, this corresponds to quantization of the signal used as the function

parameter (the LUT index) into as many discrete steps as there are entries in the LUT. Thus, using

a 256-entry LUT corresponds to quantizing the indexing signal to 8 bits. Due to large hardware

consumption, the number of LUT entries is usually less than the word length of the predistorter

input and output signals would allow. A basic and widely known formula for calculating the SNR

caused by the quantization is

SNR = (6.02Nbit + 1.76 + 10 lgOSR) dB, (3.8)

where Nbit is the word length in bits and OSR is the oversampling ration of the signal. This

formula can be used to approximate the effect of the quantization on the noise floor of the pre-

distorted signal. This formula can be also used to approximate how many bits of word length a

change in the SNR or OSR corresponds to:

∆Nbit =
∆SNR

6.02
(3.9)

∆Nbit = 10 lg
OSRnew

OSRold
(3.10)
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These formulas can be used to evaluate the usefulness of a change in the predistortion design

that affects the SNR or OSR of the system and reduces the size of the LUT. The quantization

effects and methods to reduce them have been discussed in for example [78, 107–110] and are

also discussed in Chapter 9.

Also the discrete time may affect the performance of the predistortion systems. This makes

it impossible for the time delay of the digital part to be adjusted freely, and possible only in

discrete steps defined by the clock frequency. The achievable linearity of a digital predistortion

system with time-domain feedback signals, on the other hand, is dependent on how accurately

the delays of the feedback and original signal can be matched before comparison [79, 115]. To

match the signals accurately enough fractional delay filters or an increase in the clock frequency

may be required. In RF-predistortion systems, in addition of the feedback delay matching, the

delay matching of the predistorter control signals and the RF signal also affect the linearity and

thus this is adversely affected by the discrete time. The effects of the delay will be discussed in

more detail in Chapter 5.

3.5.2 LUT update

The use of DSP for the predistortion eases implementation of an adaptive predistorter that can fol-

low the changes in the PA nonlinearity. The adaptive predistortion can be performed by updating

the predistortion function stored in the LUT one entry at a time or the whole LUT at once. The

update can be made according to ACP or other spectral-domainmeasurements of the PA output or

the measured time-domain differences between the predistorter input and PA output signals. The

spectral-domain measurements are more suitable for methods in which the whole LUT is updated

simultaneously, such as polynomial predistortion, whereas the time-domain measurements are

suitable for updating each LUT entry separately. Different LUT update methods are discussed

in more detail in Chapter 9. However, the following paragraphs discuss two commonly used

LUT update methods for updating LUT entries separately based on time-domain measurements

namely linear update and the secant method. The linear update is used mainly in the predistorters

investigated in this thesis due to its simplicity.

LUT update based on comparison of instantaneous envelope values has been used mainly in

baseband predistorters [11, 79, 91] but it is also suitable for RF-predistortion [10]. The most com-

mon methods for the LUT adaptation when using time-domain comparison are the secant method

and linear iteration. Linear iteration can be derived by the method of successive substitutions

[116] as

LUTn+1 (Vin(n)) = LUTn (Vin(n))

(

1 + a
(Vout(n) − Vin(n))

Vout(n)

)

(3.11)

In polar- and RF-predistortion systems, the division by Vout(n) can be omitted at the cost of

slower convergence. However, removal of the division from the algorithm is a significant ad-

vantage. In the case of the baseband predistorter, this tends to cause instability. The updated
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algorithm can be written as

LUTn+1 (Vin(n)) = LUTn (Vin(n)) − a (Vout(n) − Vin(n)) , (3.12)

this form is also used in mapping predistorters [79].

The secant method offers faster convergence but incurs the cost of increased hardware com-

plexity as it requires information about previous LUT and signal values. The secant method[117]

can be written as

LUTn+1(Vin(n)) =

LUTn(Vin(n)) − a · ∆V (n)LUTn(Vin(n))−LUTn−1(Vin(n))
∆V (n)−∆V (n−1)

, (3.13)

where n is the index of the current iteration, LUT (Vin) is the value of LUT entry corresponding

to the input amplitude value Vin(n), ∆V (n) = Vout(n) − Vin(n), Vout(n) is the PA output

envelope and a is a constant that determines the convergence speed of the iteration. The adaptive

formulas can be applied to both phase and amplitude LUTs.

Lee et al. [118] compare several LUT update methods in terms of adaptation speed and

achieved linearity when using a baseband predistorter and an EDGE signal. The paper shows

that the secant method offers clearly faster adaptation than the linear method, but the achieved

linearity is slightly worse. Figure 3.11 shows the convergence of the secant method (3.13) and

linear method (3.12) with a 64-entry LUT using the same convergence coefficient. The LUT error

in the figure is shown as the RMS of the current LUT compared to the final value in dB. The faster

convergence of the secant method is clear, but both methods achieve the same final value.

Figure 3.11: Example of convergence properties of (3.12) and (3.13) using a 6 bit LUT

Due to the much smaller hardware costs (no requirement for additional memory elements

and less adders) and as the adaptation time was not considered critical for the system, the linear

method was chosen as the most suitable adaptation algorithm for the circuits presented in this

thesis.
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48 Linearization of a power amplifier

3.6 Predistorters with memory

Recently, especially due to ever-wider bandwidths required for the transmitted signals, the mem-

ory predistortion has received considerable attention. The main idea of the memory predistortion

is to also take into account the previous values of the predistorted signal to compensate for the

nonlinearities of the PA. Without the memory, the predistorter generates the same compensating

distortion to all of the frequency components of the signal. This means that as the distortion of

the PA with memory is not equal for all frequencies, part of the distortion remains uncompen-

sated. This is illustrated in Figure 3.12 [119]. This leads to unequal distortion powers on adjacent

channels.

IM L IM U
φL

φ
U

Power
Desired
signal

Frequency

IM L

φL

Power
Desired
signal

Frequency

Memoryless predistortion

Figure 3.12: The effect of memoryless predistorter on a power amplifier with memory [119].

The generation of the predistortion function with memory is usually based on the same prin-

ciples as the PA models with memory and thus the models described in Section 2.8.2 can be used

also for the predistortion. The most common predistortion systems are theWiener/Hammerstein/-

Wiener-Hammerstein [47, 50, 120–122] and memory polynomial systems [45, 48, 52–56, 61,

123], although Volterra predistorters have also been implemented [46, 124].

TheWiener-Hammerstein and Hammerstein predistorters offer a fairly simple solution for the

memory predistorter requiring only one or two filters and the memoryless nonlinearity, which can

be implemented using a LUT. The filter coefficients and the LUT can be calculated iteratively, for

example, using RLS or LMS methods or through matrix inversions [47, 125].

Commonly, the predistortion function identification is accomplished using the indirect learn-

ing algorithm (Figure 3.13a) [126]. The algorithm uses a proxy predistorter that linearizes the PA

output signal and thus operates as a post distorter. The postdistorter is adjusted so that the error

between the PA input and the postdistorter output is minimized. The postdistorter coefficients are

then copied to the actual predistorter in the PA input. The system is based on the assumption that
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Figure 3.13: The update methods for the memory predistorters [126]

the system consisting of the PA and the predistorter is reversible without affecting the linearity

and that the output measurements are noiseless. This, however, is usually not the case, which

renders this kind of predistortion identification suboptimal [126].

Figure 3.14 shows an OFDM signal after a PA with memory, the same signal linearized with

a memoryless predistorter, the signal after the postdistortion used for the memory predistorter

identification and the signal after the predistortionwith the memory predistorter identifiedwith the

postdistorter. As can be seen, the memory predistortion significantly improves the ACP compared

to the memoryless one. However, it can be seen that the linearity of the signal at the postdistorter

output is better than at the predistorter output. Thus, some of the linearity is lost, as the adaptation

algorithm does not see this difference.

The alternative option for the predistortion identification is the direct learning algorithm (Fig-

ure 3.13b) [126], which updates the predistortion coefficients directly based on the difference

between the predistorter input and PA output. This method, however, has the disadvantages that

the derivatives of the PA distortion function have to be known for the update to be stable [126];

usually the derivatives are not known and thus the direct learningmethod can not be used straight-

forwardly. Several solutions have been suggested to find these derivatives [121, 127, 128], but

they all increase the complexity of the system.

TheWiener and Hammerstein predistorters suffer from the same problems caused by oversim-

plification as the Wiener and Hammerstein PA-models (Section 2.8.2). The Volterra predistorters

[46, 124] offer the possibility of a more accurate predistortion function, but require a large amount

of hardware. Recently, a very common method for memory predistortion has been the memory

polynomial [45, 48, 52–56, 61, 123], which is similar to the memory polynomial used for the PA

identification (2.23). The memory polynomial-based predistortion systems can be implemented

with the same kind of structure as the memory polynomial-based PA model (Figure 2.12). The
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Figure 3.14: OFDM signal amplified with a PA with memory and linearized with a predistorter

and postdistorter.

memoryless nonlinearities can be implemented with LUTs, and thus the whole design can be

implemented with fairly low hardware costs.

The published predistorters with memory are invariably baseband predistorters [45–48, 50,

52–56, 61, 120–124, 129]. This arises from the fact that RF predistorters do not usually have

information about the actual RF signal but, instead, use only the envelope of the signal. The

problem can be seen with the following analysis: For simplicity we assume that the filter is an FIR

filter and that we have a polynomial memoryless predistorter. Thus, the memoryless predistorter

output is

vpdout(t) =

∞
∑

n=0

anvin(t) |vin(t)|n (3.14)

and the filter output is

vfiltout(t) =

∞
∑

m=0

bmvpdout(t − m). (3.15)

When these are combined, we get as the memory output of the predistorter

vfiltout =
∞
∑

m=0

∞
∑

n=0

bmanvin(t − m) |vin(t − m)|n . (3.16)
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3.7 Survey of published digital predistortion systems 51

The RF predistorted signal, on the other hand, has the form

vRFpdout(t) = vin(t)H (|vin(t)|) . (3.17)

Now, if we modify (3.18) to correspond to the form of (3.17) we get

vfiltout = vin(t)

∞
∑

m=0

∞
∑

n=0

bman

vin(t − m)

vin(t)
|vin(t − m)|n . (3.18)

The problem with this formula is that the predistorter would require information on the previous

values of the signal, not just the envelope. The signal values could be extracted using a quadrature

demodulator, but the complexity of this solution is so high that the baseband predistorter is clearly

a better solution. We can approximate that
vin(t−m)

vin(t) = 1, but this solution requires a high sam-

pling frequency and short filters, otherwise significant error is introduced to the calculation. Sim-

ilar analysis can be performed on the memory polynomial predistorter. Thus, an RF-predistorter

with memory would require a completely new predistortion algorithm. This, however, is not the

focus of this thesis and will not be explored further.

3.7 Survey of published digital predistortion systems

A large number of digital predistortion systems have been published since the first examples of

these were presented. Table 3.1 presents some examples of the performance and specifications

of published predistortion systems. As can be seen the table sizes for the RF, complex gain,

polar and memory predistorters varies from 32 to 1024 entries. The predistorter word lengths are

usually between 12 and 16 bits and the RF predistorters tend to have shorter word lengths. The

measured ACP improvements vary between 10 dB and 20 dB and the simulations tend to give

ACP improvements near to 30 dB. However, it should be noted that the improvements depend on

the nonlinearity of the PA also.

3.8 Conclusions

This chapter presented the basics of PA linearization methods. The common methods were dis-

cussed and the chapter especially concentrated on the predistortion linearization. The general

operation of analog and digital, memoryless and memory predistorters was discussed. A survey

of published predistorters was presented and showed that the simulated performance of predis-

torters is significantly better than the measured performance.

The rest of this thesis will study the digital RF and baseband predistorters and their imple-

mentation in more detail and will include a detailed analysis of some of the problems related to

the digital predistortion and suggest solutions for some of them.
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Table 3.1: Survey of published predistortion systems

Ref Predistorter type RF/BB Memoryless? Clock frequency Signal bandwidth Measured? ACP improvement memory size word length

[8] Phase/Amplitude RF YES 105MHz ? 2tone 25dB 64 8bit

[79] Mapping BB YES 128kHz 32kHz Yes ≈ 20dB 2 · 106 10bit

[11] Complex gain BB YES 240kHz 30kHz No ≈ 30dB 32 ?

[91] Polar BB YES 35kHz 2.18kHz Yes ≈ 20dB 64 16bit

[9] Phase/Amplitude RF YES ? 40kHz Yes ≈ 20dB ? ?

This thesis Phase/Amplitude RF YES 10MHz 18kHz Yes 10dB 256 12bit

This thesis Complex gain BB YES 1MHz 18kHz Yes 15dB 64 16bit

[10] Phase/Amplitude RF YES ? 1.2MHz Yes ≈ 8dB ? ?

[105] Complex gain BB YES 125MHz ≈ 20MHz No 30dB ? 13bit

[53] Memory poly BB No ? 3.84MHz Yes 16dB ? 16bit

[114] Quadrature RF Yes 100MHz 3.7MHz Yes 12dB 1024 12bit

[129] Hammerstein BB No ? 3.84MHz Yes ≈ 16dB 1024 ?

[55] Hammerstein BB No ? 15MHz Yes ≈ 20dB ? 16bit

[110] Quadrature RF Yes 65MHz 15MHz Yes ≈ 10dB 256 14bit

[111] Digital RF Yes ? 3.68MHz No ≈ 15dB ? 12bit

[130] Mapping BB Yes ? ? No ≈ 30dB 22 · 104 ?

5
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Chapter 4

RF/IF- predistortion

4.1 Introduction

Analog RF/IF predistortion has been in use in, amongst others, satellite communications systems,

due to its ability to be implemented with very simple circuitry [3], such as constant biased diodes.

However, when a more significant linearity improvement is required, usually the complexity of the

RF/IF predistortion increases [3]. Digital implementation of the predistortion control simplifies

design.

One of the goals of this thesis was to investigate the possibility to simplify the design of an

TETRA transmitter by replacing the previously used linearization methods with a predistorter.

The RF predistorter was considered to offer the possibility for a very simple linearizer and it

also has promising characteristics that could be utilized to implement an universal predistortion

circuit. Therefore it was chosen as the main research subject of this thesis.

This chapter gives an introduction to implementing PA predistortion on carrier or intermediate

frequencies. First the benefits and problems present in RF predistorters in general are discussed,

but after that the chapter will concentrate mainly on the more complex predistortion designs using

variable control signals and especially on the digital implementations these. The common archi-

tectures for RF predistorters are presented. At the end of the chapter, some design considerations

related to digital predistorters will be reviewed.

4.2 RF/IF-predistortion systems

An RF/IF- predistorter linearizes a PA by altering the up-mixed signals to counter the PA nonlin-

earity. As the name implies, the RF predistorter alters the PA input signal at the carrier frequency

and uses an analog nonlinearity element to generate the predistortion function. A significant ad-

vantage of this method is that the predistorter does not necessarily require any up- or down-mixing

operations [9]. This allows an implementation that is not dependent on the exact carrier frequency
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54 RF/IF- predistortion

of the signal or the baseband circuitry. This is significant, since, without the dependence on the

baseband circuitry, it is possible to develop a completely separate predistortion chip or a PA chip

that includes the predistortion, thus, from the designer’s point of view, looking like a highly linear

power amplifier. This kind of chip would make the design of linear transmitters more clearly

partitioned, as the baseband designer would not need to bother her- or himself with the linearity

issues in the RF parts, just as the RF designer does not need to bother him- or herself with the

baseband design to make the PA linear. Also, it would ease the design of linear transmitters from

on-the-shelf components, as a suitable baseband design and then a linearized PA could be selected

without dependence on the selection of the other part or having to design any additional feedback

paths to the baseband.

The RF-predistorter also only has to operate on a single RF signal instead of several baseband

signals, which eases the design when using analog elements [3]. However, in digital predistortion

systems, this advantage is not so significant. An RF predistorter requires that the predistortion

element has to be able to cope with the high frequencies, which poses some limits on the method

[3]. Figure 4.1a shows the basic block diagram of an RF-predistortion system. If no suitable

predistortion elements are available due to the frequency limitation, the predistortion can also

be performed at a lower intermediate frequency before up mixing. This method is called IF-

predistortion [3]. A block diagram of an IF-predistortion system is shown in Figure 4.1b. IF-

predistortion gives up some of the advantages of the RF predistorter, especially since the feedback

path for the possible adaptation may require a down-mixer.

∆Α
∆φinRF RFout

feedforward feedback
control

PA

(a) Block diagram of an RF predistorter

RFout

feedback

PA∆Α
∆φinRF

feedforward
control

LO

(b) Block diagram of an IF predistorter

Figure 4.1: basic RF

A basic RF predistorter can be implemented with a very small number of components. This is

enabled by the fact that the most dominating distortion mechanism in RF power amplifiers is the

AM-AM distortion, and thus the rudimentary linearity improvement can be gained by generating
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4.3 Digitally controlled RF-predistortion system 55

a simple approximation of the inverse amplitude distortion function of the PA. In fully analog RF

predistorters, a third order amplitude distortion function is often used [3]. This can be simply

implemented with a properly biased nonlinear diode or single transistor. This method, although

it has been quite widely used [3, 85, 92–97], is not, however, very accurate and thus has only

a limited correction ability [3]. More complex AM-AM predistortion methods have also been

presented [3, 98].

When more linearity is required, the AM-PM distortion also has to be taken into account

and thus an efficient correction method is to use separate phase and amplitude distortion circuits

[85, 99–101]. The distortion function of the analog components still limits the correction ability.

The problem can be somewhat alleviated by using a curve fit approximation of the nonlinearity

[3]. However, the analog implementation of a curve fit predistorter is quite cumbersome.

Some of these problems can be solved by using control circuitry that adaptively generates the

predistortion function and a vector modulator circuit that can be used to generate any required

phase shift or amplitude distortion function [81, 131, 132]. However, complicated circuitry is

again required and the predistortion function still has its limitations.

A solution to these problems is to use digital signal processing to generate a curve fit or high-

order polynomial approximation of the control signals required to generate the inverse of the PA

nonlinearity in the analog predistortion elements. The simplest way to implement this kind of

digital control is to use an envelope detector to sample the power amplifier input signal and then

A/D convert it to generate a digital control signal. The envelope is then used as a dynamic control

signal for the predistortion function generation circuit. The predistortion function generation is

usually based on storing predistorter control into one or more look up tables implemented by

RAM or ROM blocks. Thus a digital RF predistorter is usually based on a piecewise constant

approximation of the nonlinearity. The digital implementation of the control signals also makes

it easier to implement an adaptive update of the predistortion functions.

4.3 Digitally controlled RF-predistortion system

Unlike the baseband predistortion system, it is not feasible to implement the RF-predistortion

system fully digitally, as this requires transforming the analog RF signal into digital domain and

back. Even if this kind of implementation were possible hardware-wise, usually it would be much

more efficient to implement the whole transmitter chain up to the predistorter digitally. This is

due to the fact that the conversions between digital and analog domains and the possible up- and

down-mixing increase noise and reduce linearity. However, this kind of implementations have

also been presented [111, 112].

For these reasons, only the control of the RF-predistortion system is usually digitalized [8–

10, 28, 86, 102, 110, 114, 133–137]. The block diagram of a digitally controlled RF predistorter

is shown in Figure 4.2.

The digital control enables more flexible control signal implementation and update than a
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Figure 4.2: Basic block diagram of digitally controlled RF predistorter

fully analog solution. Usually, the control is based on the signal envelope [8–10, 28, 86, 102,

110, 114, 133–137], although temperature-dependent control circuits have also been presented

[80]. As is the case with the analog counterpart, the implementation can be accomplished without

knowledge of the exact carrier frequency.

4.4 Digitally controlled RF-predistortion system types

The digital RF-predistortion systems can be divided into several different categories depending on

the type of the analog predistortion element, the feedbackmethod, use of polynomial or piecewise

linear LUT. The following sections discuss these categories, except for the selection between the

polynomial and piecewise constant LUT that was discussed Chapter 3.

4.4.1 The implementation of the analog predistortion element

The predistortion device, with the help of the control signals, generates such a phase and am-

plitude distortion that the overall phase shift and gain of the system remains constant over the

whole amplitude range. This can be achieved by using an amplitude and phase modulator [8–

10, 134, 136] or a quadrature modulator [28, 86, 102, 110, 114, 133, 135, 137].

The amplitude-and-phase-modulator-based solution applies separate amplitude and phase dis-

tortion functions in series to the RF signal. If it is assumed that the phase modulator does not

affect the amplitude of the signal and vice versa, then the modulators are completely independent

of each other; thus their control signals can be calculated or updated separately. However, this is

not usually the case. More often, the AM-AM and AM-PM correction functions affect each other,

and thus an iterative approach for the calculation gives more optimal results.

The operation of an amplitude-and-phase-modulator-basedpredistorter [8–10, 134, 136] (Fig-

ure 4.3) can be described with the following formula:
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Figure 4.3: RF predistorter based on phase and amplitude modulator

(

APD (|vin|) · APA (|APD (|vin|) vin|) = K

ΦPD (|vin|) + ΦPA (|APD (|vin|) vin|) = P
, (4.1)

whereAPD(·) andAPA(·) are the predistorter and PA gain, respectively, andΦPD (·) andΦPA (·)
are the predistorter and PA phase shift, respectively. |vin| is the input signal envelope. K and P

are constants. This can be interpreted as a requirement that the gain and the phase shift of the

system is constant regardless the amplitude.

The quadrature-modulator-based predistorter [28, 86, 102, 110, 114, 133, 135, 137] (Figure

4.4) uses a 90ophase shifter to separate the RF signal into two quadrature branches that are fed to a

quadrature modulator. The two quadrature predistortion functions affect each other and therefore

they should both be updated simultaneously.

For the quadrature-modulator-based system Apd (|vin|) in (4.1) is replaced with

Apd (|VIN |) =
√

∆I(|VIN |)2 + ∆Q(|VIN |)2 (4.2)

and ΦPD (|VIN |) in (4.1) is replaced by

ΦPD (|VIN |) = tan−1 ∆Q(|VIN |)
∆I(|VIN |) (4.3)

where ∆I(|VIN |) and ∆Q(|VIN |) are the predistortion functions for the I branch and the Q
branch, respectively.

Themain differences between the implementations are, that the amplitude-and-phase-modulator-

based design is closer to the usually assumed model of the PA based on separate AM-AM and
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Figure 4.4: RF-predistorter based on quadrature modulator

AM-PM distortions. This also allows studying the effect of AM-AM correction and AM-PM

correction separately [91]. The quadrature-modulator-based implementation, on the other hand,

combines the amplitude and phase distortion into one complex valued function which simplifies

the implementation of the correction and update as the calculations can be implemented using

complex arithmetic.

In addition to these differences, the availability of the suitable phase and amplitude modulator

and quadrature modulator devices for the required frequency, the signal power range, and the

implementation of the feedback define which implementation should be used.

4.4.2 Time-domain and frequency-domain feedback

If the predistortion is to be implemented adaptively, a feedback of the linearity improvement is

required. The feedback can be based on instantaneous time-domain information [10, 86, 102, 114]

or frequency-domain information (or a similar measure of distortion collected over a longer time

span). [9, 28, 110, 133–137]

The time-domain feedback method (Figure 4.5) compares phase and amplitude samples or

samples of the quadrature demodulated signal at the predistorter input and PA output. Then the

LUT is updated according to the difference of these measurements so that the error is minimized.

The comparison and update can be performed either in real time or by collecting a larger number

of samples and then doing a batch update to several LUT entries at a time [138]. The real-time

update can be implemented with very simple hardware, but is more prone to instability a[10]. The
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time-domain update can be performed with simple secant or linear iteration methods, which are

suitable for updating one entry at a time, or with more complex LMS, RLS etc. methods, which

update the whole LUT simultaneously [10, 86, 102, 114].
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Figure 4.5: Time-domain feedback of envelope and phase

The time-domain feedback requires accurate matching of the input and output signals of the

system in time-domain as well as accurate matching of the transfer functions of the input and

output signal paths. Inaccurate matching reduces the linearity and may even cause instability.

In this thesis, the frequency-domain update is used as a common name for predistortion func-

tion update methods that use distortion measures that are slowly changing, independently of the

input signal to the predistortion system, and amalgamate errors in several LUT entries simulta-

neously [9, 28, 110, 133–137]. These include methods that measure the transfer function of the

power amplifier directly [110, 135, 137]. The reason is that the frequency-domain measure was

the first to be presented [28, 133] and the independence of the input signal makes the methods

similar. As these methods use an aggregate error measure such as adjacent channel power, all the

LUT values [9, 28, 110, 133–137] or a group of LUT values [134] are updated simultaneously.

This makes the polynomial control signal generation very suitable for frequency-domain update,

as the number of parameters is low and, at best, only one measured parameter is required for

the update. Thus, the hardware requirements for the update are reduced (at the expense of the

accuracy of the predistortion function).

The frequency-domain update avoids the requirement for matching the detector and the delay

as the input and output data of the system are not compared, but the measurement of the distortion

metric may require complex circuitry. Proposed designs use, for example, measuring the out-of-

band distortion through band pass filtering [9, 28, 133, 134, 136] or direct measurement of the PA
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nonlinearity [110, 135, 137].

In the out-of-band distortion measurement method (Figure 4.6), the signal band is removed

from the measured signal with bandstop filters. This method only measures the output signal, so

there is no delay-matching requirement. However, the signal band filters require steep transition

bands and linear phase response not to cause error to the measurement. Also, any residual signal

band power will affect the correction. As the signal band is filtered out, any in-band distortion is

left uncorrected.

Envelope
detection

Control
Digital

A/D A/D
Envelope
detection

outVVpdVin

D/A D/A

PAVector Modulator

Figure 4.6: Frequency-domain feedback using filtering

The method based on the direct measurement of the nonlinearity uses, for example, a vector

analyzer to measure the PA transfer function and then a microprocessor to calculate the inverse

transfer function. The inverse transfer function is updated when the PA transfer function changes.

The problem with this method is the complexity of the circuitry that is required for measuring

the transfer function, and the calculation of the transfer function which may become complicated.

Another problem is that there is no data available of the efficacy of the predistortion, thus the

function can not be adjusted to optimally reduce the distortion.

4.5 Other implementation issues in RF-predistortion system

As the RF predistorter is based on an analog predistortion element, the analog parts have a signif-

icant effect on the operation of the predistorter.

The generation of the digital control signals requires the envelope information of the RF sig-

nal. The envelope detection is not an ideal operation, so instead one has to use approximate meth-

ods, such as diode detectors or logarithmic amplifiers accompanied by envelope filters. These

detectors have different effects on the predistorter, depending on the signal and PA type. The

effects of the detectors and filters are discussed in Chapter 6.

Another parameter affecting the operation of the predistorter is the implementation of the D/A

and A/D converters, including the DSP word lengths, clock frequencies and the reconstruction and
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Figure 4.7: Frequency-domain feedback using direct PA nonlinearity measurement

anti-aliasing filters. The word lengths of the converters affect the noise floor and the maximum

linearization ability of the predistorter. This will be discussed in Chapter 9. The clock frequency

and the filter bandwidths affect the maximum signal bandwidth the predistorter is able to cope

with and the maximum nonlinearity of the PA is allowed to be linearizable.

The filters required in the implementation do not have constant frequency responses over

the whole signal band and their group delays are nonzero. This causes memory effects in the

predistortion system. The non-constant frequency responses of the filters have been discussed in

references [139–141].

The delays have a significant effect on the operation of an RF predistorter. This is due to the

fact that the delays are generated to the baseband signals and, compared to the carrier frequency,

the delays are very large. This means that the compensation requires fairly bulky or special meth-

ods. The most significant, and hardest to compensate, effect is the delay caused on the control

signals of the analog predistortion element, which causes time offset between the predistortion

function and the RF signal. Another effect of the delay is the time mismatch between the pre-

distorter input and PA output signals which affects the update of the predistortion function. The

effect of the delays will be discussed in more detail in Chapter 5.

4.6 Conclusions

This chapter discussed several commonly used RF-predistorter types from fully analog predis-

torters through digitally controlled analog predistorters to fully digital predistorters. The focus

was on the digitally controlled analog predistorters and the benefits and problems of an digi-

tally controlled analog predistorter were discussed. In addition, the possibility of implementing a

stand-alone linearized PA chip using digitally controlled RF-predistortion was considered.
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This thesis will mainly concentrate on RF predistorters using phase and amplitudemodulators,

time-domain feedback and digital piecewise constant approximation of the predistortion function.

However, many of the results are applicable to other RF predistorter types. The following chapters

discuss more thoroughly some of the RF predistorter design issues.
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Chapter 5

The effect of delays on an RF

predistorter

5.1 Introduction

As discussed in previous chapters, often the PAs are assumed to be memoryless. However, the

RF-predistortion system has an intrinsic delay difference between the analog predistorter control

signals and the RF signal. This means that there is phase difference between the predistortion

function and the RF envelope and that the PA output signal has residual error that is dependent

on the previous signal values, not directly on the PA distortion. This can be seen to be a memory

effect of the predistorter.

One significant problem in developing a stand-alone RF-predistortion chip or a PA with in-

tegrated RF-predistortion is its sensitivity to the predistorter control signal delays. The control

signal delay mismatch is generated by the filtering required in the detection of the input signal

envelope as well as in the reconstruction of the digital signal to analog form and the processing

delay in the data converters and the DSP. The delays are usually of the same order of magnitude

as the DSP clock period, thus being usually much larger than the carrier period. This means that

simple filtering can not generate large enough delays to the RF signal. Several methods for delay

compensation have been suggested. All of them require bulky analog delay elements, such as

delay lines or down conversion. These kinds of compensation methods are either not integrable

on a single chip or require accurate information of the carrier frequency and thus hinder the de-

velopment of a universal predistorter chip. In this chapter, a novel delay compensation method

for the control signal delays will be presented. This method uses a polynomial predictive filter

that is completely digital and can be integrated to the digital control of the predistorter, without

requirement to external components. The previously presented compensation methods and the

new method will be discussed in more detail in Sections 5.2 and 5.4.

If the predistorter function is updated adaptively using time-domain signals, the delay differ-
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64 The effect of delays on an RF predistorter

ence between the original and the fed back signals used for comparison affects the predistortion

adversely as well. This mismatch causes that part of the desired signal not to be canceled during

the error calculation, which further causes a time-dependent misadjustment to the predistortion

function that can even make the adaptation unstable. This effect has been studied more than the

control signal delay, since it affects the baseband predistorters also. This will also be briefly

discussed in this chapter.

Figure 5.1 shows the main delay sources in an RF-predistortion system. The RF delay ele-

ments usually have at least an order of magnitude less delay than the baseband delay elements.

This is due to the fact that the clock frequency, which defines the maximum corner frequency of

the reconstruction filters and further the group delay of the baseband filters, is much lower than

the carrier frequency. This restricts the maximum group delay in the reconstruction filters. The

baseband delay elements are marked with lighter circles and the RF-delay elements are marked

with the darker circle. The RF delay affects only the predistortion update and adds to the delay

mismatch in the baseband feedback and feedforward paths.

����������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������

�����������������������������������

�������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


�����
�����
�����

�����
�����
�����


�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�


���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

A/D

Envelope
detection

outVVin
Vpd

D/A D/A

Control
Digital

Fee
db

ac
k

PAVector Modulator
delay

Baseband delay element, ∆t ~
clkf
1

RF delay element, ∆t ~
fcarrier

1

Figure 5.1: Main delay sources in an RF-predistortion system

5.2 The delayed control signals on an RF-predistortion system

When there is delay in the predistorter control compared to the RF signal, wrong signal values are

altered at the predistorter. Figure 5.2 shows the effect of control signal delay on a highly nonlinear

64



5.2 The delayed control signals on an RF-predistortion system 65

third order amplifier in time-domain. The upper part of the figure shows the original and distorted

signals and the linearized signals with and without delays. The lower part shows the original and

delayed predistortion functions. As can be seen, the delay shifts the peaks of the sine and leaves

the resulting signal clearly distorted.
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Figure 5.2: The effect of delayed predistortion function on a predistorted sine signal driven

through a third-order polynomial distortion.

An important factor that defines the error caused by the delay is how rapidly the signal

changes, as this defines how much the signal value to be adjusted has deviated from its opti-

mal value before linearization is applied. It is important to notice that, not only the derivative of

the complex envelope affects the error, but also the derivative of the absolute value of the enve-

lope. The most important thing affecting the speed of the change is the bandwidth of the signal;

thus wider band signals tolerate less delay than narrow band signals. However, it should be noted

that the speed of the change depends also on the signal type. The envelope period will be used as

the metric for the changing speed of the signal in this thesis. This is defined as follows:

tenv =
1

fenv
(5.1)

to be the inverse of the signal bandwidth and thus the period of the highest frequency component

of the signal.

What is important to note is that the signal derivatives also may have correlation with the sig-

nal real amplitude. For example, in the 16QAM signal envelope, the derivative tends to be larger
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at the low amplitudes than at high amplitudes, and thus the delay affects the lowest amplitude

values the most.

Figure 5.3 illustrates how the derivatives of a 16QAM signal are distributed as a function

of the amplitude. As can be seen the average derivative is largest at the low amplitudes and

decreases towards the higher amplitudes and thus the error increases. However, it should be noted

that the derivative of the predistortion function at the current amplitude affects the instantaneous

error caused by the delay as well. If the value of the predistortion function does not change

significantly during the delay error period, the error in the linearization remains small also. Thus

if the PA to be linearized exhibits nonlinearity at the low amplitudes, the error is concentrated at

the lower amplitudes also. If, on the other hand, the PA is linear at the low amplitudes, the error

diminishes.
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Figure 5.3: The distribution of the derivative of a 16QAM signal versus the signal amplitude

The delay can be seen as phase rotation of the spectral components of the predistortion func-

tion which causes the distortion to be incompletely canceled or even increased. The relation

between the time and frequency-domain signals and their delayed versions is

vout(t) = APA(t)APD(t)vin(t) = vin(t) ↔ Vout(f) = APA(f) ⊗ APD(f) ⊗ Vin(f)

↓ delay ↓ delay

vout(t) = APA(t)APD(t − T )vin(t) 6= vin(t) ↔ Vout(f) = APA(f) ⊗ (APD(f)e−j2πfT ) ⊗ Vin(f)
(5.2)

As can be seen, the frequency-domain output signal becomes dependent on the bandwidth of the

signal as the error caused by the time difference depends on the location of the signal on the

frequency axis. The effects can be seen to be a basic form of memory effects. However, there
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is an important difference compared to the more complex memory effects: as the control signal

delay does not cause the distortion to spread over time, it can be compensated with adjusting the

delay of the RF or baseband signals without the requirement for complicated inverse filtering.

The facts concerning the distribution of the delay error according to the amplitude and pre-

distortion function can be also concluded from simulations. Figure 5.4 shows the ACP for a

16QAM signal with full-scale amplitude and half amplitude and for a full-scale DQPSK signal.

The simulations were performed with a static PA with a 256-entry LUT for storing the predistor-

tion function. PA models PA2 and PA3 were used. What can be seen is that the ACP deteriorates

rapidly at small delay levels. The delay matching should therefore be performed as accurately as

possible. What is also important to notice is the how the delay increases the ACP of PA2 more

rapidly than the ACP of PA3. This is due to the fact that the delay error has the greatest effect

for a 16QAM signal at the low amplitudes and, as the PA2 has nonlinearity at the low amplitudes

also, the delay error significantly interferes with the predistortion. The DQPSK signal, on the

other hand, has less low-amplitude peaks due to the non zero crossing properties of the signal;

thus, for the DQPSK signal, the results for PA1 and PA2 differ less from each other.
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Figure 5.4: The effect of the control signal delay on the ACP of an RF predistorted power ampli-

fier

Figure 5.5 shows the control signal delays for different filter configurations. The filters used

are Butterworth filters with different orders and the clock frequency is defined by finding the

frequency at which the stop-band attenuation reaches 40dB. The oversampling ratio defines the

ratio between the filter corner frequency and the clock frequency. The first plot shows the delay

of the control signal as percents of fenv. The figure assumes that the filter corner frequency is

four times higher than fenv due to spectral spreading caused by the envelope detector (Chapter 6).
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68 The effect of delays on an RF predistorter

As can be seen, high order filters and low oversampling ratios cause delays of several envelope

periods, which according to Figure 5.4, is clearly unacceptable.

There are several methods to reduce the delay. The delays caused by the envelope, recon-

struction and anti-aliasing filters can be minimized; however, this usually means relaxing the

requirements for the transition band width and increases the clock frequency. The clock fre-

quency can also be used to directly affect the control signal delay as it reduces the clock cycle

time and thus reduces the time consumed by the digital part of the system. However, increasing

clock frequency increases the power consumption of the digital part, which is not desirable. What

is also notable is that, due to the fact, that as the clock frequency and oversampling ratio increase,

the number of clock cycles corresponding to the time delay also increases. This causes the delay

measured in clock cycles to have a minimum at the oversampling ratio of four. This is important

for predictor circuits, which benefit from minimizing the delay in clock cycles. For these reasons,

these remedies cannot be applied infinitely and there will be significant amount of delay left in

the system.

Due to the previously mentioned problems, methods have been proposed to reduce the delay

difference by delaying the RF signal with the amount the baseband delay. However, the amount

of delay a filter can generate has its limits.

The transfer function of a filter can be written as a product of its poles and zeros as

H(ω) =
∏

n

jω − zn

jω − pn
(5.3)

=
∏

n

(−ℜ(zn) + j(ω −ℑ(zn)))
ℜ(pn) + j(ω −ℑ(pn))

−ℜ(pn)2 − (ω −ℑ(pn))2
. (5.4)

where zn are the complex zeros and pn are the complex poles. The phase transfer function can

be calculated with the help of (5.3) as

φ(ω) = arctan
ℑ(H(ω))

ℜ(H(ω))
(5.5)

=
∑

n

− arctan
(ω −ℑ(zn))

ℜ(zn)
+ arctan

(ω −ℑ(pn))

ℜ(pn)
.

Further the group delay of the filter can be calculated to be

τ = − d

dω
φ(ω)

=
∑

n

ℜ(zn)

ℜ(zn)2 + (ω − ℑ(zn))2
− ℜ(pn)

ℜ(pn)2 + (ω −ℑ(pn))2
. (5.6)

We get as the maximum delay

τmax =
∑

n

1

ℜ(zn)
− 1

ℜ(pn)
. (5.7)
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ℜ(pn)2 should be negative for the filter to be stable, and the real part of the zero should be positive

to contribute positively to the delay. In principle, any delay can be achieved if the real part of the

pole or zero is close enough to zero.

What can be seen from (5.6) is that the imaginary part of the poles and zeros define the

frequency of the maximum delay point. Another important fact that can be discovered from the

formula is that, the smaller the real part of the zero or pole is, the faster the delay falls from

the maximum value. To be able to compensate for the control signal delay effectively, the delay

filters should have such a group delay function that the delay does not change within the signal

bandwidth more than is required for the target ACP. This poses a limit on the minimum value of

the real part of the poles and zeroes and thus on the maximum achievable delay. On the baseband,

at least one of the filter poles should be at the same order of magnitude as the sampling frequency

of the baseband circuitry for one to be able to implement efficient anti-aliasing and reconstruction

filtering. On the RF path the filters have to be implemented using passive components and the

carrier frequency is hundreds or even thousands of times larger than the maximum baseband

frequency. This requires the zero or pole to have even thousands of times larger imaginary part

than the real part to move the delay peak from the DC to the carrier frequency. Therefore, the

required component values would be unrealizable with sufficient accuracy using inductors and

capacitors [142].

Nevertheless, by using mechanical resonator-based SAW or BAW filters, this kind of RF

filters with large delays can be implemented. This kind of delay elements are bulky [143] and

have strong reflections [144], which limits their usability. However, if the design already requires

a bandpass SAW filter, this same filter can also be used for delay compensation thus no additional

components are required. This kind of solution has been used by, for example, Kusunoki et al.

[10].

A more commonly used method for delay compensation is a passive coaxial delay line [86,

114, 137]. This is basically a length of cable that has a large-enough propagation delay. Since

the propagation speed of electromagnetic waves in a coaxial cable is commonly 65%-90% of

light speed [145] which means delays from 3.7 ns/m to 5.1 ns/m. This means that for delays of

hundreds of nanoseconds the cable lengths become tens of meters. As can be seen in Figure 5.5

to implement, for example, a 300 ns delay with coaxial cable with a propagation speed of 66%

of the speed of light, a cable length of 60 meters is required. If we use a coaxial cable with 2mm

radius, this device requires at least 9cm x 9cm x 9cm cube, which is not suitable for portable

devices.

There are also similar delay problems in EE&R transmitters due to separate RF and baseband

signals. Raab et al. [146] suggest down converting the RF-signal to baseband and then filtering

it with a filter with large group delay and then up-converting the signal. The problem with this

method is the required up and down conversion of the signals which makes the design more

complex and dependent on the carrier frequency and thus significantly limits the advantages of

the RF-predistortion over the baseband predistortion.

Finally, Kim et al. [147] propose generating the vector modulator control signals at the base-
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band in digital domain to form a hybrid of the baseband and RF predistorters. This makes it

possible to delay the RF signal digitally, but makes the predistorter dependent on the baseband

circuitry, so one of the advantages of the RF-predistorter is lost. However, compared to the base-

band predistortion system, the up-converter requires a narrower bandwidth[147].

To conclude, several methods to compensate the delay have been proposed, but they all ei-

ther require additional large hardware, which makes complete integration of the predistorter hard

or even impossible, or require forfeiting some important advantages of an RF predistorter over

baseband predistorter. Thus they are best suited for base-station applications.

5.3 The effect of delay mismatches on the feedback path

If the update of the predistortion function is based on subtraction of the PA input and output sig-

nals, either at the RF or at the baseband, the delay mismatch between the signals to be compared

causes unwanted spectral components to be present in the calculation of the error. This error is

due to incomplete suppression of the wanted signal during the subtraction of the PA input and

output signals.

The residual signal shows itself as an increased level of in-band distortion that is not level

dependent but, instead, depends on the previous signal values. Thus it resembles memory effects

in the PA. The approximate power of the unwanted signal can be calculated as follows. We assume

that the PA input signal is vin(t) and the output signal is vout(t). It is also assumed that the output

signal can be constructed from the input signal by adding an error signal, verr(t). As the most

important factors are the spectral components of the signal, it is feasible to perform the analysis

in frequency-domain. The Fourier-transformed versions of the signals are Vout(ω), Vin(ω) and

Verr(ω), respectively. Thus,

Vout(ω) = Vin(ω) + Verr(ω). (5.8)

Now we can calculate the error:

E(ω) = Vout(ω) − Vin(ω) = (Vin + Verr)(ω) − Vin(ω) = Verr(ω) (5.9)

When the output is delayed by T , (5.9) is transformed into the form

Edelay(ω) = Vout(ω)e−Tjω − Vin(ω)

= (Vin(ω) + Verr(ω))e−Tjω − Vin(ω)

= Vin(ω)(e−Tjω − 1) + Verr(ω)e−Tjω (5.10)

= Vin(ω)(1 − cos(Tω) + j sin(Tω)) + Verr(ω)e−Tjω ,

where trf is the carrier period. What we can see is that the delay causes the input signal to

be multiplied with a rotating phasor. Verr(ω)e−Tjω represents the delayed amplitude-dependent
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72 The effect of delays on an RF predistorter

error signal and thus the unwanted residual error can be written in the form

Eres(ω) = Vin(ω)(1 − cos(Tω) + j sin(Tω)) (5.11)

We can estimate the effect of the delay on the suppression of the signal band by calculating

the power spectrum of the residual error respective to the delay.

|Hres(ω)|2 =

∣

∣

∣

∣

Eres(ω)

Vin(ω)

∣

∣

∣

∣

2

=
(

(1 − cos (Tω))
2
+ (sin (Tω))

2
)

= 2 − 2 cos (Tω) (5.12)

If we consider the case where the subtraction is performed on the RF using analog components,

then ωin (5.12) can be replaced with 2πfrf , where frf is the carrier frequency and frf can be

further be replaced with the inverse of the carrier period, trf . Now if we assume the signal to be

fairly narrow band compared to the carrier frequency, we can approximate the attenuation of the

data signal component after the comparison to be the value of (5.12) at single point corresponding

to the delay T :

Ares(T ) = 10 log

∣

∣

∣

∣

Hres

(

2π

trf

)∣

∣

∣

∣

2

= 10 log

(

2 − 2 cos

(

2πT

trf

))

dB (5.13)

The power of the residual signal compared to the distortion power is plotted in Figure 5.6.
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Figure 5.6: The effect of delay mismatch on comparison of input and output signals on RF

The effect of delay on the comparison done on the baseband is more complicated as the signals

usually span a large number of frequencies from DC up to the envelope frequency, fenv and the

|Hres(ω)|2 changes very rapidly near DC. Therefore, for signals with continuous spectrum, the
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effect should be calculated by integrating (5.12) from−fenv to fenv. This gives us

Pres(T ) = 10 log



2 −
sin
(

2πT
trf

)

π T
trf



 . (5.14)

The calculated results of (5.14) and (5.12) are plotted in Figure 5.7. For comparison, simulation

results for delayed 16QAM, two-tone and 100-tone signals are plotted in the figure. It can be seen

that, as the tones get denser, the results follow Equation (5.14) more closely and the spectrally

continuous 16QAM signal follows the calculations almost exactly. A detailed analysis of the

effect of feedback delay on the update of baseband predistorters can be found in references [79,

115].
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5.4 Predictor

Instead of delaying the RF signal, the control signal delay can be compensated by expediting the

control signals. This can be done by predicting of the signal used to index the control signal

LUT. The following sections examine the implementation of this kind of prediction circuit using

polynomial functions and adaptive filtering and their applicability to RF-predistortion.
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74 The effect of delays on an RF predistorter

5.4.1 Polynomial predictor

One of the simplest ways (from theoretical point of view) to predict the future value of a signal

is to fit a function to the past values of the signal and use that function to calculate the estimates

for the signal. The complexity of the estimation is defined by the function used. It should be

noted that the complexity of the estimation function does not correlate with the goodness of the

estimation as the future signal values may differ considerably from the function even though the

fit of the previous values would be perfect.

Polynomials are very simple and flexible functions that can be used to predict the future values

of the signal. A significant advantage of polynomial prediction functions is that the polynomial

coefficients and the next value can be calculated simultaneously with a constant coefficient FIR

or IIR filter [148]. The bandwidth of the filter depends on the order of the polynomial [148]. The

higher the order of the polynomial, the higher bandwidth signals the filter is able to predict, but

the hardware requirements also increase by one filter coefficient for each additional polynomial

order. What should be noted is that a basic polynomial predictive filter is a high pass filter with

gain on the high frequencies and unity gain near DC. This means that the predictor is sensitive to

out-of-band noise and, as will be seen later in this section, as the polynomial order increases, the

sensitivity to noise increases also.

The simplest (first-order) polynomial predictor can be constructed by linear extrapolation or

by calculating the slope of the line defined by the two most recent signal values and by continuing

into the direction of this line for the number of clock cycles to be predicted [16]. This can be

written as

v(n + N) ≈ v(n) + N (v(n) − v(n − 1)) = (N + 1) v(n) − Nv(n − 1) (5.15)

whereN is the number of clock cycles to be predicted and v(n) is the signal value at time instant

n. Figure 5.8 shows the frequency response for a first order polynomial predictor with one clock

cycle prediction ability. The high-pass transfer function of the predictor is clearly visible and

the out-of-band gain is over 9 dB at the maximum, corresponding to decreasing the word length

by 1.5 bits (see Equation (3.10)). Thus this predictor is suitable for prediction of LUT address

lengths of at least two bits less than the input word length. Also evident in the figure is the fact

that the phase difference is linear, and thus the group delay is constant up to 0.05 fs.

The filter coefficients for a higher order predictor can be solved by fitting the past signal

values to a polynomial instead of a line [16]. The future values are then calculated by inserting

the desired number of clock cycles to this polynomial and calculating the predicted value. Using

this formulation one can derive the following formulas for second and third order polynomials:

v(n + N) ≈
(

1

2
N2 +

3

2
N + 1

)

v(n) − (2N − N2)v(n − 1) +
N + N2

2
v(n − 2) (5.16)
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Figure 5.8: Frequency response of a first order polynomial predictor

for a second order predictor and

v(n + N) ≈
(

10 −−47

6
N + 2N2 − 1

6
N3

)

v(n) + (−20 + 19N − 11

2
N2 +

1

2
N3)v(n − 1)

+ (15 − 31

2
N + 5N2 − 1

2
N3)v(n − 2) + (−4 +

13

3
N − 3

2
N2 +

1

6
N3)v(n − 3) (5.17)

for a third order predictor.

Figure 5.9 shows the operation of the first, second and third order polynomial predictors. It

can be seen that, when the signal has strong curvature, the higher order polynomials give better

prediction results, as these rapid changes in the signal have wide instantaneous bandwidth. On

the other hand, the more closely the signal approximates a straight line, the more strongly the

high-pass-type frequency response of the higher order predictors starts to affect the prediction

adversely. The higher order predictors amplify the frequency components generated by the small

fluctuation in the signal and they start to deviate significantly from the actual signal value when

the prediction period is long. The first order predictor filters out the small fluctuation and follows

the general direction of the signal. It should be noted that, with short time prediction, the high-

order polynomials give, in all the cases depicted in the figure, better results than lower order
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predictors.
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Figure 5.9: The prediction ability of polynomial predictors

If the control signal delays are compensated using analog delay elements, then there is a direct

trade-off between the size of the analog delay element and the signal oversampling ratio (i.e. the

clock frequency). In the case of a digital predictor, the optimization cannot be achieved purely

by minimizing the time delay. The reason for this is that the prediction error of a polynomial

predictor caused by noisy measurements is proportional to the prediction length.

The number of clock cycles predicted should be minimized, as this affects directly the high

frequency gain of the predictive filter, as can be seen by plotting the frequency responses of (5.19),

(5.21) and (5.23). According to Figure 5.5, this means that we cannot minimize the delay in the

DSP part of an RF predistorter by infinitely increasing the clock frequency. Actually, according

to the figure, the minimal number of predicted clock cycles is achieved with a fairly low OSR.

Also it should be noted that the time delay does not directly affect the hardware costs of

the predictor. Instead, the order of the polynomial and the required oversampling ratio define

the hardware costs. In fact, as the oversampling ratio defines the clock frequency of the whole

predistorter, it significantly affects the total hardware cost of the predistorter.

The effect of the oversampling ratio was examined with numerical calculations. Butterworth

filters with order varied 1 to 20 were selected to be the anti-aliasing and reconstruction filters in

the calculations. The signal over-sampling rate was defined as OSRsig = fclk/2
fmax,sig

. A quantity

called the filter oversampling ratio was calculated by dividing the frequency where the stop band

attenuation had reached 40 dB (this was chosen to be the clock frequency) by the filter corner

frequency. The filter oversampling ratio illustrates the relation of the filter bandwidth to the clock

frequency. The control signal delay was calculated by multiplying the filter group delay by two (to
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take into account anti-aliasing and reconstruction filters) and adding three clock cycles (one clock

cycle each for the A/D converter, D/A converter and DSP). The signal bandwidth was defined

to be the maximum bandwidth at which the difference between the group delay of the predictor

and the delay of the predistortion system was less than 0.5 % of the envelope period, which,

according to Figure 5.5, should cause a negligible ACP loss. Figure 5.10 presents the calculated

required signal oversampling ratios, minimum control signal delays as percentage of tenv , the

improvement in ACP of a 16QAM signal amplified with PA2, caused by the predictor (it should

be noted that the actual resulting ACP is the same for all cases) and the increase of noise floor

caused by the predictor’s high frequency amplification transformed into reduction of bit accuracy

calculated with (3.9), as a function of the filter oversampling ratio. The increase in noise floor

was calculated by integrating the noise floor power out-of-signal band before and after prediction.

The results for oversampling ratios from 1 to 11 are in a scale different from that of the results for

oversampling ratios from 11 to 100.

What can be seen is that the minimum of the signal oversampling ratio is achieved with a filter

oversampling ratio of little over 4 which corresponds to a fourth order Butterworth filter. Also it

can be seen that the percentile delay stays fairly constant. Furthermore, as can be seen from the

figure, this actually means that the ACP improvement caused by the prediction is almost the same

regardless of the filtering if the signal bandwidth is the same as the predictor bandwidth. Finally,

it can be seen that the decrease of accuracy due to the high pass filtering also stays constant

regardless of the filter oversampling ratio, but it should be noted that the SNR improves as the

oversampling ratio increases, so the accuracy actually improves somewhat as the OSR increases.

Although the results were achieved with a delay of a set number of clock cycles in the digital part

of the predistorter, it can be verified by simulations, that the filter OSR defines the shape of the

curves in Figure 5.10. Thus, the minimum stays at the same location and only the value of the

minimum changes.

When the results are compared to Figure 5.5, it can be seen that all the minima are located at

the filter oversampling ratio at which the delay in clock cycles is at minimum.

Figure 5.11 shows the maximum prediction ability of first to third degree polynomial pre-

dictors. The figure shows the maximum compensable delay from figure 5.10 transformed into

clock cycles as a function of the signal OSR in the same figure. As can be seen, there is a linear

relationship between the OSR and the prediction ability. By fitting a line to the results, we get as

the maximum prediction abilities

Nmax(1st order) = 0.10OSR − 0.47

Nmax(2nd order) = 0.13OSR − 0.86 (5.18)

Nmax(3rd order) = 0.23OSR − 1.30

It can be seen how the prediction ability of the third order predictor is over twice as good as a first

order predictor at the same OSR. The increase in noise power is less straightforward but, as can

be seen, the number of predicted clock cycles should be kept as low as possible and that the third
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order predictor is significantly more sensitive to noise than the first order predictor.

The high oversampling ratios required by the first order polynomial predictor may be a prob-

lem in some solutions. The OSR can be reduced by using a higher order polynomial, but this also

increases the noise gain, as can be seen from Figure 5.11. Heinonen et al. [16] propose introduc-

ing noise suppression to the predictor by implementing the filter with excessive order and using

the additional coefficients for averaging. This predictor is called a Heinonen-Neuvo (H-N) filter.

The principle of the H-N filter is that the noise suppressing predictor filters the previous samples

in order to reduce the noise and uses the filtered samples for the polynomial fitting. The design

formulas for the first-to-third order filters are [16]

H1st(z) =

N
∑

i=1

(c0 + c1i)z
−i, (5.19)

where

c0 = 2(3D+2N−2)
N(N−1)

c1 = − 6(2D+N−1)
(N+1)N(N−1)

, (5.20)

H2nd(z) =

N
∑

i=1

(c0 + c1i + c2i
2)z−i, (5.21)

where

c0 = 3(10D2+(−14+12N)D+6−9N+N2)
N(N−1)(N−2)

c1 = − 6(30(N+1)D2+(32N2−38)D+6N3−11N2−9N+14)
(N+2)(N+1)N(N−1)(N−2) .

c2 = 30(6D2+6(N−1)D+N2−3N+2)
(N+2)(N+1)N(N−1)(N−2)

(5.22)

and

H3rd(z) =

N
∑

i=1

(c0 + c1i + c2i
2 + c3i

3)z−i, (5.23)

where

c0 = −140 D3+(240 N+540)D2+(−600 N−120 N2−760)D+16 (N+4) (N+3) (N+2)
(N−3) (N−2) (N−1) N

c1 = 1680 N2+3080+4200 N)D3−60 (N+3) (45 N2+99 N+68)D2

N (N−1) (N−2) (N−3) (N+3) (N+2) (N+1) +
(1200 N4+17440+37200 N+10800 N3+31440 N2) D−40 (N+3) (N+2) (3 N3+36 N2+58 N+37))

(N (N−1) (N−2) (N−3) (N+3) (N+2) (N+1))

c2 = (−4200 N−4200)D3+720 (N+3) (9 N+8) D2

N (N−1) (N−2) (N−3) (N+3) (N+2) (N+1)+
(−2700 N3−47100 N−21960 N2−24960)D+60 (N+3) (N+2) (4 N2+51 N+35)

N (N−1) (N−2) (N−3) (N+3) (N+2) (N+1)

c3 = 2800 D3+(−4200 N−12600) D2+(19880+1680 N2+12600 N)D−140 (N+13) (N+3) (N+2)
N (N−1) (N−2) (N−3) (N+3) (N+2) (N+1)

(5.24)

respectively. D is the number of predicted clock cycles and N is the order of the filter. The basic

polynomial filters are a special case of H-N filters with N=polynomial order+1.

The filtering reduces the prediction ability and thus increases the OSR, but, by properly se-

lecting the filtering, the noise can be reduced for the higher order polynomials close to the level of
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the basic first order polynomial predictor, while keeping the OSR at a lower level . The disadvan-

tage of this is the increased hardware cost as the number of filter coefficients increase. However,

Campbell et al. [148] present implementations with constant hardware consumption for first

and second order predictors. The implementations require three multipliers and five adders and

five multipliers and twelve adders, respectively. The third order predictor can be implemented

similarly. According to Smith [149], the silicon area consumption of these constant hardware im-

plementations is profitable compared to the standard filter implementation when the filter order of

the first order predictor is higher than 5 and the filter order of the second-order predictor is higher

than 6. Although the constant hardware implementations use parallel IIR filters to implement the

FIR, Campbell et al. [148] state that the resulting filter is always stable as long as there are no

rounding errors.

Figure 5.12 presents the required signal oversampling ratios, OSRsig = fclk/2
fmax,sig

, minimum

control signal delays as percentage of tenv , the improvement in ACP due to the predictor of a

16QAM signal amplified with PA2 and the increase of noise floor power caused by the predictor’s

high frequency amplification transformed into reduction of bit accuracy calculated with (3.9) as

a function of the filter oversampling ratio when the predictor is an H-N filter with four additional

filter coefficients or N=polynomial order+5. When compared to the results in Figure 5.10, the

accuracy impairment of the filtered second- and third-order H-N predictors are improved below

the unfiltered first- and second-order polynomial filters, respectively, but the required OSR of the

second- and third-order filters remain significantly below the first- and second-order polynomial

filters, respectively.

5.4.2 Adaptive prediction

In addition to the constant coefficient polynomial prediction filters, digital prediction can be im-

plemented using adaptive filtering. The adaptive digital prediction algorithms are based on mea-

suring the filter output that is delayed by the number of clock cycles that we want to predict and

comparing it to the current input signal value. The filter coefficients are adjusted to minimize

the error between these (Figure 5.13). Common adaptation algorithms are recursive least squares

(RLS) and least mean squares (LMS) algorithms, from which the LMS is simpler but the RLS

has better convergence properties.

The LMS predictor updates the filter coefficients constantly to minimize the mean square

error between the predicted and actual signal using an instantaneous estimate of the gradient

vector. The LMS algorithm can be written as [125]

xout(n) = W
T

pr(n)X in(n)

e = xin(n) − xout(n − D)

W pr(n) = W pr(n) + µeXin(n − D)

, (5.25)

where xout(n) is the predicted signal at time instant n,W pr(n) is a vector of lengthN containing

the filter coefficients, X in(n) is a vector containing N most recent values of xin at time n and
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Figure 5.13: Adaptive filter structure [125]

xin(n) is the input signal value at time n, D is the number of clock cycles to be predicted, µ is a

constant that defines the speed of convergence and stability.

A problem with the basic LMS prediction is that the optimal polynomial order and the instan-

taneous error varies quite a lot. This means that the required adaptation speed varies over time,

which makes the environment non-stationary and further causes that the update to be either too

slow or too unstable to be effective in improving the ACP. [125]

The situation can be remedied by using a non-constant adaptation coefficient µ so that the

adaptation speed is altered according to the current situation. [125]

A normalized LMS (NLMS) algorithm is a fairly simple method to make the µ variable de-

pendent on the signal value. In the NLMS algorithm, the µ in (5.25) is replaced with µ

‖Xin(n−D)‖
resulting in

xout(n) = W
T

pr(n)X in(n)

e = xin(n) − xout(n − D)

W pr(n) = W pr(n) + µ

‖Xin(n−D)‖eXin(n − D)

. (5.26)

This alteration maximizes the MSE reduction per iteration [125].

The RLS filter uses the previous signal values to calculate the filter coefficients that minimize

the least squares error between the predicted value and the actual signal. The past signal values

are used to calculate recursively the correlation matrix. The advantage of the RLS adaptation

is that the convergence behavior is less dependent on the signal than with the LMS algorithm
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84 The effect of delays on an RF predistorter

[125] and it inherently contains a variable adaptation coefficient. However, the computational

complexity is larger than with the LMS algorithm.

The RLS algorithm can be written in several forms from which the following will be used in

this thesis [125]

SNxN
D (n|n < D) = δI

NxN

pNx1
D (n|n < D) = [0 0...0]T

XNx1
in (n) = [xin(n)xin(n − 1)...xin(n − N)]T

xin(n|n < D) = 0

SD(n) = 1
λ

[

SD(n − 1) − SD(n−1)Xin(n−D)XT

in
(n−D)SD(n−1)

λ+XT

in
(n−D)SD(n−1)Xin(n−D)

]

pD(n) = λpD(n − 1) + xin(n)Xin(n − D)

Wpr(n) = SD(n)pD(n)

xout(n) = W(n)T Xin(n)

(5.27)

The forgetting factor λ defines how much the past signal values affect the calculation and thus

defines the adaptation speed. Values near zero mean shorter memory and faster adaptation and

values near one mean long memory. Again, xout(n) is the predicted signal at time instant n,

Wpr(n) is a vector of length N containing the filter coefficients, Xin(n) is a vector containing

N most recent values of xin at time n, xin(n) is the input signal value at time n and D is the

number of clock cycles to be predicted.

In principle, the adaptive predictive filters are more flexible than polynomial filters as they

can change the polynomial order according to the signal shape and even produce non-polynomial

prediction functions. However, the predictor still suffers from the increased noise due to high

pass filtering and, since the adaptation is not optimized to offer additional noise suppression, the

excess filter order is in vain. Also, the reconfiguration of the filter to a higher or lower polyno-

mial order takes time, as the feedback for the correctness of the prediction comes only after the

actual signal value has arrived. This may even lead to instability as the filter tries to change the

shape of the prediction function to something that is not anymore valid, further increasing the

error. Furthermore, the hardware costs of the adaptive predictor exceed the polynomial predictor

significantly. Thus an adaptive filter is not usually a recommended solution for prediction, but

LMS and RLS filters will be used as reference in this thesis.

5.4.3 Simulation results

Delay compensation using prediction systemswere simulated withMatlab using the RF -predistortion

system based on linear LUT update described in Section 3.5.2. The circuit was simulated both

by using a fixed LUT to find the effect of delay and predictors on a general LUT-based digitally-

controlled RF predistorter and by using the linear adaptation to find the effect of delay in the case

of the presented predistorter.

The test signal used in the simulations was a 16QAM signal with the symbol rate of 22 ksym/s
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and filtered with a 0.3 roll off factor root raised cosine (RRC) filter. The clock frequency was 10

MHz. PA2 was used to model the PA nonlinearity (Section 2.7). The delays were modeled by

delaying the predistorter control signals by an integer number of clock cycles, no filtering was

used. The delays varied from 0% to 3.5% of the envelope period. The delays between the PA

input and output signals were assumed to be matched. The simulations were performed with

polynomial predictors with polynomial orders from 1 to 3 (equations (5.19), (5.21) and (5.23))

and N = polynomial order + 1, a fourth order normalized LMS filter (Equation 5.26), with

µ = 1
25 and a third order RLS filter (Equation 5.27), with µ = 0.9999. A 256-entry LUT was

used.

First, the prediction was simulated with a fixed LUT, in other words without adaptation. A

20-bit accuracy of calculation was used to reduce the effect of noise. The resulting first adjacent

channel powers are presented in Figure 5.14. The second order H-N filter offers clearly the best

results, being able to compensate fairly well for delays of over 3% from the clock period. This

results from the wide bandwidth and low-enough amplification of the second order H-N predictor

presented in Figure 5.10. The RLS filter and the third order H-N filter give good results and

are able to compensate well over 2% delays. It should, however, be noted that, for simplicity,

the internal signals of the RLS algorithm were not quantized and thus the results are optimistic.

Also, the ACP curve for the third-order H-N predictor stays flat longer than the curve for the

RLS predictor. The third order H-N filter already suffers from the large noise amplification. The

results are worse than with the second order H-N filter and the transition from full compensation

to poor compensation is very fast. The first order gives worse results than the other H-N filters

and the RLS filters but it still is able to compensate 2% delays with good accuracy. Finally, the

worst results are given by the LMS filter, which improves the ACP by only about 5dB and goes

unstable at large delays.

Next, the word length was reduced to 16 bits to increase the noise level and thus the adverse

effects of the out-of-band amplification of the higher order H-N filters. The other parameters were

kept the same. The RLS and LMS filters were not used in simulations with word lengths below

20 bits. The results are shown in Figure 5.15a. The low out-of-band amplification makes the first

order H-N filter the best predictor in this case, and it is able to achieve almost the same results as

when implemented with 20-bit accuracy. The second- and third-order H-N filters clearly begin to

suffer from the noise amplification. The compensation ability of the second order predictor has

reduced to the level of the first-order predictor and the third-order filter has become quite useless.

Figure 5.15b shows the effect of adding three filter orders to the H-N filters for noise reduction so

thatN = polynomial order+4. The noise filtering reduces the bandwidth of the first order filter

as expected. What is notable is the positive effect of noise reduction on the second and third order

H-N filters. Due to the reduced noise, the second order filter almost achieves results as good as

those achieved with a 20-bit word length without additional noise filtering; thus the second order

filter again is the best performing predictor.

Next, the word length was reduced to 12 bits to investigate the operation of the prediction

algorithm in short word length and high noise applications. No noise filtering was used. The
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Figure 5.14: ACP as a function of the predistorter control signal delay with different prediction

systems (Preloaded 256-entry LUT, no adaptation, 20-bit word length)
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86



5.5 Conclusions 87

results are shown in Figure 5.16. As can be seen, the second and third order H-N filters become

useless. The low out-of-band amplification of the first order filter helps it to still give good results.

Some fluctuation in the ACP, however, starts to be visible, indicating that the word-length limit

is near. This is what could be expected, since according to Figure 5.10, the loss in accuracy due

to the noise is 3 bits, and so the effective number of bits in the signal before the LUT address

calculation is only 9 bits, being only one bit more than the required address word length.
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Figure 5.16: ACP as a function of the predistorter control signal delay with different prediction

systems (Preloaded 256 entry LUT, no adaptation, 12 bit word length)

Finally, the circuit was simulated also using linear adaptation for the LUT update and 16-bit

word length. The update algorithm was the basic linear update (Equation 3.12). The results are

shown in Figure 5.17. The control signal delay clearly messes up the linear update very rapidly.

Without prediction, the update becomes unstable below 0.5% delay and the ACP deteriorates

quickly. The LMS, RLS and third order H-N prediction perform a little better, but still become

unstable very quickly. The first order H-N is able to compensate almost 1% delays before becom-

ing unstable. This led to the requirement of improving the basic linear update method to reduce

the probability of instability in the case of inaccurate delay compensation. The improved update

algorithm will be discussed in Chapter 7.

5.5 Conclusions

This chapter investigated the effect of the control signal delays and the delay difference between

the predistorter input and PA output signals on the operation of an RF predistorter and methods

to compensate the delays.
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Figure 5.17: ACP as a function of the predistorter control signal delay with different prediction

systems (Linear LUT adaptation, 256-entry LUT)

The residual error in the output and input signal comparison due to delay difference was

calculated; it was seen that the error increases very rapidly as the delays increase, especially if the

difference is calculated in analog domain using the RF signals. However, due to the fact that both

signals to be compared usually have quite high frequency, the delays are fairly small and can be

compensated with small analog delay elements. If the comparison is made after down conversion

of the signals, the error caused by the delay decreases and the delays also can be compensated

digitally.

The delay difference between the RF signal and the predistorter was seen to be very problem-

atic for the RF predistorters. Delays of 2% of the envelope period were seen to be able to increase

the ACP by almost 30dB. What makes this even more problematic is that, due to the large fre-

quency difference between the baseband control signals and the RF signal, delays may differ by

several orders of magnitude. Previously these delays have been compensated with analog delay

elements, but, due to large delay differences, the required components are very large. This makes

it very hard to implement a single-chip RF-predistortion module.

In this chapter, several digital predictive filters that can be used to compensate the control

signal delay digitally before the LUT indexing are presented. First to third order polynomial

filters were studied and it was found that, as the polynomial order increases, the maximum signal

bandwidth (and prediction ability) increases, but the predictor becomes more sensitive to noise. It

was seen that the first order H-N filter is the most useful of the three when using the more common

word lengths, although the second order predictor gave very good results when very long word

lengths were used. It was also seen that the first order H-N filter was able to compensate for over
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1.5% delays efficiently. RLS and LMS filters were also considered, but, although RLS filter gave

fairly good results, the complexity of these methods makes them less attractive solutions than a

basic polynomial filter.
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Chapter 6

Detectors and filtering in

RF-predistortion systems

6.1 Introduction

D/A D/A
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Figure 6.1: Envelope detectors and filters

The RF-predistortion systems usually use an envelope detector to generate the signals for the

predistortion control. The generated signals are then digitalized and used in, for example, index-

ing the LUTs that contain the predistortion function or to calculate a predistortion polynomial

based on the envelope. The transfer function of the detector and the consistence of the relation

between the input and output signals is very important as this affects how the values in the look
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up tables are distributed and how accurately a detected envelope value corresponds to actual en-

velope value thus affecting the linearization ability. The goal of this chapter is to investigate how

large the effects of the envelope detectors on the linearization ability of the predistorter are, and

how the detectors should be selected to minimize their adverse effects on the predistortion.

There are three commonly used envelope detection methods, namely quadratic or power de-

tector [134, 150, 151], linear (diode) detector [10, 114] (actually, not really linear, but only more

linear than the power detector and therefore called a “linear” detector) [151] and logarithmic de-

tector [81]. Each of these emphasize different signal amplitudes, thus giving different results on

different types of signals. The different envelope detector types also spread the spectrum of the

output signal differently, thus affecting the post-detection filtering requirements.

To remove the high-frequency signal components generated in the envelope detection, the

predistorter input signals have to be filtered. Also, the predistorter output signals have to be

filtered to remove the unwanted spectral components. In addition to delaying the control signals,

the filters have other undesired effects. As the envelope detector is a very nonlinear device, it may

generate a infinitely wide output signal spectrum, depending on the input signal. One therefore

has to choose at which point the filter cut off should be, so as not to remove so much information

from the signal that the predistortion starts to suffer. Similar effects also affect the predistorter

output signals, which may be very broad band, depending on the predistortion system and the PA.

Additionally, the filtering also causes frequency-dependent amplitude fluctuation to the filtered

signals, which may affect the operation of the predistorter. This effect is also present in baseband

predistorters.

The problems of selecting of the control signal generation method and the filtering of the

output and feedback signals in baseband predistortion systems has been discussed in several pub-

lications [108, 139–141]. In baseband predistortion systems, the predistorter control signals are

not filtered and the LUT index generation methods differ mainly in terms of the shape of the in-

dex generation function. In the RF-predistortion systems, the envelope detectors also differ with

respect to the difficulty of biasing, sensitivity, speed and power consumption, and the filters affect

the output signal of the detector. These effects have not been discussed in the literature and this

chapter concentrates mainly on them.

First, commonly used envelope detector types will be discussed and evaluated by simulations,

whereafter the effect of filtering is examined. Finally, a method to improve the performance of

the detectors is presented.

6.2 Envelope detector models

The output of a power detector can be approximated as

ypow(t) = |ybb(t)|2 , (6.1)
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the output of a linear diode detector can be approximated as

yd(t) = |ybb(t)| (6.2)

and the output of a logarithmic amplifier can be approximated as

yl(t) = log(alog+1)(alog |ybb(t)| + 1) (6.3)

where ybb(t) is the input envelope value and alog defines the shape of the logarithmic function.

The power detector can be implemented with a diode biased into square law operation con-

dition or multiplying the signal by itself [150], the linear detector consists of a diode biased to

linear operating condition [151] (actually, since the diode is a nonlinear component, the linear

operation condition means that the envelope transfer function of the diode can be approximated

fairly closely by a straight line, although there is deviation from the line shape, especially near the

cut-off voltage) and the logarithmic amplifier can be implemented with an operational amplifier

and a diode or a dedicated logarithmic amplifier chip (based on several successive amplification

stages).

The selection of the detector affects the statistical distribution of the detected address values

(how often the signal passes through the corresponding LUT entry), as well as the distribution of

the LUT entries (how large an amplitude range each LUT entry spans). What we would like to

have is a dense distribution of LUT entries at the amplitude values where the signal stays most of

the time and that has the strongest nonlinearity.

The amplitude spans of the LUT entries and the amplitude concentration of a 16QAM signal

are plotted in Figure 6.2 when using a power detector, linear diode and logarithmic detector. The

actual transfer functions were extracted from a model for a successive amplification-based loga-

rithmic amplifier and Schottky diode models using Agilent ADS Mentor simulator. What can be

seen from the figure is that both the power detector and the logarithmic detector have the largest

LUT entry span at the most probable amplitudes. This is especially a problem for the logarith-

mic amplifier. The linear detector has roughly the same entry span for all amplitudes. However,

different shapes of the amplifier nonlinearity may benefit from different detector amplitude dis-

tributions. This will be examined in the following sections.

The power detector and the logarithmic detectors also have advantages, namely they are easier

to bias than a diode detector, which requires large signal amplitudes and careful tuning [151].

6.3 The calculated effect of the envelope filtering

As the envelope detector operates by driving the signal through a nonlinear function and then

removing the results that fall on the multiples of the carrier frequency instead of the DC, a filter

is required after the nonlinear device to remove these unwanted components.

The effect of the reconstruction and anti-aliasing filters in baseband predistortion systems has
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Figure 6.2: The concentration of the amplitude of a 16QAM signal and the LUT entry width in a

256-entry LUT with different detectors
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previously been analyzed [140, 141]. As the envelope detection is a crucial part of the predistorter

control signal generation, in RF predistorters the effect of the envelope filtering should be taken

into consideration as well.

If a linear diode (Equation 6.2) that corresponds closely to the absolute value indexing [108]

in a baseband predistorter is used, the spectrum of the envelope is considerably wider than the

original signal bandwidth. This is due to the fact that the calculation of the absolute value requires

a square root function that is quite nonlinear. A logarithmic detector spreads the spectrum even

wider due to the additional logarithmic function. Both of these functions spread the spectrum

infinitely, but the bandwidth can be reduced by filtering to a limit until the error caused by the

truncation is negligible. The power detector has much more limited spectral spreading due to the

fact that |x|2 = x∗x, and thus the bandwidth is two times the bandwidth of the original signal.

This leads us to the hypothesis that the power detector does not require as wide a band filter as

the other detector types.

For the following consideration, the delay compensation between the RF- and control signals

is assumed to be perfect and accomplished by analog means since the band limitations of the

predictors and the delays of the filters affect each other, thus complicating the calculations.

The effect of envelope filtering can be analyzed theoretically by using a truncated Fourier

series [152]:

F (x) = a0 +

N
∑

n=1

ancos(nx) +

N
∑

n=1

bnsin(nx) (6.4)

where

a0 = 1
2π

∫ π

−π
f(x)dx

an = 1
π

∫ π

−π f(x)cos(nx)dx

bn = 1
π

∫ π

−π
f(x)sin(nx)dx

. (6.5)

A four tone signal

yRF (t) = (sin((ωrf − 2ωenv)t) + sin((ωrf − ωenv)t)+

sin((ωrf + ωenv)t) + sin((ωrf + 2ωenv)t))/2
(6.6)

was selected to present a wide band variable amplitude signal. The ωrf is the carrier frequency

and the δω is the tone frequency difference. This can be written in the baseband form

ybb(t) = (sin(ωenvt) + sin(2ωenvt))/2. (6.7)

In the following calculations two detector types are used. Namely, linear diode detector (Equa-

tion 6.2) and logarithmic detector (Equation 6.3). For the calculations we chose alog = 9. The

Fourier series of the detectors can be calculated using (6.4) and (6.5) by substituting (6.3) or (6.2)

for f(x). The value of N defines the truncation point of the series and can be understood as a

brick wall filter that has cutoff frequency at Nωenv.

A third-order nonlinearity (Equation 2.8) is used to model the power amplifier and a fifth-
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order polynomial (Equation 3.3) is used to model the predistorter. By replacing |Vin(t)| with
Vdf (t) that is the truncated Fourier series approximation of the absolute value and use coefficients

(3.4) and (3.5), we obtain

Vpd(t) = Vin(t)
(

1 − aVdf (t)2 + 3a2Vdf (t)4
)

. (6.8)

the detector output, F (x), is obtained by inserting (6.7) into (6.2) and (6.3) and inserting the

results into (6.4).

For the diode detector, we can simply use

Vdf (t) = F (x) (6.9)

but the logarithmic detector output after filtering has to be linearized using function

Vdf (t) = (10F (x) − 1)/alog (6.10)

to get an approximation for the absolute value.

Now, when we insert (6.8) to (2.8), we can calculate the generated distortion components

at the power amplifier output depending on the filtering after the detector. The results of these

calculations for a = 0.07 are presented in Figure 6.3. The figure also shows simulated results for

predistorters that use a third-order polynomial stored into a 256-entry LUT for predistortion and

the PA inverse transfer function stored into a 256-entry LUT. The distortion was calculated by
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adding first and second, third and fourth and so on Fourier coefficients together. This was done to

take into account the four-tone nature of the signal. The filter passband is presented in multiples

of the 2ωenv for the same reason. The filters were modeled in the simulations with fourth order

Butterworth filters using varying cut-off frequencies. ωenv was chosen to be 0.01fclk.

As can be seen, the calculated curves follow the simulated. The simulations with a third order

linearizer give somewhat worse results than the calculated due to the non ideal delay matching,

quantization and phase offset. The simulations with the PA inverse, on the other hand, give

better results due to better approximation of the nonlinearity and thus better correction than the

polynomials can achieve (See Chapter 3). However, both the simulated and calculated curves

clearly show that the linear diode detector requires the filter passband to be at least three times

the signal bandwidth and that the log detector requires five times the bandwidth for the maximum

correction.

6.4 Simulations of the envelope detector and filtering

As was seen in previous sections, a signal envelope detected with a logarithmic amplifier requires

significantly wider bandwidth than a diode detector and gives the largest emphasis to the lowest

amplitudes where the common digital communications signals usually spend least of their time.

When comparing the different detector types, it should be remembered that the power ampli-

fiers nonlinearity is distributed differently in amplitude domain depending on the amplifier type.

As was discussed in Chapter 2, in class-A amplifiers the nonlinearity is mostly concentrated on

the high amplitudes whereas the class-B, -AB and -C amplifiers exhibit nonlinearities at both low

and high amplitudes.

It would be expected that distribution of the LUT entries in such a way that the amplitude

values with most nonlinearity are most densely spaced would be advantageous. Cavers [108] has

presented results for different LUT indexing methods for a baseband predistorter. These methods

include indexing in power, which corresponds closely to a power detector, indexing in amplitude

which corresponds to linear diode and µ-law detector which is close to a logarithmic detector.

However, as Cavers [108] considers only the baseband predistorter, he does not take into account

the filtering. He also uses only one LUT size and does not examine the effect on the linearized

ACP, so in the following analysis these aspects will also be examined.

To study these factors, a static RF-predistortion system using the three detector types de-

scribed in Section 6.2 and the PA models PA1, PA2 and PA3 was simulated using Matlab. The

detectors were modeled in Agilent ADS by implementing the diode detector using an Agilent

HSMS2820 diode and the logarithmic amplifier with a nine-stage successive detection log amp

with stage gain of 14.3 dB. The diode detector was biased to linear and quadratic operation points.

The simulated AM-AM transfer functions were extracted and transferred into Matlab. The trans-

fer functions are shown in Figure 6.4. The clock frequency in simulations was selected to be 10

MHz and the signal was a 16QAM signal with 400 kHz bandwidth with the signal maximum
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Figure 6.4: The AM-AM transfer functions of the detectors

normalized to one. The LUT was loaded with the inverse of the PA transfer function.

6.4.1 The simulated effect of envelope detector and power amplifier char-

acteristics

To find the effect of the transfer function of the detectors to the linearization ability of an RF

predistorter, the predistorter was simulated with ideal time matching and without filters. To see

how the quantization affects the detected envelope, the circuit was simulated using LUT sizes

from 4 to 4096 entries and the calculation word length was set to 20 bits to reduce the effect of

output quantization. The signal was a 16QAM signal normalized to have maximum amplitude of

one. The results are plotted in Figure 6.5.

It can be noticed from the figure, that, in every case, the maximum achievable ACP for each

PA type is very nearly the same, although the address word length required to achieve this varies.

It can be noted that different detectors achieve the maximum with different PA models. This

means that, with proper selection of the detector, it is possible to either improve the ACP or

reduce the number of bits required for the target ACP. As it can be seen, the differences can be

as high as 30 dB. However, such large differences require a large number of LUT entries, which

increases the hardware costs and slows the convergence down if the LUT is updated adaptively.

The power detector is advantageous when the PA has nonlinearities only at high amplitudes,

but, even then, the improvement compared to the linear diode detector is small. The compression

of low amplitudes clearly affects the linearization ability adversely when there are nonlinearities

at the low amplitudes. The logarithmic detector is able to achieve the best linearity if there are

nonlinearities at low amplitudes. However, the advantage is gained only when the required ACP

is large and often other factors, such as delay matching, limit the linearity to lower ACP values.

Also, the required number of LUT entries is quite large. Usually, the linear diode would offer the
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most general solution for envelope detection.

For an ACP of 70dBc, an 8-bit LUT address should be enough when using a linear diode or a

logarithmic amplifier. In the case of PA3, even a 6-bit LUT should be enough. An 8-bit LUT will

be used in most of the simulations throughout this thesis.

6.4.2 Simulations with envelope filtering

The calculations in Section 6.3 showed that the amount the signal spectrum spreads due to en-

velope detection varies significantly with the detector type. This affects the required bandwidth

of the envelope filter. The filters also express amplitude and phase fluctuation in the passband,

which may affect the linearization ability. This section will study these effects by simulations.

Fourth-order Butterworth filters are used to filter the envelope in the simulations. The 3-dB

corner frequency was altered in 200 kHz steps, starting from 200 kHz up to 2.6 MHz. So the

corner frequency varies from one signal band (SB) to 13 SB. The control signal delays caused

by the filters were matched with an accuracy of 4 ns or 0.16% of tenv to minimize the effect of

delays. The control signals for the phase and amplitude modulator were filtered with a fourth

order Butterworth filter with the 3-dB frequency at 17xSB after the D/A conversion. A 256-entry

LUT was used in the simulations. The input word length was 12 bit and internal word length 16

bits.

The simulated ACP with the three detectors and power amplifiers versus the filter corner

frequency expressed in SBs is plotted in Figure 6.6. It can be seen that, after the filter bandwidth

is wide enough, the results follow the results simulated without filters. When the plots are studied

with respect to the filter bandwidth, it can be noted that the diode detector requires a bandwidth

from 4 to 6 SB. The logarithmic-detector-based method requires for the same ACP from 1 to 2

SBs wider passband than the diode and power detector. These results are similar to those that

were calculated in Section 6.3.

In the case of PA3, the curves follow quite well the calculated ones quite well, although

the minimum is achieved with a 1 SB wider bandwidth. This, however, can be explained by the

slightly better ACP minimum. In the case of PA1, the logarithmic detector gives a good minimum

ACP, as expected; however, the linear diode still exceeds these results with narrower bandwidth.

In the case of PA2, the results with the logarithmic amplifier are somewhat worse than expected.

In none of the cases is the logarithmic detector able to give the best linearization results, due to

delay mismatch and LUT size restriction.

The results support the view that the linear diode is the most general of the three detectors.

It has the least bandwidth requirements in all cases in addition to having the best minimum ACP

with all PA types.

The narrow bandwidth of the envelope detected by the power detector did not prove to be a

real advantage in any of the cases. The bandwidth requirements are almost exactly the same as

those for the linear diode detector. Even in the case of PA3, the advantage is insignificant.
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Figure 6.6: Simulation results with different PA and detector types
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The fairly large bandwidth requirements of the power detector compared to the diode detector

can be explained by inspecting the error caused by the filtering relative to the amplitude. Figure

6.7 shows the distribution of the filtering error expressed in terms of the number of LUT entries.

DQPSK, 16QAM and two-tone signals filtered with a Butterworth filter with corner frequency at

3 SB and a 256-entry LUT were used.

It is noted that the filtering error is mainly concentrated at the low amplitudes except in the

case of the power detector, which has very low error at all amplitudes. Because the power detector

compresses the low amplitudes thus reducing the accuracy there, this advantage is partially lost.

What is more, the transfer function of the power detector is most advantageous in the case where

there are no nonlinearities at the low amplitudes. In this case, all the LUT entries in the linear

part have almost the same value, and thus the error in the LUT indexing caused by the filtering

does not have a large effect on the LUT output. The concentration of the filtering error on the low

amplitudes hinders also the logarithmic detector, which would offer the most accurate correction

at the low amplitudes.

When the filter bandwidth requirements for different PA types shown in Figure 6.6 are com-

pared, it can be seen that the case with PA1 requires the widest bandwidth and the case with PA3

the narrowest. This agrees with the data presented in Figure 6.7, as PA1 requires the best infor-

mation of the low amplitude values to be linearized properly and so the filter bandwidth needs to

be wide to minimize the errors, whereas PA3 is linear at the low amplitudes.

To conclude, it seems that the linear diode is the most versatile solution ACP wise and band-

width wise. However, as discussed earlier, the biasing of the diode to linear operation condition

requires large signal amplitudes and also increases current consumption [151]. This may cause

one to have to make the selection between the power and logarithmic detectors.

6.5 Linearized detectors

It would be beneficial to be able to have an envelope detector that would combine the very versatile

transfer function of the linear diode detector while still retaining the easy biasing and lower power

consumption of power and logarithmic detectors, especially since often the linear detector is not

feasible, making it necessary to settle for the inferior transfer functions of the other detectors.

The use digital signal processing for generation of the predistortion control offers a solution

for this. Since the detected signal is transferred to digital domain, an inverse transfer function

of the detector can be implemented by, for example, using an LUT to approximate the transfer

function of the linear detector. This section inspects the effectiveness of this solution to reduce

the drawbacks of the power and logarithmic detectors and provide an easy-to-bias detector with a

good linearization performance.

A linearisation function generates an inverse of the logarithmic or quadratic function so that

the LUT index is a linear function of the RF signal envelope. The linearisation function for the

log amplifier is of the form (6.10) and for the power detector ylin =
√

ypow. In the ideal case,
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tors and signals

103



104 Detectors and filtering in RF-predistortion systems

these give ylin = |ybb(t)|. However, the filtering causes the actual results to deviate from these
ideal results. The effectiveness of the linearized detection was investigated by simulations.

The predistortion system was simulated using the same parameters as in the previous section

but with a 4096-segment linearization table added before the LUT indexing to find the actual

effectiveness of the linearization. The results are collected in Figure 6.8. The most notable

result is that all the detectors achieve as good an ACP as the linear diode. This means that

the linearization is clearly able to remove the adverse effects due to the amplitude compression.

This is also visible in the operation of the power detector. As the actual detected signal is fairly

narrowband compared to the other detectors, and as the adverse effects of the low-amplitude

compression are compensated by the linearization, the linearized power detector , when used in

conjunction of PA1 and PA2, is able to achieve with a narrower filter bandwidth the same results

as the linear detector. These PA types benefit from the removal of the low amplitude compression

of the power detector.

The results clearly show that the linearization of the envelope detector works well as a method

to generate a general easy-to-bias envelope detection method that still retains the linearization

ability of the linear detector. The disadvantage, however, is the increased size of the digital

hardware due to the additional LUT.

6.6 Conclusions

This chapter investigated the effect the envelope detectors and filters have on the operation of an

RF predistorter and how the envelope detector should be selected to minimize its adverse effects

on the predistorter.

The simulations showed how the power detector tends to compress the signal into lower am-

plitudes and at the same time generates the sparsest LUT entry spacing at these amplitude values

increasing the quantization errors. The logarithmic detector has the same effect on the high am-

plitudes. Furthermore the simulation results showed how the logarithmic detector requires, due

to its more nonlinear nature, over 50% more bandwidth from the envelope filter than the diode

detector.

When the detectors were used without filters, the simulations showed how the logarithm de-

tector gave better linearization results than the other detector types when the nonlinearities were

concentrated on the low amplitudes and the LUT was large, thanks to its emphasis on the low

amplitude values and how the power detector performed the best when the nonlinearities were

concentrated on the high amplitudes, again thanks to its emphasis on these amplitudes. However

in all cases the results achieved with the linear detector with small LUT sizes were the best or

very close to the best.

When the filtering was added, the logarithmic detector lost its advantage and did not perform

well with any of the PA models. This was shown by simulations to be result of the filters tendency

to affect especially the detectors lower amplitude output values where the advantage of the loga-
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Figure 6.8: Simulation results with different PA and linear detector types
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rithmic detector would be. The power detector was neither able to outperform the linear detector

with any of the PA models.

The envelope detector based on diode biased to the linear operation condition, was thus shown

to be the best detection method, but it may not always be a possible solution depending on the

signal level. In these cases, a logarithmic amplifier or a quadratic diode has to be used.

To compensate the disadvantages of the logarithmic and power detectors, a method of lin-

earizing the outputs of the power and logarithmic detectors digitally was introduced and tested

through simulations. The method was shown to be able to improve the operation of the logarith-

mic and power detectors so that the results, given wide enough bandwidth were practically the

same as for the linear detector.
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Chapter 7

Implemented RF-predistortion

system

7.1 Introduction

During the thesis work an RF predistortion system was implemented to investigate the operation

of an RF predistorter and evaluate its linearization performance through measurements. This

system was also used to verify the effect of the digital prediction algorithm on the predistortion.

In this chapter, the design and implementation of the RF-predistortion system is presented.

The predistortion system was implemented to linearize different class-AB multi-stage amplifiers.

The signal bandwidth of 18 kHz used in most measurements and carrier frequency range from 400

MHz to 420MHz were chosen according to the TETRA standard [6]. The implementation uses an

analog phase modulator and amplitude modulator on the RF path that are controlled by a digital

LUT-based algorithm in an FPGA. The system is the first one to implement a phase/amplitude-

modulator-based predistortion with a simple time-domain feedback and adaptive phase LUT. The

previous systems have used either a static-phase LUT [10], quadrature LUT [86, 114] or more

complex LUT update methods [9].

Also, measurement results are presented for the system with and without a prediction algo-

rithm. The results of the first measurements led to development of an improved LUT update

algorithm. The measurement results for the system using this updated algorithm are presented in

the end of this chapter.

7.2 Hardware implementation of the RF predistorter

A block diagram of the complete system, including the measurement and control setup, is shown

in Figure 7.1. The signal was divided with an on-board discrete Wilkinson power divider (block

A) between the detectors and the PA. The PA signal is predistorted using an analog predistorter
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108 Implemented RF-predistortion system

that consists of a SV-Microwave VP451 voltage-controlled phase shifter (block B) and a PIN

diode T-attenuator (block C). A class-AB PA implemented with discrete components is situated

after the predistorter (block D). Both two- and three- stage amplifiers with various gains were

used in the measurements. The output is sampled using a -20 dB directional coupler (block E)

for the feedback path. The feedback output is further attenuated with an adjustable attenuator to

match the power level at the PA input.

After block A directs part of the input signal power to the detectors, the signal is further

divided between the phase and amplitude detectors with the second Wilkinson divider (block F).

The PA output signal is also divided between the phase and amplitude detectors with a Wilkinson

divider (block J). The phase and amplitude detector inputs are matched to 50 Ω using matching

circuits (blocks G, I, L and M).

The phase detector was implemented using an Analog Devices AD8302 phase detector chip

(block H). The two envelope detectors (blocks N and O) were implemented with Analog Devices

AD8313 logarithmic detectors. The outputs of the phase and amplitude detectors are amplified

and filtered with active filters constructed with OPAMPs (blocks P, Q and R). The filtered output

is transferred to digital domain with three 12-bit A/D converters operating at 10MHz (blocks S, T

and U). The digital data is transferred to an ALTERA Cyclone FPGA operating at the same clock

frequency. The FPGA (block V) contains the digital algorithm presented in Section 7.3.

The predistorter control signals from the FPGA are fed to 10 MHz 12-bit D/A converters

(blocks X and Y). The outputs are filtered and amplified with active filters constructed with

OPAMPs (blocks Z and a). Finally the outputs are fed to the predistorter.

The input RF signal for the system was generated with a Rohde & Schwartz SMIQ vector

signal generator (block b). After the PA, the amplified signal is driven to the measurement devices

(block c). The output of the PA was measured using a spectrum analyzer, oscilloscope and a

network analyzer. The parameters of the digital algorithm can be altered using a Python-based

interface on a PC connected to the FPGA through a serial port (block e). Full-speed digital data

from the FPGA can be read with a logic analyzer connected to the FPGA (block d).

7.3 The first version of the digital algorithm

The design of the digital predistortion algorithm was started by the selection of the LUT update

algorithm and the word lengths for the calculation. As can be seen from the formulas in Section

3.5.2 the secant method is significantly more complex than the linear iteration method. Also, on

the basis of simulations (Section 3.5.2), the convergence speed of the linear method was seen to

be good enough and the stability was better than with secant method. Thus the first version of the

predistorter used a basic linear update algorithm (eq. 3.12). The implementation of the algorithm

is shown in Figure 7.2.

Env_out and Env_in are the measured 12-bit PA output and input envelopes, respectively,

and phase diff is the measured 12-bit phase difference signal, phase_corr and env_corr are the
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Figure 7.2: The block diagram of the basic linear update algorithm

12-bit phase and envelope correction signal outputs. The convergence coefficient (a in (3.12))

was implemented with an adjustable right shift. The word length of the internal calculations was

chosen as 16 bits to accommodate the shifted bits without truncating the words.

The delay of the PA was compensated by adding an adjustable delay to Env_in before the

subtraction from Env_out. There are also adjustable delays after the phase_diff input and the

subtraction of the envelope signals to compensate for the delay difference between the phase

and amplitude detection. The address for the LUT update is delayed to match the delays of the

envelope difference signal.

The two RAM blocks are the phase and amplitude LUTs that each contain 256 entries with

16-bit word lengths. The ROM contains the inverse of the logarithmic amplifier or diode transfer

function. The ROM contents can be changed at the system startup using the PC interface. The

TRUNC block truncates the RAM output to 12 bits before sending it to the D/A converters.

7.3.1 Implementation of the predictor

To reduce the control-signal delay, an H-N predictor was added to the implementation. The pre-

dictor is located in the digital part after the envelope linearization LUT (Figure 7.2). The predictor

was implemented with a basic FIR with 5 coefficients. The coefficients were implemented so that

they could be reprogrammed through a serial connection using a PC. The order of the predictor

could be selected between first to third and the filter order between second to fifth. The predictor

used 16-bit internal accuracy with 12-bit inputs and outputs.
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7.4 Measurement results without predictor with the original

algorithm

Measurements were performed using a 16QAM signal with an 18 kHz bandwidth and filtered

with a root raised cosine filter with a 0.3 roll off factor. The carrier frequency was 420 MHz.

The DC level of the phase shifter’s control was adjusted to half way of the phase shifter’s control

range and the variable attenuator was set to 2 dB attenuation when the control signals were zero.

This allowed the signal to be linearized by amplifying the signal. A two-stage amplifier with 12

dB gain was used. Figure 7.3 shows the spectrum of a 30 dBm 16QAM signal at the PA output

without linearization.

Figure 7.3: The measured PA output without linearization and using an 18 kHz 16QAM signal.

The output is attenuated by 20 dB.

Figure 7.4 shows the measured gain and phase shift of the amplifier as a function of the input

power before and after correction. The phase curves were minimized so that the minimum was

0◦ and the gain curves were normalized so that the maximum gain was 0 dB. It can be seen that

due to linearization, the envelope variation decreases from 1.39 dB to 0.3 dB and phase variation

from 1.74o to 0.37o over a 20 dB range.

Although the narrow band AM-AM and AM-PM results were promising, it was noted that

especially the phase LUT update was very unstable when using wider band signals. The reason

for this was found to be the unacceptably large delay between the RF and control signals (Section

5.2). Figure 7.5 shows a measured spectrum of the 18 kHz 16QAM at the PA output when the

phase and amplitude correction are applied and the LUT is constantly updated. A mild improve-

ment at the upper sideband can be noted but, due to the instability, there are visible error spikes
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Figure 7.4: The measured AM-AM and AM-PM effects of the PA before and after correction

at the spectrum.

The problem was averted by using a 500 kHz triangular wave as a training signal to load the

LUT. This signal was slow enough to be stable. The phase and amplitude LUTs were updated

separately. The corrected spectrum of an 18-kHz 16QAM signal at 420 MHz carrier measured

from the output of the two-stage amplifier is presented in Figure 7.6. According to the measure-

ments, the predistorter is able to reduce the first ACP by over 10 dB and the second sideband

power by 6 dB. The unbalanced sidebands signify that there are memory effects present in the

system. The sources are the PA and different delays in the control signal.

The power amplifier was later updated to a three-stage amplifier to increase the gain and to test

the system with a more nonlinear amplifier. The gain of the three-stage amplifier was 20 dB. The

LUT update still used the separate training signal. Figure 7.7 shows the measured uncorrected

and linearized spectra of an 18 kHz 16QAM signal for this configuration. The third amplifier

stage increases the uncorrected ACP by 6 dB. The linearization improves the lower ACP by 8 dB

and the upper ACP by 17 dB. The memory effects are significantly increased by the addition of

the third stage, leading to a 9 dB difference between the sidebands.

7.5 Measurements with the Heinonen-Neuvo predictor

For the following measurements the predictive filter was programmed to be a first order H-N

predictor with 5 coefficients and prediction ability of 8 clock cycles, which seemed to give the

best results. The prediction ability was selected to compensate the A/D and D/A converter delay

(1 and 3 clock cycles or 100 ns and 300 ns respectively), the DSP delay (1 clock cycle or 100 ns)

and analog filter and detector delays (over 200 ns).

The LUT was not loaded using a test signal. Instead, the LUTs were initially empty and
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Figure 7.5: The measured spectrum using an 18kHz 16QAM signal and continuous LUT update
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Figure 7.6: Measured 18 kHz 16QAM signal. Fixed LUT .

114



7.5 Measurements with the Heinonen-Neuvo predictor 115

C e n t e r 4 2 0  M H z S p a n 1 2 0  k H z1 2  k H z /

R e f  L v l
 3 5  d B m
R e f  L v l
 3 5  d B m

R B W  5 0 0  H z
V B W  2  k H z
S W T  2 . 4  s

R F  A t t  4 0  d B

 2 0  d B  O f f s e t
 A  

U n i t d B m

1 R M

  - 6 0

  - 5 0

  - 4 0

  - 3 0

  - 2 0

  - 1 0

    0

   1 0

   2 0

   3 0

  - 6 5

   3 5

1

M a r k e r  1  [ T 1 ]        
          - 6 0 . 5 7  d B m
    4 1 9 . 9 5 0 0 0 0 0 0  M H z

1  [ T 1 ]        - 6 0 . 5 7  d B m
        4 1 9 . 9 5 0 0 0 0 0 0  M H z
C H  P W R          3 0 . 3 2  d B m
A C P  U p         - 4 0 . 8 6  d B  
A C P  L o w        - 4 0 . 9 6  d B  
A L T 1  U p        - 6 4 . 0 7  d B  
A L T 1  L o w       - 6 6 . 9 9  d B  

¬ c l 2
c l 2
c l 1

c l 1
C 0

C 0
c u 1

c u 1
c u 2

c u 2 ®

(a) uncorrected spectrum

C e n t e r 4 2 0  M H z S p a n 1 2 0  k H z1 2  k H z /

R e f  L v l
 3 5  d B m
R e f  L v l
 3 5  d B m

R B W  5 0 0  H z
V B W  2  k H z
S W T  2 . 4  s

R F  A t t  4 0  d B

 2 0  d B  O f f s e t
 A  

U n i t d B m

1 R M

  - 6 0

  - 5 0

  - 4 0

  - 3 0

  - 2 0

  - 1 0

    0

   1 0

   2 0

   3 0

  - 6 5

   3 5

1

M a r k e r  1  [ T 1 ]        
          - 5 1 . 0 2  d B m
    4 1 9 . 9 5 0 0 0 0 0 0  M H z

1  [ T 1 ]        - 5 1 . 0 2  d B m
        4 1 9 . 9 5 0 0 0 0 0 0  M H z
C H  P W R          3 1 . 3 8  d B m
A C P  U p         - 5 7 . 9 7  d B  
A C P  L o w        - 4 8 . 8 5  d B  
A L T 1  U p        - 6 2 . 3 0  d B  
A L T 1  L o w       - 6 6 . 0 5  d B  

¬ c l 2
c l 2
c l 1

c l 1
C 0

C 0
c u 1

c u 1
c u 2

c u 2 ®

(b) linearized spectrum

Figure 7.7: The measured spectrum using an 18kHz 16QAM signal and static LUT update with a

three stage PA
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were constantly updated with the linear update algorithm. The measurement results are shown in

Figure 7.9 and in Figure 7.8. During the measurements presented in Figure 7.8, both the phase

and amplitude predistortion were in use. An 8.5 kHz π
4 -DQPSK signal was amplified. As can

be seen, without the prediction the predistortion has not much effect except that of making the

results worse due to the stability problems. When the predictor is switched on, the predistorter is

able to reduce the instability and improve the first ACP. However, the adaptation is still not fully

stable and thus the second and higher adjacent channel powers remain unacceptably high. The

measurements still show that the predictor is clearly able to reduce the instability of the update

caused by the delayed control signals. Unfortunately, increasing the prediction ability of the

predictor was not able to improve the results due to increasing prediction error and due to larger

delays than expected.
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Figure 7.8: The effect of prediction on the spectrum of an 8.5 kHz π
4 -DQPSK. Phase and ampli-

tude adaptation on.

For wider bandwidth signals, the phase update is still too unstable, even with the predictor.

Thus for the wider band measurements only the amplitude update was on. Measurement results

for a 14 kHz π
4 -DQPSK signal are shown in Figure 7.9. It can be seen that the results are even

better than in the previous case due to the removal of the more sensitive phase update. However,

errors that increase the ACP at higher adjacent channels still remain.

In conclusion, the predictor is able to improve the linearization results in the measurements

due to increased stability.
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7.6 Improved DSP algorithm

As the results in previous sections show, it was noticed that the original digital algorithm became

unstable when the errors in the envelope and more importantly phase detection errors, became

too large due to noise, delays, offsets etc. Also the delays in the circuit were larger than expected.

Since the instability of the update is due to the incorrect and noisy values of the detected signals,

it would be beneficial to collect the signal values over a larger time span. Another problem is

that, due to delay, the same error affects the update several times before the updated LUT value

starts to affect the fed back signal. Thus there is undesirable overcorrection that may, in the worst

case, make the update unstable and so the suppression of the update until the new LUT value is

in effect is desirable.

Figure 7.10a shows the situation with the constant update. When there are several equal values

in rapid succession, the LUT values are updated again before the previous update has taken any

effect. As can be seen, three of the updates are invalid. In Figure 7.10b, the update of an LUT

entry is disabled until the new value has taken effect. We can note that, now there are no invalid

updates, there are two clock cycles without update and now the third and last update is valid.
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Figure 7.10: The effect of too a frequent update on LUT update
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Naskas et al. [138] suggest a batch update for a baseband predistortion system, that can

remove the invalid updates caused by the forward loop delay. This batch update method uses a

training signal that is driven through the PA and the output values are collected into memory. After

the training signal has ended, the new LUT values are calculated according to themeasured signal.

After that, the LUT is updated and the normal operation commences using a fixed LUT. However,

the requirement for a training signal makes the method complicated. Also, the predistorter is

actually a static predistorter, since the update is performed only when the predistorter is started

and not during the actual operation.

It was decided to add some properties of the batch update to the basic linear LUT update

algorithm but to still retain the use of the actual data signal for LUT update and the continuous

LUT update. To accomplish this, a memory that contains one entry for each LUT entry was added.

The averages of the phase and amplitude differences over fixed number of samples that correspond

to the respective LUT entries are stored into these entries. When enough samples are collected,

the LUT is updated according to the stored values using the basic linear update algorithm. Then

the update is suppressed for a fixed number of clock cycles or until the LUT entry changes. This

adds to the algorithm the averaging property and also reduces the possibility of instability due to

updating invalid LUT entries. On the whole, the algorithm operates as follows:

1. Set the averaging counters and the update-suppression counters to zero and clear the LUT

and the memory

2. Calculate the LUT address and the difference of the input and output envelopes

3. If suppression counter is zero, or the LUT address 6= last update address, add the differences
to the averaging memory and add the corresponding averaging counter by 1

4. Subtract suppression counter by 1

5. If averaging counter > averaging limit calculate the new LUT values with (3.12), update

the LUTs and set the averaging counter to zero and the suppression counter to 10

6. Go to step 2

The improved algorithm is shown in Figure 7.11. The additions performed to the original algo-

rithm did not increase the hardware cost unacceptably much and the whole algorithm could be

still implemented fully on the FPGA.

To verify the improvement, the modified circuit was simulated with MATLAB. The system

setup was the same as that was used for Figure 5.17, with the algorithm changed to the new one

and with a value of a in (3.12) set to 0.5 and the averaging limit to 16 clock cycles. Figure 7.12

shows the simulated results. What can be seen is that the simulations without the linearization stay

stable for much larger delays than before modification. This is important, as the predictor may

not compensate the delay exactly and the remaining delay affects the system just as an equally

large uncompensated delay (or the effect can be even worse as the delay error is accumulated
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Figure 7.11: The DSP algorithm with the batch update

with the errors due to the predictive algorithm) and the circuit should remain stable even if the

residual delay errors are present. The improved algorithm can be seen to improve the stability of

the prediction methods, especially with the first order H-N filter.

7.7 Changes in the measurement setup

In addition to the changes in the DSP algorithm, the predistorter hardware was slightly modified.

Due to the simulation results presented in Chapter 6, the logarithmic detectors (blocks N and

O) were replaced with Agilent HSMS2820 Schottky diodes biased to nearly linear operating

point. Furthermore, the ROM containing the detector inverse was loaded with the inverse of the

diode detector to make the detector more linear, while the amplifier to be linearized was again

changed to a two stage class-AB amplifier with 22 dB gain due to the fact that the three stage

amplifier implementation proved to be too fragile formeasurements and the number of component

breakdowns became too high. The carrier frequencywas also reduced to 400MHz to better match

to the measurements of the baseband predistorter.

7.8 Measurements with the improved algorithmwithout teach-

ing signal

The implemented improvements were tested with measurements using the measurement setup

described in the previous sections. Several bandwidths were tested to test the limits of the system

and also to see how it operates with less demanding narrow bandwidth signals. Two tone signals

were to investigate the contribution of different orders of distortion to the results.

The operation of the algorithmwas first tested with a 1 dBm 3 kHz two tone signal input, with

only amplitude correction and with both amplitude and phase correction. The results are shown in

Figure 7.13. As can be seen, the linearization now remains clearly stable and the noise floor does
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Figure 7.12: The simulated ACP of the predistorter using the improved linear adaptive algorithm

not increase due to linearization. What can be seen also is that the higher order distortion compo-

nents do not increase due to the linearization. The addition, the phase correction clearly improves

the lower third-order distortion component and the upper fifth-order distortion component.

The bandwidth was next increased to 18 kHz. Figure 7.14 shows the measurement results for

the 18 kHz 23 dBmAM signal. The update is still stable, but, with the wider band signal, memory

effects become more significant. When there is only amplitude correction present, the lower third

order distortion component is reduced by over 20 dB, whereas the upper third order component

remains the same as without correction. However, the improvement in the fifth-order component

is not large.

When also the phase correction is operational, it can be seen that the memory effects change

shape and the lower third order distortion component returns to the original level and the higher

order component is the stronger one. This would either imply that there is different kind of

memory on the phase and amplitude correction branches, or that the imbalance of the lower and

upper distortion coefficients is actually due to the minor memory effects that the phase correction

can reduce. If the amplitude correction is tuned to improve the other distortion coefficient, and

now that the phase correction works, the tuning is lost and the sidebands return closer to each

other, thus removing the gained linearity improvement also.

To find the performance of the updated linearizer in a more real-life situation, the PA was

used to amplify a 32QAM signal. First a signal with 3 kHz and 23 dBm output power was
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Figure 7.13: Spectrum of 3 kHz AM signal amplified with and without RF-predistortion and with

both amplitude and phase correction in operation and with only amplitude correction.

122



7.8 Measurements with the improved algorithm without teaching signal 123

R e f  L v l
 3 4  d B m
R e f  L v l
 3 4  d B m
 2 0  d B  O f f s e t

U n i t d B m

R F  A t t  4 0  d B

C e n t e r 3 9 9 . 9 9 9 9 0 6  M H z S p a n 1 5 0  k H z1 5  k H z /

R B W  1  k H z
V B W  5  k H z
S W T  3 8 0  m s

1 V I E W

3 V I E W

  - 6 0

  - 5 0

  - 4 0

  - 3 0

  - 2 0

  - 1 0

    0

   1 0

   2 0

   3 0

  - 6 6

   3 4
N o n l i n e a r
L i n e a r i z e d  w i t h  a m p l i t u d e  c o r r e c t i o n
L i n e a r i z e d  w i t h  P h a s e  a n d  a m p l i t u d e  c o r r e c t i o n
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with both amplitude and phase correction in operation and with only amplitude correction.
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used. The results are shown in Figure 7.15. The linearization improves the first upper and lower

sidebands by 20 dBc but the ACP of the higher sidebands increases due to the remaining nonlinear

components. The worse results compared to the AM sine are due to the greater dependency of

QAM signals from the phase linearity.
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Figure 7.15: Spectrum of a 3kHz 32QAM signal with and without linearization (phase and am-

plitude linearization)

Figure 7.16 shows the measured phase rotation and gain of the power amplifier plotted against

input amplitude. Both the phase and gain become significantly flatter after the correction. The

best results are achieved at the high amplitudes where the noise and other error sources are least

significant. At the low amplitudes, the errors start to hinder the performance and the measure-

ments spread over wider phase and gain ranges. The removal of the sources of these errors would

be very crucial to the development of the circuit.

Next the bandwidth of the signal was increased to 18 kHz, keeping the output power the

same. The results are shown in Figure 7.17. As the envelope frequency increases, the errors in

the system start to affect the linearization ability more. For example, the memory effects become

stronger, the control signal delays are more significant etc. The linearity improvement therefore

reduces to 10 dB. However, when compared to Figure 7.5, the improvement in stability due to the

new algorithm is clear.

Finally a 50 kHz 32QAM with 17.5 dBm output was linearized. The phase update could not

keep up with the signal anymore and had to be shut down. As the phase update is shut down

and the bandwidth becomes wider, the memory effects also start to show and result in unbalanced

sidebands.

The operation of the linearizer on different power levels and the achieved efficiency improve-
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Figure 7.16: The nonlinear and linear phase and amplitude transfer functions with a 500kHz

32QAM signal
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Figure 7.17: Spectrum of a 18kHz 32QAM signal with and without linearization (phase and

amplitude linearization)
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Figure 7.18: Spectrum of a 50kHz 32QAM signal with and without linearization (only amplitude

linearization)

ment of the PA was tested using the 18 kHz 32QAM signal optimized to maximum linearity at

the 1 dBm input level. The optimization means the adjustment of the detector biases and the D/A

and A/D converter analog in put and output voltage ranges to maximize the linearity. Figure 7.19

shows the measured efficiency of the PA with and without linearization. To achieve over 50 dBc

ACP the nonlinearized amplifier requires a backoff of 15 dB, which, on the other hand, reduces

the PAE to less than 1%. When the linearization is switched on, the 50 dBc ACP is achieved with

no backoff and the PAE at 10%. Unfortunately, as the predistorter is optimized at 1dBm power,

the linearization ability deteriorates, when the backoff is increased. To compensate for this, the

predistorter should be optimized again for a lower power level if this is required.

Figure 7.20 shows the ACP versus efficiency for both the linearized and nonlinear amplifier.

The nonlinear amplifier has an ACP plateau between 3% and 18% efficiencies close to 40 dBc.

The linearization is able to improve this plateau between 4% and 12% efficiencies to 50 dBc, thus

improving the linearity of the system.

7.9 Conclusions

This chapter described the design of the RF-predistortion system that was implemented during

this thesis work. The system included a PA chain suitable for a TETRA transmitter and analog

phase and amplitude modulators were used as the predistortion elements. The system used both

logarithmic and diode-based envelope detectors. The predistortion control and the adaptation

algorithm was implemented on an FPGA. The carrier frequency range used in the measurements
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Figure 7.19: The linearized and nonlinearized ACP and efficiency of the measured PA with an

18 kHz 32QAM signal versus output power when the predistorter is optimized for 1 dBm input
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was from 400 MHz to 420 MHz and the signal bandwidth varied from 3 kHz to 50 kHz.

Measurement results for this system were presented, first without digital prediction. These

results proved that the original LUT update algorithm was unstable when used with wide band

signals. One contributing factor for this was the control signal delay which caused errors at the

measured feedback signals. When the LUT was loaded using a narrow bandwidth teaching signal,

the predistorter was able to linearize the 18 kHz bandwidth signal and reduce improve the ACP

by 8 dB on the other adjacent channel and 17 dB on the other.

The addition of the digital predictor was able to reduce the instability of the system, but not

remove it completely. Therefore a new adaptation algorithm was developed and implemented to

the system. The algorithm was based on collecting more measurements for the update and adding

a guard period for the update to reduce the risk of contaminating the update by the changing of

the LUT value. The algorithm improved the performance of the system and the system was able

to achieve a 10 dB reduction in the ACP on both adjacent channels, without the use of separate

training signals.
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Chapter 8

Baseband predistortion

8.1 Introduction

Another predistorter that was considered for the linearization of the TETRA band transmitter is

the baseband predistorter. It was not seen to have the same development potential, being more

studied and used solution than RF predistorter. It is a more complex system than the RF predis-

torter. However, it has some advantages and therefore also a baseband predistortion system, with

specification similar to the RF predistorter, was implemented during this thesis work to compare

its performance to the RF predistorter. During this implementation, some new issues relating to

the baseband predistorters, were studied, such as the nonlinear quadrature modulator errors (sec-

tion 8.6) and improved frequency domain LUT update methods ( section 9.6) related also to the

RF predistorters.

Since the baseband signals have much lower frequency than the final RF signal, when using

analog predistortion element, it would be easier to implement the predistortion function at the

baseband instead of RF [9]. As the modern communication systems usually use baseband sig-

nals in quadrature form, the analog implementation of the baseband predistorter would require

a predistorter on both of the branches and the two predistorters should be identical which com-

plicates the design. However, as the baseband quadrature signals are usually generated in DSP,

it is beneficial to transfer the implementation of the predistorter into the DSP [9, 11, 79, 107].

This approach, however, forfeits some of the benefits of the RF-predistortion. Namely, the fact

that RF and baseband circuitry are not any more independent from each other and the baseband

predistorter also requires down mixers on the feedback path for the adaptation.

Figure 8.1 presents a basic block diagram of a baseband predistorter. The circuit uses correc-

tion values stored into a lookup table or, in some cases, directly as a polynomial function[153] to

alter the complex baseband signal in such a way that the PA nonlinearity is compensated. After

applying the correction, the signal is digital-to-analog converted, quadrature modulated, possibly

up-converted and amplified with the PA.

This chapter presents the design of a complex gain baseband predistorter and compares dif-
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Figure 8.1: Block diagram of a digital PA predistorter.

ferent quadrature error correction systems required for the system. Also, new results of the effect

of quadrature modulator nonlinearity are presented. Finally, simulation and measurement results

of the baseband predistortion system are presented.

8.2 Building blocks of the baseband predistorter

An adaptive baseband predistorter consists of two main building blocks: the predistortion func-

tion, which defines the maximal linearization ability of the predistorter and the adaptation algo-

rithm, which defines how well the predistorter can follow changes in the PA to be linearized.

These blocks will be discussed in this section.

8.2.1 Predistortion Function

Several possibilities to implement the predistortion function of a baseband predistorter have been

presented in the literature. The first presented digital baseband predistorters were actually data

predistorters [87], which means that the actual baseband data signals are shifted to reduce the

distortion in the data constellation. As the predistortion is performed at the symbol frequency

instead of the D/A converter sampling frequency the requirements for the digital circuitry are

relaxed. However, the problem is that this system corrects only the errors in the received symbols

and not the actual distortion on the envelope. This means that only in-band distortion is actively

reduced, although the ACP can improve inadvertently.

The idea of a predistorter operating at the D/A output frequency and thus being able to cor-

rect the out-of-band distortion was presented by Bateman [90]. The first implementation was

presented by Nagata [79]. The system uses a very straightforward method involving a two-

dimensional LUT containing the complex predistortion function. The LUT is directly indexed

with the complex baseband signal. The predistortion function can be written as

vpd = vin + Fpd(vin) (8.1)
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8.2 Building blocks of the baseband predistorter 131

This kind of system is called the mapping predistorter. A block diagram of the mapping pre-

distortion function is shown in Figure 8.2. Although the algorithm is computationally simple,

this method has very high hardware costs due to the two-dimensional LUT. This large LUT also

converges very slowly to the final value [79] in adaptive implementations. Modifications to the

mapping predistorter system to reduce the size of the LUT have been suggested [130] but these

modifications also affect the linearity adversely.

inI pdI

fbI

fbQ

Q in pdQ

LUT

Update

Figure 8.2: Mapping predistortion [79]

However, since the PM-PM and PM-AM effects are negligible in regular power amplifiers, the

number of LUT entries can be significantly reduced by changing the indexing so that it depend

eds only on the amplitude of the envelope [11] and applying the predistortion function to the

original signal as a complex gain function. This reduces the size of the LUT by the square root

of the size of the mapping predistorter, thus reducing the hardware costs and the LUT adaptation

time. The cost of this is the increased computational complexity, as the amplitude calculation

requires at least calculation of the signal power and the generation of the complex gain requires

complex multiplication [11]. The predistortion function of the complex gain predistorter can be

written as

vpd = vinFpd (|vin|) (8.2)

A block diagram of the complex gain predistortion function is shown in Figure 8.3.

The third common baseband predistortion method, the polynomial predistorter, can be seen

as a variation of the complex gain predistorter. The relationship of the polynomial baseband

predistorter and complex gain predistorter can be seen when (3.3) is written in the following

form:

vpd = vin

(

N
∑

n=1

aPDn |vin|n−1

)

= vinFpd (|vin|) . (8.3)
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which is the same as (8.2). A block diagram for a third order polynomial predistortion function is

shown in Figure 8.4.

The polynomial predistortion function has especially been used in relation to the compensa-

tion of memory effects of power amplifiers (Chapter 2.8) [54, 120, 154], although memoryless

implementations have been presented as well [155, 156].

The actual calculation of the polynomial every time instant is not very feasible, as the poly-

nomial order increases. Instead, the values of the polynomial corresponding to some predefined

input signal values are often calculated beforehand and inserted into a LUT [29, 54]. Thereafter,

the operation of the predistorter is exactly the same as for a normal complex gain predistorter,

with the exception that the function is limited to polynomial form. The advantage of the polyno-

mial predistorter is that it requires only a low number of parameters, which is beneficial in some

adaptive update methods (Chapter 9).

The fourth common baseband predistortion method is the polar predistorter[91, 157]. The

polar predistorter requires the baseband signal to be in polar form instead of rectangular form and

the predistortion is achieved by altering the phase and amplitude of the signal as follows:

vpd = |vin|FA (|vin|) earg(|vin|)+Fφ(|vin|). (8.4)

This is closely reminiscent of the operation of the phase-amplitude modulator based RF predis-

torter (Section 4.4.1). Block diagram of the complex gain predistortion function is shown in

Figure 8.5. The polar predistorter allows the inspection of the phase and amplitude errors of

the PA separately, which is useful in behavioral studies [91], but requires the transformation to

polar form and back during the predistortion, which is very costly hardware-wise [91]. If the

predistorter is implemented adaptively, another rectangular to polar converter is required for the

feedback. However, if the baseband signal is originally in polar form, as is the case with EE&R

transmitters, the polar predistorter becomes a significantly more efficient method than the com-
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8.2.2 The adaptation

As the power amplifier transfer function changes with temperature and age and from device to

device, the linearization ability achieved by constant correction is limited. As is the case with the

RF-predistortion, the baseband predistortion function can also be implemented adaptively.

Just as with the RF-predistorter, there are two main methods to implement the feedback:

frequency and time-domain sampling.

The frequency-domain sampling can be implemented with similar ACP feedback as presented
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for RF-predistortion in figure 4.6. The ACP feedback allows the implementation to be performed

with narrow bandwidth, as only the average distortion power level has to be known [56, 105]. The

ACP feedback is suitable for predistortion systems using, for example the Nelder-Mead algorithm

[158], genetic algorithm [159] or simulated annealing [160] for the LUT update. These use an

aggregate measure of error for calculation of the update.

The time-domain feedback is the most common feedback method [11, 54, 79, 161–163] for

baseband predistorters. It allows for several different adaptation methods, which can be further

divided into those that update only one LUT entry at a time and those that update the whole LUT

at once.

The update of one LUT entry at a time is usually computationally less complex and does not

restrict the shape of the predistortion function. As examples of the update methods for single

entry update, Nagata et al. use the modified linear update method (Equation 3.12) [79], Cavers et

al. use the secant method (Equation 3.13) [11] and the basic linear update method (Equation 3.11)

[108]. As is the case with the RF-predistortion systems, the time-domain update requires good

delay matching between the system input and output signals. This is discussed more thoroughly

in Section 5.3 and in references [79, 115].

The update of the whole LUT at once requires much more computation power than the update

of a single LUT entry and the complexity increases rapidly as the number of the LUT entries

increases. However, it is more suitable for compensation of PA memory effects which require

several codependent functions to be updated simultaneously. Usually, this update method is used

in conjunction with polynomial LUTs to reduce the number of parameters [56, 105, 120, 121,

124, 153, 154]. Common update methods are RLS [120, 124, 125, 154] and LMS [121, 125,

153]. Also a genetic algorithm has been proposed for both memoryless predistorters and memory

predistorters [56, 105]. The polynomial function, however, limits the linearization ability of

the predistorter. Chapter 9 discusses a possibility to reduce the number of parameters with an

interpolation function.

8.3 Linear quadrature modulator and demodulator errors

The quadrature modulator and demodulator required on the forward and feedback paths of the

baseband predistorter are significant error sources in baseband predistortion systems [164]. Al-

though linear quadrature modulator and demodulator errors cause linear transformation of the

modulated signal, by themselves they do not cause spectral spreading of the signal [164]. How-

ever, when combined with a nonlinear amplifier, new phase dependent spectral components are

generated.

Common errors are DC offsets, which cause the signal constellation to shift, phase offsets,

which cause the I and Q channels to feed through to each other and squash the constellation in the

direction of 45o from I or Q axis and gain errors, which squash the constellation in the direction

of I or Q axis [165]. Figure 8.6 depicts the effect of the quadrature modulator errors on a 16QAM
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signal constellation.
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Figure 8.6: The effect of quadrature modulator errors on 16QAM signal constellation

The linear quadrature errors can be written in the following matrix form: [165, 166]

[

Iqm

Qqm

]

= M

[

I

Q

]

+

[

dI

dQ

]

=

[

a cos(φ/2) b sin(φ/2)

a sin(φ/2) b cos(φ/2)

][

vI

vQ

]

+

[

dI

dQ

]

,

(8.5)

where a and b are the gains of the I and Q channels respectively, φ is the phase error and dI and

dQ are the I and Q channel offsets. Using this format eases the development of a compensation

method for the modulator errors using inverse matrices.

Another possibility is to use a complex conjugate format of the modulated signal [116].

vqm = Avpd + Bv∗pd + C, (8.6)

where A, B and C are coefficients depending on the phase, gain and DC errors, as presented

by Cavers [116]. The conjugate format allows for simpler calculations than the matrix format

as the calculations can be performed directly with complex numbers without having to resort to

matrices.
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All the linear QM errors depend on both the phase and the amplitude of the baseband signal

(or the individual I and Q signals), i.e. they cannot be expressed in the form of

vqm = H(|vpd|). (8.7)

The mapping predistortion is fairly insensitive to the QM errors due to its two-dimensional index-

ing, which makes it possible to have separate correction values for each I and Q signal combina-

tion [130].

However, due to the reduced hardware costs of the method, most baseband predistortion sys-

tems implement the linearization based on the amplitude of the signal. Unfortunately, amplitude-

based predistorters, such as the complex gain predistorter, are vulnerable to the quadrature de-

modulator errors [91, 116, 164]. They are able to compensate only errors of the form of (8.7) and

the linearization ability is significantly reduced due to QM errors.

Figure 8.7 shows the spectrum of a quadrature sine wave,

f(t) = sin(ωt) + i cos(ωt), (8.8)

when driven through a non-ideal quadraturemodulator. The DC offsets cause an unwanted carrier

signal to emerge and the phase and gain offsets generate an unwanted image signal on the opposite

side of the carrier to the wanted signal. All of these signals cause misadjustment to the predistorter

adaptation. The figure shows shows second and third order harmonic components caused by

independent nonlinearities in the I and Q channels. The effect of these nonlinear components on

the predistortion systems will be discussed more thoroughly in Section 8.6.

In adaptive predistortion systems the errors in the quadrature demodulators also cause error

in the adaptation [167]. Usually, compensation circuits for the quadrature modulator and demod-

ulator errors are implemented in amplitude-based baseband predistorters [165].

The effects of quadrature modulator and demodulator errors on nonlinear linearized power

amplifiers are discussed in more detail in references [116, 164, 167].

8.4 The predistorter architecture selected for implementation

It was decided to concentrate in this work on the complex gain predistorter, (Equation 8.2), due

to its fairly low hardware requirements and relative simplicity. Also a hardware implementa-

tion of the complex gain predistorter was achieved. This made it necessary to also implement a

quadrature error correction circuit, which will be discussed later in this chapter.

As is the case with RF-predistortion systems (Chapter 6), the LUT addressing significantly

affects the efficiency and complexity of the baseband predistortion. However, unlike in RF-

predistortion systems, all the indexing methods are usually based on indexing by power. For

example, the amplitude of a complex signal is the square root of the instantaneous power. Thus,

indexing by amplitude requires calculation of the power and calculation of the square root. There-
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fore, using any indexing method other than power indexing directly increases the complexity of

the system. This relation is much more clear in baseband predistortion systems than in RF-

predistortion systems.

Unlike in a mapping predistorter, which can use the complex baseband signal to directly index

the LUT [79], in amplitude-based predistorters, an indexing signal related to the real amplitude of

the complex baseband signal has to be calculated. The simplest way to implement the addressing

is to use the squared absolute value or power of the complex baseband signal. This is also the

basis for other LUT addressing methods. The squared absolute value is calculated with

vp = real(vin)2 + imag(vin)2 (8.9)

whichmeans that two multipliers and an adder are required. This method, however, over-emphasizes

the large amplitudes and affects the linearization ability adversely [108]. This is similar to the

power detector arrangement in the RF-predistortion systems (Chapter 6).

Several methods have been presented to change the indexing so that the emphasis of the

amplitude values can be changed to a more efficient one, such as direct amplitude indexing and

indexing with a logarithmic function [78, 108–110, 168]. All of these methods, however, use (8.9)

as the basis function and alter the result to calculate the new address. This means that they are

actually methods for only rearranging the LUT entries. These methods shall be discussed in more

detail in Chapter 9. However, since the use of the non-squared envelope significantly improves

137



138 Baseband predistortion

the operation of a baseband predistorter [108] and is a fairly commonly used method [107, 169–

171], and since it was used in the implemented baseband predistorter, it will be discussed in this

chapter.

The use of amplitude-based indexing requires the calculation of the square root of (8.9). The

calculation of the square root with a high degree of accuracy is a complicated operation [172]

that usually requires several iterations, so it is not feasible. However, the square root can be

approximated with sufficient accuracy using small ROMs with an interpolated output [107, 169].

In the implemented predistorter, only one ROM was used in the implementation instead of a

square root ROM and a square root difference ROM, due to availability of dual-port ROMs.

The implementation is presented in Figure 8.8 and operates as follows: The 16-bit input word

is divided into an “integer” part, which consists of the six most significant bits of the input word,

and into a “fractional” part, which consists of the 10 least significant bits of the input word. The

integer part is used to index a ROM that contains the 64 square root values of the 6-bit input signal

and the outputs of the ROM are the square root of the integer part and the next larger value in

the ROM. The difference of these values is multiplied with the fractional part and added to the

smaller ROM value to interpolate the output.

xi

xi+1
6 MSB

10 LSB

i

x 16
16

6

16 16

ROM

10

16

Figure 8.8: Square root algorithm.[107, 169]

It was noted that, since the phase distortion in the PA is usually fairly small, the LUT contain-

ing the imaginary part of the predistortion function contains only very small values and most of

the value range of the quadrature LUT is unused. By adding a phase rotation at the predistorter

output it is possible to create a constant phase rotation to the predistortion LUTs also. Part of the

real part of the predistortion function can be moved into the imaginary LUT. This means that the

unused value space in the quadrature LUT can be used to store part of the in-phase distortion. This

makes it possible to have gain larger than one without clipping the predistortion function. Figure

8.9a shows an example of a 32-entry LUT quantized with 8 bits; the phase error is 1o. As can be

seen, the original in-phase LUT has entries with values larger than one and these values would

be clipped to one when quantized. Figure 8.9b shows the same function rotated by 45o. Now the

function is more evenly distributed between the LUTs and the maximum value is reduced to one,

thus there is no clipping although the gain of the signal is still more than one.

The block diagram of the basic complex gain predistorter algorithm with amplitude indexing

and linear LUT update, (Equation 3.11), is shown in Figure 8.10. Block A calculates the absolute

value of the complex signal, Block B implements (8.2), Block C does the rotation by 45o, Block

D calculates the new LUT value with the linear update and Block E stores the values to the LUTs.

138



8.4 The predistorter architecture selected for implementation 139

5 10 15 20 25 30

−1

0

1

I

index

v
a
lu

e

5 10 15 20 25 30

−0.02

0

0.02

Q

index

v
a
lu

e

(a) LUT entries before rotation

5 10 15 20 25 30

−0.5

0

0.5

index

v
a

lu
e

Q

5 10 15 20 25 30

−0.5

0

0.5

index

v
a

lu
e

I

(b) LUT entries after rotation

Figure 8.9: The effect of the rotation of the predistorted signal on the LUT entry distribution

Lower case letters indicate signals that originate in one part of the diagram and terminate at the

other. µ is the linear adaptation convergence factor, Iin and Qin are the input signals, Ifb and Qfb

the feedback signals and Iout and Qout the output signals. CPLX MULT blocks implement a

complex multiplication and the CPLX DIV divides a real number by a complex number.

It was decided to implement an interpolation scheme at the LUT output to improve the ac-

curacy of the predistortion function. The different interpolation methods and their effects are

discussed more thoroughly in Section 9.4.3. Due to its simplicity, the linear interpolation scheme

was chosen. The linear interpolation scheme can be described with the formulas [91]

LUTintp(n) = LUTk(n) + frac(2bit |Vin(n)|) · (LUTk+1(n) − LUTk(n)) (8.10)

and

Vpred(n) = Vin(n) · LUTintp(n). (8.11)

where Vin(n) is the original complex input signal normalized to have absolute value between 0

and 1, LUTk(n) is the kth value stored in the LUT, k = int(2bit |Vin(n)|), int function returns

the integer part of a number, frac returns the fractional part, bit is the LUT address word length,

n the time instant and Vpred(n) the predistorted signal.

There is one thing that should be noted when using an interpolation scheme with an adaptive

LUT: the predistortion signal consists of a weighted sum of two or more LUT entries, thus the

LUT update value should be “deinterpolated” between two or more LUT entries to take into

account their different weights [91]. If the linear update method (Equation 3.11) is used the LUT

update with deinterpolation becomes [91]
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LUTk(n + 1) = LUTk(n)+

(1 − frac(2bit |Vin(n)|)) · a (Vout(n)−Vin(n))
Vout(n)

LUTintp(n)
(8.12)

and

LUTk+1(n + 1) = LUTk+1(n)+

frac(2bit |Vin(n)|) · a (Vout(n)−Vin(n))
Vout(n)

LUTintp(n).
(8.13)

where the notation is the same as in (8.10), (8.11) and (3.11).

The block diagram of the predistortion algorithmwith linear interpolation and deinterpolation

is shown in Figure 8.11. Blocks from A to E are the same as in Figure 8.10, Block F implements

the interpolation and Block G implements the deinterpolation. CPLX REAL MULT multiplies a

complex number with a real number. The other symbols are the same as in Figure 8.11.

8.5 Correction of linear quadrature modulator and demodu-

lator errors.

If an analog quadrature modulator and demodulator are used in a baseband predistortion system,

a quadrature error compensation circuit is almost a necessity [116, 164]. The following section

discusses the implementation of the quadrature error correction circuit used in the design and

methods for adaptive update of the correction function.

8.5.1 Correction of the linear quadrature errors

Most straightforward way to derive the quadrature error correction function is to generate the in-

verse formula of (8.5). Thus, the compensation can be performed by multiplying the predistorted

baseband signal with the inverse of the matrix M in (8.5) and subtracting a DC compensation

coefficient [173]:
[

I

Q

]

= C

[

Ipd

Qpd

]

− C

[

dI

dQ

]

, (8.14)

where Ipd andQpd are the predistorted baseband signals. The DC correction coefficient,C

[

dI

dQ

]

,

can be written as a constant vector

[

dIpd

dQpd

]

and as the multiplication matrix C we get:

C = M−1 =
1

cos2(φ)ab2

"

1 − tan(φ

2
)

−a/b tan( o
2
) a/b

#

. (8.15)
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Because the term 1
cos2(φ)ab2 corresponds to constant gain, it can be compensated with a complex

gain predistorter and thus can be omitted. Now the C matrix can be further simplified to

C =

[

1 − tan(φ
2 )

−γ tan(φ
2 ) γ

]

, (8.16)

where γ = a/b. Thus the final quadrature compensation formula is

[

I

Q

]

=

[

1 − tan(φ
2 )

−γ tan(φ
2 ) γ

][

I

Q

]

+

[

dIpd

dQpd

]

. (8.17)

This matrix can be implemented with a simple digital circuit [20]. However, Faulkner et al.

[20] use C multiplied by b, thus having gain correction multipliers in both I and Q paths. Figure

8.12 shows the implementation of (8.17) using a circuit similar to one presented by Faulkner et

al. [20], but with the gain multiplier only on Q branch. The circuit elements in the quadrature

modulator correction are ordered in such way that the DC errors are compensated last, so that they

do not interfere with gain and phase error correction and the gain errors are compensated second

so as not to interfere with the phase error correction [20]. The demodulator correction circuit is

ordered in the opposite way for the same reason. The implementations of both circuits use four

adders and three multipliers.

−dQ
φ/2−tan(       )

−dI

I

Q

I

Q
pd

pd

γ

(a) Quadrature modulator correction

φ/2−tan(       )

Q
fb

I
fb

γ

Q

I

−dI

−dQ

(b) Quadrature demodulator correction

Figure 8.12: Quadrature modulator and demodulator correction

Cavers et al. [165] have shown that, by assigning the phase error correction to only either I or

Q branch, the circuit requires only two multipliers and three adders. This is results from the fact

that C can be written as

[

1 − tan(φ/2)

−γ tan(φ/2) γ

]

=

[

cosφ sin φ cos φ
1+cos φ

− sinφ cos φ
1+cos φ cosφ

][

1 − tan(φ)

0 γ
cos φ

]

, (8.18)

where the first matrix on the right side of the equality corresponds to a constant phase rotation

and thus it can be compensated by the predistorter. Now, we can use as the compensation matrix
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C =

[

1 − tan(φ)

0 γ
cos φ

]

. (8.19)

However, it was noticed during simulations that the quadrature error correction without the

removal of the constant phase shift (8.17) seemed to have better convergence properties than the

reduced version, and thus was selected for the implementation.

Usually, the coefficients ofC are found through an iterative process. Several methods for iter-

ation have been suggested, some using a training signal to find the coefficients [20, 165, 173] and

others using the actual transmitted signal [161, 173–175]. The use of a training signal often en-

ables simpler hardware implementation than the actual-signal-based methods but it also requires

stopping the transmission during the adaptation of the coefficients.

During the development of the baseband predistortion circuit presented in this thesis, four

different adaptive methods were compared as a way to find the quadrature error correction coef-

ficients. Two of the methods were time-domain envelope-based and two based on spectral mea-

surements. All but one method use training signals to find the coefficients and thus coefficient

update during the actual transmission is not possible in these cases. The methods are described in

the following paragraphs.

The first method: This method was presented by Faulkner et al. [20] and uses different test

signals for DC offset, phase mismatch, and gain-mismatch compensation. The output of the

quadrature modulator is measured using an envelope detector. The adaptation consists of three

phases. First the I and Q channels are set to zero and the DC correction values are adjusted until

the measured envelope is minimized. Next, the gain compensation is performed by first setting

the I channel to an arbitrary value, A, and Q channel to 0 and then I channel to 0 and Q channel

to A. The measured envelopes are compared and the gain coefficients adjusted to minimize the

difference. This is repeated and the gain correction adjusted until the measured envelopes in both

cases are the same. Finally the phase compensation is done by alternating the I and Q channel

values between (A, A) and (A,−A). The phase coefficient is then adjusted until the measured

envelopes in both cases are the same.

The second method: In this method, we use a quadrature sine wave (Equation 8.8) as the input

signal and measure the power of the carrier leakage and the image signal shown in Figure 8.7. The

coefficients can be found using, for example a modified binary search algorithm to minimize the

measured powers. The I and Q channel DC values have to be adjusted together and the amplitude

and phase have to be adjusted together as their effects are intertwined.

The third method: This method can be used to adapt the quadrature demodulator. It uses the

fed back quadrature data to adjust correction values. The adaptation can be performed using either

of the previous two methods, i.e. the absolute value of the complex feedback signal or the spectral

components of the feedback signal can be calculated.
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8.5 Correction of linear quadrature modulator and demodulator errors. 145

The fourth method: This method uses measurements of the adjacent channel power of the PA

output signal when the predistorter is in operation. The coefficients are updated to minimize the

adjacent channel power (ACP) using the modified binary search. However, now all of the co-

efficients have to be adjusted simultaneously as they all affect the ACP. The advantage of this

method is that the adjustment can be made during the actual operation of the circuit. However,

either high-order filters to separate the adjacent channel powers or heavy signal-processing oper-

ations are required.

8.5.2 Simulations

The complex gain predistortion system presented in Section 8.4 was simulated with Matlab using

a full-scale 16QAM 18 ksym/s signal as the input. a 6 bit LUT address and 16 bit word length

was used in the simulations. The sampling frequency was 1 MHz. The PA was modeled with the

model PA2 from Section 2.7. A third order Butterworth filter with the knee frequency of 300 kHz

was used at the predistorter output and feedback input.

The quadrature compensation circuit described in Section 8.5 was also used in the simulations

and the first, second and third methods in Section 8.5 were used for the adaptation. 3.4o phase

offset and 4% gainmismatch between the I andQ branches and a DC offset of 3% of themaximum

signal amplitude were used to model the quadrature modulator or demodulator nonidealities.

First the adaptation of the predistorter was turned off to study only the effect of the quadrature

modulator error compensation circuitry. The simulated corrected quadrature errors for first and

second method are listed in Table 8.1, the third method is not listed as it can not compensate the

quadrature modulator errors and the fourth method was tested only by measurements due to long

simulation times. The table shows the gain error in percents between the I and Q channels, phase

error in degrees between the channels and the absolute value of the DC offset in percents of the

amplitude of the signal. Both methods are able to reduce the modulator errors significantly and

the second method can reduce the gain and phase errors to half of the remaining errors using the

first method.

Table 8.1: Quadrature errors with different coefficient finding methods (see Section 8.5).

Method Gain Error Phase Error DC Offset

No quadrature correction 4.0% 3.4o 3.0%

first method(simulated) 0.12% 0.7o 0.45%

second method(simulated) 0.05% 0.6o 0.2%

Figure 8.13 shows the original, corrected and uncorrected constellations of the 16QAM signal.

The adaptation used was the first method in Section 8.5. After the correction, the constellation

coincides with the original constellation.

As the quadrature modulator errors affect the linearization ability of the predistorter, the spec-

tra of the signal at the output of the amplifier with and without predistortion and with and without

quadrature compensation were also examined. The adaptation was now in use and thus quadra-
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Figure 8.13: Signal constellation with and without quadrature compensation

ture demodulator errors were also added to the system. The demodulator used the same phase,

gain and DC error values as the modulator. The third method was used for the QDM compensa-

tion. Figure 8.14 shows the spectra of the 16QAM signal when no linearization is in use, when

no modulator or demodulator errors are corrected, and when only quadrature modulator errors

are corrected and when both the quadrature modulator and demodulator errors are corrected.

The adaptation algorithm used for the quadrature modulator coefficient adaptation was the first

method. What can be seen is that without the modulator error correction the result is much worse

than without linearization; the noise floor rises and there is no improvement in the ACP. Addition

of the quadrature modulator error correction improves the ACP somewhat, but the errors in the

demodulator still drive the adaptive algorithm into an unstable state and the noise floor remains

high. When both the quadrature modulator and demodulator errors are corrected, the adapta-

tion of the predistortion LUTs starts to work correctly and the ACP improves over 10 dB as the

approximation of the inverse nonlinearity gets closer to the optimal.

The nonlinearised first ACP was 37 dBc. Simulated ACPs using the first, second and third

QM and QDM error compensation methods are shown in Table 8.2. The third method was tested

separately to investigate how the ACP improves when only the quadrature demodulator errors

were corrected. After linearization, the first ACP improved to 58 dBc when the QM errors were

compensated using the first adaptation method. An interesting result is that the second method

gave worse results than the first regardless of the better performance when measured in gain,

phase and DC offsets. This was assumed to be due to the fact that the use of the DC training

signals gave better results in the quadrature demodulator adaptation than the sine training signals

when the correction was finally applied to a 16QAM signal. This assumption was supported by

the measurements presented in Section 8.8.
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Table 8.2: Simulated first and second ACP using different quadrature correction methods (see

section 8.5).

Method first ACP second ACP

No predistortion (simulated) 37 dBc 57 dBc

predistortion with the first method (simulated) 58 dBc 63 dBc

predistortion with the second method (simulated) 55 dBc 58 dBc

predistortion with the third method (simulated) 44 dBc 50 dBc

8.6 Nonlinear quadrature modulator errors

In addition to the linear errors described in Section 8.3, quadrature modulators (and the amplifiers

and converters on the baseband path) exhibit nonlinear distortion also and, as the linear quadra-

ture modulator error correction increases the signal levels, the nonlinearities are stronger than

before the correction[176]. Figure 8.15 shows some of the nonlinearity sources in a baseband

predistortion system.

There are several sources of errors that generate nonlinearities that an amplitude-based pre-

distorter is not able to compensate, such as even-order harmonics and phase dependent distortion.

Firstly, the DC offsets in the baseband signals give rise to even-order harmonics in the spec-

trum [176]. These offsets can actually be caused by the linear quadrature error compensation as

the DC offset compensation values offset the baseband signals before they compensate the DC

offset in the modulator [176]. This can be analyzed as follows. If the distortion is assumed to be
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Figure 8.15: Sources of nonlinearity in a baseband predistortion system

purely third order,

vdist = vin + av3
in, (8.20)

where vin is the baseband input signal in either I or Q branch, a is a constant defining the distortion

and vdist the distorted signal, the QM DC compensation causes the vin to be replaced with vin +

vdc. This transforms the formula to the following form:

vdist = av3
in + 3av2

invdc + (3av2
dc + 1)vin + av3

dc

= a3v
3
in + a2v

2
in + a1vin + a0,

(8.21)

thus second order distortion components are generated.

Another problem is that the amplitude-dependent nonlinearities affect the baseband signal

branches separately. Therefore the total nonlinearity seen by the complex baseband signal be-

comes dependent on the signal phase. This means that the predistorter is not able to compensate

these errors. The following section investigates the effect of this distortion.

8.6.1 Analysis of the quadrature modulator nonlinearity

This section will investigate the effect of the quadrature modulator nonlinearity to the output

signal of the modulator assuming simple third-order polynomial distortion on the modulator

branches. The results also can be used to illustrate the effect of unequal nonlinearities on the

modulator branches on the output.

A second-order distortion component was also included in the calculations since the common

mode levels of the D/A converters easily cause asymmetric distortion in the following amplifiers

and the modulator. The second order coefficients aI2 and aQ2 consist of the DC offsets vdcI and
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vdcQ and the original second order coefficients of the amplifiers, aI2orig and aQ2orig , so that

aI2 = 3aI3vdcI + aI2orig (8.22)

and

aQ2 = 3aQ3vdcQ + aQ2orig. (8.23)

As the distortion separately alters both the baseband quadrature signals, the total effect of the

distortion can be written in the following form:

vdistIQ =

3
∑

n=0

aInℜ(vpd)
n + i

3
∑

n=0

aQnℑ(vpd)n, (8.24)

where ℜ(.)takes the real part and ℑ(.) takes the imaginary part of the argument, aInand aQn are

the nth order distortion coefficients of the I channel and the Q channel, respectively, and vpd is

the complex output signal of the predistorter. Equation 8.24 can also be written in conjugate form

[116, 164]

vdistIQ =

3
∑

n=0

3−n
∑

m=0

gnmvn
invin

m, (8.25)

where vin is the complex conjugate of the input signal and the gnm are complex coefficients. This

form simplifies the calculations as normal complex arithmetic can be used.

By equating (8.24) with (8.25), the coefficients gnmcan be solved. The calculated coefficients

are listed in Table 8.3. The only coefficients that can be compensated by the complex gain pre-

distorter are g10 and g21; the rest would interfere with the predistorter update. By using exactly

identical amplifiers in both branches, coefficients g01, g20, g02, g12 and g30 can be canceled. How-

ever, there is still distortion remaining dependent on the squared absolute value of the signal and

the cube of the complex conjugate of the signal. What is more, the amplitude of these components

is doubled when the amplifiers are identical.

The next section inspects the results when these distorted signals are applied to a nonlinear

power amplifier after up-mixing.

8.6.2 PA output with static predistortion

It can be expected that if the predistorter is designed to compensate for the premeasured nonlin-

earity of the power amplifier, it cannot compensate for the new distortion components generated

to the baseband quadrature signals. Thus, the nonlinearities are amplified by the power amplifier

and new ones are further generated by the PA nonlinearity. The following calculations investigate

the distortion components at the PA output.

To simplify the calculations, the PA nonlinearity is assumed to be of third order and memory-

149



150 Baseband predistortion

Table 8.3: Coefficients in (8.25)

Coefficient Value

g00 aI0 + jaQ0

g10 (1/2 ∗ aI1 + 1/2 ∗ aQ1),
g01 (1/2 ∗ aI1 − 1/2 ∗ aQ1),
g20 (1/4 ∗ aI2 − 1/4 ∗ I ∗ aQ2)
g11 (1/2 ∗ aI2 + 1/2 ∗ I ∗ aQ2)
g02 (1/4 ∗ aI2 − 1/4 ∗ I ∗ aQ2)
g21 (3/8 ∗ aI3 + 3/8 ∗ aQ3)
g12 (3/8 ∗ aI3 − 3/8 ∗ aQ3)
g03 (1/8 ∗ aI3 + 1/8 ∗ aQ3)
g30 (1/8 ∗ aI3 − 1/8 ∗ aQ3)

less. Thus the PA output signal is

vout = vpd + aPAvpd |vpd|2 , (8.26)

where vpd is the PA input signal and aPA is the PA distortion coefficient. According to (8.25) the

nonlinear distortion of the baseband signals also generates amplitude-dependent distortion of the

complex conjugate of the input signal and phase dependent distortion components.

If we assume that the predistorter generates a fifth order polynomial to compensate for the PA

nonlinearity, the predistorter output function becomes

vpd = vin + aPD3vin |vin|2

+aPD5vin |vin|4
. (8.27)

The coefficients aPD3 and aPD5 are calculated by inserting (8.27) into (8.26) and setting the third

and fifth order coefficients to zero. This gives us

aPD3 = −aPA (8.28)

and

aPD5 = aPA(2aPA + aPA). (8.29)

For the following calculations, we write the third-order coefficient of the imaginary part in the

baseband amplifiers and the QMs as the coefficient of the real part, aIQ3, multiplied with adQ3.

The second order coefficients are also the same except for the multiplier, adQ2, which represents

the combined effect of the quadrature DC offset on the second order distortion (Equation 8.22)

and the actual difference between the distortion coefficients. The first-order amplitude error and

the DC offsets are assumed to have been compensated by the predistorter and the linear quadrature

modulator error compensation. Thus, we can write aI3 = aIQ3, aQ3 = adQ3aIQ3, aI2 = aIQ2,

aQ2 = adQ2aIQ2, aQ0 = aI0 = 1 and aQ0 = aI0 = 0. Now, when we insert (8.27) into (8.25)
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Table 8.4: Distortion components in (8.25)

component value component value

C10 1 C31
1
2

aP A(1 − iadQ2)aIQ2

C01 0 C22 ( 5
4

aPA −
1
2
ℜ(aP A))(1 + iadQ2)aIQ2

C20
1
4
(1 − iadQ2)aIQ2 C13 (aP A −

1
2
ℜ(aP A))(1 − iadQ2)aIQ2

C11
1
2
(1 + iadQ2)aIQ2 C04 0

C02
1
4
(1 − iadQ2)aIQ2 C50

1
8

aP A((1 + a2
dQ2

)a2
IQ2 + (1 + adQ3)aIQ3)

C30
1
8
(1 − adQ3)aIQ3 C41 (( 9

16
(1 − iadQ2)2 + iadQ2)a2

IQ2 + 1
4
(1 − adQ3)aIQ3)aP A

C21
3
8
(1 + adQ3)aIQ3 C32 (a2

dQ2 + 1)a2
IQ2aPA + (adQ3 + 1)( 3

4
aP A −

3
8
ℜ(aP A))aIQ3

C12
3
8
(1 − adQ3)aIQ3 C23 ( 7

8
(1 − iadQ2)2 −

3
4

iadQ2)a2
IQ2aPA + (adQ3 − 1)( 5

4
aPA −

3
4
ℜ(aP A))aIQ3

C03
1
8
(1 + adQ3)aIQ3 C14 (a2

dQ2 + 1)a2
IQ2aPA + (adQ3 + 1)( 5

8
aP A −

3
8
ℜ(aP A))aIQ3

C40
1
4

aPA(1 + iadQ2)aIQ2 C05
1
16

(1 − iadQ2)2a2
IQ2aP A

and the result into (8.26) for the PA output, we get the following conjugate form:

vpao =
N
∑

n=0

N−n
∑

m=0

Cnmvn
invin

m, (8.30)

where the coefficients Cnm, were calculated by a series of algebraic manipulations and are listed

in Table 8.4. We have limited the N in (8.30) to 5, since the powers exceeding this would not be

compensated by the predistorter in any case, and thus the main effects of the modulator distortion

lay on the lower powers, which should be totally removed by the ideal predistorter.

When Table 8.4 is studied, it can be seen that the second order distortion components C20,

C11, C02 and the third-order coefficients, C30, C21, C12 and C03 are dependent only on the

baseband distortion, and the distortion generated on the baseband transfers quite directly to the

PA output.

It can also be seen that the second-order components are always present if the second-order

coefficients are real. This is the same situation as with the coefficients for the quadrature modu-

lator output signal, and thus no significant advantage can be gained by adjusting the coefficients

to be as similar as possible.

Again, the third-order distortion can be minimized by using amplifiers that are as similar as

possible, in which case adQ2 = 1. In this case, the coefficients C30 and C12 become zero.

The fourth-order distortion depends on the PA nonlinearity in addition to the second-order

baseband distortion. As aPA and aIQ2 are usually much smaller than one, the effect of the

fourth-order distortion remains quite small. Also the effect of the fifth-order distortion is quite

small for the same reason. The fifth-order distortion depends mainly on the third-order distortion

coefficients aPA and aIQ3 as the second-order coefficients are squared, thus making them small

compared to the third-order distortion.

The power spectrum of (8.30) can be fairly accurately estimated by summing the power spec-

tra of the different terms [164]. Thus the effect of each term on the spectrum can be approximated

to be |Cnm|2 |F(R(vn
invin

m))|where F(R(vn
invin

m)) is the Fourier transform of the autocorre-
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lation of the input signal powers [164].

Figures. 8.16 and 8.17 show the estimated and simulated spectra of the QAM signal with

the amplitude normalized to one with two different distortion coefficient combinations. Figure

8.16 represents a more realistic situation with fairly small baseband distortion compared to the

PA nonlinearity. It can be seen that, up to third order distortion, the estimated and simulated

spectra match well. Above that, the higher order distortion, which was not taken into account in

the calculations, starts to dominate. Figure 8.16 represents a case where there is a large distortion

at the baseband. The estimated and simulated results correspond to each other well.
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Figure 8.16: Simulated and estimated PA output when aIQ2 = 0.0055, adQ2 = 0.45, adQ3 = 1,
aPA = −0.05 − 0.01i and aIQ3 = 0.005.
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Figure 8.17: Simulated and estimated PA output when aIQ2 = 0.055, adQ2 = 0.45, adQ3 = 1,
aPA = −0.02 − 0.004i and aIQ3 = 0.05.
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8.6.3 The effect of the quadrature modulator nonlinearity on predistortion

update

As discussed in the previous section, a complex gain predistorter can correct nonlinearities that

are dependent on the amplitude of the signal. This means that, if the predistortion function is

adaptive, it can also compensate for the amplitude-dependent spectral components, namely the

terms C21 and C32 in Table 8.4. This means that, if the third-order distortion in both I and Q

branches is similar, the third order distortion level in the PA output is reduced to one quarter of

the original baseband distortion.

However, the adaptivity also has its shortcomings. When the predistorter coefficients are

adaptively updated, the residual error at the PA output,

e = vpao − vin, (8.31)

affects the update adversely as it cannot be reduced by predistortion and as it is also dependent

on the signal phase. This means that the predistortion coefficients jitter around the optimal values

that generate noise to the predistorter output. What would be expected is that the adaptation is

able to improve the ACP from the nonadaptive case up to when aIQ2 becomes larger than aIQ3.

The previous section discussed for simplicity only the case where the PA nonlinearity is a

third order polynomial. However, often this is not the case. In this section, the effect of the

adaptation will be discussed in the case where the PA nonlinearity model is more general, namely,

the Ghorbani model (Equation 2.18). The predistortion function is Fk(n) = LUTn(k), where k

is the LUT index k =
⌈

2Nlutvin(n)
⌉

. The PA output signal becomes now

vpao(n) =Fk(n)vin(n)(1 + AdistIQ(Fk(n)vin(n))) (8.32)

APA(|Fk(n)vin(n)(1 + AdistIQ(Fk(n)vin(n)))|2)

where AdistIQ(Fk(n)vin(n)) =
vdistIQ

vin
− 1, vdistIQ is defined in (8.25).

In the following analysis, linear update (Equation 3.11) is used as the update function. If it

is assumed that the error caused by the distortion is small, Equation 8.32 can be simplified by

linearizing APA(x) around the optimal value. Thus,

vpao(n) =Fk(n)vin(n)(1 + AdistIQ(Fk(n)vin(n))) (8.33)

(APA + A,
PA |Fk(n)vin(n, k)|2 (2ℜ(AdistIQ) + |AdistIQ|2)),

where APA = APA(|Fk(n)vin(n, k)|2) and A,
PA = dAPA(x)

dx . Now, when (8.33) is inserted into

(3.12), and if we assume that the error in the current LUT value is ∆Fk(n), we can approximate
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the new LUT error as

Fk(n + 1) = (Fk(n) + ∆Fk(n))((1 − µ)+

(
a

(Fk(n) + ∆Fk(n))(APA + A,
PA |Fk(n)vin(n, k)|2 (2ℜ(AdistIQ) + |AdistIQ|2)(1 + AdistIQ))

)).

(8.34)

By using series expansion, 1
1+x ≈ 1 − x if x is small, (8.34) can be further simplified to form

Fk(n + 1) = (Fk(n) + ∆Fk(n))((1 − µ)+

(
µ

Fk(n)APA

(1+
∆Fk(n)

Fk

−+
A,

PA

APA

|Fk(n)vin(n, k)|2 (2ℜ(AdistIQ)+ |AdistIQ|2)(1+AdistIQ)))).

(8.35)

Now writing (8.35) in the form

Fk(n + 1) = F k(n)(1 − 1

Fk(n)APA
) + ∆Fk(n + 1)

and assuming perfect predistortion, i.e. Fk = 1
AP A
, we can find the misadjustment of the LUT

update. If we also approximate (ℜ(AdistIQ) + |AdistIQ|2) by |1 + AdistIQ|2 and note that
( 1

APA
)′ =

A,

PA

A2
PA

, we get as the misadjustment

∆Fk(n + 1) ≈ (1 + µ)∆Fk(n) + µ(1 + AdistIQ)F
′

k(n)·

(|1 + AdistIQ|2 − 1) |Fk(n) + ∆Fk(n)|2 |vin|
2 . (8.36)

When the result is analyzed, we see that the misadjustment is dependent on the squared absolute

value of the input signal, thus the jitter is greatest at large amplitudes. The predistortion function

often reaches its maxima at the low and high amplitudes, which further increases the concentration

of the jitter on the highest amplitudes. Finally, the misadjustment depends on the shape of the

predistortion function.

8.6.3.1 Simulation results

The effect of QM nonlinearity was simulated using Matlab, with a 16QAM signal and a sampling

frequency of 56 times the symbol frequency. The amplitude of the signal was normalized to

one. The PA model was PA2. Third-order baseband nonlinearity (Equation 8.24) was used. The

baseband predistortion system shown in Figure 8.10 was used in simulations.

Figure 8.18 shows the standard deviation of the LUT entries after the LUT update has con-

verged, with different second- and third-order baseband distortion coefficients. What can be seen

is that the second-order coefficient affects the standard deviation much more than third-order co-

efficient, as could be expected from the calculations in Section 8.6.2. It can also be noticed that

the second-order coefficient does not affect the standard deviation at the higher amplitudes as

much as the third-order coefficient due to the shape of the second-order distortion function.

154



8.6 Nonlinear quadrature modulator errors 155

10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

LUT entry

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

(L
U

T
 e

n
tr

ie
s
)

aIQ2=−0.01, aIQ3=0

aIQ2=−0.005, aIQ3=0

aIQ2=0, aIQ3=−0.05

aIQ2=0, aIQ3=−0.01
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nonlinearity coefficients
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Figure 8.19: The PA ACP as a function of the baseband distortion
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Figure 8.19 shows the behavior of the PA output ACP as a function of the quadrature modu-

lator nonlinearity. The figure shows also the ACP with static second-order distortion and variable

third-order distortion and vice versa. The results are shown also with and without predistortion

update. The same initial condition was used both for the static and dynamic predistortion func-

tions. The figures clearly show how the second-order distortion starts to dominate the third-order

distortion and eventually changing the second order distortion does not have any effect on the

PA output. Another thing that can be seen is that, when the second order distortion is small,

the ACP can be improved, using the adaptive predistortion, and when the second order distor-

tion dominates, it leads the update astray and actually makes the ACP worse, as expected from

the calculations in Section 8.6.2. The transition happens at the point when the second distortion

coefficient is larger than half the third order distortion coefficient.
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Figure 8.20: The PA output ACP as a function of the second and third-order baseband distortion

coefficients.

Figure 8.20 shows the simulated effect of mismatch of the distortion components to the ACP

of the PA output. Figure 8.20a shows the improvement in ACP gained by adaptive predistortion

with different third order nonlinearity mismatches, while Figure 8.20b shows the actual ACPs
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with adaptive and nonadaptive predistorters.

The figures agree with the calculations in Section 8.6.2 and show that, when adaptive predis-

tortion is in use, the component C21can be compensated by the adaptive predistortion, and the

remaining terms achieve the minimum when the distortion is the same on both branches, instead

of the case when the other branch is completely linear.

When no adaptation is used, the minimum is achieved by setting the other branch to be as

linear as possible, as the uncompensated C21 does more harm than the benefit that is gained

by eliminating C12 and C30. Figures 8.20c and d show the effect of second order distortion

mismatch. As expected, the minimum is achieved when the distortion of the other branch is zero

and, as the second-order distortion cannot be compensated by the adaptive linearization, inclusion

of adaptation only makes the situation worse due to the instability of the update.

8.6.4 Compensation of quadrature modulator nonlinearity

Since the quadrature modulator nonlinearity has significant effect on the operation of a com-

plex gain predistorter, the nonlinearity should be compensated. Faulkner et al. [176] present a

simple circuit that can be used. The circuit uses a simple third-order polynomial with two ad-

justable coefficients (one for each branch) to compensate the distortion. This circuit is based on

the assumption that the second-order distortion is completely due to DC offset in the third-order

distortion and thus no second order distortion compensation is required. The circuit can be made

adaptive using a method similar to the first method depicted in Section 8.5.1 [176] .

During the adaptation, the I and Q channels are toggled separately between -A and A, while

the other channel is kept at zero. [176] The A is an arbitrary amplitude value. The third order

distortion coefficients kI and kQ are adjusted until the envelopes at amplitude values -A and A

are the same.

During measurements it was noted that also second-order baseband distortion independent

of the DC disturbed the system. Thus, a second-order compensation was also added to the cir-

cuit. The implemented baseband distortion correction with the correction of linear quadrature

modulator errors is shown in Figure 8.21. kI2 and kI3 are the second- and third-order I chan-

nel compensation coefficients respectively and kQ2 and kQ3 are the second- and third-order Q

channel compensation coefficients respectively. In the quadrature demodulator error correction

circuit, the order of the blocks is reversed for the feedback path as was the case with the linear

quadrature demodulator error correction circuit (Section 8.5).

8.7 Hardware implementation

The digital predistorter circuit in Figure 8.11, the quadrature modulator compensation circuit

in Figure 8.21 and the corresponding quadrature demodulator compensation circuit were imple-

mented with an ALTERA Cyclone EP1C20F400C7 FPGA [177]. The word lengths of the inputs

and the outputs were chosen as 16 bits due to the baseband transmitter circuitry implementation.
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Figure 8.21: Quadrature modulator error compensation circuit.

The predistorter LUT size was chosen as 64 entries and thus the address length was 8 bits. Ad-

justable delay between the digital input and feedback input, as well as an adjustable value of µ in

(9.6), was implemented. The delay adjustment can be made in half clock cycle steps using a frac-

tional delay filter [178]. The square-root circuit used in the address calculation (Figure 8.8) was

implemented with a 64-entry LUT. The value of A required in the quadrature compensation algo-

rithms was set to be 16384 or half of the maximum signal amplitude. The FPGA implementation

consumed 3.1 kbits of memory and 15600 logic cells.

The sampling frequency was chosen as 1 MHz and the clock was generated with a crystal

oscillator. The output D/A conversion was accomplished with two discrete 16-bit serial 1 MHz

D/A converters and the feedback inputs were converted to digital domain using two discrete 16

bit 1 MHz A/D converters. The D/A and A/D converters and the clock generator were on separate

circuit boards. A second-order Butterworth filter with 200 kHz knee frequency was used in the

D/A output and at the A/D converter input.

The envelope detector used in first of the fourth quadrature modulator error correction al-

gorithm in Section 8.5 was implemented using a logarithmic amplifier. The conversion of the

envelope to digital domain was implemented with a 16-bit A/D converter. The adaptation algo-

rithms for the quadrature modulator compensation were implemented using a Python program

run on a PC connected to the system with a serial cable.

A three-stage class-AB power amplifier chain with 50 dB power gain was used as the de-

vice to be predistorted. The measured gain variation of the amplifier as a function of the output
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power (AM-AM) and the output phase as a function of the output power (AM-PM) are shown in

Figure 8.22. The average output power used in the measurements was 30 dBm. The PA was im-

plemented using discrete components. The quadrature modulators and quadrature demodulators

(QDM) were also implemented on the same board. The PA was optimized for a 400 MHz carrier

frequency.
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Figure 8.22: Measured AM-AM and AM-PM of the power amplifier

The predistortion system and the measurement setup are shown in Figure 8.23. Different

measurement boards are marked by a box with a letter in the upper right corner. Block A is the

circuit board containing the FPGA that implements the digital algorithm. The blocks marked

with B are boards containing a 16-bit D/A converter and an active second order Butterworth filter.

The blocks marked with C are boards containing a 16-bit A/D converter and an active second-

order Butterworth filter. Block D is the board for the logarithmic detector, while Block E is

the board that contains the quadrature modulator and the demodulator and the power amplifier.

Additionally there is a directional coupler and adjustable attenuator. The phase of the carrier fed

to the quadrature demodulator is adjustable. Board E contains connectors for a signal generator

(G) for the carrier generation and for a spectrum analyzer, oscilloscope or a network analyzer

(F). The FPGA board (A) has connections for a clock generator (K), pattern generator (J), logic

analyzer (H) and a serial connector for a PC (I).

8.8 Measurements

The circuit was measured using a 16QAM signal with symbol frequency of 18 ksym/s, oversam-

pled to a sampling frequency of 1 MHz and filtered with a 0.3 roll-off factor root raised cosine

filter. The signal power was set to be 29 dBm without the predistortion. The signal was generated

using Matlab and fed to the circuit using a pattern generator. To find the image and carrier leakage
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suppression ability of the quadrature error correction algorithm a 30 dBm quadrature sine wave

(Equation 8.8) with a 9 kHz offset from the carrier was used.

The measured first ACP of the amplified signal without predistortion was 37 dBc. The mea-

sured phase error was 4o, the gain error was 3.4% of the amplitude and the DC offset was 3.0% of

the amplitude. When the predistortion was added without the quadrature compensation the ACP

improved to only 43 dB, which could be expected according to simulations.

When the quadraturemodulator errors were compensated using the first quadrature adaptation

method described in Section 8.5, the magnitude error decreased to 1.8%, the phase error to 1.6o

and DC offset to 1.1%. However, when the adaptive predistortion was turned on, the ACP did not

improve. This clearly shows the importance of compensating the quadrature demodulator errors.

The quadrature demodulator errors were then compensated using the third method described in

Section 8.5.

It was noted that the system was very sensitive to DC errors in the feedback path and that the

predistorter forced the signal to zero when the signal was close to the origin of the complex plane

if the DC offsets were not completely compensated. It also turned out that the DC correction

values achieved using the quadrature sine or the learning signals of the first method were not

good enough for the 16QAM signal. When the feedback DC levels were adjusted manually, the

problem could be removed and the ACP improved to 52 dBc. The acquired optimal DC correction

values were considerably smaller compared to the values that zeroed the fed back teaching signal.

The reason for this could not be ascertained although a possible reason could be the second-order

distortion in the feedback loop.

The comparison between the spectra with and without feedback DC correction is shown in

Figure 8.24. The figure also shows the effect of correcting other quadrature demodulator errors

in addition to the DC offset and, as can be seen the improvement is only 5dB. Thus the DC

offset is the dominating factor on the feedback path of the measured system. These feedback

error correction values were used during the tests of the quadrature modulator error correction

methods.

The measured spectrum of the linearized signal with quadrature error compensation adapted

using the first method is shown in Figure 8.25 with the nonlinearised spectrum and the linearized

spectrum without the quadrature compensation. The predistorter is able to improve the ACP less

than 10 dB when the quadrature modulator compensation is not in use; also the noise floor rises

significantly. When the quadrature modulator compensation is turned on, the ACP improves to

52dBc. The noise floor is still higher than in the original signal, but not much. The asymmetry of

the sidebands, that was also noted during measurements of the RF-predistortion system (section

7.4) is visible and is most probably due to memory effects in the amplifier.

The second quadrature error compensation algorithm presented in Section 8.5 gave similar

results ACP-wise as the first one, although the measured quadrature errors after the linearization

were smaller. The measured linearized spectrum is plotted in Figure 8.26.

The adaptation of the fourth method was started by first adjusting the quadrature demodulator

compensation DC values as they had proved to be the most significant error source. Thereafter,
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Figure 8.24: Spectrum of measured signal when using the first QM compensation method with

QDM DC compensation, only QDM DC compensation and only QM compensation.

the quadrature modulator error compensation coefficients were adjusted and finally the rest of the

QDM error compensation coefficients were adjusted to minimize the ACP. The ACP measure-

ments of the predistorter were similar to the first and second method, but the quadrature error

measures were worse due to the fact that the optimization was performed on the basis of the ACP.

The measured spectrum is shown in Figure 8.27.

The ACP measurement and simulation results with the different quadrature compensation

methods are collected in Table 8.5 and the measured quadrature errors in Table 8.6. The meth-

ods from the first to the fourth refer to the methods presented in Section 8.5. The optimal QDM

DC correction refers to the DC correction values obtained during the measurements of the first

method. The first, second and fourth quadrature compensation methods gave similar results ACP-

wise. However, when the complexity is considered, the first method is clearly the most advan-

tageous. It should, however, be noted that the optimal feedback DC values were found directly

only by the fourth method; others required additional tuning. The third method by itself clearly

proved to be unusable.
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Figure 8.25: Spectrum of measured signal when using QM correction based on envelope mea-

surements (first method)

Table 8.5: Measured and simulated first and second ACP using different quadrature correction

methods.
Method first ACP second ACP

No predistortion 37 dBc 63 dBc

No predistortion (simulated) 37 dBc 57 dBc

predistortion without quadrature correction 43 dBc 47 dBc

predistortion with optimal QDM DC correction 47 dBc 53 dBc

predistortion with method 1 (opt QDM DC correction) 52 dBc 58 dBc

predistortion with method 1(simulated) 58 dBc 63 dBc

predistortion with method 2 51 dBc 57 dBc

predistortion with method 2(simulated) 55 dBc 58 dBc

predistortion with method 3 42 dBc 44 dBc

predistortion with method 3(simulated) 44 dBc 50 dBc

predistortion with method 4 52 dBc 58 dBc

Table 8.6 shows that the best quadrature error compensation was achieved using the second

method. The table also clearly shows the importance of the compensation of DC errors. All the

methods suffer from increased noise floor which causes the second ACP to increase. Although

the results are not as good as in the simulations, the effectiveness of the quadrature compensation
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Figure 8.26: Spectrum of measured signal when using QM correction based on sine test signal

(second method)

methods when compared to each other was similar in measurements and simulations.

Table 8.6: Quadrature errors with different coefficient finding methods.

Method MagErr PhaErr Offset

No quadrature correction 4.0% 3.4o 3.0%

Method 1 (predistortion off) 1.8% 1.6o 1.1%

Method 1 (predistortion on) 1.3% 1.4o 1.0%

Method 1 (simulated) 0.12% 0.7o 0.45%

Method 2 (predistortion off) 2.5% 1.5o 0.6%

Method 2 (predistortion on) 0.9% 1.1o 0.5%

Method 2 (simulated) 0.05% 0.6o 0.2%

Method 3 (predistortion on) 3.9% 4o 3.8%

Method 4 1.5% 1.8o 1.3%

8.9 Conclusions

This chapter presented the design and simulation and measurement results of a digital baseband

complex gain predistorter with a quadrature modulator and demodulator error correction circuits.

Different adaptation methods for the quadrature modulator error correction circuits were com-

164



8.9 Conclusions 165

R e f  L v l
 4 0  d B m
R e f  L v l
 4 0  d B m

C e n t e r 4 0 0  M H z S p a n 1 7 4 . 3  k H z

R B W  5 0 0  H z
V B W  5  k H z
S W T  3 . 5  s U n i t d B m

1 7 . 4 3  k H z /

R F  A t t  3 0  d B

  - 5 0

  - 4 0

  - 3 0

  - 2 0

  - 1 0

    0

   1 0

   2 0

   3 0

  - 6 0

   4 0

1

1  [ T 1 ]         1 8 . 1 9  d B m
        3 9 9 . 9 9 5 9 8 3 0 7  M H z
C H  P W R          3 0 . 9 4  d B m
A C P  U p         - 5 1 . 9 2  d B  
A C P  L o w        - 5 3 . 6 4  d B  
A L T 1  U p        - 5 7 . 8 6  d B  
A L T 1  L o w       - 5 8 . 1 8  d B  
A L T 2  U p        - 5 8 . 8 3  d B  
A L T 2  L o w       - 5 8 . 7 8  d B  

c u 3
c u 3

c u 2
c u 2

c u 1
c u 1

c l 1
c l 1

c l 2
c l 2

c l 3
c l 3

C 0
C 0

N o n l i n e a r i z e d
L i n e a r i z e d  w /  Q M  c o m p e n s a t i o n

Figure 8.27: Spectrum of measured signal when using QM and QDM correction based on actual

transmitted signal (method 4)

pared and the effect of quadrature modulator nonlinearity on baseband predistortion was investi-

gated.

Implemented predistorter uses complex gain topology with two 64-entry LUTs and linear

LUT output interpolation and LUT input deinterpolation. The quadrature error correction cir-

cuit uses the fed back I and Q signals to update the correction coefficients. The predistorter

was implemented using an FPGA and a three-stage PA chain including quadrature modulators

and demodulators was used as the device to be predistorted. The signal used in the simulations

and measurements was a 18 ksym/s 16QAM signal at 400 MHz carrier frequency. In measure-

ments, the ACP improvement was 15 dB when the quadrature correction was in use. The removal

of the quadrature error correction increased the ACP by 9 dB compared to the situation with-

out quadrature correction. The tested quadrature compensation adaptation methods gave similar

results ACP-wise. The measurements clearly showed that the quadrature compensation of the

feedback signal is very important to correction ability of the predistorter. Especially the feedback

DC levels affect the correction considerably; by compensating only the feedback DC level the

first ACP improved by 4 dB.

The investigation of the nonlinear quadrature modulator errors showed that, to minimize the

effect of third-order nonlinearity, the nonlinearity in both in-phase and quadrature branches should

be the same. On the other hand, the effect of second-order nonlinearity is minimized only when
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either or both second-order components are completely removed. It was also shown that an adap-

tive predistorter is able to compensate part of the third-order nonlinearity, but the second-order

nonlinearity causes convergence problems to the adaptation due to large residual errors. It was

shown that the results with an adaptive predistortion are worse than the results with a fixed pre-

distorter.
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Chapter 9

LUT size, indexing, interpolation

and update

9.1 Introduction

This chapter concentrates on generation of the LUT and predistortion control, that are important

in designing a digital predistortion system and are applicable to both RF and baseband predis-

torters. The chapter investigates the LUT related methods that can be found in literature and their

application to the predistortion architectures presented in this thesis.

One of the most fundamental aspects of a digital LUT based predistorter is the size of the LUT,

as this affects the size of the hardware and the maximum achievable linearity of the predistortion

system. In principle, the larger the LUT, the more linearity that can be achieved [107]. Several

methods have been presented to reduce the number of LUT entries without affecting the achieved

ACP by using some more optimal indexing method than the normal amplitude indexing [78,

108, 110, 168] or by interpolating the LUT output to increase the virtual number of LUT entries

[91, 130]. To increase the accuracy of the predistorters, they often are implemented adaptively.

For the update, several methods, whose applicability depends on the number of the parameters

and thus of the LUT size, have been presented. This chapter gives a summary of some of those

methods and compares the linearization abilities of them.

At the end of the chapter some improvements to the existing frequency-domain LUT update

methods, to improve the convergence of the LUT, are suggested on basis of simulation results of

the studied methods.

9.2 The effect of the LUT size and entry accuracy

The size of the LUT defines how closely the digital predistorter can follow the optimal predis-

tortion function. The more entries, the more accurate the predistortion function, but, also, the
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larger the LUT and the slower the convergence of the adaptive predistorter. Actually, the limited

number of LUT entries generates a kind of dual quantization for the predistortion function: first

the input data is quantized to the LUT-address accuracy for the indexing and then the value of the

predistortion function at this quantized point is further quantized to the output accuracy. Figures

9.1a and b visualize the effect of this double quantization.

In Figure 9.1a, the LUT address is quantized to 4 bits, the output is quantized to 5 bits and

the predistortion function is an exponential function. It can be seen that, when the derivative of

the predistortion function is small, the limited output accuracy causes some of the LUT entries to

contain the same values, thus reducing the effective number of LUT entries from 16 to 13. On

the other hand, when the derivative is large, the output value changes with very large steps, thus

sacrificing part of the output accuracy.

Figure 9.1b shows the actual quantized version of the predistortion function in the case where

only the output is quantized with 4 bits and the case where the input is quantized with 4 bits

and the output is quantized with 8 bits. The increased output accuracy clearly helps when the

derivative is small but the steps are still large when the derivative increases. This clearly shows

how the effect of the LUT size on the linearization ability of a predistorter depends on the shape

of the predistortion function. This also causes the results achieved for one PA not to be directly

applicable to another.

Symbolic analysis for the linearity degradation of a predistorted power amplifier due to quan-

tization is presented in references [107, 108]. The resulting formulas are quite complicated and

are not dependent only on the derivative of the predistortion function, but also on the statistical

distribution of the signal amplitude. This gives rise to the fact that, even with these formulas, it

is difficult to draw detailed conclusions as to the operation of a predistorter without recalculation

of the results for each signal and nonlinearity type. Even then, it is still necessary to resort to

simulations and measurements to verify the effects of the quantization.

Figures 9.2a and b show the simulated ACPs for PA2 and PA3 (Section 2.7) as a function of

the LUT address word length, when using a complex gain predistorter. The curves are plotted for

five different LUT entry word lengths. When the results are compared, it can be seen that in the

case of PA3 the ACP improves about 10 dB for 2 bits of LUT address length, while, in the case

of PA2, it improves about 15 dB for 2 bits of LUT accuracy. The difference is due to the different

shapes of the predistortion functions. Figure 9.3 shows the similar results for an RF predistorter.

The LUT size also affects the convergence speeds of the time-domain LUT update methods,

since these methods usually update only a single or a small number of LUT entries at a time. This

means that, the more entries there are, the longer it takes for the LUT to reach the final value.

Thus, for faster convergence, a smaller LUT would be preferred. Figure 9.4 compares the speed

of the convergence of an LUT in an RF predistorter using linear update with different LUT sizes.
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9.3 LUT indexing

To improve the ACP without affecting the size of the LUT it would be beneficial eliminate the

overlapping LUT entries. Also, if we do not know the distribution of the input signal, which is

the case in, for example, multi mode transmitters, we would like to have the LUT entries to be

distributed as evenly as possible to avoid large steps at the output signal.

One method to implement this is to fill the LUT with equispaced values and assign the ad-

dresses to the entries according to the inverse predistortion function. Figure 9.5 illustrates the

method. As can be seen, it is possible to implement a 16-entry LUT with a 4-bit output accuracy

without overlapping any of the entries. However, this requires infinite accuracy for the input data

and a translation table is required to generate the LUT index. The added hardware may cause the

reduction of the LUT size to be in vain.

Also, the dependence of the linearity on the statistical distribution of the input signal may be

used to reduce the ACP without increasing the number of LUT entries. It can be assumed that,

the more infrequent the input value, the less effect the accuracy of the linearization of that value

[78, 108]. Thus one should concentrate on the LUT entries to the most frequent input values and

let the entries be more sparsely spaced at the less probable value ranges. Figure 9.5 illustrates

a hypothetical probability distribution of the signal, concentrating the LUT entries values to the

most probable input signal values. Again, to be fully effective, this method assumes high precision

input signals and a translation table for the LUT address.

The effect of LUT entry distribution on a complex gain predistorter and an optimal LUT

addressing function based on the amplitude probability distribution and the derivative of the signal

is discussed in references [78, 108]. Cavers et al. [108] consider the effect of µ-law, power-based,

amplitude-based and optimal LUT indexing. The conclusion of the paper is that the optimal
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indexing is optimal only for a defined input back off level and, even then, it is only marginally the

best method. The µ-law and the power-based indexing are also found to work poorly compared

to the amplitude-based indexing.

However, results reported by Lin et al. [168] show that actually quite good results are achiev-

able for the optimal indexing at some optimization points. It is suggested to improve the optimal

indexing by changing the optimization point dynamically according to the backoff, which seems

to give overall optimal results [168]. Still, the unconditionally optimal indexing method is depen-

dent on the probability distribution of the signal amplitude.

Both Muhonen et al. and Boumaiza et al. [78, 110] present LUT indexing methods that are

not dependent on the PDF. These seem to give fairly good results. However, both still require a

complicated translation function to generate the LUT index, which may affect the feasibility of

the indexing scheme.

Hassani et al. [109] suggest a method to generate the indexing function with low hardware

costs. The method is based on dividing the LUT into a small number of segments that contain dif-

ferent numbers of entries, more in areas where the derivative of the predistortion function is large

and less in areas where the derivative is small. The amplitude is then divided into the same num-

ber of sections, each of which contain an equal amplitude span. These amplitude spans are then

mapped to the corresponding sections in the actual LUT. The result is a piecewise approximation

of the wanted indexing function that can be implemented with a small memory and shifters and

adders if the LUT sections are properly selected. This method can be used to approximate the

indexing functions used in, for example, references [78, 108, 110, 168] with low hardware costs.

The envelope detector used in the RF-predistorters inherently implements a nonlinear LUT

indexing function and has similar results to the operation of the predistorter. The effect of the

detectors on the predistorter has been discussed more thoroughly in Chapter 6.

9.4 LUT generation methods and interpolation

There are also several different methods to generate the actual LUT entries; the selection of any

particular method affects the ACP and the complexity of the predistorter. The LUT generation

methods can be divided into two main categories: those that use a piecewise constant approxi-

mation of the predistortion function [11, 79, 91, 114, 134, 179] and those that use an interme-

diate function (e.g. a polynomial) to approximate the predistortion function before generating

the piecewise constant approximation [56, 105, 161]. The intermediate functions allow a smaller

number of parameters during the calculation of the LUT values but reduces the accuracy of the

predistortion function.

Related to the LUT fill using an intermediate function is interpolation [91, 130] of the LUT

output values. Interpolation can be used to improve the approximation of the predistortion func-

tion by calculating intermediate values between the LUT entries using some interpolation func-

tion. Using interpolation can reduce the effect of a limited number of LUT entries on the lin-
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earization ability. The advantage of interpolation over LUT fill with an intermediate function is

the smaller size of the LUT, but this comes at the cost of increased computational complexity on

the predistorter signal path.

9.4.1 Piecewise constant approximation

The piecewise constant LUT fill method is the most flexible and most straightforward method to

fill the LUT. It allows any shape of predistortion function within the limits of the LUT size and

word length. This method also allows the separate update of the LUT entries using some simple

root finding algorithm such as the secant or linear methods (Section 3.5.2) in adaptive solutions.

The disadvantage of this method is the computational complexity when used in frequency-domain

update methods (Section 4.4.2), due to the large number of coefficients updated simultaneously.

However, improvements have been suggested that reduce the complexity of the update ([134]).

9.4.2 Intermediate functions

The use of an intermediate function to calculate the values in the LUT can be used to reduce

the number of coefficients for the LUT estimation, either in the case of frequency-domain feed-

back [56, 102, 105, 153] or for estimation of the predistortion function during the initial PA

characterization[161]. The use of intermediate functions can significantly reduce the number of

required coefficients for a simultaneous update of all the LUT entries using, for example, an RLS

or LMS algorithms. This reduces the complexity of the algorithm and speeds up the convergence.

However, the fewer the coefficients, the worse the approximation. Additionally, the quality of the

approximation depends on the shape of the predistortion function and the selected intermediate

function.

There are several suitable functions that can be used as the intermediate function. The polyno-

mial approximation (Section 3.4.1) is probably the most common [56, 102, 105, 153] and offers a

low computational complexity for the calculation of the final LUT. However, the drawback is that

the polynomial functions are fairly poor in compensation distortion at low amplitudes or distortion

when the PA is close to saturation, requiring a large number of coefficients in these cases.

To enable more flexible approximation, splines [161, 180] can be used. Another function

similar to the splines is the Hermite polynomial [181]. Both of these increase the computational

complexity of the LUT fill operation compared to the polynomial functions, but they are also able

to approximate complex functions with a lower number of coefficients. Both the functions use

a small number of LUT entries as parameters and generate the final LUT by interpolation. The

spline and Hermite polynomial have similar computational complexities, but the spline performs

better than the Hermite polynomial when the approximated function is smooth, as it makes the

second derivatives of the interpolated function continuous, whereas the Hermite polynomial re-

quires only continuity of the first derivative and does not generate overshoot when the function is

not smooth [182].
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Also, simpler intermediate interpolation functions, such as linear interpolation, can be used.

These methods, however, pay for their simplicity with worse accuracy.

The limitations of the polynomial intermediate functions in approximating the nonlinearities

at the low amplitudes and near saturation may become a problem when high linearity is required.

High polynomial order is required to be able to approximate these distortions accurately.

There is also another problem with the polynomial approach connected to the adaptive LUT.

Namely the polynomial coefficients may have to be constrained to limit the required search space

and to reduce the number of iterations. When there is no information about the PA nonlinearity,

the parameter space the coefficients span is very large and not easily constrained.

The spline and Hermite polynomial functions use a number of actual LUT values as the pa-

rameters. The parameter space is more easily constrained, due to the fact that each LUT entry

value is limited by the maximum and minimum achievable with the word length.

As the PA nonlinearity is usually concentrated at either or both ends of the amplitude scale, it

should be feasible to select the LUT entries that are used as the interpolation parameters in such

a way that they are more densely spaced at the ends and sparsely spaced at the middle amplitude

values. This can be achieved using, for example, the following formula:

xnonlin = (
tanh(a(xlin/NLUT − 0.5))

tanh(a)
+ 1)(

NLUT

2
) (9.1)

where xnonlin is the new LUT index, xlin the linearly spaced index, NLUT the number of LUT

entries and a defines the shape of the function. This formula will be used in the following simula-

tions due to being a simple and general closed-form formula. However, any formula or mapping

having the similar properties would be suitable. The most efficient solution would be to use a

custom mapping function for each different PA, but this would reduce the generality of the pre-

distorter.

Figure 9.6 shows a comparison between polynomially approximated, non-interpolated, lin-

early interpolated, piecewise cubic Hermite polynomial interpolated (pchip)[181, 182] and cubic-

spline interpolated [180, 182] LUT approximations when using complex gain predistortion. The

results plot the adjacent channel power (ACP) as the function of the number of parameters when

using a 16QAM signal and a 256-entry LUT. The parameters of the interpolation functions were

distributed using (9.1). The power amplifier models PA1, PA2 and PA3 (Section 2.7) were used.

The first thing that can be seen from the figures is, that, in all cases, the interpolation reduces

significantly the number of parameters required for a particular ACP. Secondly, it is clear that,

when the amplifier nonlinearity is close to a low-order polynomial (Figure 9.6c), the polynomial

intermediate function approximates the predistortion function well with a low number of param-

eters. The pchip-function is able to achieve the same results, but its larger complexity makes the

polynomial a more appealing solution. The other methods are clearly inferior in this case.

When the nonlinearity on the low amplitudes increases, the polynomial function starts to

require more parameters to be able to approximate the predistortion function. In Figure 9.6b the

polynomial function gives the worst results, losing even to linear interpolation. The pchip method
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requires the lowest number of parameters for good linearity. Finally, in Figure 9.6a, the pchip

method requires only half the number of parameters compared to the polynomial interpolation. In

all the cases, the spline interpolation proves to require a quite large number of parameters, even

though it gives somewhat better results in the cases of PA1 and PA2 than the polynomial. This is

due to the smoothness requirement of the spline function that causes oscillation to the interpolated

function when the number of parameters is small.
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Figure 9.6: Comparison of different LUT generation methods (complex gain predistorter)

Figure 9.7 shows the similar comparison for the phase amplitude RF-predistortion (Section

4.4.1). The main differences are the shapes of the predistortion functions and the detector that

affects the distribution of the entries. The figures also include the simulated ACPs for the pchip

and linear interpolation when (9.1) is not used but the entries are distributed evenly (pchip and lin

int in Figure 9.7, respectively).
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When PA2 was simulated, it was noted that, when the parameters were distributed with (9.1),

the interpolation methods had some difficulties in modeling the mid-amplitude values, due to the

curvature of the predistortion function. It was noted that, by adding a parameter at the mid ampli-

tudes, the situation could be remedied. This method is marked as modif tanh in Figure 9.7). We

can see from the figures that the use of (9.1) for distribution of the parameters improves the results

significantly. By using the tanh distribution it is possible to implement linear interpolation with

a low number of parameters, which offers a significant reduction in the required computational

complexity; also, the results achieved with the pchip interpolation improve considerably.

The polynomial method works well with PA3 as expected. With PA2, the results with the

polynomial function are worse than with the pchip+tanh method. By adding the one anchor point

in the middle of the LUT, the performance of the pchip method can be significantly improved in

the case of PA2, without affecting the results in the cases with other PAs.
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Figure 9.7: Comparison of different LUT generation methods (phase-amplitude RF predistorter)
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In conclusion it can be stated that, if the PA is known to exhibit polynomial nonlinearity,

the polynomial intermediate function is the most beneficial. If the predistorter is supposed to be

general, the pchip interpolation offers as good or better ACP with a lower number of parameters

than the other methods. However, the computational complexity of the calculation of the inter-

polated values is larger than with the polynomial. Also, the benefit of a proper distribution of the

anchor points to interpolating the intermediate function is clear. The more information we have

on the nonlinearity, the more effectively we can choose the anchor points. Finally, it can be seen

that, with a proper distribution of anchors, linear interpolation can be used as a low-complexity

solution if the target ACP is modest.

To study the effect of the number of parameters on the convergence of the adaptive algorithm,

the polynomial intermediate function and the pchip algorithm with anchor points distributed with

(9.1) and an anchor added to the middle of the LUT were simulated with different numbers of

parameters. PA model PA2 was used and Nelder-Mead algorithm [158] was used for the LUT

update. The phase and amplitude LUTs were updated separately to reduce the number of the

parameters and improve the convergence (Section 9.6).

The results are collected into Figure 9.8. The figure shows that the polynomial function

has large difficulties in achieving the optimal result due to the large parameter space, and thus

it does not benefit much from increasing the number of parameters. The linear interpolation

with anchor points distributed with (9.1) and the pchip with one anchor added into the middle

of the LUT perform better than was expected on the basis of the results of the simulations with

the static LUT (Figure 9.7). This is due to the fact that the iterative algorithm optimizes the

parameters to improve the approximation of the predistortion function compared to the case where

the parameters were chosen directly from the inverse transfer function of the PA.

As can be seen from Figure 9.8b, the number of iterations increases at an almost equal rate

for all of the functions as the number of parameters increases. Thus it would be beneficial to

have as low a number of parameters as possible. Figure 9.8c shows the number of iterations as a

function of the ACP. What can be seen is the rapid increase in the number of iterations as the ACP

improves. Also the significant advantage of the improved pchip algorithm over the other method

is clearly visible.

9.4.3 Interpolation

Interpolation is an operation very similar to filling the LUT using an intermediate function. How-

ever, instead of having a large LUT that is filled using a function with a low number of parameters,

a small LUT is used and the LUT output is interpolated using a suitable function. Linear interpola-

tion, splines and Hermite polynomials (section 9.4.2) can be used also for the LUT output interpo-

lation. Interpolation has been used in several published predistortion systems [91, 130, 183–185].

The purpose of the interpolation is to reduce the linearity and noise floor limits imposed by

the small LUT by adding values to the LUT output between the steps. However, the interpolation

adds a computational operation after the LUT read, which may mean that it is necessary to add
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Figure 9.8: Comparison between the complexity and efficiency of several intermediate functions

when using N-M iterative algorithm.
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pipelining to be able to implement the operation, thus increasing the latency. This is especially

probable when using Hermite polynomials, splines or other more complex interpolation methods.

In the baseband predistortion systems the additional latency may be acceptable, depending on

the system specifications, since the latencies of the data signal and the predistortion signals can

be easily matched. However, as the RF-predistortion is very sensitive to delay (Section 5.2), the

increased delay of the predistorter control signals due to the interpolation may do more harm than

is gained by the interpolation.

Due to the simplicity, the linear interpolation is the most common method [91, 130] for LUT

interpolation, although spline interpolation has also been used [184, 185]. The linear interpolation

scheme can be described with the formulas [91]

LUTintp(n) = LUTk(n) + frac(2bit |Vin(n)|) · (LUTk+1(n) − LUTk(n)) (9.2)

and

Vpred(n) = Vin(n) · LUTintp(n). (9.3)

where Vin(n) is the original complex input signal normalized to have absolute value between 0

and 1, LUTk(n) is the kth value stored in the LUT, k = int(2bit |Vin(n)|), int function returns

the integer part of a number, frac returns the fractional part, bit is the LUT address word length,

n the time instant and Vpred(n) the predistorted signal.

One thing that should be noted when using an interpolation scheme with an adaptive LUT is,

that the predistortion signal consists of a weighted sum of two or more LUT entries, thus the LUT

update value should be “deinterpolated” between two or more LUT entries to take into account

their different weights [91]. If we are using a linear update method (3.11), the LUT update with

deinterpolation becomes [91]

LUTk+1(n) = LUTk(n)+

(1 − frac(2bit |Vin(n)|)) · a (Vout(n)−Vin(n))
Vout(n)

LUTintp(n)
(9.4)

and

LUTk+1(n + 1) = LUTk(n + 1)+

frac(2bit |Vin(n)|) · a (Vout(n)−Vin(n))
Vout(n)

LUTintp(n + 1).
(9.5)

where the notation is the same as in Equations (9.2), (9.3) and (3.11).

Figure 9.9 shows the simulated improvement in output ACP and SNR of a linearized power

amplifier due to linear interpolation, when the LUT has a 6-bit address and PA2 is used. The

results are shown as a function of the number of bits used for the interpolation or the increase

in the virtual address word length, i.e. the 2 bit increase in word length means that the virtual

address word length is 8 bits, the real LUT address word length is 6 bits and the LUT output is

interpolated using two bits between the adjacent LUT entries. The ’no interp’ curve displays the

resulting ACP and SNR if the LUT size is really increased and no interpolation is used. It can be

seen that the interpolation improves especially the SNR of the system and the differences between

the methods are small. For the ACP improvement, spline and pchip methods work nearly as well
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as the increased number of entries.

Figure 9.10 shows the simulated spectrum for a 16QAM signal using a complex gain predis-

torter and PA2. Linear interpolation was used (Equations 9.2 and 9.3). The LUT was updated

adaptively using (9.4) and (9.5). The improvement in wide band noise due to interpolation is

clearly visible, even though nonidealities limit the ACP improvement.

9.5 Methods for LUT update

The LUT update methods can be divided into time-domain methods that use a measure of error

in time-domain for calculation of updated LUT values and to frequency-domainmethods that use

a frequency-domain measure of error.

9.5.1 Time-domain methods

The time-domain update methods use information extracted from instantaneous signal measure-

ments and update the LUT values in real time. If the predistortion function is updated directly,

the most suitable update methods are the simple root finding methods such as secant or linear

iteration which are discussed more thoroughly in Section 3.5.2.

Other commonly used methods are the LMS [114, 121, 125, 153], RLS [102, 120, 124, 125,

154] and cross-correlation [123] methods. These are commonly used in conjunction with poly-

nomial [120, 153] and memory predistortion [121, 124, 154], since the algorithms are originally

designed for adaptive filtering and the polynomial evaluation is easily transformed into a form

similar to that of the FIR-filtering. These methods, however, have several disadvantages. If the

predistortion function is to be identified directly by the linearity of the PA output, one has to

know the Jacobian matrix of the distortion function [126]. This means that the nonlinearity of

the power amplifier has to be known before the predistortion function can be identified. This

makes the direct-learning architecture quite complex [121, 126, 128, 186]. There has been some

proposals to reduce the complexity of the direct learning algorithm [121, 127, 128].

However, a more common method is to use the indirect learning method [47, 54, 120, 124,

126, 153, 154] that uses a postdistortion block that is identified to remove the nonlinearity from

the measured PA output. This identified linearization function is then copied to the input of the

PA. This operation requires that the order in which the distortion and predistortion functions are

applied is irrelevant. However, this is not usually the case and optimal linearization can not be

achieved [126, 128]. The method also suffers from noise in the PA output [126, 128]. The third

problem is that this method is suitable only for low order polynomial predistortion or simulations,

due to the fact that, as the polynomial order increases, more and more computational accuracy

is required, and, if an LUT is used to contain the polynomial, the whole LUT has to be updated

every clock cycle, which is very arduous. The problems are discussed more thoroughly in Chapter

2.8.
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9.5.2 Frequency-domain methods

The frequency-domain LUT update methods periodically update the LUT values, usually the

whole LUT at once, according to a single linearity metric based onmeasurements over a long time

period. Often this metric is based on frequency-domain related measurements, such as adjacent

channel interference or the MSE of the PA output signal compared to the input signal (Section

4.4.2).

There are several methods that can be used to implement the frequency-domain LUT update.

Most of these methods benefit from limiting the number of parameters required for calculation

of the new LUT entries, using an intermediate function [28, 56, 102, 105, 153] or some other

method [134].

Among others, predistorters using the Hooke & Jeeves’ [28, 187] and genetic algorithms

[56, 105, 159] for the frequency-domain update have been published. Other possible algorithms

are, for example, gradient search algorithms, simplex algorithms, such as Nelder-Mead [158]

and simulated annealing [160]. The genetic algorithm has been used also in predistorters with

memory [56].

The advantage of the frequency-domain update is that it requires only a narrowband feedback

[28], which simplifies the requirements for the feedback path. The used update methods are

fairly complex when implemented with hardware and thus the frequency-domain update requires

a processor for software implementation of the algorithm.
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9.5.2.1 Genetic algorithm

The genetic algorithm will be used in the following analysis in addition to the Nelder-Mead

algorithm as the iterative algorithm. The genetic algorithmwas selected as an example of heuristic

minimization methods and was chosen over simulated annealing due to the availability of ready-

made functions for Matlab(R) and to ease comparison to previous published designs [56, 105].

The basic operation of a genetic algorithm is presented in references [56, 105, 159, 188].

9.6 Improvements for the frequency-domain update methods

Although the frequency-domain update methods are fairly straightforward to implement, there

are several pitfalls in the implementation that may limit the convergence of the algorithm. By

tackling these problems, the effectiveness of the linearization scheme can be improved.

Sperlich and Sills [56, 105] have presented a frequency-domain-feedback-based predistorter

using a genetic algorithm. The algorithm has some limitations due to the polynomial function

used. Use of this function means, that the parameter space for the polynomial coefficients has to

be constrained to improve convergence. This, on the other hand, means that prior information of

the PA nonlinearity is required to generate the constraints. Additionally, the constraint functions

are fairly complex. However, as was explained in Section 9.4.2, if the actual LUT values are used

as parameters for the intermediate function, the values are inherently constrained. Also, the use

of some more flexible function allows better linearization ability with non-polynomial distortion

functions.

In this section, our goal is to improve the frequency-domain update methods so that they can

be implemented without knowledge of the shape of the predistortion function and that the actual

LUT entries could be used as parameters for the algorithm. This would improve the generality

and flexibility of the algorithms and allow the development of a universal predistortion circuit.

The first thing that should be considered is the selection of the parameter that is used as

the error metric. There are two quite obvious possibilities for the error metric: the RMS of the

difference of the PA input and output and the ACP of the PA output signal. Also, depending on

the required specifications, other parameters such as EVM may be used.

If the RMS error is used, then the delay differences between the signals affect the result

(Sections 4.4.2 and 5.3), and this should be taken into account in the design.

If the adjacent channel power is used as the metric, there is no requirement for matching the

delays of the original signal and the amplified signal for the error calculation. However, this

presents another problem: if only the ACP is used, we have no reference on the power level of

the signal and usually the ACP can also be reduced by reducing the signal power in addition to

generating the inverse nonlinearity of the PA. This, however, reduces the efficiency and thus is

undesirable. Without taking account the original power level we risk convergence into a subopti-

mal state. To reduce the possibility that the adaptation converges to a state where the predistorter

improves the ACP mainly by reducing the output power, the objective function can be modified
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to take into account the desired output power level. This can be achieved by, for example, setting

the objective function to

ObjV = ACP + Apower |Ptarget − Pcurrent| (9.6)

where Ptarget is the wanted signal power in dB and Pcurrent is the signal power achieved by the

current individual in dB and Apower defines how hard the algorithm tries to achieve the target

power.

The next problem is that usually the amplitude distortion of a PA is the dominating error

source and the phase distortion is overshadowed by it. This causes that if both the phase and

amplitude parameters are updated simultaneously only the improvements caused by the amplitude

coefficients are noticed. Thus, half of the parameters are updated in vain and the computational

cost and the size of parameter space increase unnecessarily, slowing down the convergence. This

also increases the chance that the iteration converges to a suboptimal state.

This makes it beneficial to update the phase and amplitude LUTs separately. However, after

both LUTs have converged separately to find out the approximate form of the nonlinearity it was

found out during simulations to be feasible to do a final iteration for both the LUTs at the same

time. Sperlich et al [56] suggest that a similar separation of updates should be performed in

memory predistorters between the LUTs containing the polynomials corresponding to different

time instants.

Another problem similar to the previous one is that, when the adaptation is started, the high

amplitude values have a much larger effect on the ACP than the low amplitude values. This is

due to the fact that the power amplifier usually is driven near saturation and thus the nonlin-

earities at the high amplitudes are strong and the energy of the signal is also larger at the high

amplitudes. This causes the low amplitude values tend to converge on a suboptimal state as when

the effect of the low amplitudes starts to be visible, the algorithm has already reduced its search

space to exclude the optimal values. This problem can be alleviated by iterating the parameters

corresponding to the low amplitude values after the convergence of the original search.

Table 9.1 compares the effect of the improvements presented in the previous paragraphs. The

Nelder-Mead (N-M) [158] algorithm was used as the iterative algorithm due to its availability in

Matlab. Comparisons were made using PA2 linearized with the amplitude-phase RF-predistorter

(Section 4.4.1).

In the table, “poly” is the method where the parameters are polynomial coefficients, mod

pchip is the simultaneous iteration of phase and amplitude LUTs when the parameters are selected

using (9.1) with one coefficient added in the middle of the LUT (Section 9.4.2), “phase+amp”

introduces the separate phase and amplitude iterations and finally “low amp iter” uses also the

separate adaptation for a small number of the lowest parameters, “params” tells the number of

parameters used, “ACP” tells the final ACP value achieved with the method and “ACP eval” tells

the required number of evaluations of (9.6) before the convergence. All the simulations were

averaged over ten runs. The number of parameters for polynomial and pchip algorithms were
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chosen so that they achieve approximately 65 dBc ACP in Figure 9.7. All the configurations were

tested with Nelder-Mead algorithm and additionally the original modified pchip and the case with

separate low amplitude iteration were tested with a genetic algorithm with 40 individuals. The

results are collected in Table 9.1.

As can be seen, without constraints, the polynomial predistorter works badly and converges

quickly to a suboptimal state. The addition of separate phase and amplitude iterations somewhat

improves the results. When the iteration was changed to pchip, the results improved. The use

of pchip allowed the LUT entries to be used as parameters, which improved the accuracy of the

approximation and reduced the parameter space. With only eight parameters, the target ACP

is achieved and the number of iterations reduces by a quarter compared to the polynomial. If

we increase the number of parameters to twelve, the ACP improves, but the number of iterations

doubles. When the phase and amplitude iterations are separated, the number of iterations reduces.

By adding the separate iteration round for the low amplitudes, we retain the ACP, but reduce the

number of iterations by 200.

When the results for the genetic algorithm are examined, we see that the algorithm achieves

70 dBc ACP. By introducing the separate phase and amplitude and low amplitude iterations, the

number of iterations reduces by 20%. It should be noted that the number of iterations and the

ACP achieved by the genetic algorithm varies, depending on the number of individuals in the

population and thus the results are allusive.

Table 9.1: Comparison between different improvements to the iterative LUT-update algorithm

poly poly, ph+amp mod pchip ph+amp low amp

params 12 12 8(N-M/gen) 12 8 8(N-M/gen)

ACP 50 dBc 52 dBc 70/70 dBc 73 dBc 70 dBc 69/70 dBc

ACP eval 5800 4200 3400/4300 8100 2700 2500/3500

As can be seen the proposed improvements reduce both the ACP and number of iterations.

It should also be noted that the differences between the hardware costs of the different versions

of the pchip algorithms are fairly small, since only some additional logic for distinguishing the

different update phases is required.

9.7 LUT-based genetic algorithm

As the simulations of the improved algorithmwith the Nelder-Mead algorithmwere promising, an

improved genetic algorithm using the changes presented in the previous section was implemented

for simulations.

The algorithm was implemented in such a way that the ten all-time best individuals were

stored between the iteration rounds. This was done to preserve the results achieved during the

previous iteration rounds. At the start of each round, the new population is generated by taking

the all-time best individual and adding random perturbation to the parameters. The size of the
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perturbation is divided by two every round. This is done to reduce the space spanned by the pop-

ulation. Finally, ten of the generated individuals are replaced by the ten all-time best individuals.

The population size was chosen to be 40 individuals.

Thus the modified algorithm becomes

1. Generate population with N individuals and X amplitude LUT parameters

2. Set the X phase LUT parameters to 0

3. Evaluate the objective function (PA-predistorter chain) with the individuals

4. Store the individuals that are better than the previous ten best individuals

5. Rank the fitness of the individuals with nonlinear ranking[188]

6. Select the most fit individuals

7. Cross the selected individuals to generate offspring using linear recombination[188]

8. Mutate the offspring with breeder genetic algorithm[188]

9. If the number of iterations <10 goto step 3 else go to 11

10. If the fitness of the best individual of the previous loop does not exceed the fitness of the

all-time best individual, change from amplitude LUT to phase LUT or vice versa

11. Generate new population by adding random perturbation to the all-time best individual and

reinsert the best 10 individuals. On every other amplitude round, generate population only

by perturbing the lowest three coefficients of the best individual.

12. If optimization criteria are not met, goto step 3

9.8 Simulation results

Table 9.2: Simulation results of the genetic algorithms and approximated LUTs

no correct PA inverse cubic interp. polynomial genetic LUT genetic poly Nelder-Mead

PA detector ACP ACP ACP ACP ACP Niter ACP Niter ACP Niter/40

PA1 powdet 30 dBc 60 dBc 54 dBc 51 dBc 56 dBc 87 49 dBc 88 56 dBc 78

PA2 powdet 35 dBc 68 dBc 62 dBc 65 dBc 64 dBc 57 56 dBc 48 64 dBc 125

PA3 powdet 28 dBc 75 dBc 71 dBc 75 dBc 68 dBc 123 65 dBc 81 78 dBc 65

PA1 lindet 30 dBc 67 dBc 60 dBc 50 dBc 59 dBc 116 50 dBc 55 62 dBc 75

PA2 lindet 35 dBc 74 dBc 67 dBc 68 dBc 70 dBc 87 56 dBc 105 69 dBc 63

PA3 lindet 28 dBc 72 dBc 64 dBc 72 dBc 68 dBc 56 60 dBc 97 72 dBc 55

The genetic algorithmwas simulated with Matlab using the RF-predistortion system presented

in chapter 7. The phase and amplitude LUTs were indexed with envelope measured using two
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different envelope detector types, namely a power detector (powdet) and linear diode detector

(lindet) (Chapter 6). PA1, PA2 and PA3 were used in the simulations to test the operation with

different predistortion function shapes.

The signal used in the simulations was a 300 ksym/s 16QAM signal and the clock frequency

was 10 MHz. The envelopes and the predistorter control signals were filtered with a fourth or-

der Butterworth filter with a corner frequency of 5 MHz. The LUT size was 256 entries and

the word length was 12 bits. The LUT based genetic algorithm described in Section 9.7 was

implemented. The number of parameters was set to be 8, based on the results in Section 9.4.2.

Also a polynomial-based genetic algorithm with 14 parameters was implemented. Finally, a N-M

algorithm [158] -based LUT iteration algorithm was implemented for comparison.

The resulting ACPs are shown in Table 9.2. Results are averaged over five runs to take into

account the fact that the algorithms are heuristic. The table also lists the predistortion results

in the case where the LUTs contain the calculated inverse transfer function of the PA, the case

where this predistortion function is approximated with a LUT interpolated with pchip from eight

parameters and the case where the function is approximated with a 13th-order polynomial.

The results clearly show that neither the cubic interpolation nor the polynomial approximation

can achieve as good results as the PA inverse transfer function. Nevertheless, the results are fairly

good in the cases with PA2 or PA3.

When the LUT is updated with the pchip based genetic algorithm, it can be seen that the

results match, or even exceed, the results expected according to the pchip interpolated static LUT

case. This is due to the fact that the iterative algorithm can adjust the parameters to a slight offset

from the actual value to improve the overall predistortion function. As could be expected from

the results in Section 9.4.2, the polynomial function has severe problems with the convergence

to an optimal state. Better results might be achieved if the starting population were based on

the measured nonlinearity of the power amplifier. However, the LUT-based algorithm is not

dependent on the knowledge of the PA nonlinearity.

Finally, when the genetic-algorithm-based and the N-M-based algorithm are compared, it can

be seen that they both achieve equally good results. Also the numbers of iterations are comparable

(it should be noted that the size of population in the genetic algorithm is 40 individuals, thus the

number of iterations in the N-M case is divided by 40 to match this). Thus the genetic algorithm

does not offer significant advantage over the N-M algorithm in this sense. However, the necessary

calculations for the LUT update have to be performed only every 40th iteration, which when

compared the N-M, may make the genetic algorithm more attractive.

9.9 Conclusions

LUT size, indexing, interpolation and update are important factors in the design of a digital pre-

distorter. In this chapter, the effect of LUT size and entry accuracy on the linearization ability of

the predistortion system were discussed. The chapter also reviewed methods to reduce the LUT
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size without affecting the linearity. As the methods to reduce the LUT size are somewhat limited,

and as some LUT update methods require a much lower number of parameters, a number of in-

terpolation methods were also discussed. These methods can be used to significantly reduce the

number of parameters used to generate the LUT, but they do so at the expense of computational

simplicity and reduced linearity, due to approximation of the predistortion function. Using a cubic

Hermite interpolation polynomial interpolation function gave the best linearization results when

the amplifier was nonpolynomial. Also the difficulties with using a polynomial predistortion

function when linearizing a non polynomial amplifier were discussed.

Finally, several LUT update methods were reviewed. A frequency-domain-metric-based LUT

update method that uses a number of LUT entries as parameters and an interpolative function

was presented and several improvements on the original algorithm were discussed. The method

was shown to be suitable for use with the Nelder-Mead algorithm and genetic algorithm. Also,

the effectiveness of the improvements was shown through simulations and the method proved

to exhibit a much more reliable convergence than a polynomial function, due to its inherently

restricted parameter space. The method also is fairly independent of the shape of the nonlinearity.
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Conclusions

Predistortion has been used as a simple and robust method to linearize power amplifiers for sev-

eral decades, while the first fully digital predistortion systems were published some 20 years ago.

A great deal of research has been carried out in the area. Although the digitally controlled predis-

torters have been shown in simulations to be capable of achieving very good linearization ability,

there are still several problems related to the practical implementations that need to be solved.

This can be seen by, for example, comparing the simulated and measured results in Table 3.1.

If the problems could be solved, the RF-predistortion systems would then offer the possibility

to implement a universal predistortion chip that could be used with only general knowledge of the

PA and baseband blocks or it would offer integration with a PA to generate a linear and efficient

device.

One significant problem that hinders the development of a small-size RF predistorter is the

inevitable delay differences between the baseband control signals and the RF signal to be pre-

distorted. If these delays are not compensated, the linearity suffers significantly and, in adaptive

predistorters, the update may become unstable, as was seen in the simulation results presented in

this thesis. The old methods to compensate this delay were been bulky and nonintegratable into

IC, but, in this thesis, a fully digital delay compensation method based on polynomial predictive

filters is presented. This method was able to achieve an improvement in ACP of over 20 dB

in simulations and to reduce instability of the predistorter update in measurements. The second

order polynomial predictor was seen to perform the best with constant LUT implementations,

especially with additional noise filtering. When using an adaptive LUT, the first order predictor

is the most stable solution.

The selection of the envelope detection method for the predistortion function generation in an

RF-predistortion system affects the linearization ability of the predistortion system. This thesis

studied the effect of three different envelope detectors, the linear diode, square-law diode and

logarithmic detectors. The linear diode detector proved to be the most versatile one and gave

in all the test cases the best or very close to the best linearization ability. However, the biasing

of a diode detector to the linear operating condition may be difficult. If the power amplifier
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exhibits nonlinearity only on high signal amplitudes, a square-law diode detector can be used.

On the other hand, if the nonlinearity is on low amplitudes, the logarithmic detector operates

well. It was also noted that the operation of the logarithmic and square-law detectors could

offer the same linearization ability as the linear diode if the detector output was linearized in the

digital domain. Since the nonlinearity functions of the different envelope detector types spread

the spectrum of the detected signal differently, the bandwidth requirements for the post-detection

filter were studied. The linear and power-law detectors required approximately a filter bandwidth

of 3 times the signal bandwidth, whereas the logarithmic detector required a filter bandwidth of 5

times the signal bandwidth.

An RF-predistortion system was implemented. The predistorter uses an analog phase and am-

plitude modulator as the predistortion element and an adaptive digital control for the predistortion

element. The digital control was implemented using two LUTs and digital update algorithm on

an FPGA. The carrier frequency of the RF signal was 440 MHz and the signal bandwidth varied

from 3 kHz to 50 kHz.

When the predistorter update was frozen during the actual signal transmission, the predistorter

improved the other adjacent channel ACP by 8 dB and the other by 17 dB. However, using the

adaptive update made the system unstable, due to delays in the control signals. Using a predictive

polynomial filter to generate the LUT control signals improved the stability, but the instability

was completely removed when the update algorithm was improved to update based on a larger

number of samples and at longer intervals, ensuring that the update has affected the predistorter

feedback before the next update. This achieved a 10 dB improvement in ACP on both sidebands

using an 18 kHz signal bandwidth and improved stability. As the results show, there is still room

for improvement in the performance of RF-predistorters.

Also, complex gain baseband predistorters were investigated in the thesis and predistorter

hardware for a complex gain predistorter with a quadrature modulator and demodulator error cor-

rection circuits was designed. Different adaptation methods for the quadrature modulator error

correction circuits were compared and the effect of quadrature modulator nonlinearity on base-

band predistortion was investigated.

An implemented predistorter uses two LUTs containing the real and imaginary part of the

adaptive predistortion function. The predistortion function is constantly updated according to the

quadrature demodulated PA output signal. The predistorter was implemented using an FPGA .

The signal used in the simulations and measurements was an 18 ksym/s 16QAM signal at

a 400 MHz carrier frequency. In measurements the ACP improvement was 15 dB when the

quadrature correction was in use. The removal of the quadrature error correction increased the

ACP by 9 dB compared to the situation without quadrature correction. The tested quadrature

compensation methods gave similar results ACP-wise. The measurements clearly showed that

the quadrature compensation of the feedback signal is very important to the linearization ability

of the predistorter. Especially the feedback DC levels affect the correction considerably.

The simulation of the quadrature modulator nonlinearity showed that, to minimize the effect

of third-order nonlinearity, the nonlinearity in both the inphase and quadrature branches should
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be the same. On the other hand, the effect of second order nonlinearity is minimized only when

either or both second order components are completely removed. It was also shown that an

adaptive predistorter is able to compensate part of the third order nonlinearity, but the second

order nonlinearity causes convergence problems to the adaptation due to large residual errors; the

results with adaptation are shown to be worse than without adaptation.

Finally, this thesis studied the effect of the LUT size and accuracy, indexing, interpolation and

update on the linearization ability of the predistortion system. Also, methods to reduce the LUT

size without affecting the linearity were reviewed.

As the methods to reduce the LUT size are somewhat limited and some LUT update meth-

ods require much lower number of parameters to be feasible, a number of interpolation methods

were also discussed. These methods can be used to significantly reduce the number of parameters

used to generate the LUT, at the expense of computational simplicity and reduced linearity due

to approximation of the predistortion function. Using a cubic Hermite interpolation polynomial

interpolation function gave the best linearization results when the amplifier was nonpolynomial.

Also the difficulties of using a polynomial predistortion function when linearizing a non polyno-

mial amplifier were discussed.

Finally, several LUT update methods were reviewed. A frequency-domain-metric-based LUT

update method that uses a number of LUT entries as parameters and an interpolative function

was presented and several improvements on the original algorithm were discussed. The method

was shown to be suitable for use with the Nelder-Mead algorithm and the genetic algorithm. The

improved method exhibited in simulations a much more reliable convergence than a polynomial

function.
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